WorldWideScience

Sample records for anodic alumina membranes

  1. Nanotube Arrays in Porous Anodic Alumina Membranes

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Naoto KOSHIZAKI; Guanghai LI

    2008-01-01

    This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.

  2. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    OpenAIRE

    Zheng WenJun; Fei GuangTao; Wang Biao; Zhang Li

    2009-01-01

    Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  3. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  4. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  5. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    Science.gov (United States)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  6. Palladium coated porous anodic alumina membranes for gas reforming processes

    Science.gov (United States)

    Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy

    2010-11-01

    Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.

  7. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    International Nuclear Information System (INIS)

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface

  8. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  9. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    Science.gov (United States)

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. PMID:27287158

  10. Structure and Magnetic Properties of Ni Nanowires Array Fabricated by Direct Current Electro-deposition in Anodic Alumina Membrane

    Institute of Scientific and Technical Information of China (English)

    HUANG Xinmin; ZHU Hong; XU Jinxia

    2005-01-01

    Ordered nanostructure arrays of Ni-Al2O3 were synthesized by direct current electro-deposition in anodic alumina membranes (AAM). The investigation with an electron microscope,an X-ray diffractmeter and a vibration sample magnetometer indicates that the Ni nanowires, growing in the pores of AAM with about 45nm in diameter, are monocrystalline and have a definite preferred crystallizing orientation. The magnetic behavior of the arrays and their mechanism were discussed.

  11. Fast fabrication of a high-aspect-ratio, self-ordered nanoporous alumina membrane by using high-field anodization

    International Nuclear Information System (INIS)

    A series of processes for the fast fabrication of nanoporous anodic alumina membranes with high-aspect-ratio, self-ordered pore arrays was developed based on a high-field 2-step anodization in a 0.3 M oxalic electrolyte. The dielectric breakdown commonly driven by the high electric field was circumvented by using a linear sweep of the initial voltage from 0 to 140 V, followed by a constant voltage of 140 V for the first step and by using a controlled growth rate that was adjusted by varying the electrolyte concentration while applying an instantaneous constant voltage of 140 V for the second step. A thick nanoporous film of about 120 um was grown within 2 hours with an average interpore distance of 310 nm and an average pore size of 50 nm, where the aspect ratio of the pores was over 2000. In order to overcome the problems associated with a thick barrier layer formed during the high-field anodization, we applied a pulsed electrochemical detachment technique to remove the base Al metal. A through-hole membrane with a pore size of about 210 nm was fabricated after widening the pores through a chemical etching of the pore walls. These novel processes ensure reliable fabrication of a high-field nanoporous anodic alumina membrane and provide a new template for nano-scale research.

  12. Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane

    Science.gov (United States)

    Takase, Kouichi; Shimizu, Tomohiro; Sugawa, Kosuke; Aono, Takashige; Shirai, Yuma; Nishida, Tomohiko; Shingubara, Shoso

    2016-06-01

    Nanowires embedded in nanopores are potentially tough against surface scraping and agglomeration. In this study, we have fabricated Au and Ni nanowires embedded into anodic porous alumina (APA) and investigated their reflectance to study the effects of surface plasmon absorption properties and conversion from solar energy to thermal energy. Au nanowires embedded into APA show typical gold surface plasmon absorption at approximately 530 nm. On the other hand, Ni nanowires show quite a low reflectance under 600 nm. In the temperature elevation test, both Au and Ni nanowire samples present the same capability to warm up water. It means that Ni nanowires embedded into APA have almost the same photothermal activity as Au nanowires.

  13. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization

    KAUST Repository

    Zhou, Lu

    2015-06-29

    This communication presents the successful design of a structured catalyst based on porous anodic alumina membranes for methane dry reforming. The catalyst with a strong Ni-NiAl2O4 interaction shows both excellent activity and stability. This journal is © The Royal Society of Chemistry.

  14. Microporous alumina ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  15. Mechanical properties of free standing porous anodic alumina films

    OpenAIRE

    Ignashev, E.; Shulgov, V.

    2012-01-01

    Free-standing films of anodic alumina obtained from the one-sided anodization of aluminum were studied. The flexural strength of free-standing porous anodic alumina films to the lateral bending, circular bending, and microhardness were studied.

  16. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  17. Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    International Nuclear Information System (INIS)

    Ordered TiO2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO2 owing to the quantum size effect

  18. Effects of single and two stages anodizing on nonporous anodic alumina template at different potentials

    International Nuclear Information System (INIS)

    The porous anodic alumina has extensive applications as mold or template for filling the highly ordered patterned ID nanomaterials (semiconductors, magnetic nanowires etc.) and as a mask for nano dots of different materials. Pores in anodic alumina synthesized under appropriate conditions are self organized. Pore density, pore diameter, interpore distance may be changed through variation of different parameter such as anodic potential, choice of electrolyte, temperature and kind of pre-treatment. The porous anodic alumina has been synthesized by single and double stage anodizing at different potentials. The potentials used were 40V, 50V, 60V and 70V. By comparison of ordered pore formation under both the conditions, it has been found that pores formed in doubly anodized alumina are more ordered/organized than in singly anodized anodic alumina at same potential used for both type of synthesis. SEM images revealed that the pore density in the singly anodized alumina was greater than in doubly anodized alumina prepared under the same potential. Using the SEM image, the pore diameter in the case of doubly anodized alumina was found to be in the range of 50- 70 nm, whereas, for singly anodized alumina pore diameter was found to be in the range of 50-100 nm. Scanning electron Microscope images and electrochemical parameters showed that two stage anodizing is better than single stage anodizing to achieve highly ordered nanoporous alumina template. (author)

  19. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  20. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    International Nuclear Information System (INIS)

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage. (paper)

  1. Modelling the initial stage of porous alumina growth during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2013-05-01

    Artificially on the surface of aluminum there may be build a thick layer of Al2O3, which has a porous structure. In this paper we present a model of growth of porous alumina in the initial stage of anodizing, identifying dependencies anodizing parameters on the rate of growth of the film and the distance between the pores and as a result of the created model equations were found for changes in the disturbance of alumina for the initial stage of anodizing aluminum oxide porous border aluminum-alumina and alumina-electrolyte, with the influence of surface diffusion of aluminum oxide.

  2. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  3. Chemo-mechanical softening during in situ nanoindentation of anodic porous alumina with anodization processing

    OpenAIRE

    Cheng, C; Ngan, AHW

    2013-01-01

    Simultaneous application of mechanical stresses on a material as it undergoes an electrochemical reaction can result in interesting coupling effects between the chemical and mechanical responses of the material. In this work, anodic porous alumina supported on Al is found to exhibit significant softening during in situ nanoindentation with anodization processing. Compared with ex situ nanoindentation without anodization processing, the in situ hardness measured on the alumina is found to be m...

  4. Fabrication of alumina films with laminated structures by ac anodization

    International Nuclear Information System (INIS)

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials. (paper)

  5. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Josep Ferré-Borrull

    2014-07-01

    Full Text Available Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration. We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters.

  6. Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Feng Du; Xianli Liu; Zhonghao Jiang; Luquan Ren

    2011-01-01

    Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.

  7. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    OpenAIRE

    Steinle, Erich D.; Andrew L. Molder; Hardin, Jonathan L.; Ravikanth Kona; Penumetcha, Sai S.

    2007-01-01

    This paper describes the use of several characterization methods to examine alumina nanotubule membranes that have been modified with specific silanes. The function of these silanes is to alter the transport properties through the membrane by changing the local environment inside the alumina nanotube. The presence of alkyl groups, either long (C18) or short and branched (isopropyl) hydrocarbon chains, on these silanes significantly decreases the rate of transport of permeant molecules through...

  8. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism. PMID:27171214

  9. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    Directory of Open Access Journals (Sweden)

    Erich D. Steinle

    2007-11-01

    Full Text Available This paper describes the use of several characterization methods to examinealumina nanotubule membranes that have been modified with specific silanes. The functionof these silanes is to alter the transport properties through the membrane by changing thelocal environment inside the alumina nanotube. The presence of alkyl groups, either long(C18 or short and branched (isopropyl hydrocarbon chains, on these silanes significantlydecreases the rate of transport of permeant molecules through membranes containingalumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionicsurfactant can alter the polarity of these modified nanotubes, which correlates to anincreased transport of ions. Fluorescent spectroscopy is also utilized to enhance thesensitivity of detecting these permeant molecules. Confirmation of the alkylsilaneattachment to the alumina membrane is achieved with traditional infrared spectroscopy,which can also examine the lifetime of the modified membrane. The physical parameters ofthese silane-modified porous alumina membranes are studied via scanning electronmicroscopy. The alumina nanotubes are not physically closed off or capped by the silanesthat are attached to the alumina surfaces.

  10. Characterization of nanopores ordering in anodic alumina

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2008-01-01

    A simple characterization method of the ordering of the nanopores is described for nanoporous anodized aluminium oxides. The method starts with image analysis on scanning electron microscopy representations for the purpose to find repetitive shapes and their centres, i.e. nanopores. Then triangle...

  11. Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth

    Directory of Open Access Journals (Sweden)

    Stavrinidou Eleni

    2011-01-01

    Full Text Available Abstract We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM. Cross sectional HRTEM images combined with electron diffraction (ED were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

  12. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    Alexander Zahariev; Assen Girginov

    2003-04-01

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte solution not dissolving the film. Data about the kinetics of re-anodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during reanodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.

  13. Silver as Anode in Cryolite—Alumina-Based Melts

    OpenAIRE

    Kucharik, M.; Chamelot, Pierre; Cassayre, Laurent; Taxil, Pierre

    2007-01-01

    The anodic behaviour of silver was investigated in cryolite—alumina-based melt. Silver has a lower melting point (ca. 960◦C) than the other metals considered as possible inert materials for aluminium electrolysis. The working temperature used in aluminium industry is approximately 960◦C, depending on the melt composition. Therefore, the stability of silver during the anodic process was tested at 870◦C in an acidic electrolyte consisting of 65.5 mass % Na3AlF6 + 22.9 mass % AlF3 + 5.7 mass ...

  14. Advanced morphological analysis of patterns of thin anodic porous alumina

    International Nuclear Information System (INIS)

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing

  15. Advanced morphological analysis of patterns of thin anodic porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, C. [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy); Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Stępniowski, W.J. [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Leoncini, M. [Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Salerno, M., E-mail: marco.salerno@iit.it [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy)

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  16. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    OpenAIRE

    Mohammed eES-SOUNI; Salah ehabouti

    2014-01-01

    Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discus...

  17. Ordered Nanomaterial Thin Films via Supported Anodized Alumina Templates

    OpenAIRE

    Es-Souni, Mohammed; Habouti, Salah

    2014-01-01

    Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large-area ordered nanostructures with tunable dimensions and aspect ratios. In this paper, we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin-film heterostructure on a substrate for high-quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discu...

  18. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    OpenAIRE

    Morteza Aramesh; Wei Tong; Kate Fox; Ann Turnley; Dong Han Seo; Steven Prawer; Kostya (Ken) Ostrikov

    2015-01-01

    A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, su...

  19. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  20. Regularity control of porous anodic alumina and photodegradation activity of highly ordered titania nanostructures

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-zhi; XU Ming-xia; TIAN Yu-ming; SHANG Meng; ZHANG Ping

    2006-01-01

    A two-step anodizing process was used to prepare wide-range highly ordered porous anodic alumina membrane (PAA) in the electrolyte of oxalic acid. The effects of anodic voltage,anodizing time,size of aluminium foil and additives on the regularity of PAA membrane were also studied in the process of two-step anodization. The template method was combined with the sol-electrophoresis deposition and sol-gel method respectively to prepare highly ordered titania nanostructures. The diameter and length of the obtained nanostructures were determined by the pore size and depth of the PAA template. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the morphology and phase structure of the PAA template and the titania nanostructures. The results show that the anodizing time and the additive of ethanol have a great effect on the regularity of PAA template. This can be explained from the self-organized process and the current density theory. A theoretical model based on the self-organized process was established to discuss the formation mechanism of PAA template from the chemical perspective. The titania nanostructures prepared with this method has a high specific surface area. Furthermore,the photocatalytic activity of titania nanostructures on methyl orange were studied. Compared with ordinary titania membranes,the titania nanostructures synthesized with this method have higher photodegradation activity.

  1. Iron migration from the anode surface in alumina electrolysis

    Science.gov (United States)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V.; Kirik, Sergei D.

    2013-01-01

    Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has not been observed.

  2. Preparation of Porous Alumina Film on Aluminum Substrate by Anodization in Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20°C. The honeycomb structure made by one step anodization method and two step anodization method is different.Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.

  3. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  4. Iron migration from the anode surface in alumina electrolysis

    International Nuclear Information System (INIS)

    Highlights: ► Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. ► It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe2+ takes place. ► Fe2+ interacts with cryolite melt producing FeF2. ► FeF2 gives oxides FeAl2O4, Fe3O4, Fe2O3. ► The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has

  5. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Yung; Wang, Yuh-Lin [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Hsuan-Hao; Lai, Ming-Yu [Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box, 23-166, Taipei 10617, Taiwan (China); Liu, Chih-Yi, E-mail: ylwang@pub.iams.sinica.edu.tw [Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-09-07

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  6. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment. PMID:21730530

  7. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  8. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    International Nuclear Information System (INIS)

    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 μm thick with a pore diameter of 150–180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  9. Unifying the templating effects of porous anodic alumina on metallic nanoparticles for carbon nanotube synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Mark R., E-mail: Mark.R.Haase@gmail.com, E-mail: haasemr@mail.uc.edu; Alvarez, Noe T.; Malik, Rachit; Schulz, Mark; Shanov, Vesselin [580 Engineering Research Center, Department of Biomedical, Chemical and Environmental Engineering (United States)

    2015-09-15

    Carbon nanotubes (CNTs) are a promising material for many applications, due to their extraordinary properties. Some of these properties vary in relation to the diameter of the nanotubes; thus, precise control of CNT diameter can be critical. Porous anodic alumina (PAA) membranes have been successfully used to template electrodeposited catalyst. However, the catalysts used in CNT synthesis are frequently deposited with more precise techniques, such as electron beam deposition. We test the efficacy of PAA as a template for electron beam-deposited catalyst by studying the diameter distribution of CNTs grown catalyst of various thicknesses supported by PAA. These are then compared by ANOVA to the diameter distributions of CNTs grown on metal catalyst supported by a conventional alumina film. These results also allow a unified description of two templating effects, the more common particles-in-pores model, and the recently described particles-between-pores.

  10. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  11. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  12. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  13. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Abel Santos

    2014-05-01

    Full Text Available Nanoporous anodic alumina (NAA has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.

  14. Rational engineering of nanoporous anodic alumina optical bandpass filters

    Science.gov (United States)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  15. Photonic stop bands in quasi-random nanoporous anodic alumina structures

    CERN Document Server

    Maksymov, Ivan; Pallares, Josep; Marsal, Lluis F

    2011-01-01

    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite- difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors.

  16. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing.

    Science.gov (United States)

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  17. Preparation of highly-ordered carbon nanotube arrays in the anodized alumina template

    International Nuclear Information System (INIS)

    A highly-ordered, hexagonally arranged alumina nanopore template was prepared by self-organized two-step anodization process of aluminium in oxalic acid solution. Highly parallel pores were obtained within domains of a few micrometers. Highly-ordered, parallel carbon nanotube arrays were successfully grown in the alumina template nanopores by chemical vapor deposition catalyzed by alumina itself. The nanotube arrays are suitable for channeling of particle beams. The structures of aluminium, alumina template and carbon nanotubes were characterized by scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). The growth mechanism and formation condition of both alumina template and carbon nanotube were discussed. (authors)

  18. Textural stability of titania–alumina composite membranes

    NARCIS (Netherlands)

    Kumar, Krishnankutty-Nair P.; Keizer, Klaas; Burggraaf, Anthonie J.

    1993-01-01

    Textural evolution (porosity reduction, pore and crystallite growth) in titania–alumina composite membranes has been studied using thermal analysis, X-ray diffraction, field emission scanning electron microscopy and N2 physisorption techniques. The presence of alumina in the membranes improved the t

  19. An electrochemical impedance study on cermet anodes in alumina-saturated molten cryolite

    International Nuclear Information System (INIS)

    This paper reports on electrochemical impedance spectra of NiO-NiFe2O4-Cu cermet anodes in alumina-saturated molten cryolite at anodic potentials above the decomposition potential of alumina which exhibited a loop with a characteristic frequency of about 1 Hz. A similar feature was observed using platinum anodes under the same experimental conditions. Analysis of these data suggests the loop was due to gas bubbling. Features associated with charge-transfer processes were not sufficiently resolved to determine the corrosion properties of the cermet anode

  20. High field matching effects in superconducting Nb porous arrays catalyzed from anodic alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.;

    2007-01-01

    parallel pores. Its pore diameter and interpore distance are set by careful tuning of the anodization parameters. A superconducting Nb thin film is deposited directly onto the alumina film. The porous alumina acts as a template and it allows Nb to form a periodic pinning array during its growth. Pinning...

  1. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究%Spontaneous formation of ordered Sn nanodot array on porous anodic alumina membrane

    Institute of Scientific and Technical Information of China (English)

    黄丽清; 潘华强; 王军; 童慧敏; 朱可; 任冠旭; 王永昌

    2007-01-01

    以多孔阳极氧化铝膜(porous anodic alumina,PAA)为基片,采用真空电子束蒸发的方法在多孔氧化铝膜上制备了高度有序度的Sn纳米点阵列.锡纳米点阵的XRD与块体锡的完全相同,扫描电镜(SEM)测试结果表明,所制备的金属Sn纳米点阵与阳极氧化铝膜的多孔阵列具有完全相同的有序结构,阵列中每个Sn纳米粒子的形状为球形的,其直径接近于PAA膜的孔直径.对Sn纳米点阵形成过程和形成机理进行了讨论.

  2. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Directory of Open Access Journals (Sweden)

    Ni S

    2014-07-01

    Full Text Available Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4 1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA and examine preosteoblast (MC3T3-E1 attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05. Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry through an anodization process to improve osteoblast density, and, thus, should be

  3. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. PMID:20493719

  4. Effect of change in cation composition of cryolite-alumina melts on anodic overwork

    International Nuclear Information System (INIS)

    Stationary polarization of platinum and glass carbon anodes in minor KF and LiF doped cryolite-alumina melt at different concentrations of alumina is searched in laboratory cell. Individual additive of LiF results in the raise of anode overvoltage by 50-80 mV at glass carbon and ∼25 mV at platinum anodes. Substitution of part of Na+ ions for Li+ in the amount to ∼3.7 mol.% of LiF (∼1.8 mas.%) results in the low polarization

  5. Effect of anodizing voltage on the sorption of water molecules on porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I., E-mail: vrublevsky@bsuir.edu.by [Belarusian State University of Informatics and Radioelectronics, Department of Micro and Nanoelectronics, 220013 Minsk (Belarus); Chernyakova, K. [Belarusian State University of Informatics and Radioelectronics, Department of Micro and Nanoelectronics, 220013 Minsk (Belarus); Bund, A.; Ispas, A.; Schmidt, U. [Fachgebiet Elektrochemie und Galvanotechnik, Technische Universitaet Ilmenau, 98693 Ilmenau (Germany)

    2012-05-01

    The amount of water adsorbed on different centers on the surface of oxalic acid alumina films is a function of the anodizing voltage. It is decreased with increasing the anodizing voltage from 20 up to 50 V, came up to maximum value at 20-30 V and slightly increased at voltages above 50 V. Water adsorption by oxide films formed at voltages below 50 V can be due to the negative surface charge that is present on the alumina surface. The negative surface charge disappears in the films formed at voltages higher than 50 V, and thus, the water is adsorbed on aluminum ions in a tetrahedral and octahedral environment. The correlation between anodizing conditions of aluminum in oxalic acid and the structure and composition of anodic alumina was established by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), thermogravimetric and differential thermal analyses (TG/DTA).

  6. Effect of anodizing voltage on the sorption of water molecules on porous alumina

    International Nuclear Information System (INIS)

    The amount of water adsorbed on different centers on the surface of oxalic acid alumina films is a function of the anodizing voltage. It is decreased with increasing the anodizing voltage from 20 up to 50 V, came up to maximum value at 20-30 V and slightly increased at voltages above 50 V. Water adsorption by oxide films formed at voltages below 50 V can be due to the negative surface charge that is present on the alumina surface. The negative surface charge disappears in the films formed at voltages higher than 50 V, and thus, the water is adsorbed on aluminum ions in a tetrahedral and octahedral environment. The correlation between anodizing conditions of aluminum in oxalic acid and the structure and composition of anodic alumina was established by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), thermogravimetric and differential thermal analyses (TG/DTA).

  7. Controlled fabrication of patterned lateral porous alumina membranes

    International Nuclear Information System (INIS)

    Confined lateral alumina templates are fabricated with different pore sizes by changing the acid electrolyte and the anodization voltage. The control of the number of pore rows down to one dimension is also achieved, by controlling the thickness of the starting aluminum film as well as the anodization voltage. We observe that the mechanism of pore formation in the lateral regime is very similar to that in the classical vertical situation

  8. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates.

    Science.gov (United States)

    Lebyedyeva, Tetyana; Kryvyi, Serhii; Lytvyn, Petro; Skoryk, Mykola; Shpylovyy, Pavlo

    2016-12-01

    Our research was aimed at the study of aluminum films and porous anodic alumina (PAA) films in thin-film РАА/Al structures for optical sensors, based on metal-clad waveguides (MCWG). The results of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the structure of Al films, deposited by DC magnetron sputtering, and of PAA films, formed on them, are presented in this work.The study showed that the structure of the Al films is defined by the deposition rate of aluminum and the thickness of the film. We saw that under anodization in 0.3 M aqueous oxalic acid solution at a voltage of 40 V, the PAA film with a disordered array of pores was formed on aluminum films 200-600 nm thick, which were deposited on glass substrates with an ultra-thin adhesive Nb layer. The research revealed the formation of two differently sized types of pores. The first type of pores is formed on the grain boundaries of aluminum film, and the pores are directed perpendicularly to the surface of aluminum. The second type of pores is formed directly on the grains of aluminum. They are directed perpendicularly to the grain plains. There is a clear tendency to self-ordering in this type of pores. PMID:27083584

  9. Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition

    International Nuclear Information System (INIS)

    Palladium nanoparticles were deposited using a sequential electroless deposition technique on the pore walls of nanoporous anodic alumina. For the particle deposition a Pd(NH3)42+ solution was soaked in the alumina membrane and a heated air flow was applied in order to reduce the palladium complex to palladium metal nanoparticles. By repeating the deposition process the size of the nanoparticles could be tailored in this investigation between 6 and 11 nm. The size of the nanoparticles was also affected by the concentration of the Pd(NH3)42+ solution, i.e., higher concentration yielded larger particle mean diameters. The samples were investigated using high resolution scanning electron microscopy, x-ray diffraction (XRD), inductively coupled plasma with a mass spectrometer, high resolution transmission electron microscopy, and energy dispersive spectroscopy (EDS). Analysis revealed narrow size distributions of the particles as well as uniform particle coverage of the pore walls. No by-products were observed with EDS, and with the XRD analysis the metallic palladium crystallinity was confirmed

  10. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    OpenAIRE

    Tushar Kumeria; Abel Santos; Dusan Losic

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structur...

  11. Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

    Science.gov (United States)

    Prida, V. M.; Navas, D.; Pirota, K. R.; Hernandez-Velez, M.; Menéndez, A.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.; Hernando, B.; Vazquez, M.

    2006-05-01

    Anodic alumina (Al2O3) and titania (TiO2) nanoporous oxide membranes are among the most widely studied self-organized nanopore templates, formed by uniform and well aligned arrays of synthetized nanometric pores or tubes. Here, we perform a comparative study of the depth profiling analysis in self-ordered alumina and titania nanoporous membrane templates by means of the radiofrequency glow discharge coupled to optical emission spectrometry (rf-GD-OES) technique. The densely packed columnar arrays of hexagonally self-ordered nanoporous alumina membranes investigated, with an average inner pore diameter of 35 nm and 105 nm interspacing, give an uniform thickness pore length about more than 5 μm, depending on the anodization time. Meanwhile, the analysis of the anodized titania nanotubes, with an average inner pore diameter of 100 nm and 40 nm wall thickness, shown to be about 300 nm in length. Each type of membranes were also studied in both cases, when the nanopores were empty and after filling with electrodeposited Ni. The direct analysis by rf-GD-OES reveals the ability of this technique to control the quality of these so synthesized nanocomposites formed by electrodeposited Ni nanowires into the alumina and titania nanoporous templates.

  12. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    International Nuclear Information System (INIS)

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  13. Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease

    International Nuclear Information System (INIS)

    Porous alumina templates have been fabricated by applying an exponential voltage decrease at the end of the anodization process. The time constant η of the exponential voltage function has been used to control the average thickness and the thickness distribution of the barrier layer at the bottom of the pores of the alumina structure. Depending on the η value, the thickness distribution of the barrier layer can be made very uniform or highly scattered, which allows us to subsequently fine tune the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling percentage with Ni has been varied, in a totally reproducible manner, between ∼3 and 100%. Combined with the ability to vary the pore diameter and repetition step over ∼2 orders of magnitude (by varying the anodization voltage and electrolyte type), the control of the pore filling percentage with metal particles/nanowires could bring novel approaches for the organization of nano-objects

  14. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities

    CERN Document Server

    Gao Tao; Zhang Li

    2003-01-01

    Porous anodic alumina (PAA) films with ordered nanopore arrays have been prepared by electrochemically anodizing aluminium in oxalic acid solutions, and the role of the oxalic impurities in the optical properties of PAA films has been discussed. Photoluminescence (PL) measurements show that the PAA films obtained have a blue PL band with a peak position at around 470 nm; the oxalic impurities, incorporated in the PAA films during the anodization processes and already existing in them, could be being transformed into PL centres and hence responsible for this PL emission.

  15. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method. PMID:21832599

  16. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  17. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.;

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance. The...... UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance, with...... doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  18. Surface of Alumina Films after Prolonged Breakdowns in Galvanostatic Anodization

    Directory of Open Access Journals (Sweden)

    Christian Girginov

    2011-01-01

    Full Text Available Breakdown phenomena are investigated at continuous isothermal (20∘C and galvanostatic (0.2–5 mA cm−2 anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF electrolyte. From the kinetic (-curves, the breakdown voltage ( values are estimated, as well as the frequency and amplitude of oscillations of formation voltage ( at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM. Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2, was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.

  19. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  20. Layer growth mechanisms on metallic electrodes under anodic polarization in cryolite-alumina melt

    OpenAIRE

    Oudot, Magaly; Cassayre, Laurent; Chamelot, Pierre; Gibilaro, Mathieu; Massot, Laurent; Pijolat, Michèle; Bouvet, Sylvie

    2014-01-01

    The anodic behavior of Fe, Ni, Co electrodes was investigated in a cryolite-alumina melt at 960 °C, by electrochemical techniques, microstructural characterizations and thermodynamic calculations, to provide a fundamental understanding of layers formation at metal (M) electrode surface. At low overpotential, anodic dissolution of M occurs; when the Mn+ concentration at the surface reaches saturation, a MxAl3-xO4 spinel phase precipitates. Then, a dense MyO layer grows at the metal/spinel inte...

  1. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using t...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.......Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...

  2. Highly Ordered Carbon Nanotube Arrays with Open Ends Grown in Anodic Alumina Nanoholes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Highly ordered multiwalled carbon nanotube arrays were fabricated by pyrolysis of acetylene within anodic alumina templates.Nanotubes are very uniform in diameter and open at both ends. High resolution transmission electron microscopy and electron diffraction analysis show that the carbon nanotubes are well graphitized. These standing and open carbon nanotubes are possible to offer a potential elegant technique for electron emitting devices,chemical functionalization and nanotube composites.

  3. Protein Crystallization by Anodic Porous Alumina (APA) Template: The Example of Hen Egg White Lysozyme (HEWL)

    OpenAIRE

    Eugenia Pechkova; Nicola Luigi Bragazzi; Claudio Nicolini

    2015-01-01

    In this communication, we report anodic porous alumina (APA) template induced crystallization. The APA nanotemplate was prepared on the glass substrate for the hen egg white lysozyme (HEWL) crystal growth. The changes in the lysozyme crystals morphology, namely in the a/c axis ratio, were observed in the crystal grown by APA nanotemplate, but not in the crystal obtained with classical hanging drop vapor diffusion method, under the same experimental conditions. The comparison of the diffractio...

  4. Spectroscopic and nonlinear photophysical characterization of organic octupolar-compounds supported by anodic-alumina nanotube-arrays

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Saavedra, O.G., E-mail: omar.morales@ccadet.unam.mx [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM Cd. Universitaria, Coyoacan, A.P. 70-186, C.P. 04510 Mexico City (Mexico); Ontiveros-Barrera, F.G. [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM Cd. Universitaria, Coyoacan, A.P. 70-186, C.P. 04510 Mexico City (Mexico); Hennrich, G. [Departamento de Quimica Organica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Mata-Zamora, M.E.; Rodriguez-Rosales, A.A.; Banuelos, J.G. [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM Cd. Universitaria, Coyoacan, A.P. 70-186, C.P. 04510 Mexico City (Mexico)

    2011-11-15

    Highlights: > Preparation of organic-inorganic nanostructured hybrid materials. > Insertion of octupolar compounds in alumina nanotube arrays. > Linear and nonlinear photophysical characterization of solid-state hybrid structures. > Fabrication of photonic materials. - Abstract: Amorphous anodic alumina membranes (AAM) comprising highly ordered nanometric porous arrays (porous anodic aluminas: PAA) with 1D-nanotube dimensions of {approx}75 nm in diameter and 45 microns in depth were successfully prepared and used as nanostructured host networks for different functionalized octupolar chromophores (named here Oct-(n)). Atomic force microscopy (AFM) studies performed on the developed hybrid systems confirmed a homogeneous insertion of these organic molecules into the PAA nanotube-arrays. Samples with high structural quality were selected for several photophysical characterizations: Comprehensive X-ray diffraction (XRD) and optical spectroscopic characterizations performed according to UV-vis absorption, photoluminescent (PL) and Raman measurements revealed the structural and optical performance of these molecules within the PAA-confinement. Since the implemented optical chromophores were specifically functionalized for nonlinear optical (NLO) applications, the obtained Oct-(n)/PAA-based amorphous hybrids were also characterized according to cubic NLO-techniques such as third harmonic generation (THG) and the Z-Scan method. PAA-confined octupolar chromophores have shown interesting linear and NLO optical properties which have not yet been intensively investigated in bulk hybrid systems; hence, the obtained hybrid nanostructures represent a promising field of investigation in the route to functional octupolar-based materials, where different self-assembled molecular structures may be formed, giving rise to enhanced linear and NLO-properties.

  5. Anodic behaviour of oxidised Ni-Fe alloys in cryolite-alumina melts

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Vivien, E-mail: v.singleton@student.unsw.edu.a [Centre for Electrochemical and Mineral Processing, School of Chemical Engineering, University of New South Wales, Sydney 2052 (Australia); Welch, Barry J. [Welbank Consulting Ltd., PO Box 207, Whitianga 3542 (New Zealand); Skyllas-Kazacos, Maria [Centre for Electrochemical and Mineral Processing, School of Chemical Engineering, University of New South Wales, Sydney 2052 (Australia)

    2011-01-01

    Nickel-iron alloys have been identified as promising inert anode candidates for the Hall-Heroult process. In this study, binary Ni-Fe alloys of various compositions were subjected to short-term galvanostatic electrolysis in a cryolite-alumina bath at 960 {sup o}C. Prior to electrolysis, the anodes were oxidised at 800 {sup o}C for 48 h, forming a protective scale. Fe{sub 2}O{sub 3}, Ni{sub x}Fe{sub 3-x}O{sub 4} and Ni{sub x}Fe{sub 1-x}O were identified as the major scale components using a combination of X-ray diffraction (XRD) analysis and energy dispersive X-ray spectroscopy (EDX). Anodes having Ni content of 50-65 wt% performed adequately during short-term electrolysis, operating at a steady potential of 3-3.5 V vs. AlF{sub 3}/Al. Overall, it was found that the pre-formed oxide scale was effective in reducing anode wear and fluoridation. In the absence of a pre-formed scale, anodes were shown to undergo appreciable internal corrosion and/or passivation due to metal fluoride formation. Analysis of the anodes following electrolysis was performed using XRD and electron microprobe analysis (EPMA).

  6. Anodic behaviour of oxidised Ni-Fe alloys in cryolite-alumina melts

    International Nuclear Information System (INIS)

    Nickel-iron alloys have been identified as promising inert anode candidates for the Hall-Heroult process. In this study, binary Ni-Fe alloys of various compositions were subjected to short-term galvanostatic electrolysis in a cryolite-alumina bath at 960 oC. Prior to electrolysis, the anodes were oxidised at 800 oC for 48 h, forming a protective scale. Fe2O3, NixFe3-xO4 and NixFe1-xO were identified as the major scale components using a combination of X-ray diffraction (XRD) analysis and energy dispersive X-ray spectroscopy (EDX). Anodes having Ni content of 50-65 wt% performed adequately during short-term electrolysis, operating at a steady potential of 3-3.5 V vs. AlF3/Al. Overall, it was found that the pre-formed oxide scale was effective in reducing anode wear and fluoridation. In the absence of a pre-formed scale, anodes were shown to undergo appreciable internal corrosion and/or passivation due to metal fluoride formation. Analysis of the anodes following electrolysis was performed using XRD and electron microprobe analysis (EPMA).

  7. Layer growth mechanisms on metallic electrodes under anodic polarization in cryolite-alumina melt

    International Nuclear Information System (INIS)

    Highlights: •Oxidation mechanisms of Fe, Ni and Co were studied at low potential in cryolite alumina melt. •At low overpotential, anodic dissolution of metal M occurs. •At the metal surface, Mn+ react with Al3+ and O2− to form an Al-containing spinel. •A minimal current density is required to precipitate the spinel phase. •With further polarization, a monoxide layer grows at the metal/spinel interface. -- Abstract: The anodic behavior of Fe, Ni, Co electrodes was investigated in a cryolite-alumina melt at 960 °C, by electrochemical techniques, microstructural characterizations and thermodynamic calculations, to provide a fundamental understanding of layers formation at metal (M) electrode surface. At low overpotential, anodic dissolution of M occurs; when the Mn+ concentration at the surface reaches saturation, a MxAl3−xO4 spinel phase precipitates. Then, a dense MyO layer grows at the metal/spinel interface. As for Fe, polarization at higher overpotentials lead to the same layers of spinel and monoxide, but pores at the metal/FeyO interface cause loss of adhesion of the oxide film

  8. Assessment of Binding Affinity between Drugs and Human Serum Albumin Using Nanoporous Anodic Alumina Photonic Crystals.

    Science.gov (United States)

    Nemati, Mahdieh; Santos, Abel; Law, Cheryl Suwen; Losic, Dusan

    2016-06-01

    In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions. PMID:27128744

  9. Preparation of Si Nanocrystals Using Anodic Porous Alumina Template Formed on Silicon Substrate

    Institute of Scientific and Technical Information of China (English)

    WU Jun-Hui; PU Lin; ZOU Jian-Ping; MEI Yong-Feng; ZHU Jian-Min; BAO Xi-Mao

    2000-01-01

    A novel technique to extend template application ofanodic porous alumina to Si has been reported. First, porous alumina template about 400 nm thick was prepared on silicon substrate by anodizing thin aluminum film with high purity of 99.99% in 15 wt.% sulfuric acid under a constant voltage of 20 V and at an electrolyte temperature of 5°C. Then, amorphous Si layer approximately 50nm in thickness was deposited onto the surface of template by using electron beam evaporation technique followed by an Xe ion beam bombardment, upon which as-coated Si layer at the pore mouth could be removed into pores smootlly. Three runs were performed by repeating above process of deposition and post bombardment. Finally, samples were annealed at 800°C for 30min in nitrogen.Transmission electron microscopy and x-ray diffraction analysis reveal Si nanocrystals with a size of 15-20nm being formed in the pores of template.

  10. Effect of Temperature of Oxalic Acid on the Fabrication of Porous Anodic Alumina from Al-Mn Alloys

    Directory of Open Access Journals (Sweden)

    C. H. Voon

    2013-01-01

    Full Text Available The influence of temperature of oxalic acid on the formation of well-ordered porous anodic alumina on Al-0.5 wt% Mn alloys was studied. Porous anodic alumina has been produced on Al-0.5 wt% Mn substrate by single-step anodising at 50 V in 0.5 M oxalic acid at temperature ranged from 5°C to 25°C for 60 minutes. The steady-state current density increased accordingly with the temperature of oxalic acid. Hexagonal pore arrangement was formed on porous anodic alumina that was formed in oxalic acid of 5, 10 and 15°C while disordered porous anodic alumina was formed in oxalic acid of 20 and 25°C. The temperature of oxalic acid did not affect the pore diameter and interpore distance of porous anodic alumina. Both rate of increase of thickness and oxide mass increased steadily with increasing temperature of oxalic acid, but the current efficiency decreased as the temperature of oxalic acid increased due to enhanced oxide dissolution from pore wall.

  11. Synthesis and Photoluminescence Enhancement of Silver Nanoparticles Decorated Porous Anodic Alumina

    Institute of Scientific and Technical Information of China (English)

    Song Ye; Yidong Hou; Renyi Zhu; Shulong Gu; Jingquan Wang; Zhiyou Zhang; Sha Shi; Jinglei Du

    2011-01-01

    Silver nanoparticles (Ag NPs) were successfully assembled in porous anodic alumina (AAO) templates via a green silver mirror reaction. The Ag NPs/AAO composite templates then were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD). Furthermore, the photoluminescence (PL) properties were also investigated. Compared with the blank AAO, the PL intensity of Ag NPs/AAO templates are enhanced and the maximum enhancement is 2.58 times. Based on the local electric field enhancement effect, the theoretical values were also deduced, which are basically coincident with the experimental.

  12. Study and utilization of residual sludges rich in alumina from an anodizing process

    International Nuclear Information System (INIS)

    Residual sludges from a process of anodizing were studied by x-ray diffraction as part of research into alternative materials for the chemical industry. The sludge containing mainly bayerite Al(OH)3 and bohemite AlO(OH). The phases of α and β alumina were identified at 700 degrees, corundum phase is present at 850 degrees. Zeolite A is synthesized from these and by means of hydrothermal, which was identified by X-ray diffraction. Scanning microscopy of zeolite A shows a high degree of crystallinity. (author)

  13. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    Directory of Open Access Journals (Sweden)

    Tushar Kumeria

    2014-07-01

    Full Text Available Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR and reflective interference spectroscopy (RIfS techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.

  14. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

    International Nuclear Information System (INIS)

    Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiOx adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors

  15. The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

    Directory of Open Access Journals (Sweden)

    Behnam Hafezi

    2014-07-01

    Full Text Available In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer depended on the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

  16. SELF-ORGANIZED FORMATION OF HEXAGONAL NANOPORE ARRAYS IN ANODIC ALUMINA

    Institute of Scientific and Technical Information of China (English)

    ZHOU WEI-YA; TANG DONG-SHENG; LI YU-BAO; LIU ZU-QIN; ZOU XIAO-PING; WANG GANG

    2001-01-01

    Conditions for a self-organized formation of ordered hexagonal structure in anodic alumina were investigated, using oxalic or sulphuric acid as an electrolyte. Highly-ordered nanopore arrays with pore densities of 9 × 109- 6.5 × l0l0cm-2 and high aspect ratios over 3000 were fabricated by a two-step anodization process. The array exhibits characteristics analogous to a two-dimensional polycrystalline structure of a few micrometres in size. The interporc distance can be controlled by changing the electrolyte and/or the applied voltage. The formation mechanism of ordered arrays is consistent with a previously proposed mechanical stress model, i.e., the repulsive forces between neighbonring pores at the metal/oxide interface promote the formation of hexagonally ordered pores during the oxidation process.

  17. Plasmonic properties of gold-coated nanoporous anodic alumina with linearly organized pores

    Indian Academy of Sciences (India)

    Dheeraj Pratap; P Mandal; S Anantha Ramakrishna

    2014-12-01

    Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that gold-coated NAA with such linearly arranged pores shows a polarization-dependent scattering, that is larger when the incident light is polarized parallel to the scratch direction than when polarized perpendicular to the scratch direction. Fluorescence studies from rhodamine-6G (R6G) molecules dissolved in polymethylmethacrylate (PMMA) and deposited on these NAA templates showed that fluorescence can be strongly enhanced with the bare NAA due to multiple light scattering in the NAA, while fluorescence from the molecules deposited on gold-coated NAA is strongly quenched due to the strong plasmonic coupling.

  18. Effect of the local electric field on the formation of an ordered structure in porous anodic alumina

    Science.gov (United States)

    Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.

    2015-09-01

    Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.

  19. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    Science.gov (United States)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  20. A STUDY ON MEMBRANE PROCESS WITH γ-ALUMINA MEMBRANE REACTOR FOR ETHYLBENZENE DEHYDROGENATION TO STYRENE

    Institute of Scientific and Technical Information of China (English)

    Chen Qingling; Xu Zhongqiang

    2001-01-01

    The membrane reaction of ethylbenzene(EB) dehydrogenation to styrene(ST) has been studied by using K2O/Fe2O3 industrial catalyst and γ-alumina ceramic membrane developed by our institute. In comparison with the packed bed reactor (that is, plug flow reactor, abbr. PFR) in industrial practice, the yield of styrene was increased by 5%~10% in the membrane reactor. Furthermore, mathematical modeling of membrane reaction has been studied to display the principle of optimal match between the catalytic activity and the membrane permeability.

  1. Preparation and characterization of alumina hollow fiber membranes

    Institute of Scientific and Technical Information of China (English)

    Tao WANG; Yuzhong ZHANG; Guangfen LI; Hong LI

    2009-01-01

    With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated tempera-tures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted ofpolyethersulfone (PES), N-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547L/m2·h and 1.4μm, respectively. Under 1600℃ of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its'asymmetric structure even after the sintering process.

  2. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  3. X-Ray-, Cathodo-, and Photoluminescence of Yttrium-Aluminum Composites on Porous Anodic Alumina Films

    Science.gov (United States)

    Khoroshko, L. S.; Kortov, V. S.; Gaponenko, N. V.; Raichyonok, T. F.; Tikhomirov, S. A.; Pustovarov, V. A.

    2016-07-01

    Yttrium-aluminum composites doped with terbium were synthesized by precipitation on porous anodic alumina fi lms grown on silicon substrates. The fabricated structures demonstrated x-ray-, cathodo-, and photoluminescence with characteristic bands of trivalent terbium upon excitation by Cu Kα x-rays of energy 8.86 keV, a 180-keV electron beam, and optical UV radiation, respectively. The terbium luminescence bands increased in intensity as the terbium concentration increased from 0.01 to 0.25 mol%. The intensity of a broad band in the blue spectral region with a maximum at 410 nm that was due to photoluminescence of the porous anodic alumina fi lm increased as the excitation wavelength increased from 260 to 340 nm. Simultaneously, the intensities of luminescence bands in the range 480-650 nm associated with Tb 3 + 5 D 4 - 7 F j ( j = 3, 4, 5, 6) transitions decreased. The possibility of practical application of the synthesized luminescent structures was discussed.

  4. Surface modification of nanoporous alumina membranes by plasma polymerization

    International Nuclear Information System (INIS)

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes

  5. Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes

    Science.gov (United States)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza; Szpunar, Jerzy A.; Li, Duanjie

    2011-12-01

    In the present work, tribocorrosion behavior of Al/Al2O3 composite strips manufactured by anodizing and accumulative roll bonding (ARB) processes was investigated. The alumina quantity was 0.48, 1.13, and 3.55 vol.% in the aluminum matrix. Tribocorrosion experiments were conducted using a ball-on-plate tribometer, where the sliding contact was fully immersed in 1 wt.% NaCl solution. The composite sample served as a working electrode and its open circuit potential (OCP) was monitored before, during, and after sliding. In order to characterize the electrochemical behavior of the surface before and after sliding electrochemical impedance spectroscopy (EIS) was used and wear was also measured. Furthermore, the influence of quantity and distribution of reinforcement particles in the matrix on OCP and EIS was evaluated. It was found that the quantity, shape, size, and dispersion of alumina particles in the aluminum matrix strongly affected the measured tribocorrosion characteristics. The results showed that inhomogeneous, lower quantity, fine, and acicular-shape alumina particles cause serious materials loss in tribocorrosion process.

  6. Characterization and optical theory of nanometal/porous alumina composite membranes

    Science.gov (United States)

    Hornyak, Gabor Lajos

    Physical and optical characterization of nanometal/porous alumina composite membranes fabricated by means of the template method of synthesis are presented. The optical absorption spectra of experimental composites were modeled by effective medium theories based on Maxwell-Garnett (MG), Bruggeman (BG) and the recently developed dynamical Maxwell-Garnett (DMG) approximations. Although the primary purpose of this work was to study the optical properties of template synthesized metal nanostructured composites, in a complementary sense, a straightforward means of probing the nature of effective medium theories in general via template synthesized material composites was also accomplished. The composite membranes were comprised of two components: an insulating template host material, which consisted of anodically formed porous alumina, and a metallic filling factor, which was formed electrochemically in situ within the pore channels of the host membrane. The size and orientation of the nanometals conformed to the dimensional constraints imposed by the diameter and orientation of the pore channels of the alumina. Because the pore channels of aluminas used in this study were parallel, traversed the thickness of the membrane and packed in a hexagonal array, the metal nanoparticles fabricated in those channels were also parallel to and insulated from one another. Particle aspect ratio was controlled by the duration of electrodeposition. The metallic particles thus formed are colloidal (nanophasic) forms of their respective bulk material counterparts. The optical characterization of gold, silver and aluminum nanoparticles were investigated experimentally and theoretically. Composites containing gold-silver alloy and copper particles were also investigated but only by simulations. The composites containing gold nanoparticles demonstrated strong absorption maxima (lambdamax) in the visible part of the electromagnetic (EM) spectrum due to the electronic resonance of the surface

  7. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Highlights: ► Anodic porous alumina was formed by Ni3Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni3Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni3Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm2 (2.0 V, 0 °C) to 94.9 pores/μm2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni3Al intermetallic alloy are depending on the operating conditions.

  8. BaFBr:Eu2+ nanophosphor-SiO2 hybrid entrapped in Anodise Alumina membrane pores array

    International Nuclear Information System (INIS)

    Sol–gel template method has been used to prepare BaFBr:Eu2+ nanophosphor-SiO2 hybrid entrapped within the nanopores array (of about 200 nm size) of a comercial anodized alumina (AA) membrane. Structural and morphological measurements using electron microscopy (SEM) and X-ray diffraction (XRD) have shown the presence of the BaFBr:Eu2+ nanophosphor in the silica xerogel entrapped within the nanopores array; photoluminescence and X-ray excited luminescence measurements have shown Eu2+ luminescence at 395 nm accompanied by a broad band due to AA membrane. The method assures a relatively uniform spreading of the BaFBr nanophosphor into the AA membrane pores array without the nanoparticles agglomeration. Preliminary imaging tests have shown a spatial resolution in the micrometer range and even in the submicrometer range can be expected. As BaFBr:Eu2+ is a very efficient X-ray phosphor the material might be used as X-ray micro-imaging detector. - Highlights: • Sol–gel method was used to prepare Eu-doped BaFBr nanophosphor embedded in SiO2 matrix. • Anodized alumina membrane nanopores array were filled by the nanophosphor-SiO2 hybrid. • Photo and X-ray luminescence spectra showed Eu2+ ions luminescence at 395 nm. • Preliminary imaging tests have shown a spatial resolution in the micrometer range

  9. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H2/N2) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  10. Fabrication and properties of anodic alumina humidity sensor with through-hole structure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Through-hole structural humidity sensor was fabricated by radio-frequency magnetron sputtering deposition of gold electrodes on two sides of anodic aluminum oxide (AAO) membranes which were prepared by two-step anodization procedure at 0-5℃ and 40 V in 0.5 mol/L oxalic acid electrolyte. The investigation on the impedance at various humid conditions showed a linear relationship between impedance and relative humidity over the range of 12%-97% RH. Other excellent properties such as rapid response and good reproducibility were also obtained.

  11. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu.; Yu, Xiqian; Wang, Yanhong; Li, Hong; Huang, Xuejie [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China)

    2011-11-09

    A patterned silicon electrode as the anode of lithium ion batteries is fabricated by microfabrication technology. An ultrathin alumina layer is coated on the patterned electrode by atomic layer deposition (ALD). This results in obviously enhanced coulombic efficiency and cycling performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Alumina Membrane with Hour-Glass Shaped Nanochannels: Tunable Ionic Current Rectification Device Modulated by Ions Gradient

    Directory of Open Access Journals (Sweden)

    Shengnan Hou

    2014-01-01

    Full Text Available A new alumina membrane with hour-glass shaped nanochannels is reported using the double-side anodization method and the subsequently in situ pore opening procedure, which is applied to develop the tunable ionic current rectification devices that were modulated by ions gradient. By regulating the pH gradient, tunable ionic current rectification properties which are mainly dependent on the asymmetric surface charge density or polarity distribution on the inner walls of the nanochannels can be obtained. The enhanced ionic current rectification properties were presented due to the synergistic effect of the voltage driven ion flow and diffusion driven ion flow with the application of pH and electrolyte concentration gradients. Therefore, such specific alumina nanochannels would be considered as a promising candidate for building bioinspired artificial ion channel systems.

  13. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    Science.gov (United States)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum. PMID:27518230

  14. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates

    Science.gov (United States)

    Mebed, A. M.; Abd-Elnaiem, Alaa M.; Al-Hosiny, Najm M.

    2016-06-01

    Mechanically stable nickel (Ni) nanowires array and nanowires network were synthesized by pulse electrochemical deposition using 2D and 3D porous anodic alumina (PAA) templates. The structures and morphologies of as-prepared films were characterized by X-ray diffraction and scanning electron microscopy, respectively. The grown Ni nanowire using 3D PAA revealed more strength and larger surface area than has grown Ni use 2D PAA template. The prepared nanowires have a face-centered cubic crystal structure with average grain size 15 nm, and the preferred orientation of the nucleation of the nanowires is (111). The diameter of the nanowires is about 50-70 nm with length 3 µm. The resulting 3D Ni nanowire lattice, which provides enhanced mechanical stability and an increased surface area, benefits energy storage and many other applications which utilize the large surface area.

  15. Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature

    Science.gov (United States)

    2011-01-01

    Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications. PACS: 81.05.Rm; 81.07.-b; 82.45.Cc. PMID:22087646

  16. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    International Nuclear Information System (INIS)

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  17. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M.H. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saramad, S., E-mail: ssaramad@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Hafez Avenue, Tehran (Iran, Islamic Republic of); Tabaian, S.H.; Marashi, S.P. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zolfaghari, A. [Chemistry and Chemical Engineering Research Centre of Iran, Tehran (Iran, Islamic Republic of); Mohammadalinezhad, M. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2009-10-15

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  18. Rhodamine B absorbed by anodic porous alumina: Stokes and anti-Stokes luminescence study

    International Nuclear Information System (INIS)

    An organic dye, rhodamine B (RhB) solution, has been used to impregnate anodic porous alumina (PA) in order to form RhB/PA nanocomposites. The photoluminescence (PL) spectra of PA films impregnated with RhB are investigated and compared with those in liquid solution. The PL mechanism of RhB/PA nanocomposites has been investigated through the effect of energy excitation. We show the possibility of energy transfer from alumina nanocrystallites to RhB molecules. The interactions between chemical species in the internal surface of PA and the RhB molecules can play a key role in PL emission, which has been proved by the Fourier transform infrared (FTIR) measurements. Moreover, it is also found that the PL intensity of the nanocomposite increases with the PL of the PA layer. The effective cross section of RhB in PA has been estimated to be in the order of 8.4x10-17cm2. An anti-Stokes PL (APL) has been observed from RhB/PA. The linear variation of the APL intensity with the laser power (IAPLαP0.97) indicates that one photon is involved in emission process

  19. NdBa2Cu3Ox nanowires grown in anodized alumina templates by microwave heating

    International Nuclear Information System (INIS)

    Nanowires of NdBa2Cu3Ox (NdBCO) are grown employing commercial anodized alumina templates (pore diameters of 10 nm and 100 nm, overall thickness of 50 μm) and pre-prepared NdBCO powders. The heating was performed employing a kitchen-type microwave furnace at a power of 550 W for 5 min. This treatment is sufficient to melt the NdBCO powder on top of the alumina template. In contrast to previous experiments using a laboratory furnace at a temperature of 1050 C, the temperature here is not surpassing 450 C. As a result, the templates remain fully flat and the structure of the nanopores is not affected by the heat treatment. An additional oxygen annealing step is required to obtain superconducting nanowires. Superconductivity with a transition temperature of 88 K is confirmed by means of magnetic susceptibility measurements (SQUID, AC susceptibility). The resulting nanowires are analyzed in detail employing electron microscopy (SEM, TEM).

  20. Highly ordered hexagonally arranged nanostructures on silicon through a self-assembled silicon-integrated porous anodic alumina masking layer

    International Nuclear Information System (INIS)

    A combined process of electrochemical formation of self-assembled porous anodic alumina thin films on a Si substrate and Si etching through the pores was used to fabricate ideally ordered nanostructures on the silicon surface with a long-range, two-dimensional arrangement in a hexagonal close-packed lattice. Pore arrangement in the alumina film was achieved without any pre-patterning of the film surface before anodization. Perfect pattern transfer was achieved by an initial dry etching step, followed by wet or electrochemical etching of Si at the pore bottoms. Anisotropic wet etching using tetramethyl ammonium hydroxide (TMAH) solution resulted in pits in the form of inverted pyramids, while electrochemical etching using a hydrofluoric acid (HF) solution resulted in concave nanopits in the form of semi-spheres. Nanopatterns with lateral size in the range 12-200 nm, depth in the range 50-300 nm and periodicity in the range 30-200 nm were achieved either on large Si areas or on pre-selected confined areas on the Si substrate. The pore size and periodicity were tuned by changing the electrolyte for porous anodic alumina formation and the alumina pore widening time. This parallel large-area nanopatterning technique shows significant potential for use in Si technology and devices.

  1. On the variation in the electrical properties and ac conductivity of through-thickness nano-porous anodic alumina with temperature

    International Nuclear Information System (INIS)

    The electrical response of self-organized through-thickness anodic alumina with hexagonal arrangement of cylindrical pores has been studied as a function of temperature. Mechanically stable thick porous anodic alumina was prepared, by through-thickness anodic oxidation of aluminum sheet in sulfuric acid, with extremely high aspect ratio pores exhibiting fairly uniform diameter and interpore distance. It was observed that the electrical properties of through-thickness anodic alumina are very sensitive to minute changes in temperature and the role of surface conductivity in governing its electrical response cannot be overlooked. At high frequencies, intrinsic dielectric response of anodic alumina was dominant. The frequency-dependent conductivity behavior at low and intermediate frequencies was explained on the basis of correlated barrier hopping (CBH) and quantum mechanical tunneling (QMT) models, respectively. Experimental data was modeled using an equivalent circuit consisting of Debye circuit, for bulk alumina, parallel to surface conduction path. The surface conduction was primarily based on two circuits in series, each with a parallel arrangement of a resistor and a constant phase element. This suggested heterogeneity in alumina pore surface, possibly related with islands of physisorbed water separated by the regions of chemisorbed water. Temperature dependence of some circuit elements has been analyzed to express different charge migration phenomena occurring in nano-porous anodic alumina

  2. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  3. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    Science.gov (United States)

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. PMID:23618145

  4. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  5. Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison.

    Science.gov (United States)

    Santos, Abel; Kumeria, Tushar; Losic, Dusan

    2013-08-20

    Herein, we present a comparative study about the sensing performance of optical biosensors based on photoluminescence spectroscopy (PLS) and reflectometric interference spectroscopy (RIfS) combined with nanoporous anodic alumina (NAA) platforms when detecting different analytes under distinct adsorption conditions. First, NAA platforms are structurally engineered in order for optimizing the optical signals obtained by PLS and RIfS. Then, the most optimal NAA platforms combined with PLS and RIfS are quantitatively compared by detecting two different analytes: d-glucose and l-cysteine under nonspecific and specific adsorption conditions, respectively. The obtained results demonstrate that such parameters as the analyte nature and adsorption conditions play a direct role in the sensing performance of these platforms. However, as this study demonstrates, PLS-NAA platforms are more sensitive than RIfS-NAA ones. The former shows better linearity (i.e., proportional change in the sensing parameter with analyte concentration), higher sensitivity toward analytes (i.e., sharper change in the sensing parameter with analyte concentration), and lower limit of detection (i.e., minimum detectable concentration of analyte). PMID:23862775

  6. The experimental dielectric function of porous anodic alumina in the infrared region; a comparison with the Maxwell-Garnett model

    Science.gov (United States)

    Wäckelgård, Ewa

    1996-06-01

    The infrared reflectance from thin alumina films on metal substrates has a deep minimum for p-polarized light at oblique incidence. This originates from absorption when light couples with a longitudinal optical (LO) phonon mode with k-vector zero. The absorption band is wide for amorphous alumina and is shifted to longer wavelengths for porous oxides compared to non-porous ones. Anodic alumina, prepared in phosphoric acid, with a pore volume fraction of 0.3, has been investigated. The s- and p-polarized reflectance has been measured for selected angles of incidence between 0953-8984/8/23/019/img1 and 0953-8984/8/23/019/img2, and the dielectric function has been determined from these measurements. The effective dielectric function has been calculated using Maxwell-Garnett effective-medium theory for a two-component anisotropic medium consisting of air-filled cylindrical pores perpendicular to the surface in an alumina matrix with optical constants of non-porous evaporated alumina. The theoretical and experimental results are in good agreement, which shows that the redshift of the LO mode absorption for p-polarized light can be explained by the presence of pores.

  7. Fabrication of cobalt nanowires from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol using porous anodic alumina template

    International Nuclear Information System (INIS)

    Porous anodic alumina template is synthesized by electrochemical anodization of aluminum and used to grow cobalt nanowires. The cobalt nanowires produced by direct current electrodeposition are characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and physical property measurement system. Test results indicate that the average diameter of cobalt nanowires is about 45 nm, which is generally the same as the pore diameter of porous anodic alumina template, and the cobalt nanowires electrodeposited from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol have a smoother surface and better magnetic properties than cobalt nanowires electrodeposited from aqueous solution, and they show a better squareness. Therefore it can be concluded that the cobalt nanowires electrodeposited from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol using porous anodic alumina template can be used as a perpendicular magnetic recording film

  8. Effect of Anodic Alumina Oxide Pore Diameter on the Crystallization of Poly(butylene adipate).

    Science.gov (United States)

    Sun, Xiaoli; Fang, Qunqun; Li, Huihui; Ren, Zhongjie; Yan, Shouke

    2016-04-01

    Poly(butylene adipate) (PBA) was infiltrated into the anodic alumina oxide (AAO) templates with the pore diameter of around 30, 70, and 100 nm and PBA nanotubes with different diameters were prepared. The crystallization and phase transition behavior of the obtained PBA nanotubes capped in the nanopores have been explored by using X-ray diffraction and differential scanning calorimetry. Only α-PBA crystals form in the bulk sample during nonisothermal crystallization. By contrast, predominant β-PBA crystals form in the AAO templates. The β-PBA crystals formed in the nanopores with pore diameter less than 70 nm prefer to adopt an orientation with their b-axis parallel to the long axis of the pore. During the melt recrystallization, it was found that the critical temperature (Tβ), below which pure β-crystals form, is 20 °C for bulk PBA. It drops down significantly with the pore diameter for the PBA in the AAO template. Moreover, the β-crystals in the porous template exhibit larger lattice parameters compared with the bulk crystals. By monitoring the change of β-crystals in the heating process, it was found that β-crystals in the AAO template with the pore diameter of 30 nm (D30) melt directly while the β-crystals transform to α-crystals in the template with the pore diameter of 100 nm (D100). The intensity of (020) Bragg peak of β-crystals decreases at a similar rate in both D30 and D100 but disappears at a relatively lower temperature in D30. On the other hand, the β(110) peak intensity of β-PBA crystals formed in the D100 template decreases first at slower rate before α crystals appear, and then at a faster rate once the β to α phase transition takes place. PMID:27008378

  9. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    International Nuclear Information System (INIS)

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O2/He oxidizing conditions (Praxair, 2.0% O2/He balance). According to the results, the samples that presented higher activities than those in Al2O3/Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al2O3/Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  10. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  11. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  12. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries

    OpenAIRE

    Li, Bing; Yao, Fei; Bae, Jung Jun; Chang, Jian; Zamfir, Mihai Robert; Le, Duc Toan; Pham, Duy Tho; Yue, Hongyan; Lee, Young Hee

    2015-01-01

    Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure...

  13. Lubricating layer formed on porous anodic alumina template due to pore effect at water lubricated sliding and its properties

    International Nuclear Information System (INIS)

    A porous anodic alumina (PAA) template was manufactured to investigate the pore effect on the formation of lubricating layers. A PAA template with 260 nm pores was manufactured by two-step anodization using phosphoric acid. A sliding wear test was carried out using a ball-on-disk tester. Due to the pore effect, an aluminum hydroxide film; i.e., the lubricating layer, was formed at a specific condition. The PAA template has a low friction regime because of the aluminum hydroxide film. The adhesion and friction forces of the aluminum hydroxide film were measured using atomic force microscopy (AFM), and the adhesion and friction forces of the lubricating layer were lower than that of a typical oxide layer. Using AFM analysis, the existence of a lubricating layer can be verified.

  14. Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

    1997-09-26

    Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

  15. Preparation and characterization of multilayer mesoporous γ-alumina membrane obtained via sol-gel using new precursors

    OpenAIRE

    Tafrishi R.; Taheri-Nassaj E.; Sadighzadeh A.; Eskandari M. Jafari

    2015-01-01

    In this paper, a mesoporous γ-alumina membrane coated on a macroporous α-alumina support via sol-gel method has been reported. A crack-free γ-alumina membrane was obtained by adding PVA to the alumina solution and optimum parameters of roughness, temperature and porosity were achieved. The support was dip-coated in different solutions using two new different solvents with different particle size distributions. Using these two solvents led to the uniform distribution of pore size in the final ...

  16. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  17. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    International Nuclear Information System (INIS)

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute

  18. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Raka; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2014-01-30

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute.

  19. Guided transmission of slow Ne ions through the nanochannels of highly ordered anodic alumina

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.;

    2006-01-01

    A highly ordered hexagonally close-packed nanochannels array was prepared using the self-ordering phenomena during a two-step anodization process of a high purity aluminium foil. The anodized aluminium oxide, with pore diameters of about 280nm and interpore distances of about 450nm was prepared as...

  20. Characterization of the anomalous luminescence properties from self-ordered porous anodic alumina with oxalic acid electrolytes

    International Nuclear Information System (INIS)

    The pore height and diameter of the nanoscale structure of porous anodic alumina (PAA) film produced by the anodization technique are controllable. The structures can be applied for the fabrication of visible spectral range optical devices. In this study we characterized the luminescence properties of self-ordered PAA films evaporated onto silicon substrates. Anomalous luminescence properties produced by carrier confinement were observed in PAA films fabricated with the introduction of oxalic acid electrolytes during the anodization process. The recombination mechanisms were characterized by measuring the temperature-dependent photoluminescence (PL) spectra. The PL spectra of PAA films show an asymmetrical luminescence profile in the blue emission region. The Gaussian function divides these into two subbands. The subbands originate from two different kinds of oxygen-deficient defect centers, namely, F+ (oxygen vacancy with only one electron) and F (oxygen vacancy with two electrons) centers. The F centers are densest at the surface but show a gradual decrease with an increase in the pore wall depth and electrolyte concentration. However, the reverse trend is observed for the F+ centers. In strong contrast to the commonly expected trend of a uniform reduction in non-radiative recombination with decreasing lattice temperature, we observed an anomalous low-temperature PL growth and decline between the F and F+ centers. Theoretical models corroborate the anomalous temperature behavior. All the calculations are in agreement with the experimental observations.

  1. Comparative study between yeasts immobilized on alumina beads and on membranes prepared by two routes

    Directory of Open Access Journals (Sweden)

    Kiyohara Pedro K.

    2003-01-01

    Full Text Available Alumina channeled beads and rough surface membranes prepared from aqueous sols of fibrillar pseudoboehmite are able to immobilize yeasts for ethanol fermentation of sugar solutions. This paper describes comparative results of assays carried out with yeasts immobilized onto alpha-alumina beads and membranes prepared under two different conditions of processing and firing. The fermentation tests evaluated by the decrease of fermentable sugars, referred as Brix degrees per hour, indicated that the yeasts immobilized on beads had similar performance, probably because their surfaces, even being morphologically different, presented the same value of open porosity. One type of membrane (asymmetrical; precursor: pseudoboehmite; firing temperature 1,150ºC; crystal structure; alpha-alumina had better performance than the other type (asymmetrical; precursor: fibrillar pseudoboehmite plus aluminum hydroxiacetate mixture; 1,150ºC; alpha-alumina because the yeast cells entered into their porous interior through the surface slits, were immobilized and their growth was easier than on the external surface.

  2. Electrochemical behaviors of anodic alumina sealed by Ce-Mo in NaCl solutions

    Institute of Scientific and Technical Information of China (English)

    TIAN Lian-peng; ZHAO Xu-hui; ZHAO Jing-mao; ZHANG Xiao-feng; ZUO Yu

    2006-01-01

    The elimination of toxic materials in sealing methods for anodic films on 1070 aluminum alloy was studied. The new process uses chemical treatments in cerium solution and an electrochemical treatment in a molybdate solution. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) were used to study the influences of sealing methods on the corrosion behavior of anodic films in NaCl solutions. The results show that the Ce-Mo sealing makes the surface structure and morphology of anodic films uniform and compact. Ce and Mo produce a cooperative effect to improve the corrosion resistance of anodic films. Anodic films sealed by Ce-Mo provide high corrosion resistance both in acidic and basic solutions.

  3. CO2-selective, Hybrid Membranes by Silation of Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Pennline, H.W.

    2007-09-01

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of γ-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated γ-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  4. A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles

    Science.gov (United States)

    Ghaemi, Negin

    2016-02-01

    The ability of alumina (Al2O3) nanoparticles in adsorption of heavy metals was employed in improving the copper removal efficiency of PES membranes. Mixed matrix membranes were prepared using PES and different amounts of alumina nanoparticles by phase inversion method. The fabricated membranes were characterized in terms of morphology and performance using scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, water contact angle and porosity measurements, determination of pure water flux, copper ion removal, and reusability test. Mixed matrix membranes revealed higher water permeation compared with the pristine PES membrane just by adding small amounts of nanoparticles (≤ 1.0 wt. %) as a result of increasing the membrane porosity and hydrophilicity after addition of alumina nanoparticles into the membrane matrix. Moreover, copper ion removal efficiency of alumina mixed membranes was improved. Membrane performance tests as well as adsorptive nature of alumina nanoparticles proposed that adsorption was the most possible separation mechanism by mixed matrix membranes. Reusability test of membrane confirmed the durability of removal efficiency even after four cycles of filtration.

  5. Porous Alumina Films with Width-Controllable Alumina Stripes

    Directory of Open Access Journals (Sweden)

    Huang Shi-Ming

    2010-01-01

    Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  6. Porous Alumina Films with Width-Controllable Alumina Stripes

    OpenAIRE

    Huang Shi-Ming; Pu Lin; Shi Yi; Huang Kai; Wu Zhi-Ming; Ji Li; Kang Jun-Yong

    2010-01-01

    Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure o...

  7. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2014-01-01

    Full Text Available In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage.

  8. Support influence on the properties of the alumina ceramic membranes

    International Nuclear Information System (INIS)

    The ceramic substrates used as supports for the formation of a top layer membrane must meet several requirements.Some of them are: have an average pore size and a suitable surface rugosity to obtain a homogenous top layer preventing the penetration of the membrane precursor particles into the support pores.This work analyzes the performance of the three α-Al2O3 supports, with different average pore sizes and surface textures, for the formation of a membrane top layer by the dipcoating technique from colloids in suspension of aluminum basic acetate and later thermal treatment at 1000degC.The pore size distribution of the supports, the support-membrane systems and the top layer membrane was obtained by the mercury intrusion porosimetry technique.The microstructural differences of the supports and the top layer thickness were observed by MEB.It could be observed that for numerous deposits the membrane layer pore size obtained is independent on the support used and that the thickness of the last layer is lower for the greater pore size supports.The possibility of an intermediate layer between the support and the top layer was considered in every case

  9. Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hankwon; Oyama, S. Ted

    2011-08-15

    Thin and defect-free Pd–Cu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a Pd–Cu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the Pd–Cu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the Pd–Cu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense Pd–Cu composite layer with no visible defects. Cross-sectional views of the membrane showed that the Pd–Cu composite layer had a top layer thickness of 160 nm (0.16 μm), which is much thinner than previously reported.

  10. Composite fluorocarbon membranes by surface-initiated polymerization from nanoporous gold-coated alumina.

    Science.gov (United States)

    Escobar, Carlos A; Zulkifli, Ahmad R; Faulkner, Christopher J; Trzeciak, Alex; Jennings, G Kane

    2012-02-01

    This manuscript describes the versatile fabrication and characterization of a novel composite membrane that consists of a porous alumina support, a 100 nm thick nanoporous gold coating, and a selective poly(5-(perfluorohexyl)norbornene) (pNBF6) polymer that can be grown exclusively from the nanoporous gold or throughout the membrane. Integration of the three materials is achieved by means of silane and thiol chemistry, and the use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) to grow the pNBF6. The use of SI-ROMP allows tailoring of the extent of polymerization of pNBF6 throughout the structure by varying polymerization time. Scanning electron microscopy (SEM) images indicate that the thin polymer films cover the structure entirely. Cross-sectional SEM images of the membrane not only corroborate growth of the pNBF6 polymer within both the porous alumina and the nanoporous gold coating but also show the growth of a pNBF6 layer between these porous substrates that lifts the nanoporous gold coating away from the alumina. Advancing contact angle (θ(A)) measurements show that the surfaces of these composite membranes exhibit both hydrophobic (θ(A) = 121-129)° and oleophobic (θ(A) = 69-74)° behavior due to the fluorocarbon side chains of the pNBF6 polymer that dominate the surface. Results from electrochemical impedance spectroscopy (EIS) confirm that the membranes provide effective barriers to aqueous ions, as evidenced by a resistive impedance on the order of 1 × 10(7) Ω cm(2). Sulfonation of the polymer backbone substantially enhances ion transport through the composite membrane, as indicated by a 40-60 fold reduction in resistive impedance. Ion transport and selectivity of the membrane change by regulating the polymerization time. The fluorinated nature of the sulfonated polymer renders the membrane selective toward molecules with similar chemical characteristics. PMID:22195729

  11. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method

    International Nuclear Information System (INIS)

    Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure shows the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed

  12. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shou-Yi [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Jian, E-mail: wangjian@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Gang [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Ji-Zhou [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou 730000 (China); Wang, Cheng-Wei, E-mail: cwwang@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2015-08-15

    Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure shows the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.

  13. Analysis and self-lubricating treatment of porous anodic alumina film formed in a compound solution

    International Nuclear Information System (INIS)

    A porous anodic film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt, and ultrasonic impregnation technology was applied on it to form self-lubricating surface composite. The structure and chemical composition of the film and its lubricity after self-lubricating treatment were investigated in detail. EPMA indicates the cross-section of anodized film has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers. XPS analysis on the electron binding energy of the component elements show the chemical composition of film surface are Al2O3, Ce(OH) and some phosphates. The structure of anodized film is amorphous with XRD analysis. The tribological tests shows the frictional coefficient of the self-lubricating surface composite coating is 0.25, much lower than anodized aluminum and aluminum substrate, which is about 0.55 and 0.85, respectively, and it is also durable for a long period of time in comparison with the lubricating coating fabricated by hot-dipping method. SEM images show some PTFE particles are added into the nanoholes of anodic oxide film

  14. ZIF-8 Membranes with Improved Reproducibility Fabricated from Sputter-Coated ZnO/Alumina Supports

    KAUST Repository

    Yu, Jian

    2015-11-10

    Zeolitic imidazolate framework-8 (ZIF-8) membrane has shown great potential for propylene/propane separation based on molecular sieving mechanism. Although diverse synthesis strategies were applied to prepare ZIF-8 membranes, it is still a challenge for reproducible fabrication of high-quality membranes. In this study, high-quality ZIF-8 membranes were prepared through hydrothermal synthesis under the partial self-conversion of sputter-coated ZnO layer on porous α-alumina supports. The reproducibility was significantly improved, compared with that from sol-gel coated ZnO layer, due to the highly controllable sputtering deposition of ZnO precursor. The relationship between the quality of as-synthesized membrane and amount of deposited ZnO was also determined. The effect of pressure drop in C3H6/C3H8 separation on separating performance was also examined.

  15. Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels.

    Science.gov (United States)

    Liu, Xu; Wei, Min; Liu, Yuanjian; Lv, Bingjing; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-08-16

    Telomerase is closely related to cancers, which makes it one of the most widely known tumor marker. Recently, many methods have been reported for telomerase activity measurement in which complex label procedures were commonly used. In this paper, a label-free method for detection of telomerase activity in urine based on steric hindrance changes induced by confinement geometry in the porous anodic alumina (PAA) nanochannels was proposed. Telomerase substrate (TS) primer was first assembled on the inside wall of PAA nanochannels by Schiff reaction under mild conditions. Then, under the action of telomerase, TS primer was amplified and extended to repeating G-rich sequences (TTAGGG)x, which formed multiplex G-quadruplex in the presence of potassium ions (K(+)). This configurational change led to the increment of steric hindrance in the nanochannels, resulting in the decrement of anodic current of potassium ferricyanide (K3[Fe(CN)6]). Compared with previously reported methods based on PAA nanochannels (usually one G-quadruplex formed), multiplex repeating G-quadruplex formed on one TS primer in this work. As a result, large current drop (∼3.6 μA, 36%) was obtained, which gave facility to improve the detection sensitivity. The decreased ratio of anodic current has a linear correlation with the logarithm of HeLa cell number in the range of 10-5000 cells, with the detection limit of seven cells. The method is simple, reliable, and has been successfully applied in the detection of telomerase in urine with good accuracy, selectivity and reproducibility. In addition, the method is nondestructive test compared to blood analysis and pathology tests, which is significant for cancer discovery, development, and prognosis. PMID:27420905

  16. Preparation of alpha-alumina-supported mesoporous bentonite membranes for reverse osmosis desalination of aqueous solutions.

    Science.gov (United States)

    Li, Liangxiong; Dong, Junhang; Lee, Robert

    2004-05-15

    In this study, mesoporous bentonite clay membranes approximately 2 microm thick were prepared on porous alpha-alumina substrates by a sol-gel method. Nanosized clay particles were obtained from commercial Na-bentonite powders (Wyoming) by a process of sedimentation, washing, and freeze-drying. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption were employed for membrane characterization. It was found that the content of solids, concentration of polymer binder, and pH value of the clay colloidal suspension had critical influences on membrane formation during the dip-coating process. The membranes were tested for reverse osmosis separation of a 0.1 M NaCl solution. Both water permeability and Na(+) rejection rate of the supported membranes were comparable to those of the compacted thick membranes reported in the literature. However, due to the drastically reduced membrane thickness, water permeance and flux of the supported membranes were significantly higher than those of the compacted thick membranes. It was also observed that the calcination temperature played a critical role in determining structural stability in water and desalination performance of the clay membrane. PMID:15082392

  17. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties

    Directory of Open Access Journals (Sweden)

    Yi Feng

    2015-08-01

    Full Text Available Carbon nanotubes (CNTs were incorporated into alumina/polyethersulfone hollow fibre membranes to enhance the mechanical property and the efficiency of water treatment. Results show that the incorporation of CNTs can greatly limit the formation of large surface pores, decrease the void size in support layers and improve the porosity and pore connectivity of alumina/polyethersulfone membranes. As a result of such morphology change and pore size change, both improved flux and rejection were achieved in such CNTs/alumina/polyethersulfone membranes. Moreover, the CNTs/alumina/PES membranes show higher antifouling ability and the flux recoveries after being fouled by bovine serum albumin (BSA and humic acid were improved by 84.1% and 53.2% compared to the samples without CNT incorporation. Besides the improvement in water treatment performance, the incorporation of CNTs enhanced the tensile properties of inorganic/polymer membranes. Therefore, such CNTs/alumina/PES hollow fiber membranes are very promising candidates for good filter media in industry, considering their high efficiency and high mechanical properties.

  18. Synthesis and characterization of Fe3P composite nanorods produced by phosphate reduction in anodized alumina templates

    International Nuclear Information System (INIS)

    A synthetic method for nanoscale iron phosphide rod production based on reductive annealing of iron phosphate deposited in porous alumina membranes has been explored. Two methods of pore filling, incipient wetness and drip-drying of precursor phosphate particles, were investigated. Reduction was carried out in a flowing H2/Ar atmosphere at 650-800 deg. C for 2 h and the template was removed by dissolution in NaOH. Particle morphology, composition and phase were examined by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy and energy-dispersive spectroscopy. The data suggest that rods are formed as heterogeneous structures comprising Fe3P nanoparticles within an amorphous matrix

  19. Electric field control of magnetization in Cu2O/porous anodic alumina hybrid structures at room temperature

    Science.gov (United States)

    Qi, L. Q.; Liu, H. Y.; Sun, H. Y.; Liu, L. H.; Han, R. S.

    2016-04-01

    Cu2O nanoporous films are deposited on porous anodic alumina (PAA) substrates by DC-reactive magnetron sputtering. This paper focuses on voltage driven magnetization switching in Cu2O/PAA (CP) composite films prepared by DC-reactive magnetron sputtering. By applying a dc electric field, the magnetization of the CP composite films can be controlled in a reversible and reproducible way and shows an analogous on-off behavior. The magnitude of the change in the magnetization was about 75 emu/cm3 as the electric field was switched on and off. Resistive switching behavior was also observed in as-prepared CP composite films. Further analysis indicated that the formation/rupture of conducting filaments composed of oxygen vacancies is likely responsible for the changes in the magnetization as well as in the resistivity. Such reversible change of magnetization controlled by an electric field at room temperature may have applications in spintronics and power efficient data storage technologies.

  20. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    Science.gov (United States)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-08-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications.

  1. Compound semiconductors grown on porous alumina substrate as a novel hydrogen permeation membrane

    Science.gov (United States)

    Sato, Michio

    2007-01-01

    A highly p-type-doped InGaAs film was grown on a porous alumina substrate by metalorganic chemical vapor deposition (MOCVD). This structure was proposed as a novel hydrogen selective permeation membrane. In the p-type film, hydrogen atoms are converted to protons by giving their electrons to the dopant atoms. The protons easily diffuse in the film at elevated temperatures and are desorbed as hydrogen molecules from the surface of the film. When the hydrogen gas is supplied to both side of the film and there is difference in pressure, only hydrogen can penetrate into the film and move to the lower-pressure side. Preliminary experimental results are shown in this paper. Large amount of hydrogen was found in both the epitaxial InGaAs film (grown on InP) and the poly-crystal InGaAs films (grown on sapphire and porous alumina). Hydrogen was desorbed when the film was annealed in nitrogen gas. Hydrogen was absorbed into the film again by annealing in hydrogen gas. Scanning electron microscope (SEM) pictures suggest that a dense poly-crystal film without pin-holes was grown on the porous alumina substrate.

  2. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui; Han, Mangui, E-mail: han-mangui@yahoo.com; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Zheng, Peng; Qin, Huibin [Institute of Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  3. Custom-designed arrays of anodic alumina nanochannels with individually tunable pore sizes

    International Nuclear Information System (INIS)

    We demonstrate a process to selectively tune the pore size of an individual nanochannel in an array of high-aspect-ratio anodic aluminum oxide (AAO) nanochannels in which the pore sizes were originally uniform. This novel process enables us to fabricate arrays of AAO nanochannels of variable sizes arranged in any custom-designed geometry. The process is based on our ability to selectively close an individual nanochannel in an array by using focused ion beam (FIB) sputtering, which leads to redeposition of the sputtered material and closure of the nanochannel with a capping layer of a thickness depending on the energy of the FIB. When such a partially capped array is etched in acid, the capping layers are dissolved after different time delays due to their different thicknesses, which results in differences in the time required for the following pore-widening etching processes and therefore creates an array of nanochannels with variable pore sizes. The ability to fabricate such AAO templates with high-aspect-ratio nanochannels of tunable sizes arranged in a custom-designed geometry paves the way for the creation of nanophotonic and nanoelectronic devices. (paper)

  4. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    Science.gov (United States)

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible. PMID:27427998

  5. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation

    Science.gov (United States)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-01

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic

  6. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  7. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane.

    Science.gov (United States)

    Chen, Xiaohong; Hu, Yibai; Wilson, George S

    2002-12-01

    A procedure is described that provides co-immobilization of enzyme and bovine serum albumin (BSA) within an alumina sol-gel matrix and a polyphenol layer permselective for endogenous electroactive species. BSA has first been employed for the immobilization of glucose oxidase (GOx) on a Pt electrode in a sol-gel to produce a uniform, thin and compact film with enhanced enzyme activity. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)-trimethoxysilane was constructed by electrochemically-assisted crosslinking. This hybrid film outside the enzyme layer contributed both to the improved stability and to permselectivity. The resulting glucose sensor was characterized by a short response time (<10 s), high sensitivity (10.4 nA/mM mm(2)), low interference from endogenous electroactive species, and a working lifetime of at least 60 days. PMID:12392950

  8. Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes

    International Nuclear Information System (INIS)

    An electrodeposition process is used to synthesize nanotubes of a lanthanum-containing phase, employing porous alumina membranes as templates. This method should lead to the formation of La(OH)3 nanowires, according to the previous results presented by Bocchetta et al (2007 Electrochem. Commun. 9 683-8), which can be decomposed to La2O3, as the latter shows more interest for different applications. The results obtained by means of different electron microscopy techniques indicate that this method leads to the formation of nanotubes of about 200 nm in diameter and 30-40 μm in length, instead of the nanowires proposed in the literature. Additionally, the chemical characterization demonstrates that the material synthesized is composed of lanthanum hydroxycarbonate. The presence of carbonates is found to be crucial in determining the conditions for the preparation of La2O3 from the nanotubes here obtained.

  9. Antibacterial activity of zinc oxide-coated nanoporous alumina

    International Nuclear Information System (INIS)

    Highlights: ► Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. ► Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. ► Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  10. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  11. Fabrication and Characterization of TiO2 Nano Rods by Electrochemical Deposition into an Anodic Alumina Template

    Science.gov (United States)

    Ikraam, Muhammad; Shahid, Sammia; Zaman, Sabah; Sarwar, M. N.

    2016-05-01

    Titanium dioxide (TiO2) nanorods have been successfully grown into a track-etched anodized aluminium oxide membrane (AAM) by a particulate electrochemical deposition from an aqueous medium. The prepared TiO2 sols get stabilized against aging at pH 2. It was found that TiO2 nanorods grown from dilute aqueous solution with a low concentration gave a stable and uniform growth. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 500°C were a mixture of anatase and brookite phases. Atomic Force Microscope (AFM) images confirmed that TiO2 nanorods had a smooth morphology and longitudinal uniformity in diameter. A scanning electron microscope (SEM) image showed that TiO2 nanorods grown by electrochemical deposition from the dilute aqueous sol had a dense structure and possessed a repetitive pattern, containing small particles with an average size of 15 nm. Based on kinetic studies, it was found that uniform TiO2 nanorods with high-quality morphology were obtained under optimum conditions at an applied potential of 5 V, a uniform current density of 500 mA, and a deposition time of 5 h.

  12. Fabrication and Characterization of TiO2 Nano Rods by Electrochemical Deposition into an Anodic Alumina Template

    Science.gov (United States)

    Ikraam, Muhammad; Shahid, Sammia; Zaman, Sabah; Sarwar, M. N.

    2016-08-01

    Titanium dioxide (TiO2) nanorods have been successfully grown into a track-etched anodized aluminium oxide membrane (AAM) by a particulate electrochemical deposition from an aqueous medium. The prepared TiO2 sols get stabilized against aging at pH 2. It was found that TiO2 nanorods grown from dilute aqueous solution with a low concentration gave a stable and uniform growth. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 500°C were a mixture of anatase and brookite phases. Atomic Force Microscope (AFM) images confirmed that TiO2 nanorods had a smooth morphology and longitudinal uniformity in diameter. A scanning electron microscope (SEM) image showed that TiO2 nanorods grown by electrochemical deposition from the dilute aqueous sol had a dense structure and possessed a repetitive pattern, containing small particles with an average size of 15 nm. Based on kinetic studies, it was found that uniform TiO2 nanorods with high-quality morphology were obtained under optimum conditions at an applied potential of 5 V, a uniform current density of 500 mA, and a deposition time of 5 h.

  13. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar...

  14. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition

    International Nuclear Information System (INIS)

    In this work, two kinds of one-dimensional ZnO nanowires (NWs) and nanotubes (NTs) were synthesized by using electrochemical deposition with the aid of a high aspect ratio anodic alumina oxide (AAO) template. ZnO NWs and NTs were characterized by using X-ray diffraction, field emission scanning microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. An AAO template was fabricated by two-step anodization in 0.3 M oxalic acid with a voltage of 80 V. The thickness and channel diameter of the AAO template were about 150 μm and 120–150 nm, respectively. The morphologies of the ZnO nanostructures synthesized under 20 vol.% H2O2 with various electrolyte concentrations of 0.1 M and 0.5 M ZnSO4, were NTs and NWs, respectively. Both NTs and NWs were uniform in size, which corresponded to the sizes of AAO pores. The thickness of the NTs walls can be controlled based on the deposition time and current density. The crystallinity of the ZnO NTs and NWs annealing in the air were restricted by AAO pore. The growth of the ZnO NTs and NWs was caused by heterogeneous nucleation, and different growth rates through the wall of the AAO will result in different nanostructures, with the growth of the NTs being slower than that of the NWs. - Highlights: • Templated electrodeposition of ZnO nanotubes (NTs) and nanowires (NWs) • ZnO NTs and NWs fabricated using anodic alumina oxide templates • The growth mechanism of ZnO NTs and NWs is modeled

  15. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  16. Effect of annealing on photoluminescence and optical properties of porous anodic alumina films formed in sulfuric acid for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, Mondher, E-mail: mondherghrib@yahoo.fr [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); Ouertani, Rachid, E-mail: rachid.ouertani@crten.rnrt.tn [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); Gaidi, Monir; Khedher, Najoua [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); Salem, Mohamed Ben [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-04-01

    Photoluminescence and optical properties of porous oxide films formed by two-step aluminum anodization at a fixed current 200 mA have been investigated. It was found that the crystallographic structure depend strongly on the annealing temperature. X-ray diffraction (XRD) reveals an amorphisation of the porous oxide films after annealing. This evolution has been confirmed by Raman spectroscopy measurement. Spectroscopic ellipsometry (SE) in the UV-vis and near infra red (IR) spectra shows that refraction index n increases and the extinction coefficient k decreases with annealing temperature. This observation has been confirmed with reflectivity measurements. As a consequence the reflectivity reaches 97% when porous alumina films were annealed at 650 Degree-Sign C. Photoluminescence (PL) measurements show two PL peaks in the emission and excitation spectra. The first emission peak is centered at 460 nm ({alpha}-band) and the second ({beta}-band) shifts from 500 to 525 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is located at 271 nm and the second shifts to longer wavelengths with increasing emission wavelength. The results indicate the existence of two PL centers. One is associated with oxygen adsorption at the pore wall and oxygen vacancies inside the alumina. The other is related to the adsorption of water and/or OH groups at the surface of the pore wall and to structure defects and sulfur inclusion inside the films.

  17. Effect of annealing on photoluminescence and optical properties of porous anodic alumina films formed in sulfuric acid for solar energy applications

    International Nuclear Information System (INIS)

    Photoluminescence and optical properties of porous oxide films formed by two-step aluminum anodization at a fixed current 200 mA have been investigated. It was found that the crystallographic structure depend strongly on the annealing temperature. X-ray diffraction (XRD) reveals an amorphisation of the porous oxide films after annealing. This evolution has been confirmed by Raman spectroscopy measurement. Spectroscopic ellipsometry (SE) in the UV-vis and near infra red (IR) spectra shows that refraction index n increases and the extinction coefficient k decreases with annealing temperature. This observation has been confirmed with reflectivity measurements. As a consequence the reflectivity reaches 97% when porous alumina films were annealed at 650 °C. Photoluminescence (PL) measurements show two PL peaks in the emission and excitation spectra. The first emission peak is centered at 460 nm (α-band) and the second (β-band) shifts from 500 to 525 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is located at 271 nm and the second shifts to longer wavelengths with increasing emission wavelength. The results indicate the existence of two PL centers. One is associated with oxygen adsorption at the pore wall and oxygen vacancies inside the alumina. The other is related to the adsorption of water and/or OH groups at the surface of the pore wall and to structure defects and sulfur inclusion inside the films.

  18. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  19. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively. PMID:26726567

  20. Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for In Situ Cleaning and Electro-Oxidation Processes.

    Science.gov (United States)

    Duan, Wenyan; Ronen, Avner; Walker, Sharon; Jassby, David

    2016-08-31

    Electrically conducting membranes (ECMs) have been reported to be efficient in fouling prevention and destruction of aqueous chemical compounds. In the current study, highly conductive and anodically stable composite polyaniline-carbon nanotube (PANI-CNT) ultrafiltration (UF) ECMs were fabricated through a process of electropolymerization of aniline on a CNT substrate under acidic conditions. The resulting PANI-CNT UF ECMs were characterized by scanning electron microscopy, atomic force microscopy, a four-point conductivity probe, cyclic voltammetry, and contact angle goniometry. The utilization of the PANI-CNT material led to significant advantages, including: (1) increased electrical conductivity by nearly an order of magnitude; (2) increased surface hydrophilicity while not impacting membrane selectivity or permeability; and (3) greatly improved stability under anodic conditions. The membrane's anodic stability was evaluated in a pH-controlled aqueous environment under a wide range of anodic potentials using a three-electrode cell. Results indicate a significantly reduced degradation rate in comparison to a CNT-poly(vinyl alcohol) ECM under high anodic potentials. Fouling experiments conducted with bovine serum albumin demonstrated the capacity of the PANI-CNT ECMs for in situ oxidative cleaning, with membrane flux restored to its initial value under an applied potential of 3 V. Additionally, a model organic compound (methylene blue) was electrochemically transformed at high efficiency (90%) in a single pass through the anodically charged ECM. PMID:27525344

  1. The mechanism study of trace Cr(VI) removal from water using Fe{sup 0} nanorods modified with chitosan in porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li, E-mail: sunli@wtu.edu.cn [School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073 (China); Yuan, Zhigang, E-mail: zgyuan@mail.ustc.edu.cn [School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073 (China); Gong, Wenbang [School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073 (China); Zhang, Lide [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, Zili; Su, Gongbing; Han, Donggui [School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073 (China)

    2015-02-15

    Highlights: • PAA can limit the size, disperse Fe{sup 0} nanorods and protect them from oxidation. • PAA and chitosan act as bridges between Fe{sup 0} and Cr(VI) by the surface charges. • The adsorption capacity calculated (118.76 mg g{sup −1}) agreed with the measured one. • Trace Cr(VI) removal was a spontaneous adsorption reduction process. - Abstract: Fe{sup 0} nanorods modified with chitosan in porous anodic alumina (PAA) were prepared as adsorbent. Adsorption of trace Cr(VI) onto adsorbent was tested as a function of solution pH value, initial Cr(VI) concentration and adsorption time. The results showed that PAA can limit the size, disperse Fe{sup 0} nanorods and protect them from oxidation. In the adsorption process, it was found that both PAA and chitosan can supply bridges between Fe{sup 0} nanorods and Cr(VI) through the surface electrostatic attraction, and a small amount of PAA was etched. The optimum adsorption capacity obtained from the Langmuir model is 118.76 mg g{sup −1} which agrees with the experimental value at pH 5.0. X-ray photoelectron spectroscopy revealed that Cr(VI) was reduced to Cr(III) on the adsorbent surface. The adsorption behavior of Cr(VI) onto adsorbent was fitted well with the Langmuir model. The adsorption process followed the pseudo-second-order kinetic model, which implied that the adsorption process was chemisorptions. Intraparticle diffusion study shows that the internal diffusion of adsorbent is not the sole rate-controlling step. The Gibbs free energy change (ΔG° < 0) indicated that the process of Cr(VI) onto adsorbent was spontaneous. Besides, the aluminum sheets could be regenerated and be anodized to produce PAA.

  2. Exploration of the Direct Use of Anodized Alumina as a Mold for Nanoimprint Lithography to Fabricate Magnetic Nanostructure over Large Area

    Directory of Open Access Journals (Sweden)

    M. Tofizur Rahman

    2011-01-01

    Full Text Available We have explored the direct use of anodized alumina (AAO fabricated on an Si wafer as a mold for the nanoimprint lithography (NIL. The AAO mold has been fabricated over more than 10 cm2 area with two different pore diameters of 163±24 nm and 73±7 nm. One of the key challenges of the lack of bonding between the antisticking self-assembled monolayer (SAM and the AAO has been overcome by modifying the surface chemistry of the fabricated AAO mold by coating it with thin SiO2 layer. Then we have applied the commonly used silane-based self-assembled monolayer (SAM on these SiO2-coated AAO molds and achieved successful imprinting of resist pillars with feature size of 172±25 nm by using the mold with a pore diameter of 163±24 nm. Finally, we have achieved (001 oriented L10 FePt patterned structure with a dot diameter of 42±4 nm by using a AAO mold with a pore diameter of 73±7 nm. The perpendicular Hc of the unpatterned and patterned FePt is about 3.3 kOe and 12 kOe, respectively. These results indicate that AAO mold can potentially be used in NIL for fabricating patterned nanostructures over large area.

  3. Uncovering the Stabilization Mechanism in Bimetallic Ruthenium-Iridium Anodes for Proton Exchange Membrane Electrolyzers.

    Science.gov (United States)

    Saveleva, Viktoriia A; Wang, Li; Luo, Wen; Zafeiratos, Spyridon; Ulhaq-Bouillet, Corinne; Gago, Aldo S; Friedrich, K Andreas; Savinova, Elena R

    2016-08-18

    Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation. PMID:27477824

  4. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  5. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    Science.gov (United States)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  6. Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, A.; Torrecillas, R. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) Consejo Superior de Investigaciones Cientificas, Universidad de Oviedo, Principado de Asturias, Parque Tecnologico de Asturias, Llanera Asturias (Spain); Rocha, V.G.; Fernandez, A. [ITMA Materials Technology, Parque Tecnologico de Asturias, Llanera Asturias (Spain)

    2012-08-15

    There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components that must show among other properties high mechanical strength, electrical, and thermal conductivity. The present research explored the possibility of using alumina-carbon nanofibers (CNFs) nanocomposites for this purpose. In this study, it was studied for the first time the whole range of powder compositions in this system. Homogeneous powders mixtures were prepared and subsequently sintered by spark plasma sintering. The materials obtained were thoroughly characterized and compared in terms of properties required to be used as bipolar plates. The control on material microstructure and composition allows designing materials where mechanical or electrical performances are enhanced. A 50/50 vol.% alumina-CNFs composite appears to be a very promising material for this kind of application. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates

    International Nuclear Information System (INIS)

    Single-phase CuInSe2 nanowire (NW) arrays were prepared at various pH values in a heated electrolyte by using pulse electrodeposition techniques and an anodized aluminum oxide template. X-ray diffraction showed that the CuInSe2 NW nucleation mechanism received H+ constraints when the NWs were deposited at pH 1.7 with a (112) orientation and annealed at 550 °C. The CuInSe2 NW band gap was determined to be approximately 1 eV through optical measurements. Transmission electron microscopy showed that at the pH value of 1.7, small particles of the single-phase CuInSe2 NWs aligned along the crystallographic direction are nucleated to form large particles. Scanning electron microscopy revealed that the NW diameter and the length were 80 nm and 2.3 μm, respectively. From Mott–Schottky and Ohmic contact plots, the CuInSe2 NWs were found to be p-type semiconductors, and their work function was estimated to be approximately 4.69 eV

  8. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the dead-end anode operation

    Science.gov (United States)

    Hu, Zhe; Yu, Yi; Wang, Guangjin; Chen, Xuesong; Chen, Pei; Chen, Jun; Zhou, Su

    2016-07-01

    Dead-ended anode (DEA) mode is commonly applied in fuel cell vehicles for the hydrogen purge at the anode side, to reduce fuel waste and enhance fuel cell efficiency. Anode purge is necessary and is definitely important with respect to removing liquid water and accumulated nitrogen in the gas diffusion layer and the flow field of the DEA-mode fuel cell. In this paper, the effect of different purge strategies on the stack performance and system efficiency is investigated experimentally using fast data acquisition and advanced tools, such as the fast cell voltage measurement (CVM) system and the mass spectrum. From the fast data acquisition, the voltage stability, liquid water and nitrogen concentration measurement in the anode exhaust are compared and analyzed under different purge strategy designs and using different purge valves. The results show that under the optimal purge strategy, the DEA fuel cell stack can achieve the desired stability and system efficiency based on the analysis of the cell voltage and purge volume. Moreover, the diameter of the purge valve has a great impact on the voltage stability because a diameter change will result in a different pressure drop and purge volume when the purge valve is open.

  9. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al{sub 2}O{sub 3}) polyblends as electrolyte membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com [Chemistry Research Groups, Faculty of Teacher Training and Educational Sciences, Tadulako University (Indonesia)

    2015-09-30

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.

  10. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    Science.gov (United States)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  11. Synthesis and Microstructure of Doped Alumina Composite Membrane by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-hong; ZHANG Ying; WU Jian-feng; BAI Zhan-liang

    2003-01-01

    The supported membranes of Al2O3 and its modification membranes were prepared.Al2O3,Al2O3-SiO2-TiO2 and Al2O3-SiO2-TiO2-ZrO2 membranes were mamufatured by the slip-casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al2O3-SiO2-TiO2-ZrO2 membrane can be gained.

  12. Exceptionally strong and robust millimeter-scale graphene–alumina composite membranes

    International Nuclear Information System (INIS)

    Graphene has attracted attention as a potential strengthening material and functional component in suspended membranes as utilized in micro and nanosystems. Development of a practical and scalable fabrication process is a necessary step to allow the exceptional material properties of graphene to be fully exploited in composite structures. Using standard and scalable microfabrication processes, we fabricated free-standing chemical vapor deposition monolayer graphene-reinforced Al2O3 composite membranes, 0.5 mm in diameter, that are strong and robust. Bulge tests revealed that the graphene reinforcement increased the membrane fracture strength by a factor of at least three and maximum sustainable strain from 0.28% to at least 0.69%. We show that the graphene-reinforced membranes are even tolerant to significant cracking without loss of membrane integrity. The graphene composite membranes’ freestanding area of ∼200 000 μm2 is almost a thousand times larger than suspended graphene membranes reported elsewhere. The presented graphene composite membranes may be seen as representing an interesting new class of durable composite materials warranting further study and having potential for broad applicability in a variety of fields. (paper)

  13. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K.; Howard, Cameron; Mohapatra, Srikanta K.; Kamilla, Sushanta K.

    2010-04-01

    Titania (TiO2) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na2[H2EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO2 films, 20-41 µm thick containing ordered hexagonal TiO2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  14. Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode

    International Nuclear Information System (INIS)

    Highlights: • A kW-grade fuel cell stack with anode dead-ended mode was examined. • The dead-ended anode is achieved by controlling the anode outlet solenoid valve. • Results indicated an optimal purge interval and duration for cell performance. - Abstract: This paper examines the dynamic cell performance of a kW-grade proton exchange membrane fuel cell stack with anode dead-ended mode fuel supply. A self-made kW-grade 40 cells stack with reaction area of 112.85 cm2 has been used in the experiment. A single-chip (DSPIC30F4011) is utilized for establishing a control circuit to monitor the voltage and current with constant-current loading. The stack temperature is controlled at a low-level temperature rise. To enhance the hydrogen utilization and reduce the water flooding in the fuel cell stack, the dead-ended anode operation is accomplished by controlling the open or close of the anode outlet solenoid valve. As the loading is heavy, the anode outlet solenoid valve is purged frequently to force the water to flow out. While a light load, the anode outlet solenoid valve is shut down for a period time for hydrogen saving. The solenoid valve is controlled to be opened, referred as purge interval, reaching the discharge amount for 1000 C, 1500 C, and 2000 C as parameter, respectively. The open period of solenoid valve, referred as purge duration, is set as 1 s, 3 s, and 5 s for this study. Experimental results indicate an optimal purge interval and duration for water management and cell performance of the fuel cell stack

  15. Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode

    OpenAIRE

    Wang, YH; Cheng, S.; Chan, KY

    2006-01-01

    The generation of ozone from air using an electrochemical cell consisting of an air cathode, a polymer-electrolyte-membrane (PEM), and a doped tin oxide anode is reported. This synthesis is environmentally friendly compared to the conventional high-voltage corona discharge process since NOx formation is eliminated; a higher ozone concentration is generated; and lower energy may be required. © The Royal Society of Chemistry 2006.

  16. A route to MFI zeolite-.alpha.-alumina composite membranes for separation of light paraffins

    Czech Academy of Sciences Publication Activity Database

    Hrabánek, Pavel; Zikánová, Arlette; Bernauer, B.; Fíla, V.; Kočiřík, Milan

    2008-01-01

    Roč. 224, 1-3 (2008), s. 76-80. ISSN 0011-9164 R&D Projects: GA ČR GA203/05/0347; GA ČR GA203/07/1443 Institutional research plan: CEZ:AV0Z40400503 Keywords : silicalite-1 * membrane * synthesis * separation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.155, year: 2008

  17. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anodic aluminum oxide (AAO) membranes with large ordered pore domains were successfully prepared by adopting the anneal pre-treatment of polycrystalline alu- minum sheets. A statistical method with Gaussian distribution was introduced to quantitatively study the size of the domain with ordered pores. The largest average area of ordered pore domains was 2.6 μm2±0.11 μm2. The corresponding AAO membrane was synthesized by aluminum sheets annealed at 893 K for 24 h.

  18. Nano structured porous anodized aluminium oxide by using C2H2O4 for electronic applications: Study of the cell potential effects on formation of porous alumina

    International Nuclear Information System (INIS)

    In this research, a nano porous anodized aluminium oxide AAO thin film was successfully grown onto oxide layer on silicon substrate. The anodization of Si/ SiO2/ Al substrate was conducted in a vigorous stirring oxalic acid bath solution. The rate of growth, morphology and also the kinetic study of the AAO thin film were investigated. The resulting array, pores structure and pores density of AAO strongly depends on an applied voltage of the anodizing process. (author)

  19. Nanocomposite MFI-alumina membranes via pore-plugging synthesis. Preparation and morphological characterization

    Czech Academy of Sciences Publication Activity Database

    Miachon, S.; Landrivon, E.; Aouine, M.; Sun, Y.; Kumakiri, I.; Li, Y.; Prokopová, Olga; Guilhaume, N.; Giroir-Fendler, A.; Mozzanega, H.; Dalmon, J. A.

    2006-01-01

    Roč. 281, 1-2 (2006), s. 228-238. ISSN 0376-7388 R&D Projects: GA ČR GP104/03/D183 Grant ostatní: The European Union(FR) CT95 0018; The European Union(FR) G1RD-CT1999-00078 Institutional research plan: CEZ:AV0Z40400503 Keywords : MFI zeolite * membrane * nanocomposite * pore-plugging * transmission electron microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.442, year: 2006

  20. Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples

    International Nuclear Information System (INIS)

    A novel alumina hollow fiber was synthesized by sol-gel template method and was characterized by scanning electron microscopy, N2 adsorption technique and X-ray diffraction. With the use of prepared alumina hollow fiber as extraction membrane, a new method of flow injection (FI)-membrane solid phase microextraction (MSPME) on-line coupled to inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for simultaneous determination of trace metals (Cu, Mn and Ni) in environmental water samples. The adsorption capacities of the alumina hollow fiber for Cu, Mn and Ni were found to be 6.6, 8.7 and 13.3 mg g-1, respectively. With a preconcentration factor of 10, the limits of detection (LODs) for Cu, Mn and Ni were found to be 0.88, 0.61 and 0.38 ng mL-1, respectively, and the relative standard deviations (RSDs) were ranging from 6.2 to 7.9% (n = 7, c = 10 ng mL-1). To validate the accuracy, the proposed method was applied to the analysis of certified reference material GSBZ50009-88 environmental water and the determined values are in good agreement with the certified values. The developed method was also employed for the analysis of Yangtze River water and East Lake water, and the recoveries for the spiked samples were in the range of 87.4-110.2%.

  1. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  2. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  3. Facile fabrication of freestanding through-hole ZrO2 nanotube membranes via two-step anodization methods

    International Nuclear Information System (INIS)

    Highly ordered freestanding tubular zirconia (ZrO2) membrane was prepared via an electrochemical anodization of zirconium (Zr) substrate in non-aqueous electrolytes (mixture of formamide and glycerol (weight ratio 1:1) containing 1 wt% NH4F and 3 wt% H2O). Two methods were used to fabricate the two-end opened ZrO2 membranes, one is a potential shock method and another is a reducing potential method. The two-end opened ZrO2 membrane was produced through the detachment of the existing self-organized ZrO2 tubular layer from Zr substrate or sub tubular layer. The microstructures and morphologies of the samples were studied by scanning electron microscopy and the growth mechanisms of the two-end opened ZrO2 nanotube arrays were investigated.

  4. 多孔阳极氧化铝的化学修饰及其应用于过氧化氢的测定%Chemical Modification of Porous Anodic Alumina and Application in Detection of Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    徐国荣; 唐安平

    2011-01-01

    A new hydrogen peroxide electrochemical biosensor was fabricated through adsorbed cytochrome C in porous anodic alumina chemically modified. The barrier layer at the bottom of the porous anodic alumina was erased by chemical and electrochemical erosion. The Au nano particles were deposited in porous anodic alumina by two-step electroless deposition, and then the cytochrome C was immobilization on Nano Au bed in solution including L-cyste-ine through self-assembled technology. Then a new hydrogen peroxide biosensor was fabricated. The electrochemical and electro catalytic behavior of the cytochrome C electrode was characterized by cyclic voltammetry and chrono-amperometry. The cytochrome C electrode showed a pair of stable and well-defined peaks at about -50 mV and -190 mV at 80 mV/s in pH 7.0 PBS and displayed excellent electro catalytic responses to the reduction of hydrogen peroxide with linear relationship over a concentration range from 1.5xl0-5 mol/L to 4. 8xl0-4 mol/L,and a detection limit of 3.5 x10-6 mol/L( S/N = 3). The results of this study reveal porous anodic alumina chemically modified could be used for the design of biosensors with good operational lifetimes.%多孔阳极氧化铝经化学修饰后吸附细胞色素C,制备了过氧化氢生物传感器电极。多孔阳极氧化铝通过电化学和化学腐蚀阻挡层后,用两步无电沉积方法制备了纳米金修饰的多孔阳极氧化铝电极,再在含有L-半胱氨酸的细胞色素C的溶液中通过吸附制备细胞色素C电极。用循环伏安法和计时电流法测试细胞色素C电极的电化学性能及催化对过氧化氢的还原。结果表明,包覆的细胞色素C电极显示较好的稳定性,在扫描速度为80 mV/s时于-50 mV、-190mV附近出现一对稳定的氧化还原峰。该电极对过氧化氢具有良好的电催化还原性能,在1.5×10-5mol/L~4.8×10-4 mol/L浓度范围内,电流与浓度呈良好的线性关系。多孔阳极氧化铝

  5. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    Science.gov (United States)

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C. PMID:26369167

  6. A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode

    International Nuclear Information System (INIS)

    Highlights: • This model can predict the performance of a single cell in a dead-ended anode mode. • The hypothesis of how current density affects nitrogen accumulation is proposed. • The model was calibrated and validated by experiments. • Nitrogen concentration is regarded as a parameter for anode purge strategy. - Abstract: When a proton exchange membrane fuel cell (PEMFC) system is operated in the dead-ended anode mode, nitrogen will gradually permeate from the cathode to the anode. The accumulation of nitrogen in the anode causes a performance drop, which can be recovered by purging. The purge strategy depends on operating conditions of the PEMFC. To investigate the effect of operating conditions on the performance of a PEMFC with a dead-ended anode, a mathematical model is developed to estimate the nitrogen crossover and accumulation in the anode of the PEMFC, especially for varying-load operations. The effect of operating current density on nitrogen crossover is coupled in the model. Parameters in the model are calibrated according to experimental data. The experiments are designed to measure the voltage variations of the single cell with dead-ended anode at different operating current densities. The effect of current density on purge frequency and voltage variation is shown. Simulation results by this calibrated model agree well with experimental data. The transient of hydrogen concentration in the anode is investigated by the model. A purge strategy is suggested at the end of this study

  7. Surface characterisation and photocatalytic performance of N-doped TiO2 thin films deposited onto 200 nm pore size alumina membranes by sol–gel methods

    International Nuclear Information System (INIS)

    Membrane filtration is employed for water treatment and wastewater reclamation purposes, but membranes alone are unable to remove pollutant molecules and certain pathogens. Photocatalytically active N-doped TiO2 coatings have been deposited by sol–gel onto 200 nm pore size alumina membranes for water treatment applications using two different methods, via pipette droplets or spiral bar applicator. The uncoated and coated membranes were characterised by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDX). Both coatings showed the presence of N-doped anatase, with a surface coverage between 84 and 92%, and nitrogen concentration (predominantly interstitial) of 0.9 at.%. The spiral bar applicator deposited coatings exhibit a thicker mud-cracked surface layer with limited penetration of the porous membrane, whilst the pipette deposited coatings have mostly penetrated into the bulk of the membrane and a thinner layer is present at the surface. The photocatalytic activity (PCA), measured through the degradation of carbamazepine (CBZ), under irradiation of a solar simulator was 58.6% for the pipette coating and 63.3% for the spiral bar coating. These photocatalytically active N-doped sol–gel coated membranes offer strong potential in forming the fundamental basis of a sunlight based water treatment system. - Highlights: • Sol gel N-doped TiO2 thin films were deposited on 200 nm pore size Al2O3 membranes. • Two sol–gel methods have been compared – pipette drop and spiral bar deposition. • The coatings showed a similar microstructure and composition but different morphology. • The PCA (degradation of carbamazepine) was ∼60% for both sol–gel coatings. • The coated membranes are promising for use in a membrane based water treatment system

  8. Pengaruh Pemasukan Alumina Terhadap Operasi Tungku Reduksi di PT. Inalum Kuala Tanjung

    OpenAIRE

    Sudjana, Putra Eka

    2015-01-01

    Produksi aluminium cair di PT INALUM memerlukan bahan baku utama berupa alumina (Al2O3). Pemasukan alumina (Al2O3) mempunyai dua metode yaitu Regular Feeding dan Demand Feeding. Metode demand feeding yang digunakan yaitu pemasukan alumina (Al2O3) berdasarkan kebutuhan . Konsentrasi alumina (Al2O3) pada operasi tungku reduksi berkisar antara 2% - 4%. Konsentrasi alumina (Al2O3) < 1% akan menyebabkan terjadinya efek anoda atau anode effect (AE) dan konsentrasi alumina (Al2O3) ...

  9. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    OpenAIRE

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik; Bouzek, K.; Prag, Carsten Brorson; Andersen, Jens Enevold Thaulov; Bjerrum, Niels

    2012-01-01

    Iridium oxide (IrO2) currently represents a state of the art electrocatalyst for anodic oxygen evolution. Since iridium is both expensive and scarce, the future practical application of this process makes it essential to reduce IrO2 loading on the anodes of PEM water electrolysers. In the present study an approach to utilising a suitable electrocatalyst support was followed. Of the materials selected from a literature review, TaC has proved to be stable under the conditions of the accelerated...

  10. Ultrasound-assisted anodization of aluminum in oxalic acid

    International Nuclear Information System (INIS)

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 μm/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  11. High-flux MFI-alumina hollow fibres: a membrane-based process for on-board CO2 capture from internal combustion vehicles

    International Nuclear Information System (INIS)

    This work focuses on the conception and development of a membrane-based process for an on-board CO2 capture/storage application. In a first part, we simulate an on-board CO2 capture unit based on a membrane process for the case study of a heavy vehicle (≥3500 kg). This study includes an energy analysis of the impact of gas separation and compression on the required membrane surface and module volume, as well the autonomy of the storage unit and the energy overconsumption involved in the process. In a second part, we study the influence of the hollow-fibre support quality on the final intergrowth level of nano-composite MFI-alumina membranes. Special attention is devoted to the influence of the isomorphic substitution of silica by boron and germanium, and replacement of the counter-cation (proton) by other elements, on the CO2/N2 separation and permeance properties. Next, a complete chapter has been devoted to the evaluation of the thermodynamic (adsorption) and kinetic (diffusion) parameters in the CO2/N2 separation. Finally, we analyze the influence of standard pollutants (water, NOx, hydrocarbons) on the CO2 separation properties of the synthesized membranes. (author)

  12. Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes

    OpenAIRE

    Gapin, Andrew Isaac

    2007-01-01

    As the field of nanotechnology continues to advance and device feature sizes scale down to ever smaller dimensions, it is becoming increasingly important to develop quick and efficient methods for large-scale production at the nanoscale. Creating such a template would have widespread uses in areas such as magnetic data storage, chemical sensors, and mask technology. One promising approach to realizing this goal may lie in utilizing the self-ordering behavior found in porous anodized aluminum ...

  13. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.

    Science.gov (United States)

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Li, Xu; Liu, Xing-Rui; Shen, Chao; Xie, Keyu; Li, Baohua; Kang, Feiyu; Wei, Bingqing

    2016-06-28

    Advanced electrode design is crucial in the rapid development of flexible energy storage devices for emerging flexible electronics. Herein, we report a rational synthesis of graphene/Mn3O4 nanocomposite membranes with excellent mechanical flexibility and Li-ion storage properties. The strong interaction between the large-area graphene nanosheets and long Mn3O4 nanowires not only enables the membrane to endure various mechanical deformations but also produces a strong synergistic effect of enhanced reaction kinetics by providing enlarged electrode/electrolyte contact area and reduced electron/ion transport resistance. The mechanically robust membrane is explored as a freestanding anode for Li-ion batteries, which delivers a high specific capacity of ∼800 mAh g(-1) based on the total electrode mass, along with superior high-rate capability and excellent cycling stability. A flexible full Li-ion battery is fabricated with excellent electrochemical properties and high flexibility, demonstrating its great potential for high-performance flexible energy storage devices. PMID:27172485

  14. Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    In this work, the two-phase flow in an anode gas channel of a PEM (proton exchange membrane) fuel cell is numerically investigated using the VOF (volume of fluid) method. Water movement in the gas channel is analyzed and the effects of hydrogen inlet velocity, operating temperature and channel walls wettability are investigated. Results reveal that for hydrophilic channel walls water moves as films in the upper surface of the channel (surface opposite to the GDL (gas diffusion layer)) whereas it moves as a droplet when the channel walls are hydrophobic. Moreover, increasing hydrogen inlet velocity, operating temperature and channel walls wettability results into a faster water removal. However, for the case when hydrogen velocity is increased, a considerable increment on pressure drop is also observed. Results from the present work provide important quantitative information that complements experimental data from literature. - Highlights: • Simulations of two-phase flow in a PEM fuel cell anode gas channel are conducted. • For hydrophilic channel walls, water moves slowly as films on the upper surface. • Water moves faster and as a droplet when the channel walls are hydrophobic. • Water does not accumulate in the GDL surface, which agrees with experimental data. • Faster water removal for higher hydrogen velocities and operating temperatures

  15. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  16. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Science.gov (United States)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  17. Functionalized Nanoporous Track Etched β-PVDF Membrane Electrodes for Lead (II) Determination by Square Wave Anodic Stripping Voltammetry

    International Nuclear Information System (INIS)

    Track etched functionalized nanoporous β-PVDF membrane electrodes, or functionalized membrane electrodes (FME), are thin-layer cells made from poly(acrylic acid) (PAA) functionalized nanoporous β-poly(vinylidene fluoride) (β-PVDF) membranes with thin Au films sputtered on each side as electrodes. The Au film is thin enough that the pores of the membranes are not completely covered. The PAA functionalization is specifically localised in the walls of the nanoporous β-PVDF membrane by grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as Pb2+, from aqueous solutions concentrating the ions into the membrane. After a time the FME is transferred to an electrochemical cell for analysis. A negative potential is applied to the Au film of the FME for a set time to reduce the adsorbed ions onto the Au film working electrode. The other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations in the original solution. The calibration curve of charge versus log concentration has a Temkin isotherm form. The FME membranes are 9 μm thick and have 40 nm diameter pores with a density of 1010 pores/cm2. This high pore density provides a large capacity for ion adsorption. Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface modified electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is performed at open circuit. The zero current intercept of the calibration for Pb2+ is 0.13 ppb (μg/L) and a detection limit of 0.050 ppb based on 3S/N from blank measurements. Voltammetry (CV) and chronoapmerometry (CA) were used to characterize the system. The apparent diffusion coefficient (D) for Pb2+ in the PAA functionalized pores was determined to be 2.44 x 10-7 cm2/s and the partition coefficient (pKM) was determined to be 3.08. (author)

  18. Functionalized Nanoporous Track-Etched b-PVDF Membrane Electrodes for Heavy Metal Determination by Square-Wave Anodic Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    Bessbousse H.

    2013-04-01

    Full Text Available Track-etched functionalized nanoporous β-PVDF membrane electrodes, or functionalized membrane electrodes (FMEs, are electrodes made from track-etched, poly(acrylic acid (PAA functionalized nanoporous β-poly(vinylidene fluoride (β-PVDF membranes with thin porous Au films sputtered on each side as electrodes. To form the β-PVDF nanoporous membranes, β-PVDF films are irradiated by swift heavy ions. After irradiation, radical tracks are stable in the membranes. Chemical etching removes some of the radical tracks revealing nanopores. Radicals, remaining in the pores, initiate radio grafting of PAA from the pore walls of the nanoporous β-PVDF. PAA is a cation exchange polymer that adsorbs metal ions, such as Pb2+, from aqueous solutions thus concentrating the ions into the membrane. After a calibrated time the FME is transferred to an electrochemical cell for square-wave anodic stripping voltammetry analysis.

  19. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    International Nuclear Information System (INIS)

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10−1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative −2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  20. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  1. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  2. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  3. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    Science.gov (United States)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  4. Sensitivity analysis of anode overpotential during start-up process of a high temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Highlights: • Low initial start-up temperature increases sensitivity of other parameters. • Reducing initial start-up temperature reduces warm-up time and energy consumption. • Critical temperature range of maximum sensitivity lies between 125 and 135 °C. - Abstract: This paper investigates the sensitivity of start-up parameters during the start-up or warm-up process of a high temperature proton exchange membrane fuel cell (HT-PEMFC), where carbon monoxide (CO) contaminated hydrogen is used as fuel. The heating strategy considered in this study involves external heating of the HT-PEMFC to an initial start-up temperature (above 100 °C), after which current is extracted, where the external heating still remains. A transient three-dimensional isothermal anode model is developed to determine the sensitivity of operational start-up parameters such as temperature increase rate, initial start-up temperature, CO volume fraction and extracted current density, on the anode overpotential during the start-up process. The results indicate that having a low initial start-up temperature is the key reason that makes the other parameters such as the current density, CO mole fraction and temperature increase rate, sensitive, especially at 108 °C. In addition, temperature range of 130 ± 5 °C is most critical as the sensitivity reaches a peak for all parameters at the three considered initial start-up temperatures. In addition, a system-level energy analysis considered for the start-up process of a 1-kW stack, suggests that having low initial start-up temperature can reduce warm-up time and energy consumption

  5. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  6. Multi-band emission in a wide wavelength range from tin oxide/Au nanocomposites grown on porous anodic alumina substrate (AAO)

    International Nuclear Information System (INIS)

    The photoluminescence (PL) properties of tin oxide nanostructures are investigated. Three samples of different morphology, induced by deposition process and various geometrical features of nanoporous anodic aluminum oxide (AAO) substrate, are analyzed. X-ray photoelectronic spectroscopy (XPS) analysis reveals the presence of two forms of tin oxide on the surface of all studied samples: SnO and SnO2. The former form is typical for reduced surface with bridging oxygen atoms and every other row of in-plane oxygen atoms removed. The oxygen defects give rise to a strong emission in visible region. Two intense PL peaks are observed centered at about 540 (band I) and 620 (band II) nm. The origin of these bands was ascribed to the recombination of electrons from the conduction band (band I) and shallow traps levels (band II) to the surface oxygen vacancy levels. Upon deposition of Au nanoparticles on the top of tin oxide nanostructures the emission at 540 and 620 nm disappears and a new band (band III) occurs in the range >760 nm. The PL mechanism operating in the studied systems is discussed. The tin oxide/Au nanocomposites can be used as efficient multi-band light emitters in a wide (from visible to near infrared) wavelength range.

  7. Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes

    International Nuclear Information System (INIS)

    Defects influence the optical and electronic properties of nanostructured materials that may be relevant for applications. In self-organized anodic aluminum oxide (AAO) templates we have investigated the effect of annealing, doping and nanoscale metal deposition. Optical absorption spectroscopy has been used as a sensitive probe for the defect density in AAO templates. The electronic spectra are found to be dominated by bands which originate from oxygen-deficient color centers (F+, F and F2). In annealing studies, the integrated absorption of the bands changes non-monotonically with annealing temperature and annealing time. This demonstrates that the concentration of defects can be optimized to tailor the optical properties of the AAO. Metallic Au wires are deposited in the template to establish a plasmonic template or array. The investigations provide an interesting insight into the interplay of reactivity and diffusivity on nanoscales. - Highlights: ► Preparation of metal wire arrays in oxide templates with tailored plasmonic properties. ► Oxygen defects are characterized using optical absorption and fluorescence. ► Optical absorption spectra are assigned to energy levels of oxygen vacancies (color centers). ► Annealing and electrodeposition of Au wires minimize defects maintaining the morphology.

  8. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  9. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Sulka, Grzegorz D., E-mail: Sulka@chemia.uj.edu.pl [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Brzozka, Agnieszka [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, Krakow 30-059 (Poland); Liu, Lifeng [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2011-05-30

    Graphical abstract: Display Omitted Highlights: > AAO templates with modulated pore diameter were fabricated by pulse anodization. > HA pulse duration tunes the shape of pores and the structure of AAO channels. > Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. > Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  10. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: → AAO templates with modulated pore diameter were fabricated by pulse anodization. → HA pulse duration tunes the shape of pores and the structure of AAO channels. → Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. → Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  11. Sorption of plutonium on anodized aluminum

    International Nuclear Information System (INIS)

    Adsorption of plutonium on anodic alumina films was investigated. The results obtained suggest that equilibrium in the aqueous solution-solid surface system is achieved after 3 hours. In case of aqueous solutions maximum sorption was observed at pH 3.5. The adsorption isotherms for both aqueous and ethanolic solutions are presented. Up to 15 μg of Pu can be adsorbed by 1 cm2 of anodic alumina surface. (author)

  12. Modeling of proton exchange membrane fuel cell with variable distance gas flow in anode and cathode

    International Nuclear Information System (INIS)

    A number of fundamental studies have been directed towards increasing our understanding of PEM fuel cell and their performance. Mathematical modeling is one of the way and very essential component in the development of this fuel cell. Model validation is presented, the validated model is then used to investigate the behavior of mole fraction of gases, current density, and the performances of stack using polarization curve depending on distance gases flow in channel. The model incorporates a complete cell with both the membrane electrode assembly (MEA) and the serpentine gas distributor channel. Finally, the parametric studies in single stack design are illustrated

  13. Anodic Aluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jung

    2009-01-01

    Full Text Available Abstract In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the β-In2S3nanowire is tetragonal polycrystalline. The direct band gap energy (Eg is 2.40 eV from the optical measurement, and it is reasonable with literature.

  14. Nanosized IrOx–Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure

    OpenAIRE

    Lettenmeier, Philipp; Wang, Li; Golla-Schindler, Ute; Gazdzicki, Pawel; Cañas, Natalia A.; Handl, Michael; Hiesgen, Renate; Hosseiny, S.S.; Gago, Aldo; Friedrich, K. Andreas

    2015-01-01

    We have developed a highly active nanostructured iridium catalyst for anodes of proton exchange membrane (PEM) electrolysis. Clusters of nanosized crystallites are obtained by reducing surfactant-stabilized IrCl3 in water-free conditions. The catalyst shows a five-fold higher activity towards oxygen evolution reaction (OER) than commercial Ir-black. The improved kinetics of the catalyst are reflected in the high performance of the PEM electrolyzer (1 mgIr cm−2), showing an unparalleled low ov...

  15. Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes

    Science.gov (United States)

    Gapin, Andrew Isaac

    As the field of nanotechnology continues to advance and device feature sizes scale down to ever smaller dimensions, it is becoming increasingly important to develop quick and efficient methods for large-scale production at the nanoscale. Creating such a template would have widespread uses in areas such as magnetic data storage, chemical sensors, and mask technology. One promising approach to realizing this goal may lie in utilizing the self-ordering behavior found in porous anodized aluminum oxide (AAO). This material offers many advantages such as the ability to customize the pore diameter and spacing and easy device integration based on its compatibility with silicon substrates. The pores of the AAO templates can be filled with many different materials via electrochemical deposition or other methods to produce numerous potential devices. In this work, current research results detailing the fabrication of AAO templates and their use in creating ˜100 nm tall CoPt, Ni, and composite Ni/CoPt nanowires is demonstrated. The synthesis of such nanostructures may ultimately be advantageous for new types of patterned magnetic recording media. The Ni nanowires exhibit relatively soft magnetic coercivity of 242 Oe, while the CoPt nanowires show a very high coercivity of at least 10.97 kOe, measured in the perpendicular direction along the nanowires axis. The composite soft magnet/hard magnet Ni/CoPt nanowires exhibit intermediate perpendicular coercivities depending on the relative amounts of Ni and CoPt. The Ni 80nm/CoPt20nm nanowires showed a coercivity of 1.96 kOe, the Ni50nm/CoPt50nm nanowires had a coercivity of 3.59 kOe, and the Ni20nm/CoPt80nm nanowires had a coercivity of 5.10 kOe. This marked decrease in the coercivity is significant because it could facilitate easier magnetic data writing. Analysis of the magnetic properties of the various nanowire structures and their dependence on the processing parameters is presented. A method for utilizing the AAO structure

  16. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  17. CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: A mass spectrometry investigation

    International Nuclear Information System (INIS)

    Highlights: ► CO tolerance of Pt/C and PtMo/C PEMFC anodes is investigated by on line mass spectrometry. ► High CO tolerance is observed for high PEMFC temperatures. ► Increase of tolerance for Pt/C is due to thermal desorption, reduced CO oxidation potentials, and CO oxidation by O2 crossover. ► PtMo/C presents increased CO tolerance due the occurrence of a MoOx-mediated was gas shift reaction. -- Abstract: The performance of proton exchange membrane fuel cells (PEMFC) with Pt/C and PtMo/C anodes has been investigated using single cell polarization and on line mass spectrometry (OLMS) measurements in a wide range of temperature (70–105 °C) for the system supplied with hydrogen containing different amounts of CO. As expected a higher CO tolerance is observed at higher temperatures for both catalysts. The anode exit gas analysis revealed that CO2 is produced already at the cell open circuit potential, and it increases with the increase of the anode overpotential. The CO tolerance phenomena are assigned to different processes depending on the catalyst nature. For the Pt/C containing anodes, at temperatures above 80 °C, thermal desorption, reduced CO oxidation potential and CO oxidation by O2 crossover are responsible for enhanced tolerance, whilst PtMo/C shows greater tolerance due the occurrence of a MoOx-mediated water gas shift reaction (WGS), which is activated at high temperatures. Although the occurrence of WGS leads to the anode poisoning in the presence of CO2, the polarization results show that only small additive contamination effect occurs by the combined presence of CO + CO2 in the hydrogen stream

  18. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    Science.gov (United States)

    Hays, Sarah; Zhang, Fang; Logan, Bruce E.

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (wastewater treatment than flat mesh anodes in MFCs.

  19. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  20. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  1. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . PMID:27062251

  2. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    Science.gov (United States)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  3. Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Jenssen, Dirk; Berger, Oliver; Krewer, Ulrike

    2015-12-01

    An automotive fuel cell is investigated to define the design boundaries for an automotive hydrogen supply system with regard to anode flooding. The flooding characteristics of the fuel cell anode at various operating conditions (hydrogen flow rate, pressure, temperature, current density) are analyzed by in-situ and ex-situ measurements. Stable operation conditions are identified and a relation to the operating conditions is established. For adequate water removal, a minimum Reynolds number in the gas channels has to be adjusted. Using this information, different hydrogen supply system designs are compared in their compliance with the stability requirements. It is shown that passive hydrogen supply systems do not achieve all fuel cell requirements regarding power density, lifetime and robustness.

  4. Tribological behaviour of anodised alumina nanohoneycombs

    OpenAIRE

    Wang, Shuo; 王硕

    2012-01-01

    Anodic alumina nanohoneycombs (AAO) have been widely used because of its convenient fabrication and controllable pores’ geometry. A lot of investigations have been conducted to study its physical and chemical properties. However, the mechanical properties, especially tribological properties, of such a popular nanomaterial still remain almost unknown. In this project, a series of scratch experiments were conducted on AAO films fabricated by a two-step anodisation method. The testing system...

  5. Nanosized IrO(x)-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure.

    Science.gov (United States)

    Lettenmeier, Philipp; Wang, Li; Golla-Schindler, Ute; Gazdzicki, Pawel; Cañas, Natalia A; Handl, Michael; Hiesgen, Renate; Hosseiny, Seyed S; Gago, Aldo S; Friedrich, Kaspar A

    2016-01-11

    We have developed a highly active nanostructured iridium catalyst for anodes of proton exchange membrane (PEM) electrolysis. Clusters of nanosized crystallites are obtained by reducing surfactant-stabilized IrCl3 in water-free conditions. The catalyst shows a five-fold higher activity towards oxygen evolution reaction (OER) than commercial Ir-black. The improved kinetics of the catalyst are reflected in the high performance of the PEM electrolyzer (1 mg(Ir) cm(-2)), showing an unparalleled low overpotential and negligible degradation. Our results demonstrate that this enhancement cannot be only attributed to increased surface area, but rather to the ligand effect and low coordinate sites resulting in a high turnover frequency (TOF). The catalyst developed herein sets a benchmark and a strategy for the development of ultra-low loading catalyst layers for PEM electrolysis. PMID:26616747

  6. Porous alumina based ordered nanocomposite coating for wear resistance

    Science.gov (United States)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  7. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    Science.gov (United States)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  8. Nanostructured Ir-supported on Ti4O7 as cost effective anode for proton exchange membrane (PEM) electrolyzers

    OpenAIRE

    Wang, Li; Lettenmeier, Philipp; Golla-Schindler, Ute; Gazdzicki, Pawel; Cañas, Natalia A.; Morawietz, Tobias; Hiesgen, Renate; Hosseiny, S.S.; Gago, Aldo; Friedrich, K. Andreas

    2015-01-01

    PEM water electrolysis has recently emerged as one of the most promising technologies for large H2 production from temporal surplus of renewable electricity, yet it is expensive partly due to the use of large amounts of Ir present in the anode. Here we report the development and characterization of a cost effective catalyst, which consists of metallic Ir nanoparticles supported on commercial Ti4O7. The catalyst is synthetized by reducing IrCl3 with NaBH4 in a suspension containing Ti4O7, cety...

  9. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    Science.gov (United States)

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays. PMID:23020550

  10. The Temperature Stage Which Used At Anode Paste Doughing Process In Green Plant PT Inalum

    OpenAIRE

    Simatupang, Dian Christian

    2011-01-01

    Anode is raw material which used in electrolyse process aluminium smelting, where anode is form mixed of cokes and coal tar pitch, containing carbon element which required in smelting process of alumina to produce aluminium. PT INALUM has been able to produce anode it self, while cathode is still be imported from other countries. Aluminium smelter process which taking place continiously require many of anode, good quality and durable, especially temperature at doughing process of anode paste ...

  11. Pilot tests of application of cryolite-alumina concentrate in aluminium production

    International Nuclear Information System (INIS)

    The results of pilot tests of obtaining method and application of cryolite-alumina concentrate obtained from sludge in aluminium production are considered. Chemical and mineralogical composition of initial raw material and cryolite-alumina concentrate are studied. The tests are shown that concentrate can be used as anode cover of electrolytic cells.

  12. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    International Nuclear Information System (INIS)

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications

  13. Addition of sulfonated silicon dioxide on an anode catalyst layer to improve the performance of a self-humidifying proton exchange membrane fuel cell

    Science.gov (United States)

    Lin, Chien-Liang; Hsu, Shih-Chieh; Ho, Wei-Yu

    2016-03-01

    Sulfonated SiO2 was added on an anode catalyst layer to manufacture a hygroscopic electrode for self-humidifying proton exchange membrane fuel cells (PEMFCs). The inherent humidity of a proton exchange membrane (PEM) determines the electrical performance of PEMFCs. To maintain the high moisture content of the PEM, self-humidifying PEMFCs can use the water produced by the fuel cell reaction and, thus, do not require external humidification. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and water contact angle measurement tests were performed to characterize the structures and properties of sulfonated SiO2 and the related electrodes, and the electric current and voltage (I-V) performance curve tests for the fuel cells were conducted under differing gas humidification conditions. When 0.01mg/cm2 of sulfonated SiO2 was added, the electrical performance of the fuel cells (50∘C) increased 29% and 59% when the fuel cell reaction gases were humidified at 70∘C and 50∘C, respectively.

  14. Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membranes based on a solid state reaction

    NARCIS (Netherlands)

    Bi, Lei; Fang, Shumin; Tao, Zetian; Zhang, Shangquan; Peng, Ranran; Liu, Wei

    2009-01-01

    We describe a solid state reaction for the preparation of both NiO–BaCe0.7Ta0.1Y0.2O3−δ anode substrates and BaCe0.7Ta0.1Y0.2O3−δ (BCTY10) electrolyte membranes on porous NiO–BCTY10 anode substrates. The amounts of the pore forming additive in the substrates showed a significant influence on the den

  15. Preparation of Ag nanodot array on porous alumina membrane by electron beam evaporation%电子束蒸发法在多孔氧化铝膜上制备银纳米点阵列

    Institute of Scientific and Technical Information of China (English)

    高芬

    2008-01-01

    采用二步阳极氧化法在草酸溶液中制备了高度有序的多孔阳极氧化铝(Porous Anodic Alumina,PAA)薄膜.以多孔氧化铝薄膜为模板,采用真空电子束蒸发的方法在多孔氧化铝模板上制备出了高度有序的金属银纳米点阵列体系.扫描电镜(SEM)测试结果表明,所制备的金属银纳米点阵列与多孔阳极氧化铝膜的多孔阵列具有完全相同的有序结构,阵列中银纳米颗粒的形状接近球形,其直径大约为70nm,与氧化铝模板的孔径基本一致.研究了高度有序银纳米点阵列的形成过程.

  16. Final report on the characterization of the film on inert anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-01-01

    Results of post-test microscopic and elemental analysis of the reaction zone on polarized cermet inert anodes, over a range of current densities and alumina concentrations, suggest that an alumina film does not form to protect the anode from dissolution. Rather, significant morphological and compositional changes occur at or near the anode surface. These changes and the chemical reactions that cause them involve the cermet material itself and appear to be responsible for properties that were previously assigned to an alumina film. In particular, a reaction layer formed from the cermet material may have protective properties, while changes in roughness and porosity may contribute to the electrochemical impedance.

  17. Bauxite and alumina

    Science.gov (United States)

    Bray, E.L.

    2009-01-01

    The article provides information on bauxite and alumina mining. U.S. states like Alabama, Arkansas and Georgia produced small amounts of bauxite and bauxitic clays for nonmetallurgical uses. Total metallurgical-grade bauxite imports in 2008 is cited. The leading suppliers of bauxite to the U.S. are Jamaica, Guinea and Brazil. The estimated domestic production of alumina in 2008 is mentioned. It also discusses consumption and prices of both bauxite and alumina.

  18. Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

    International Nuclear Information System (INIS)

    Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and cost effective fabrication through our method would be highly applicable in electronics industry

  19. Growth Mechanism and Optimized Parameters to Synthesize Nation-115 Nanowire Arrays with Anodic Aluminium Oxide Membranes as Templates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lu; PAN Cao-Feng; ZHU Jing

    2008-01-01

    @@ Nafion-115 nanowire arrays are synthesized with an extrusion method using AAO membranes as templates. It is indicated that the vacuum treating of AAO templates before surface decoration plays an important role in obtaining high filling rate of the Nafion-115 nanowires in the AAO templates, while the concentration of Nafion-115 DMSO solutions does not affect the filling rate greatly. The optimized parameters to synthesize the Nafion-115 nanowire arrays are studied. The filling rate of the Nafion-115 nanowires in the AAO templates synthesized with the optimized parameters is about 95%. The growth mechanism of Nafion-115 nanowires is discussed to qualitatively explain the experimental results.

  20. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    Science.gov (United States)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  1. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  2. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  3. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  4. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    International Nuclear Information System (INIS)

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H3PO4 solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  5. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    Murugaiya Sridar Ilango; Amruta Mutalikdesai; Sheela K Ramasesha

    2016-01-01

    Ultra-fast two-step anodization method is developed for obtaining ordered nano-pores on aluminium (Al) foil. First anodization was carried out for 10 min, followed by 3 min of second anodization at high voltage (150 V) compared to previous reports of anodization times of 12 h (40-60 V). The pore dimensions on anodized alumina are 180 nm for pore diameter and 130 nm for inter-pore distance. It was evident that by increasing the anodization voltage to 150 V, the diameter of the pores formed was above 150 nm. The electrolyte and its temperature affect the shape and size of the pore formation. At lower anodization temperature, controlled pore formation was observed. The anodized samples were characterized using the field emission scanning electron microscope (FE-SEM) to determine the pore diameter and inter-pore distance. Using UVVisible spectroscopy, the reflectance spectra of anodized samples were measured. The alumina (Al2O3) peaks were identified by x-ray diffraction (XRD) technique. The x-ray photo electron spectroscopy (XPS) analysis confirmed the Al 2p peak at 73.1 eV along with the oxygen O 1s at 530.9 eV and carbon traces C 1s at 283.6 eV.

  6. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  7. Charge-induced reversible bending in nanoporous alumina-aluminum composite

    Science.gov (United States)

    Cheng, Chuan; Ngan, A. H. W.

    2013-05-01

    Upon electrical charging, reversible bending was found in nanoporous anodic alumina-aluminum foil composites, as directly observed by an optical microscope and detected by in situ nanoindentation. The bending is thought to be the result of charge-induced surface stresses in the nanoporous alumina. The results suggest the possibility of a type of composite foil materials for applications as micro-scale actuators to transform electrical energy into mechanical energy.

  8. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  9. A novel approach to large-scale formation of through-hole porous anodic aluminum template

    Institute of Scientific and Technical Information of China (English)

    Ya Nan Zhang; Miao Chen; Zhi Lu Liu; Yan Chun Zhao

    2008-01-01

    A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time.This approach improved the efficiency of the preparation of the PAA templates remarkably in a normal lab and is expected to be used for the large-scale production in the future.

  10. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  11. Process for High-Rate Fabrication of Alumina Nanotemplates

    Science.gov (United States)

    Myung, Nosang; Fleurial, Jean-Pierre; Yun, Minhee; West, William; Choi, Daniel

    2007-01-01

    An anodizing process, at an early stage of development at the time of reporting the information for this article, has shown promise as a means of fabricating alumina nanotemplates integrated with silicon wafers. Alumina nanotemplates are basically layers of alumina, typically several microns thick, in which are formed approximately regular hexagonal arrays of holes having typical diameters of the order of 10 to 100 nm. Interest in alumina nanotemplates has grown in recent years because they have been found to be useful as templates in the fabrication of nanoscale magnetic, electronic, optoelectronic, and other devices. The present anodizing process is attractive for the fabrication of alumina nanotemplates integrated with silicon wafers in two respects: (1) the process involves self-ordering of the holes; that is, the holes as formed by the process are spontaneously arranged in approximately regular hexagonal arrays; and (2) the rates of growth (that is, elongation) of the holes are high enough to make the process compatible with other processes used in the mass production of integrated circuits. In preparation for fabrication of alumina nanotemplates in this process, one first uses electron-beam evaporation to deposit thin films of titanium, followed by thin films of aluminum, on silicon wafers. Then the alumina nanotemplates are formed by anodizing the aluminum layers, as described below. In experiments in which the process was partially developed, the titanium films were 200 A thick and the aluminum films were 5 m thick. The aluminum films were oxidized to alumina, and the arrays of holes were formed by anodizing the aluminum in aqueous solutions of sulfuric and/or oxalic acid at room temperature (see figure). The diameters, spacings, and rates of growth of the holes were found to depend, variously, on the composition of the anodizing solution, the applied current, or the applied potential, as follows: In galvanostatically controlled anodizing, regardless of the

  12. An inert metal anode for magnesium electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J. F.; Hryn, J. N.; Pellin, M. J.; Calaway, W. F.; Watson, K.

    1999-12-01

    Results from the development of a novel type of anode for electrowinning Mg are reported. A tailored alloy system based on the binary Cu-Al can be made to form a thin alumina layer on its surface that is relatively impervious to attack by the molten chloride melt at high temperature. This barrier is thin enough (5--50 nm) to conduct electrical current without significant IR loss. As the layer slowly dissolves, the chemical potential developed at the surface drives the diffusion of aluminum from the bulk alloy to reform (heal) the protective alumina layer. In this way, an anode that generates Cl{sub 2} (melt electrolysis) and O{sub 2} (wet feed hydrolysis) and no chlorocarbons can be realized. Further, the authors expect the rate of loss of the anode to be dramatically less than the coke-derived carbon anodes typically in use for this technology, leading to substantial cost savings and ancillary pollution control by eliminating coke plant emissions, as well as eliminating chlorinated hydrocarbon emissions from Mg electrowinning cells.

  13. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  14. Solid Lubricant For Alumina

    Science.gov (United States)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  15. Anodic dissolution of metals in oxide-free cryolite melts

    OpenAIRE

    Cassayre, Laurent; Chamelot, Pierre; Arurault, Laurent; Taxil, Pierre

    2005-01-01

    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-Héroult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolv...

  16. Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response

    Science.gov (United States)

    Poinern, Gérrard Eddy Jai; Shackleton, Robert; Mamun, Shariful Islam; Fawcett, Derek

    2011-01-01

    Tissue engineering is a multidisciplinary field that can directly benefit from the many advancements in nanotechnology and nanoscience. This article reviews a novel biocompatible anodic aluminum oxide (AAO, alumina) membrane in terms of tissue engineering. Cells respond and interact with their natural environment, the extracellular matrix, and the landscape of the substrate. The interaction with the topographical features of the landscape occurs both in the micrometer and nanoscales. If all these parameters are favorable to the cell, the cell will respond in terms of adhesion, proliferation, and migration. The role of the substrate/scaffold is crucial in soliciting a favorable response from the cell. The size and type of surface feature can directly influence the response and behavior of the cell. In the case of using an AAO membrane, the surface features and porosity of the membrane can be dictated at the nanoscale during the manufacturing stage. This is achieved by using general laboratory equipment to perform a relatively straightforward electrochemical process. During this technique, changing the operational parameters of the process directly controls the nanoscale features produced. For example, the pore size, pore density, and, hence, density can be effectively controlled during the synthesis of the AAO membrane. In addition, being able to control the pore size and porosity of a biomaterial such as AAO significantly broadens its application in tissue engineering. PMID:24198483

  17. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    Directory of Open Access Journals (Sweden)

    Sanli Deniz

    2011-01-01

    Full Text Available Abstract Superhydrophobic nanoporous anodic aluminum oxide (alumina surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS. Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.

  18. Nanoindentation of shock deformed alumina

    International Nuclear Information System (INIS)

    In the current study, the experimental results on the nanoindentation response of both as prepared and shock recovered alumina of 10 μm grain size and identical processing history are presented and analyzed. The shock recovery experiments were deliberately conducted with gas gun arrangements at shock pressures much above the Hugoniot Elastic Limit (HEL) of alumina. The nanoindentation experiments were conducted at 10-1000 mN load with a Berkovich indenter. The nanohardness and Young's modulus value of shock recovered alumina were always lower than those of the as prepared alumina samples. Subsequently, the detailed characterizations of the shock recovered alumina samples by X-ray diffraction, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were utilized to understand the reasons behind the drop in nanohardness and Young's modulus of shock recovered alumina samples.

  19. Combination for electrolytic reduction of alumina

    Science.gov (United States)

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  20. Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications

    Science.gov (United States)

    Narayan, Roger J.; Monteiro-Riviere, Nancy A.; Brigmon, Robin L.; Pellin, Michael J.; Elam, Jeffrey W.

    2009-06-01

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO2-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for “smart” drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  1. High Temperature Stability of Potassium Beta Alumina

    Science.gov (United States)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  2. Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC)

    International Nuclear Information System (INIS)

    The influence of carbon monoxide poisoning on the platinum and platinum-ruthenium anode in a polymer electrolyte fuel cell was investigated using electrochemical impedance spectroscopy (EIS). EIS is a very useful method for the characterisation of fuel cells. Therefore, impedance measurements of the cell under constant load were performed at periodic time intervals. Due to the poisoning effect of the carbon monoxide, the system changes its state during the experiment. The reconstruction of quasi-causal spectra was made possible using enhanced numerical procedures, especially the time course interpolation and the Z-HIT refinement. The reconstructed impedance spectra show a strong time dependence and exhibit pseudo-inductive contributions at the low-frequency part of the spectra which increase during the experiment. The analysis of the spectra suggests that the pseudo-inductive behaviour can be attributed to a surface relaxation process of the anode. Furthermore, the influence of the carbon monoxide on the electrochemical behaviour of the contaminated fuel cell may be interpreted by means of a Faraday impedance in addition to a potential-dependent hindrance of the charge transfer

  3. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  4. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  5. Electrochemically grown metallic nanocomb structures on nanoporous alumina templates

    International Nuclear Information System (INIS)

    Electrochemical growth of metallic nanocomb structures on anodized alumina templates is described. Nanocombs originate from the orderly growth and merger of very thin (d=15±5 nm) metallic nanowires which do not completely fill much larger pores (d∼100 nm) in the alumina template (t≤3 μm). Instead, the nanowires prefer growing along the inner corners of the hexagonal pores, coalescing into a highly ordered structure as they emerge, resulting a metallic form reminiscent of the topology of the original template. We disclose here the typical processing conditions and the microstructure of this previously unknown material as observed with a scanning electron microscope (SEM) and energy dispersive x-ray (EDX) spectroscopy. It is shown that Au nanocombs have an anomalous EDX spectra and can emit electrons at a field of ∼1 kV/cm.

  6. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography

    International Nuclear Information System (INIS)

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  7. Nanofiber membrane-electrode-assembly and method of fabricating same

    Science.gov (United States)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  8. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    International Nuclear Information System (INIS)

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future

  9. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    Science.gov (United States)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  10. Electro-osmotic pumping and ionic conductance measurements in porous membranes

    Science.gov (United States)

    Vajandar, Saumitra K.

    Electro-osmotic (EO) pumps directly convert electrical energy into fluids' kinetic energy, which have many advantages such as a simple and compact structure, no mechanical moving parts, and easy integration. In general, it is easy for EO pumps to generate enough pressure but it has been a challenge for EO pumps to produce a high flowrate. EO pumps have found applications in various micro-/nano-electro-mechanical systems (MEMS/NEMS) and have the potential to impact a variety of engineering fields including microelectronics cooling and bio-analytical systems. This dissertation focuses on the design, fabrication and characterization of EO pumps based on two novel porous membrane materials: SiO2-coated anodic porous alumina and SiNx-coated porous silicon. High quality porous alumina membranes of controllable pore diameters in the range of 30-100 nm and pore lengths of 60-100 mum were fabricated by electrochemical anodization. The pores are straight, uniform and hexagonally close-packed with a high porosity of up to 50%. The inner surface of the pore was coated with a thin layer (˜5 nm) of SiO2 conformally to achieve a high zeta potential. The EO pumping flowrate of the fabricated anodic alumina membranes, coated and uncoated, was experimentally measured. Results indicate that the high zeta potential of the SiO2 coating increases the pumping flowrate even though the coating reduces the porosity of the membrane. The nanostructured SiO2-coated porous anodic alumina membranes can provide a normalized flowrate of 0.125 ml/min/V/cm2 under a low effective applied voltage of 3 V, which sets a record high normalized flowrate under low applied voltage. To realize field effect control of EO pumping, we designed and fabricated SiNx-coated porous silicon membranes with the silicon core as the electrode to apply a transverse gate potential. The gate potential will modulate the zeta potential of the pore wall and thereby provide control over the EO flowrate. The membranes were

  11. Enriched fluoride sorption using alumina/chitosan composite

    International Nuclear Information System (INIS)

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F-/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F-/kg than the alumina and chitosan (52 mg F-/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  12. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  13. Adsorptive desulfurization by activated alumina.

    Science.gov (United States)

    Srivastav, Ankur; Srivastava, Vimal Chandra

    2009-10-30

    This study reports usage of commercial grade activated alumina (aluminum oxide) as adsorbent for the removal of sulfur from model oil (dibenthiophene (DBT) dissolved in n-hexane). Bulk density of alumina was found to be 1177.77 kg/m(3). The BET surface area of alumina was found to decrease from 143.6 to 66.4 m(2)/g after the loading of DBT at optimum conditions. The carbon-oxygen functional groups present on the surface of alumina were found to be effective in the adsorption of DBT onto alumina. Optimum adsorbent dose was found to be 20 g/l. The adsorption of DBT on alumina was found to be gradual process, and quasi-equilibrium reached in 24 h. Langmuir isotherm best represented the equilibrium adsorption data. The heat of adsorption and change in entropy for DBT adsorption onto alumina was found to be 19.5 kJ/mol and 139.2 kJ/mol K, respectively. PMID:19523762

  14. Effects of a magnetic field on growth of porous alumina films on aluminum

    International Nuclear Information System (INIS)

    The effects induced by a magnetic field on the oxide film growth on aluminum in sulfuric, oxalic, phosphoric and sulfamic acid, and on current transients during re-anodizing of porous alumina films in the barrier-type electrolyte, were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on Si wafer substrates. We could show that the duration of the anodizing process increased by 33% during anodizing in sulfuric acid when a magnetic field was applied (0.7 T), compared to the process without a magnetic field. Interestingly, such a magnetic field effect was not found during anodizing in oxalic and sulfamic acid. The pore intervals were decreased by ca. 17% in oxalic acid. These findings were attributed to variations in electronic properties of the anodic oxide films formed in various electrolytes and interpreted on the basis of the influence of trapped electrons on the mobility of ions migrating during the film growth. The spin dependent tunneling of electrons into the surface layer of the oxide under the magnetic field could be responsible for the shifts of the current transients to lower potentials during re-anodizing of heat-treated oxalic and phosphoric acid alumina films.

  15. Effects of a magnetic field on growth of porous alumina films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Ispas, Adriana; Bund, Andreas [Technische Universitaet Dresden, Physikalische Chemie und Elektrochemie, 01062 Dresden (Germany); Vrublevsky, Igor, E-mail: vrublevsky@bsuir.edu.b [Belarusian State University of Informatics and Radioelectronics Minsk, Department of Micro and Nanoelectronics, 220013 Minsk (Belarus)

    2010-05-01

    The effects induced by a magnetic field on the oxide film growth on aluminum in sulfuric, oxalic, phosphoric and sulfamic acid, and on current transients during re-anodizing of porous alumina films in the barrier-type electrolyte, were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on Si wafer substrates. We could show that the duration of the anodizing process increased by 33% during anodizing in sulfuric acid when a magnetic field was applied (0.7 T), compared to the process without a magnetic field. Interestingly, such a magnetic field effect was not found during anodizing in oxalic and sulfamic acid. The pore intervals were decreased by ca. 17% in oxalic acid. These findings were attributed to variations in electronic properties of the anodic oxide films formed in various electrolytes and interpreted on the basis of the influence of trapped electrons on the mobility of ions migrating during the film growth. The spin dependent tunneling of electrons into the surface layer of the oxide under the magnetic field could be responsible for the shifts of the current transients to lower potentials during re-anodizing of heat-treated oxalic and phosphoric acid alumina films.

  16. Application of anodizing as a pre-treatment for nickel plating on aluminum

    International Nuclear Information System (INIS)

    Effect of anodizing on subsequent electroplating of nickel on aluminum was investigated. Electroplated nickel did not exhibit any adhesion with un-anodized aluminum. Formation of a very thin anodized alumina film prior to nickel plating led to an excellent adhesion between the nickel film and the substrate. If the thickness of the alumina film increased, adhesion of electroplated nickel was significantly deteriorated and became similar to that of un-anodized bare aluminum. The study revealed that deposition proceeded through pores and defects in the insulator alumina film. These pores and defects also acted as nucleation and anchor points for nickel deposit. There was larger number of nucleation/ anchor points on thin alumina films. This provided better adhesion of nickel with the substrate as well as excellent coverage in relatively shorter times. On the other hand, very rough and poorly adherent nickel deposits formed on thick anodized films. Therefore, it may be used as precursor for producing nickel powder with controlled particle size as well as a catalyst with high specific surface area for hydrogenation and dehydrogenation reactions. (author)

  17. Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers.

    Science.gov (United States)

    Wang, Li; Lettenmeier, Philipp; Golla-Schindler, Ute; Gazdzicki, Pawel; Cañas, Natalia A; Morawietz, Tobias; Hiesgen, Renate; Hosseiny, S Schwan; Gago, Aldo S; Friedrich, K Andreas

    2016-02-14

    PEM water electrolysis has recently emerged as one of the most promising technologies for large H2 production from a temporal surplus of renewable electricity; yet it is expensive, partly due to the use of large amounts of Ir present in the anode. Here we report the development and characterization of a cost-effective catalyst, which consists of metallic Ir nanoparticles supported on commercial Ti4O7. The catalyst is synthesized by reducing IrCl3 with NaBH4 in a suspension containing Ti4O7, cetyltrimethylammonium bromide (CTAB) and anhydrous ethanol. No thermal treatment was applied afterwards in order to preserve the high conductivity of Ti4O7 and the metallic properties of Ir. Electron microscopy images show an uniform distribution of mostly single Ir particles covering the electro-ceramic support, although some agglomerates are still present. X-ray diffraction (XRD) analysis reveals a cubic face centered structure of Ir nanoparticles with a crystallite size of ca. 1.8 nm. According to X-ray photoelectron spectroscopy (XPS), the ratio of metallic Ir and Ir-oxide, identified as Ir(3+), is 3 : 1 after the removal of surface contamination. Other surface properties such as primary particle size distribution and surface potential were determined by atomic force microscopy (AFM). Cyclic and linear voltammetric measurements were conducted to study the electrochemical surface and kinetics of Ir-black and Ir/Ti4O7. The developed catalyst outperforms the commercial Ir-black in terms of mass activity for the oxygen evolution reaction (OER) in acid medium by a factor of four, measured at 0.25 V overpotential and room temperature. In general, the Ir/Ti4O7 catalyst exhibits improved kinetics and higher turnover frequency (TOF) compared to Ir-black. The developed Ir/Ti4O7 catalyst allows reducing the precious metal loading in the anode of a PEM electrolyzer by taking advantage of the use of an electro-ceramic support. PMID:26791108

  18. Stresses in sulfuric acid anodized coatings on aluminum

    Science.gov (United States)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  19. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    Science.gov (United States)

    El-Safty, Sherif A.; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-09-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  20. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Boget, D.I.

    1986-07-01

    Objective of this work was to develop a standard bench-scale cell for performing short-term ac and dc polarization studies on inert anode candidate materials in molten cryolite. Two designs for electrochemical cells were developed and successfully evaluated in short-term experiments. Both cells consisted on the inert anode as a small cylindrical specimen partially sheathed in alumina, an Al/Al/sub 2/O/sub 3/ reference electrode, and a cryolite bath saturated in alumina. The difference between the two cells was in the design of the cathode. One cell used a bare solid metal cathode; the other used an aluminum pad similar to the Hall-Heroult configuration.

  1. Alumina-Reinforced Zirconia Composites

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  2. Alumina supported iridium catalysts - preparation

    International Nuclear Information System (INIS)

    This report describes the method employed in the preparation of alumina supported iridium catalysts, with metal contents between 30 and 40%, that will be used for hydrazine monopropellant decomposition. (author)

  3. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  4. Estimation of thermal shock resistance of fine porous alumina by infrared radiation heating method

    OpenAIRE

    Iwamoto, Yuji; Honda, Sawao; Ogihara, Yuki; Kishi, Tsunego; イワモト, ユウジ; ホンダ, サワオ; 岩本, 雄二; 本多, 沢雄

    2009-01-01

    The thermal shock resistance of α-alumina porous capillary, the support material for hydrogen-permselective microporous ceramic membrane was studied. To study the effect of porosity on the thermal shock resistance systematically, porous alumina with different porosities was fabricated, and the thermal shock resistance of the fabricated samples as well as the porous capillary was estimated by the infrared radiation heating method. The mechanical and thermal properties concerned to the thermal ...

  5. Mathematical modeling of sustainability of porous Al2O3 growth during two-stage anodization process

    Science.gov (United States)

    Aryslanova, Elizaveta M.; Alfimov, Anton V.; Chivilikhin, Sergey A.

    2015-06-01

    Currently, due to the development of nanotechnology and metamaterials, it has become important to obtain regular nanoporous structures with different parameters, such as porous anodic alumina films that are used for synthesis of various nanocomposites. In this work we consider the motion of the interfaces between electrolyte and alumina layers, and between alumina and aluminum layers. We also took into account the dynamics of moving boundaries and the change of small perturbations of these boundaries. Each area under Laplace's equation is solved for the potential of the electric field. The growth of porous alumina is described with the theory of small perturbations. Small perturbations of the interface are considered, which lead to small changes in potential and current in the boundaries. As a result of the developed model we obtained the minimum distance between centers of aluminum oxide pores in the beginning of anodizing process and the wavelength of porous structure irregularities.

  6. EFFECT OF LOW-ENERGY OXYGEN PLASMA TREATMENT ON PHOTOLUMINESCENCE OF CARBON-BEARING POROUS ALUMINA

    OpenAIRE

    Kovger, E.; Karpič, R.; Vrublesky, I.

    2015-01-01

    In this study the effect of low-energy oxygen plasma treatment on the photoluminescence properties of the carbon-bearing porous alumina obtained in 0.4 M aqueous solution of tartaric acid at constant current density of 150 and 700 A m–2 was investi-gated. It was also established that in as-anodized samples carbon content is increased from 2.98 to 3.18 (wt.) % with increasing anodizing current density. Increase in current density from 150 to 700 A m–2 results only in decrease in photoluminesce...

  7. Synthesis and Characterization of Nanoporous Alumina Films and their Application to Nanorod Array Fabrication

    Science.gov (United States)

    Abolhassani Monfared, Negar

    The purpose of this study is to synthesize and characterize the nanoporous structures that can be obtained by the anodization of thin film aluminum sputter deposited on a silicon wafer substrate. This study also investigated the application of nanoporous alumina to fabricate nanorod arrays by using preceramic polymers. Although there are many studies on the effect of anodizing conditions on anodized alumina, there are a few studies on anodizing of thin film aluminum. Anodized thin film of aluminum supported on silicon could have several applications that involve integrating the nanoporous structures into chemical and biological sensors and as templates for creating hierarchically complex nanostructures that are integrated with microelectronic circuits. In this study the different attributes of anodizing parameters in the synthesis of nanoporous structures on thin film aluminum compared to the results of studies on aluminum bulk is investigated. These differences can be due to attributes of the material, the resistance of the substrate and the reactions of substrate during anodizing. In this study the effects of different anodizing parameters and the contribution of each parameter were investigated using statistical approaches for quantification of pore sizes, their distributions and pore densities. This approach has never been previously used for studying the aluminum anodization. Until now, studies have always been based on average of the structure parameters with the hypothesis of homogeneity and uniformity of the structure which is not the case for anodization of thin film aluminum. To investigate the relative effect of each parameter, the Taguchi method and signal-to-noise calculation were applied. A new fabrication method for making nanorod arrays was introduced. In this method, nanoporous alumina was used as a casting mold for being filled by a preceramic polymer. KDT Ceraset polysilazane 20 (PSZ) and KDT Ceraset polyureasilazane (PUSZ) were two preceramic

  8. Study of metal pillar nanostructure formation with thin porous alumina template

    International Nuclear Information System (INIS)

    In the present paper, the nickel pillared nanostructure fabrication by electrochemical deposition of Ni into the pores of thin porous anodic alumina is considered. The main characteristics of these structures, obtained by scanning electron microscopy and atomic-force microscopy, are presented. Information on geometrical parameters of porous host and pillar nanostructure elements has been obtained. The influence of the barrier layer thinning at the pore bottom on nucleation and growth of the ordered metal nanopillars is discussed. The process of functional layer formation based on thin aluminum and Al2O3 films with incorporated nickel pillars is analyzed. This process may be used for fabrication of advanced high density magnetic memory devices. - Highlights: • Ni pillars were fabricated by electrochemical deposition into thin porous anodic alumina. • Impact of oxide barrier layer thinning at pore bottom on nucleation and growth of Ni pillars. • The process proposed is to be used for fabrication of high density magnetic memory devices

  9. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  10. Development and Characterization of Polymer-grafted Ceramic Membranes for Solvent Nanofiltration

    OpenAIRE

    Pinheiro de Melo, Ana Filipa

    2013-01-01

    The research described in this thesis focuses on the functionalization and pore size tuning of γ- and α-alumina membranes to be used for liquid separation. The research covers alumina grafted membranes with different silanes (alkyltrichlorosilanes and aminotrialkoxysilanes) and polymers like PDMS and polyimides. In addition, the application of these materials as membranes in solvent nanofiltration is described.

  11. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  12. Composition, structure and electrical properties of alumina barrier layers grown in fluoride-containing oxalic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)], E-mail: jagmin@ktl.mii.lt; Vrublevsky, I. [Department of Microelectricals, Belarusian State University of Informatics and Radioelectricals, 6 Brovka Street, Minsk 220013 (Belarus); Kuzmarskyte, J.; Jasulaitiene, V. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)

    2008-04-15

    The composition, structure and electrical properties of alumina barrier layers grown by anodic oxidation in F{sup -}-containing (FC) and F{sup -}-free (FF) oxalic acid solutions were studied using the re-anodizing/dissolution technique, Fourier-transformed infrared and X-ray photoelectron spectroscopy. These results confirmed formation in FC anodizing solutions of films structurally different from ones grown in FF oxalic acid baths. It was found that the barrier layer of FC alumina films is composed of two layers differing in the dissolution rate. These differences are related to the formation in the FC electrolyte of a barrier layer composed of a more microporous outer part and a thin, non-porous and non-scalloped inner part consisting of aluminum oxide and aluminum fluoride.

  13. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    Science.gov (United States)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  14. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    KAUST Repository

    Farhat, Mohamed

    2016-01-28

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  15. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    Science.gov (United States)

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  16. Dynamic Tensile Response of Structured Alumina-Al Composites

    Science.gov (United States)

    Atisivan, Raj; Bandyopadhyay, Amit; Gupta, Yogendra

    2001-06-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled and reproducible microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites will be discussed. Work supported by DOE.

  17. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    Energy Technology Data Exchange (ETDEWEB)

    Zaraska, L; Jaskula, M [Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Sulka, G D, E-mail: sulka@chemia.uj.edu.pl

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H{sub 3}PO{sub 4} solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  18. Improved stability of free-standing lipid bilayers based on nanoporous alumina films

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Taira, Tasuku; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2010-05-01

    In this study, we propose a method for improving the stability of free-standing bilayer lipid membranes (BLMs) by preparing BLMs across nanoporous alumina films. The use of porous alumina reduced individual membrane size to improve the BLM stability. The BLMs were stable under an applied voltage of ±1 V. The lifetime of the BLMs was 16-30 h with and without incorporated gramicidin channels. Electric properties of the BLMs as a platform for channel-current recordings are also discussed. Since the total area of the BLMs is still large to facilitate protein incorporation, our approach is useful for designing highly sensitive biosensors based on channel proteins.

  19. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  20. Report on the source of the electrochemical impedance on cermet inert anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  1. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m-1 K-1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  2. Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor

    International Nuclear Information System (INIS)

    The EMF and voltage-current characteristics for a galvanic cell with the configuration Na vapor (P1)/sodium beta-alumina/Na vapor (P2) were studied. It was verified that the EMF followed the Nernst relation over a wide pressure range. For example, when P1 = 2 x 10-2 mm Hg and beta-alumina temperature = 3400C, the measured EMF agreed with the calculated value in P2 range from 10-5 to 10-2 mm Hg. At lower pressure range, the measured EMF showed a negative deviation. Coexisting argon gas did not influence the cell EMF characteristic. In an atmosphere containing oxygen, the measured EMF was very high at first. Then it decreased and finally approached a value which agreed with the Nernst equation after several hours. At low beta-alumina temperatures, current saturation was observed in the voltage versus current relation with the anode on the P2 side. Although the sodium pressure could be determined from saturating current measurement, the measurable pressure range was narrower than that for EMF measurement. At high beta-alumina temperature, current saturation was not clear. Values of 6 x 10-6 (Ω cm)-1 for the electron conductivity and 6 x 10-10 (Ω cm)-1 for the hole conductivity at 3400C were obtained for beta-alumina from the voltage-current characteristics at low sodium pressure. (Auth.)

  3. MECHANICAL BEHAVIOUR OF ALUMINA-ZIRCONIA COMPOSITE BY SLURRY METHOD

    OpenAIRE

    JYOTI PRAKASH; DEVENDRA KUMAR; KALYANI MOHANTA

    2011-01-01

    Alumina has got some excellent properties like chemical inertness, thermal and mechanical strength against hazardous environment. Alumina is a good ceramic material which is being used for structuralapplications. To enhance the toughness and strength of the body some Zirconia is also used with it. The use of Zirconia in alumina is known as toughening of alumina. One difficulty arises, when alumina and alumina toughened composite are sintered , because the low sinterability of Alumina-Zirconia...

  4. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  5. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  6. Processing and Performance of Alumina Fiber Reinforced Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    P.Y.Lee; T.Uchijima; T.Yano

    2003-01-01

    Processing of alumina fiber-reinforced alumina matrix composites by hot-pressing was described. The mechanical properties of the composites fabricated by different sintering conditions including temperature and pressure have been investigated. The results indicated that the higher sintering temperature and pressure corresponded to the higher bulk density and higher maximum strength of the composite, whereas the pseudo-ductility of the composite was lower. The preliminary results of the composite with monazite-coated fibers showed that maximum strength could be improved up to 35% compared with the noncoated fiber composite in the same sintering condition. Moreover, the fracture behavior of the composite changed from completely brittle fracture to non-brittle fracture under the suitable sintering conditions. SEM observation of the fracture surface indicated that the coating worked as a protective barrier and avoided sintering of the fibers together even at high temperature and pressure during densification process.

  7. Fe-30Ni-5NiO alloy as inert anode for low-temperature aluminum electrolysis

    Science.gov (United States)

    Zhu, Yuping; He, Yedong; Wang, Deren

    2011-05-01

    Fe-30Ni-5NiO alloy anodes were prepared by a spark plasma sintering process for aluminum electrolysis. NiO nano-particles with the size of ˜20 nm were dispersed in the anodes. The oxidation behaviors of the anodes were investigated at 800°C and 850°C, respectively. The electrolysis corrosion behaviors were tested in a cryolite-alumina electrolyte at a low temperature of 800°C with anodic current densities of ˜0.5 A/cm2. The results indicated that the oxidation kinetic of the anodes followed a parabolic law. A continuous Fe2O3 film selectively formed on the surface of the anode during the electrolysis process. A semi-continuous Al2O3 layer was observed at oxide film/alloy interface, probably caused by an in-situ chemical dissolution process.

  8. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404. ISSN 0376-7388 Grant ostatní: NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support: RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.056, year: 2014

  9. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte membrane supported by a nickel-based anode of unique architecture

    Science.gov (United States)

    Sun, Haibin; Chen, Yu; Chen, Fanglin; Zhang, Yujun; Liu, Meilin

    2016-01-01

    Solid oxide fuel cells (SOFCs) based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte membrane supported by a nickel-based anode often suffers from undesirable reaction/diffusion between the Ni anode and the LSGM during high-temperature co-firing. In this study, a high performance intermediate-temperature SOFC is fabricated by depositing thin LSGM electrolyte membranes on a LSGM backbone of unique architecture coated with nano-sized Ni and Gd0.1Ce0.9O2-δ (GDC) particles via a combination of freeze-drying tape-casting, slurry drop-coating, and solution infiltration. The thickness of the dense LSGM electrolyte membranes is ∼30 μm while the undesirable reaction/diffusion between Ni and LSGM are effectively hindered because of the relatively low firing temperature, as confirmed by XRD analysis. Single cells show peak power densities of 1.61 W cm-2 at 700 °C and 0.52 W cm-2 at 600 °C using 3 vol% humidified H2 as fuel and ambient air as oxidant. The cell performance is very stable for 115 h at a constant current density of 0.303 A cm-2 at 600 °C.

  10. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; P G Pal; S Mukherjee; B N Samaddar

    2009-04-01

    Study of alumina–magnesia binary phase diagram reveals that around 40–50 wt% alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that the exsolution of alumina makes some interlocking structures in between alumina and spinel phases. In the present investigation, refractory grade calcined alumina and spinel powder were used to make different batch compositions. Green pellets, formed at a pressure of 1550 kg cm-2 were fired at different temperatures of 1500°, 1550° and 1600°C for 2 h soaking time. Bulk density, percent apparent porosity, firing shrinkage etc were measured at each temperature. Sintering results were analysed to understand the mechanism of spinel–alumina interactions. SEM study of present samples does not reveal the distinct precipitation of needle shaped -alumina from spinel, but has some effect on densification process of spinel–alumina composites. Microstructural differences between present and previous work suggest an ample scope of further work in spinel–alumina composites.

  11. Application of anodizing and CAR processes for manufacturing Al/Al2O3 composite

    International Nuclear Information System (INIS)

    In this study, an anodizing process with different conditions was used to grow four different thicknesses of alumina on the surface of aluminum strips. Then, a continual annealing and roll-bonding (CAR) process was done to produce an aluminum matrix composite dispersed with four different volume fractions of alumina particles. The results demonstrate that when the number of cycles was increased, the distribution of alumina particles in the aluminum matrix improved, the particles became finer, and the tensile strength of the composites increased. The microstructure of the fabricated composites after 8 CAR cycles also showed an excellent distribution of alumina particles in the matrix. Moreover, it was observed that increasing alumina quantities through longer anodizing times enhanced the tensile strength of the composite to become 1.65 times higher than that of the monolithic aluminum produced by the same method, while negligible reductions were observed in the elongation value. Fracture surfaces after tensile tests were observed by scanning electron microscopy (SEM) to investigate the failure mode. Observations reveal that the failure mode in both CAR-processed composites and monolithic aluminum was the typical ductile fracture showing deep equiaxed dimples.

  12. Formation of anodic aluminum oxide with serrated nanochannels.

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition. PMID:20617804

  13. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (Rp) was detected for the samples anodized in 20% phosphoric acid

  14. Synthesis of zirconia toughened alumina

    International Nuclear Information System (INIS)

    This paper deals with the synthesis of zirconia toughened alumina (ZTA) and evaluation of its mechanical properties. ZTA ceramics were prepared by partial chemical route. High purity alumina (particle size 0.48 μm) was coated with yttria stabilised zirconia through solution techniques. Small amounts of dopants such as MgO, MnO and TiO2 were added to ZTA as densification aids. These powders were calcined at 650 deg C for 1 hour, followed by wet ball milling, compaction, sintering at 1600 deg C for 2.5 hour. Sintered density values upto 90% of theoretical density of ZTA were achieved. Hardness values upto 1800 VPN and modulus of rupture values upto 180 MPa were obtained. (author)

  15. Controllable fabrication of porous alumina templates for nanostructures synthesis

    International Nuclear Information System (INIS)

    Porous alumina templates (AAO) has attracted significant interest due to the fact that they are readily fabricated through a simple procedure and are extremely popular templates in nanoscience studies. In this paper, the effects of different pore-widening treatments on the pore quality of the AAO templates were investigated. Results show that, through a highly controllable chemical pore-widening process at low temperature, different pore dimensions and diameters of the AAO templates can be easily achieved in a nanometer-scale way without changing the interpore distance. Combining with anodization voltage control, AAO templates with desired size distribution can be obtained, which will be extremely useful in template technology and masks for lithographic application. Also, silver nanorods/wires of different dimensions have been fabricated from above AAO templates after pore diameter adjustments. Such nanostructure materials hold high potential for electronics, optics, mechanics and sensing technology.

  16. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  17. YBCO nanowires grown by the alumina template method

    International Nuclear Information System (INIS)

    YBa2Cu3Ox (YBCO) nanowires are grown by the anodized alumina template method, starting from pre-sintered YBCO powder. As templates, we have employed commercially available alumina templates with pore diameters of 30 nm and 100 nm, and an overall thickness of 50 μm. An oxygen annealing step is required to obtain superconducting nanowires. Superconductivity with a transition temperature of 88 K is confirmed by means of magnetic susceptibility measurements. The resulting nanowires are analyzed in detail employing electron microscopy and atomic force microscopy. The separation of the nanowires of the templates is not yet established, but individual nanowires of up to 10 μm length could be separated from the template. In several cases, the template pores are not completely filled by the superconducting material, which implies that the observed length is similar to what could be expected from regular grain growth. Resistance measurements using cut pieces of the filled templates were carried out as a function of temperature. These pieces were covered with Au films on top and bottom in order to provide the electric contacts. The measurements confirmed the magnetically determined critical temperatures.

  18. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  19. NEW SYNTHETIC METHOD AND CHARACTERIZATION OF CERAMIC FILMS PREPARED BY ANODIC OXIDATION OF ALUMINUM UNDER SPARKING DISCHARGE

    OpenAIRE

    Yamada, M.; Mita, I.

    1986-01-01

    A new synthetic method of ceramic films by anodic oxidation of aluminium was developed. Most of the crystals in the films are composed of eta or alpha-alumina. These ceramic films can incorporate a lot of metals by electrolytic methods.

  20. Synthesis of high porosity, monolithic alumina aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  1. Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements.

    Science.gov (United States)

    Pace, Maria Lucia; Telesca, Antonio; Marroccoli, Milena; Valenti, Gian Lorenzo

    2011-07-15

    Calcium sulfoaluminate (CSA) cements show some desirable environmentally friendly features that include the possibility of using several industrial byproducts as raw materials in their manufacturing process. Alumina powder, from the secondary aluminum manufacture, and anodization mud, from the production process of anodized aluminum, have proved to be suitable as partial or total substitutes for an expensive natural material like bauxite. CSA clinker generating raw mixtures, containing limestone, natural gypsum, bauxite, and/or one of the alumina-rich byproducts, were heated 2 h in a laboratory electric oven at temperatures ranging from 1150 to 1300 °C. Conversion of reactants into 4CaO·3Al(2)O(3)·SO(3) (the key component of CSA cements), evaluated using X-ray diffraction (XRD) analysis, increased with an increase of both burning temperature and byproduct concentration. When examined through differential thermogravimetric and XRD analyses, a synthetic CSA clinker (made from the raw mixture incorporating alumina powder as a total replacement of bauxite) mixed with 20% gypsum showed a hydration behavior almost similar to that of an industrial CSA cement containing the same amount of gypsum. PMID:21707122

  2. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  3. Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes

    International Nuclear Information System (INIS)

    Research highlights: → The Rotated Cube was the major texture component for most specimens. → The intensity of texture components was weak except the Rotated Cube component. → The texture intensity of composite with low alumina particles was not weak. → Alumina particles and also size and quantity of them are very effective on texture. - Abstract: Anodizing and accumulative roll bonding (ARB) processes were used as a new technique for manufacturing aluminum/alumina composites including various Al2O3 quantities. Textural evolution during ARB process of composites was evaluated using X-ray diffraction (XRD). The effective parameters in texture evolution were the number of cycles (3, 5, 7 and 8 cycles) and alumina quantity (0.48, 1.13, 2.40 and 3.55 vol.%). The texture evolution demonstrated that the Rotated Cube was a major texture component for all specimens except for the produced composite containing 0.48 vol.% alumina after eight cycles. For subsequent composites, the dominant components were Copper and Dillamore. Also, for almost all specimens (except for the composite with 0.48 vol.% alumina), the intensity of the texture components (except for Rotated Cube) was very weak. All these results are related to the presence of the second phase particles and also size and quantity of them.

  4. Influence of Alumina Addition on the Optical Property of Zirconia/Alumina Composite Dental Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIAO Yunmao; LI Wei; WAN Qianbing; ZHAO Yongqi

    2011-01-01

    The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated.The relative sintered densities,transmittances,color and the microstructure of the composite ceramics were studied.The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition.The lightness increased obviously but the chroma change was small.Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance,while the transmittance and the lightness of slight addition changed significantly.The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.

  5. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    OpenAIRE

    M. Szutkowska

    2012-01-01

    Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N) has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method) of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composit...

  6. Magnetic properties of iron films on anodized aluminum underlayer

    International Nuclear Information System (INIS)

    A one-step anodization process was used to prepare the anodic alumina (AA) film on glass. Using the AA as an inserted underlayer, iron films with thickness of tN in the range of 10 ∼ 35 nm were deposited by argon ion sputtering. The iron film deposited on AA underlayer exhibited different magnetic behaviors from the iron film deposited on glass or on aluminum underlayer. The perpendicular coercivity of film deposited on AA underlayer reached a maximal value of about 1 kOe at tN = 30 nm. We believe that the improvement of magnetic properties came from the modulation of the morphology of Fe film by the porous structure of AA underlayer.

  7. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al2O3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  8. Oxygen-producing inert anodes for SOM process

    Science.gov (United States)

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  9. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    International Nuclear Information System (INIS)

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  10. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    Energy Technology Data Exchange (ETDEWEB)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato, E-mail: sherif.elsafty@nims.go.jp, E-mail: sherif@aoni.waseda.jp [National Institute for Materials Science, Exploratory Materials Research Laboratory for Energy and Environment, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan)

    2010-09-17

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of {<=} 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  11. Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina

    Institute of Scientific and Technical Information of China (English)

    Jiadao Wang; Ang Li; Haosheng Chen; Darong Chen

    2011-01-01

    The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hierarchical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The formation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved.

  12. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    Science.gov (United States)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  13. Double anodization experiments in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M.; Fernandez, M.; Gomez-Aleixandre, C.; Martinez-Duart, J.M.; Montero, I.

    1985-10-01

    Based on our previous model of anodization, a new formula is given for the relation between the breakdown voltage V /SUB B/ during the anodic oxidation of tantalum and the anodization parameters. The formula predicts the well known diminution of V /SUB B/ with the logarithm of the electrolyte concentration. The model also explains the experimentally-observed fact that V /SUB B/ is solely determined by the latter electrolyte in double anodization experiments.

  14. Characterization and application of electrospun alumina nanofibers

    Science.gov (United States)

    2014-01-01

    Alumina nanofibers were prepared by a technique that combined the sol–gel and electrospinning methods. The solution to be electrospun was prepared by mixing aluminum isopropoxide (AIP) in ethanol, which was then refluxed in the presence of an acid catalyst and polyvinylpyrolidone (PVP) in ethanol. The characterization results showed that alumina nanofibers with diameters in the range of 102 to 378 nm were successfully prepared. On the basis of the results of the XRD and FT-IR, the alumina nanofibers calcined at 1,100°C were identified as comprising the α-alumina phase, and a series of phase transitions such as boehmite → γ-alumina → α-alumina were observed from 500°C to 1,200°C. The pore size of the obtained γ-alumina nanofibers is approximately 8 nm, and it means that they are mesoporous materials. The kinetic study demonstrated that MO adsorption on alumina nanofibers can be seen that the pseudo-second-order kinetic model fits better than the pseudo-first-order kinetic model. PMID:24467944

  15. MECHANISMS OF INITIAL SINTERING OF A FINE ALUMINA POWDER

    OpenAIRE

    S. Raman; Doremus, R.; R. German

    1986-01-01

    The mechanism of initial sintering of alumina was explored by electron microscopy and X-ray diffraction. The transformation of gamma to alpha alumina influenced sintering behavior. This transformation appears to involve plastic deformation in the alumina. Sintering of fine alpha alumina powder directly occurs with an activation energy close to that of grain boundary diffusion of oxygen.

  16. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    Science.gov (United States)

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  17. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  18. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  19. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  20. Alumina forming iron base superalloy

    Science.gov (United States)

    Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.

    2014-08-26

    An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.

  1. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  2. Alumina Thin Film Growth: Experiments and Modeling

    OpenAIRE

    Wallin, Erik

    2007-01-01

    The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al2O3, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformati...

  3. Characterization and application of electrospun alumina nanofibers

    OpenAIRE

    Kim, Jeon-Hee; Yoo, Seung-Joon; Kwak, Dong-Heui; Jung, Heung-Joe; KIM, Tae-Young; Park, Kyung-Hee; Lee, Jae-Wook

    2014-01-01

    Alumina nanofibers were prepared by a technique that combined the sol–gel and electrospinning methods. The solution to be electrospun was prepared by mixing aluminum isopropoxide (AIP) in ethanol, which was then refluxed in the presence of an acid catalyst and polyvinylpyrolidone (PVP) in ethanol. The characterization results showed that alumina nanofibers with diameters in the range of 102 to 378 nm were successfully prepared. On the basis of the results of the XRD and FT-IR, the alumina nan...

  4. The effect of ruthenium crossover in polymer electrolyte fuel cells operating with platinum-ruthenium anode

    OpenAIRE

    Anna Trendewicz

    2011-01-01

    Proton exchange membrane fuel cells with PtRu anode catalyst and Pt cathode suffer from severe performance degradation due to ruthenium dissolution from the anode, migration through Nafion® membrane, and deposition on the surface of cathode catalyst where it inhibits ORR. A detailed analysis of ruthenium crossover mechanism for a 5 cm2 active area direct methanol fuel cell was performed to quantify the contamination rate and degree starting from contamination during manufacturing process, thr...

  5. Application of anodizing and CAR processes for manufacturing Al/Al{sub 2}O{sub 3} composite

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-06-25

    In this study, an anodizing process with different conditions was used to grow four different thicknesses of alumina on the surface of aluminum strips. Then, a continual annealing and roll-bonding (CAR) process was done to produce an aluminum matrix composite dispersed with four different volume fractions of alumina particles. The results demonstrate that when the number of cycles was increased, the distribution of alumina particles in the aluminum matrix improved, the particles became finer, and the tensile strength of the composites increased. The microstructure of the fabricated composites after 8 CAR cycles also showed an excellent distribution of alumina particles in the matrix. Moreover, it was observed that increasing alumina quantities through longer anodizing times enhanced the tensile strength of the composite to become 1.65 times higher than that of the monolithic aluminum produced by the same method, while negligible reductions were observed in the elongation value. Fracture surfaces after tensile tests were observed by scanning electron microscopy (SEM) to investigate the failure mode. Observations reveal that the failure mode in both CAR-processed composites and monolithic aluminum was the typical ductile fracture showing deep equiaxed dimples.

  6. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  7. Recent Development of High Alumina Refractories in China

    Institute of Scientific and Technical Information of China (English)

    WANGJin-xiang; LIUJie-hua

    1994-01-01

    The paper reviews the achievements which have been attained recently in China in high alumina refractories raw materials and their products,including 1) homogenization ,urification and electric fusion of high alumina raw materials and synthesizing of spinel from natural raw materials;2) processing principle and characteristics and microstructural features of creep-resistance high alu-mina brick ,alumina-magnesia-carbon brick and thermal shock resistanced high alumina brikc and their application in practice.

  8. Manufacture and optimization of tubular ceramic membrane supports / Hertzog Bissett

    OpenAIRE

    Bissett, Hertzog

    2005-01-01

    Inorganic membranes can be considered an alternative to organic membranes, due to their thermal, chemical and mechanical stability under harsh conditions. Ceramic membranes are used as support structures to increase permeability through composite inorganic membranes in separation processes. Tubular α-alumina membrane supports with smooth inner surfaces can be manufactured by means of the centrifugal casting technique. In this study, the effect of three different AKP powder size...

  9. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  10. Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

    Science.gov (United States)

    Bhattacharya, Jaydeep; Kisner, Alexandre; Offenhäusser, Andreas

    2011-01-01

    Summary Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to transfer the brittle nanoporous material. We demonstrate this technique by using the same microfluidic system for membrane fabrication and subsequent liposome fusion onto the nanoporous support structure. The resulting bilayer formation is monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers. PMID:21977420

  11. Burned Microporous Alumina-Graphite Brick

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the definition,classifica-tion,technical requirements,test methods,inspection rules,marking,packing,transportation and quality certificate of burned microporous alumina-graphite brick.

  12. Acoustic Emission and Damage Characteristics of Alumina

    Institute of Scientific and Technical Information of China (English)

    REN Hui-lan; NING Jian-guo; HE Jian-hua

    2009-01-01

    gy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.

  13. Loss tangent measurements on unirradiated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Goulding, R.H. [Oak Ridge National Lab., TN (United States)

    1996-04-01

    Unirradiated room temperature loss tangent for sapphire and several commercial grades of polycrystalline alumina are complied for frequencies between 10{sup 5} and 4x10{sup 11} Hz. Sapphire exhibits significantly lower values for the loss tangent at frequencies up to 10{sup 11} Hz. The loss tangents of 3 different grades of Wesgo alumina (AL300, AL995, AL998) and 2 different grades of Coors alumina (AD94, AD995) have typical values near {approx}10{sup -4} at a frequency of 10{sup 8} Hz. On the other hand, the loss tangent of Vitox alumina exhibits a large loss peak tan d{approx} 5x10{sup -3} at this frequency.

  14. Mesotubular-Structured Hybrid Membrane Nanocontainer for Periodical Monitoring, Separation, and Recovery of Cobalt Ions from Water.

    Science.gov (United States)

    El-Safty, Sherif A; Sakai, Masaru; Selim, Mahmoud M; Alhamid, Abdulaziz A

    2015-09-01

    Exposure to toxins can cause deleterious effects even at very low concentrations. We have developed an optical sensor, filter, and extractor (i.e., containerlike) in a nanoscale membrane (NSM) for the ultratrace sensing, separation, and recovery of Co(2+) ions from water. The design of the NSM is successfully controlled by dense decoration of a hydrophobic oil-hydrophilic receptor onto mesoscale tubular-structured silica nanochannels made of a hybrid anodic alumina membrane. The particular structure of the nanocontainer is ideal to control the multiple functions of the membrane, such as the optical detection/recognition, rejection/permeation, and recovery of Co(2+) species in a single step. A typical sensor, filter, and extractor assessment experiment was performed by using a benchtop contact time technique and a flow-through cell detector to allow for precise control of the optical detection and exclusive rejection of target ions and the permeation of nontarget metal ions in water. This nanocontainer membrane has great potential to meet the increasing needs of purification and separation of Co(2+) ions. PMID:26033713

  15. Reactivity of non-stoichiometric black alumina

    International Nuclear Information System (INIS)

    Oxides such as alumina, when divided or poorly crystallized, show enhanced physico-chemical properties with respect to those of non-divided crystals of the same solids. A stoichiometric difference may even be produced in the alumina, which brings about a new modification of its properties. However its characteristics of hydrogen chemisorption or of catalytic activity in ethylene hydrogenation do not appear to depend on the stoichiometric difference. (author)

  16. Point defects in alumina studied by thermoluminescence

    OpenAIRE

    Papin, Eric; Grosseau, Philippe; Guilhot, Bernard; Benabdesselam, Mourad; Iacconi, Philibert

    1997-01-01

    Alpha alumina powders have been produced by thermal treatment under controlled atmosphere of highly pure gamma alumina. The influence of the atmosphere and the addition of dopants (Mg2+, Cr3+, Th4+) were studied by thermoluminescence (TL). TL is a technique which gives information about point defects. It allowed to reveal the presence of oxygen and aluminium vacancies. The sintering of undoped powders prepared under different atmosphere was investigated by dilatometry. Powders prepared under ...

  17. Dissolution of alumina in stainless steelmaking slags

    Energy Technology Data Exchange (ETDEWEB)

    Divakar, M.; Lahiri, A.K. [Indian Inst. of Science, Bangalore (India). Dept. of Metallurgy; Goernerup, M. [Uddeholm Technology AB (Sweden)

    2001-02-01

    Dissolution of alumina in stainless steelmaking slags was studied by conducting laboratory scale experiments on typical slags in the temperature range 1823-1923 K. The mechanism of dissolution was studied under the actual steelmaking conditions where several phenomena such as simultaneous reduction of chromium, iron and vanadium oxides by carbon, in-situ gas generated due to the reduction, foam/emulsion formation occur. The kinetics of alumina dissolution are studied under the influence of the above mentioned phenomena. (orig.)

  18. Silicide characterization at alumina-niobium interfaces

    OpenAIRE

    McKeown, JT; Radmilovic, Velimir R; Gronsky, R.; Glaeser, AM

    2011-01-01

    Alumina–niobium interfaces formed by liquidfilm-assisted joining with copper/niobium/copper interlayers exhibited microstructures that depend on the nature of the alumina components. Characterization of these interfaces in the transmission electron microscope provided insight on the relationship between interfacial microstructure and fracture performance. Interfaces between sapphire and niobium and those between high-purity (99.9%) polycrystalline alumina and niobium were free of secondary ph...

  19. Alumina Recovery from Kaolin with Mineral Impurities

    Institute of Scientific and Technical Information of China (English)

    SI Peng; QIAO Xiuchen; YU Jianguo

    2012-01-01

    The alumina recovery from low grade kaolin (K-JS) treated through thermal and mechanical methods was investigated.High grade kaolin (K-SX) was used as comparison.The optimum calcination temperatures for K-JS and K-SX were both 600 ℃,which resulted in 89.34wt% of alumina extraction from K-JS and 83.37wt% from K-SX.With the increase in calcination temperature,the chemical reactivity of calcined K-JS and K-SX to acid decreased.Mechanical treatment was much more effective in increasing the alumina extraction from activated kaolin.Around 99wt% of alumina was extracted from K-JS ground for 10 hours and 95wt% of alumina was extracted from K-SX ground for 20 hours.The IR results showed that the substitute of Al for Si occurred in calcined K-SX,however,the impurities in K-JS decreased this substitute.More alumina could be extracted from low grade kaolin than that from high grade kaolin under identical thermal or mechanical conditions.

  20. Anodic bonded graphene

    OpenAIRE

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Marangolo, Massimiliano; Lacaze, Emmanuelle; Escoffier, Walter; Poumirol, Jean-Marie; Shukla, Abhay

    2010-01-01

    Abstract We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 ?m lateral dimensions. This me...

  1. Density multiplication of pores and their propagation in a thin layer of nanoporous alumina on silicon substrates

    Science.gov (United States)

    Gorisse, T.; Buttard, D.; Zelsmann, M.

    2015-07-01

    In this work, perfectly organized triangular arrays of vertical nanopores are formed in an alumina matrix by combining a pre-patterning technique with the natural ability of alumina to form a triangular unit cell. More precisely, we imprinted a triangular array of indents on a thin layer of aluminum deposited on silicon substrates using nano-imprint lithography. During the anodization process, we forced the growth of pores in and in-between the indents obtaining a larger number of pores in the final alumina array than the initial number of indents patterned on the aluminum. Adapting the anodization conditions, a density multiplication by three was successfully achieved with a very good surface organization. The experimental details of the process are described in this paper. We studied in details the inner organization of the pores and we identified differences in their propagation between oxalic and orthophosphoric acid. The former showed a good surface propagation until 1500 nm in depth. On the contrary, the latter showed a perturbation in the organization at 450 nm: at this depth, the induced pores stopped whereas the indented ones rearranged into two or three. A longer shift in the initiation of the induced pores seemed to causes this poor propagation. A systematic study was performed to investigate the effect of the anodization conditions on the pores' propagation. We demonstrate that the optimization of the orthophosphoric acid concentration and the applied voltage towards harder anodization conditions, i.e. to higher values, allows a better control of this self-assembling process and deeper order propagation until more than 1000 nm.

  2. Electrical Conductivity and Corrosion Resistance of ZnFe2O4-Based Materials Used as Inert Anode for Aluminum Electrolysis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    ZnFe2O4 and ZnFe2O4-based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni2O3 CuO,Cu, ZnO and CeO2 would increase the electrical conductivity, and the ZnFe2O4-based anodes with these additives were of good corrosion resistance. The current density on anode, the mole ratio of NaF/AlF3 (MR) and the content of alumina in the bath effect the anode corrosion rate in different way.

  3. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  4. Anode glow and double layer in DC magnetron anode plasma

    International Nuclear Information System (INIS)

    Sputtering magnetron is widely used device in research and industry alike. DC planar magnetron employs series of magnets to create magnetic field above the electrode surface which traps electrons in closed E-bar x B-bar drift. Similar device used in reversed polarity power was reported for use in various applications. In contrast to its normal counterpart there is no closed drift effect in there. This device has very limited understanding. We here investigate this device for its discharge properties. Our device is dominated by anode glow. The anode glow is expected to have the electron sheath which provides energy to electron to excite the neutrals. Where as many experimental studies have been reported for anode glow and anode double layer, many of them uses auxiliary anode in the discharge. Most of the cases anode double layer (fire ball/fire rod) is small structures very near to anode surface which in itself is required to be small. The DC planar magnetron biased in reverse polarity have glow only near anode. Measurements confirm it as anode glow and the presence of electrons sheath is proven. The double layer structure was observed and measured in two mutually perpendicular directions. The double layer shows sub MHz oscillation that is typical of the unstable anode double layer. The dimension of anode glow is relatively large and is primarily in magnetic field free region making it easy to probe. The potential structure still shows large cathode fall but surprisingly visible cathode glow is not present. The device operates very stable for pressure bellow 0.01 mbar. But it shows instabilities such as unstable anode double layer above said pressure. (author)

  5. Texture development in Al/Al{sub 2}O{sub 3} MMCs produced by anodizing and ARB processes

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Hoseini, Majid [Department of Mining, Metals and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2011-04-25

    Research highlights: {yields} The Rotated Cube was the major texture component for most specimens. {yields} The intensity of texture components was weak except the Rotated Cube component. {yields} The texture intensity of composite with low alumina particles was not weak. {yields} Alumina particles and also size and quantity of them are very effective on texture. - Abstract: Anodizing and accumulative roll bonding (ARB) processes were used as a new technique for manufacturing aluminum/alumina composites including various Al{sub 2}O{sub 3} quantities. Textural evolution during ARB process of composites was evaluated using X-ray diffraction (XRD). The effective parameters in texture evolution were the number of cycles (3, 5, 7 and 8 cycles) and alumina quantity (0.48, 1.13, 2.40 and 3.55 vol.%). The texture evolution demonstrated that the Rotated Cube was a major texture component for all specimens except for the produced composite containing 0.48 vol.% alumina after eight cycles. For subsequent composites, the dominant components were Copper and Dillamore. Also, for almost all specimens (except for the composite with 0.48 vol.% alumina), the intensity of the texture components (except for Rotated Cube) was very weak. All these results are related to the presence of the second phase particles and also size and quantity of them.

  6. Fabrication of the similar porous alumina silicon template for soft UV nanoimprint lithography

    International Nuclear Information System (INIS)

    High density honeycombed nanostructures of porous alumina template (PAT) have been widely used to the fabrication of various electronic, optoelectronic, magnetic, and energy storage devices. However, patterning structures at sub-100 nm feature size with large area and low cost is of great importance and hardness on which semiconductor manufacture technology depends. In this paper, soft UV nanoimprint lithography (SUNIL) by using PAT as the initial mold is studied in detail. The results reveal a significant incompatibility between these two candidates. The native nonflatness of the PAT surface is about 100 nm in the range of 2–5 μm. Resist detaches from the substrate because of the mold deformation in the nonflat SUNIL. A two-inch similar porous alumina silicon (Si) template with nanopore size of 50–100 nm is fabricated. I–t curve conducted anodization and subsequent inductive coupled plasma (ICP) dry etching are applied to ensure the uniformity of the fabricated template. The surface flatness of the similar porous alumina Si template is the same as the polished Si wafer, which perfectly matches NIL.

  7. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Directory of Open Access Journals (Sweden)

    Sonia C. Ferreira

    2014-12-01

    Full Text Available Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp produced by powder metallurgy (PM were anodized under voltage control in tartaric-sulfuric acid (TSA. In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050 anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

  8. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  9. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Science.gov (United States)

    Shayganpour, Amirreza; Rebaudi, Alberto; Cortella, Pierpaolo; Diaspro, Alberto

    2015-01-01

    Summary Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities. PMID:26665091

  10. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 800 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  11. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    Science.gov (United States)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  12. Photoelectrochemical cell with nondissolving anode

    Science.gov (United States)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  13. Surface selective membranes for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  14. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.;

    2009-01-01

    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposit...

  15. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    International Nuclear Information System (INIS)

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH4F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO2 anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO2 structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO2 nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO2 were investigated. • Al doping into nanoporous TiO2 retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation

  16. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  17. Alumina Inlay Failure in Cemented Polyethylene-backed Total Hip Arthroplasty

    OpenAIRE

    Iwakiri, Kentaro; Iwaki, Hiroyoshi; Minoda, Yukihide; Ohashi, Hirotsugu; Takaoka, Kunio

    2008-01-01

    Alumina-on-alumina bearings for THA have markedly improved in mechanical properties through advances in technology; however, alumina fracture is still a concern. We retrospectively reviewed 77 patients (82 hips) with cemented alumina-on-alumina THAs to identify factors relating to alumina failure. The mean age of the patients at surgery was 63 years. The prostheses had a cemented polyethylene-backed acetabular component with an alumina inlay and a 28-mm alumina head. Revision surgery was perf...

  18. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  19. Superplastic properties of alumina-zirconia composites

    International Nuclear Information System (INIS)

    Superplastic deformation of two alumina-zirconia composites batches: the first with tetragonal ZrO2 stabilised with 3 mol.% Y2O3 and the second with ZrO2 stabilised with 2 mol.% Y2O3 (containing alumina volume fraction 10 - 86%) was studied. Grain sizes of two constituents were about 0.18-0.37 μm in the batch 1 and 0.36-0.14 μm in the batch 2. The composites were studied as a function of stress (20-130 MPa) and temperature (1451-1623 K) in compressive and bending tests. The strain rate was analysed in function of alumina volume fraction. It appeared that, the bigger than predicted by the rule of mixture strain rate decrease in function of alumina volume fraction is caused by improved creep resistance due to zirconium and yttrium ions doping of alumina grains. In zirconia grains modified interface-controlled Coble creep and simultaneously the intragranular dislocations motions contribute to the accommodation of grain boundary sliding (which is now thought to be main mechanism of superplastic behaviour). (author)

  20. Anodisation with dynamic current control for tailored alumina coatings

    Science.gov (United States)

    Sieber, M.; Althöfer, I.; Höhlich, D.; Scharf, I.; Böttger, D.; Böttger, S.; Böttger, E.; Lampke, T.

    2016-03-01

    The anodic oxidation process is commonly used to refine the surface of aluminium and its alloys. Compared to the substrate, the alumina layers produced by anodising exhibit an increased hardness and chemical resistance. Thus, the corrosion and wear resistance are generally improved. The coatings are also electrically isolating and may serve decorative purposes. Applying a time-variant, dynamic electrical process control by pulse-current or current-steps is a promising approach to improve the coating properties, which is partially deployed in an industrial scale. In the present work, the influence of dynamic electrical process control on the coating properties is examined by means of a design of experiments (DOE). The effects of various electrolyte compositions and temperatures as well as processing time are considered with regard to coating thickness, hardness, wear resistance and the electrical energy consumption during the formation of the coatings. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  1. Anodic bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Shukla, Abhay [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7590, Institut de Mineralogie et de Physique des Milieux Condenses, 140 rue de Lourmel, Paris, F-75015 France (France); Marangolo, Massimiliano; Lacaze, Emanuelle; Gohler, Roger [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7588, Institut des Nanosciences de Paris, 140 rue de Lourmel, Paris, F-75015 France (France); Escoffier, Walter; Poumirol, Jean-Marie, E-mail: abhay.shukla@upmc.f [Laboratoire National des Champs Magnetiques Intenses, INSA UPS CNRS, UPR 3228, Universite de Toulouse, 143 avenue de Rangueil, 31400 Toulouse (France)

    2010-09-22

    We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 {mu}m lateral dimensions. This method is also extensible to other layered materials. We discuss some detailed aspects of the fabrication and results from Raman spectroscopy, local probe microscopy and transport measurements on these samples.

  2. Electro-oxidation of some non-steroidal anti-inflammatory drugs on an alumina nanoparticle-modified glassy carbon electrode

    OpenAIRE

    TABESHNIA, Mahla; HELI, Hossein; Jabbari, Ali

    2010-01-01

    The electro-oxidation of mefenamic acid, diclofenac, and indomethacin on glassy carbon and alumina nanoparticle-modified glassy carbon electrodes in a phosphate buffer solution at physiological pH was studied. The techniques of cyclic voltammetry, chronoamperometry, impedance spectroscopy, and steady state polarization measurements were applied. The drugs were irreversibly oxidized on bath electrodes via an anodic peak and the process was controlled by diffusion in the bulk of soluti...

  3. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  4. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  5. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    International Nuclear Information System (INIS)

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  6. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Science.gov (United States)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  7. Dynamical Mechanical Properties for AD90 Alumina

    Institute of Scientific and Technical Information of China (English)

    REN Hui-lan; NING Jian-guo; LI Ping

    2007-01-01

    The dynamic response of polycrystalline alumina was investigated in the pressure range of 0 -13 GPa by planar impact experiments.Velocity interferometer system for any reflector(VISAR) was used to obtain free surface velocity profile and determine the Hugoniot elastic limit,and manganin gauges were employed to obtain the stress-time histories and determine Hugoniot curve.Both the free surface particle velocity profiles and Hugoniot curves indicate the dispersion of the "plastic" wave for alumina.With the measured stress histories,the complete histories of strain,particle velocity,specific volume and specific internal energy are gained by using path line principle of Lagrange analysis.The dynamic mechanical behaviors for alumina under impact loading are analyzed,such as nonlinear characteristic,strain rate dependence,dispersion and declination of shock wave in the material.

  8. Synthesis and characterization of alumina precursor and alumina to be used as nano composite; Sintese e caracterizacao de precursores de alumina e alumina para uso em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.P., E-mail: malu@sorocaba.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Santos, H. Souza [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Santos, P. Souza [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica

    2009-07-01

    With the evolution of nanomaterials technology, mainly in the 90s, it was possible to observe produced composites with alumina matrix and nanomaterial as reinforcing materials. It results in a significant improvement of mechanical proprieties of these composites. Thenceforth the study of synthesis and characterization of nanostructured materials has attracted great scientific interest. In this perspective, the aim of this work is to present an experimental procedure to obtain nordstrandite (aluminum hydroxide) with nanometric dimensions. Nordstrandite synthesis, obtained by the reaction of slightly amalgamated aluminum foil with aqueous ethylene glycol, which allows the control of the size of crystal produced. This control could be confirmed by X-Ray Diffraction and Electron Microscopy. Thermal transformation study is also presented. This study allowed the identification of transition aluminas that have potential to produce nanometric aluminas. (author)

  9. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  10. Studies on Hydrogen Selective Silica Membranes and the Catalytic Reforming of CH4 with CO2 in a Membrane Reactor

    OpenAIRE

    Lee, Doohwan

    2003-01-01

    In this work the synthesis, characterization, and gas transport properties of hydrogen selective silica membranes were studied along with the catalytic reforming of CH4 with CO2 (CH4 + CO z 2 CO + 2 H2) in a hydrogen separation membrane reactor. The silica membranes were prepared by chemical vapor deposition (CVD) of a thin SiO2 layer on porous supports (Vycor glass and alumina) using thermal decomposition of tetraethylorthosilicate (TEOS) in an inert atmosphere. These membranes displayed h...

  11. Screened Anode N2 Laser

    OpenAIRE

    Sabry, M. Montaser Foad

    1985-01-01

    An experimental study of the effect of screening the discharge channel on the output energy is presented. It has been found that a screened anode nitrogen laser generates higher output energy than that of a screened cathode, and also higher than that when both cathode and anode are unshielded at higher pressures.

  12. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  13. 超薄 AAO 模板法辅助生长高密度有序金纳米点阵列%Fabrication of High-Density and Ordered Au Nanodot Arrays by Ultra-Thin Anodic Aluminum Oxide (AAO) Membranes

    Institute of Scientific and Technical Information of China (English)

    杨震; 张璋; 黄康荣; 周青伟; 刘利伟

    2013-01-01

    在高真空状态下采用孔径为40 nm的超薄阳极氧化铝( AAO)模板作为掩膜进行金的热蒸镀,制备了平均粒径为35.5 nm、填充密度为1.45×1010 cm-2的金纳米点阵列.探索了高密度有序纳米点阵列的制备工艺.通过扫描电子显微镜(SEM)和原子力显微镜(AFM)对金纳米点阵列进行表面形貌表征,证明超薄AAO模板法明显改善了金纳米点阵列分布的尺寸均匀度和有序度.%High-density Au nanodot arrays have attracted a lot of interests because of their potential applications in catalyst and biosensor .This article focused on the research of the manufacture of high-density and well-ordered Au nanodot arrays with size of 40 nm ultra-thin Anodic Aluminum Oxide ( AAO) membrane ( the result of our experi-mental exploration ) being the mask .Well-ordered Au nanodot arrays have fabricated by high-vacuum Au thermal e-vaporation with the help of AAO masks bonded on the desired substrates .The diameters of Au nanodots have been highly controlled with 35.5 nm, the packing-density could achieve to as high as 1.45 ×1010 cm-2 .The morphology of the Au nanodot arrays has been investigated by the SEM and AFM .The SEM images confirmed that the uniformi-ty of the size distribution and structural ordering of Au nanodot arrays had been improved by the two -step anodiza-tion of AAO.

  14. A Novel Processing Route for Ni-doped Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    JING Mao-xiang; SHEN Xiang-qian; ZHOU Jian-xin; LI Dong-hong; LI Wang-xing

    2006-01-01

    Alumina-based composites containing 0-15wt% Ni metallic phase were produced by hot press-sintering Ni-coated alumina powders. The Ni-coated alumina powders were prepared by the aqueous heterogeneous precipitation of alumina micro-powders and nickel sulfate salt followed by reduction process. The microstructural features and dispersion of Ni phase in Ni-coated alumina powders and the subsequent alumina-Ni cermets were investigated using scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM). The relative density of the hot press-sintered composites was measured with the Archimedes' method while the fracture strength and the fracture toughness were defined with the three-point bending method and the micro-indentation fracture method. In the formation of alumina-Ni cermets from sintered Ni-coated alumina powders, Ni phase to some extent limits the densification rate and stifles the coarsening and growing process of alumina grains. The Ni phase is found to be located at the interfaces and the triple-joint junctions of alumina grains which results into alteration of the fracture mode of alumina and its increased fracture strength and fracture toughness if compared with monolithic alumina.

  15. Tribological properties of nanoscale alumina-zirconia composites

    NARCIS (Netherlands)

    Kerkwijk, B.; Winnubst, A.J.A.; Verweij, H.; Mulder, E.J.; Metselaar, H.S.C.; Schipper, D.J.

    1999-01-01

    The tribological properties of zirconia (Y-TZP), alumina and their composites, alumina dispersed in zirconia (ADZ) and zirconia-toughened alumina (ZTA), were investigated. These ceramics are made by colloidal processing methods such that well-defined, homogeneous microstructures with submicron grain

  16. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  17. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified alumina... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this...

  18. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    CERN Document Server

    Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2008-01-01

    PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.

  19. Study of the molybdenum retention in alumina; Estudio de la retencion de molibdeno en alumina

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Radioquimica y Quimica de las Radiaciones

    2002-07-01

    The Argentine National Atomic Energy Commission routinely produces {sup 99} Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  20. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  1. Hybrid intelligent PID control design for PEMFC anode system

    Institute of Scientific and Technical Information of China (English)

    Rui-min WANG; Ying-ying ZHANG; Guang-yi CAO

    2008-01-01

    Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must he maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.

  2. Hierarchical decoration of anodic TiO2 nanorods for enhanced photocatalytic degradation properties

    International Nuclear Information System (INIS)

    Highlights: • We synthesize arrays of aligned TiO2 nanorods by anodization of Ti covered with an Al layer. • The incorporation of Al into the TiO2 nanorods inhibits crystallization at temperatures as high as 550 °C. • The photocatalytic degradation of Acid Orange 7 dye can be strongly enhanced after applying a TiO2 nanoparticle coating. • The anatase structure of the coating and the enhanced light absorption volume results in up to a 12x enhancement in performance. - Abstract: In the present work vertically aligned TiO2 nanorods were fabricated by anodization of Al/Ti dual layer structures. Anodization of Al leads to the formation of a porous alumina layer which is used as a template for the growth of TiO2 nanorods. We have studied the characteristics of these nanorods after annealing by high resolution TEM, showing a core–shell structure along the length of the nanorods formed from the expansion of the TiO2 nanorod into the alumina template during growth. Modification of the nanorods by spin coating of a solution of titanium isopropoxide (TIPO) in isopropanol yields enhanced photocatalytic activity up to 12 times due to the increase in surface area, light absorption volume, and the creation of a crystalline coating with an anatase-phase

  3. Selective metallization of alumina by laser

    NARCIS (Netherlands)

    Shrivastva, P.B.; Boose, C.A.; Kolster, B.H.; Harteveld, C.; Meinders, B.

    1991-01-01

    Nickel has been selectively deposited on an alumina substrate without any pretreatment from a flow of a nickel acetate solution using the focused beam of an excimer laser. Nickel spots as well as nickel lines were drawn and subsequently plated with an electroless Ni-B coating. Excellent adhesion of

  4. Adsorption of Nitrogen on Organized Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Veselá, Lenka; Rathouský, Jiří; Zukal, Arnošt

    Amsterdam : Elsevier, 2002 - (Sayari, A.; Jaroniec, M.), s. 429-436 - ( Studies in Surface Science and Catalysis.. 141). [International Symposium on Nanoporous Materials /3./. Ottawa (CA), 12.06.2002-15.06.2002] R&D Projects: GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : alumina * nitrogen * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry

  5. Method of making nanocrystalline alpha alumina

    Science.gov (United States)

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  6. Mechanical properties of zirconia-toughened alumina

    International Nuclear Information System (INIS)

    Bend samples of four compositions of zirconia-toughened alumina were heat treated at 10000C for 100 and 500 H and tested for strength and fracture toughness at room temperature. These results are compared with as-received properties, as well as stress rupture and stepped-temperature stress rupture data

  7. Study of pressing effects and variation in Pt charge in the anode on the performance of membrane electrode assemblies; Estudio de los efectos de prensado y variacion de la carga de Pt en el anodo en el rendimiento de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Albarran S, Irma Lorena; Flores Hernandez, J. Roberto; Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico). E-mail: ilas@iie.org.mx; Loyola, Felix (UNAM, Facultad de Quimica, Mexico D.F. (Mexico)

    2009-09-15

    Fabricating membrane electrode assemblies (MEA) involves different variables that determine their performance, such as: amount of the catalyst, concentration of the different solvents used in the fabrication of the catalyst dye, use of a thermomechanical process to increase the degree of adhesion between the catalyst layers and the membrane, etc. This work studied the effect of the Pt charge in the anode on performance, as well as the effect of the thermomechanical process on the fabrication of MEAs. It is evident that the optimal Pt charge should be that which provides good performance during an acceptable useful lifetime at a competitive cost. This work presents the results obtained by varying the Pt charge in the anode between 1.0 and 0.4 mgPt/cm{sup ²} while maintaining a constant charge of 1 mgPt/cm{sup ²} in the cathode. It also shows the comparison between the polarization curves and the active areas obtained in the MEAs with and without pressing during their fabrication. [Spanish] En la fabricacion de los Ensambles Membrana-Electrodo (MEA's) intervienen diferentes variables que determinan su desempeno, como lo son: cantidad de catalizador, concentracion de los diferentes solventes que se emplean en la fabricacion de la tinta catalitica, el uso de un proceso termomecanico para incrementar el grado de adherencia entre las capas cataliticas y la membrana, etc. De las variables anteriormente mencionadas, en este trabajo se estudio el efecto de la carga anodica de Pt en el desempeno, asi como del proceso termomecanico en la fabricacion de MEA's. Es evidente que la carga optima de Pt debe ser aquella que proporcione un buen rendimiento por un periodo de vida util aceptable a un costo competitivo. En este trabajo se presentan los resultados obtenidos al variar la carga de Pt en el anodo entre 1.0 a 0.4 mgPt/cm{sup ²} manteniendo una carga constante de 1 mgPt/cm{sup ²} en el catodo. Tambien se muestra la comparacion de las curvas de polarizacion y las

  8. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  9. MECHANICAL BEHAVIOUR OF ALUMINA-ZIRCONIA COMPOSITE BY SLURRY METHOD

    Directory of Open Access Journals (Sweden)

    JYOTI PRAKASH

    2011-02-01

    Full Text Available Alumina has got some excellent properties like chemical inertness, thermal and mechanical strength against hazardous environment. Alumina is a good ceramic material which is being used for structuralapplications. To enhance the toughness and strength of the body some Zirconia is also used with it. The use of Zirconia in alumina is known as toughening of alumina. One difficulty arises, when alumina and alumina toughened composite are sintered , because the low sinterability of Alumina-Zirconia forced the compact to give very low density body. To overcome this problem alumina and alumina composites are made from slurry method which gives nearly theoretical density. The combined effect of alumina and Zirconia on the phase transformation and microstructure development of heat-treated Alumina-Zirconia composites has been studied. Slurry is prepared by adding water, dispersant, binder and anti-foaming agent. In the present study, Sintering schedule is optimized and kept constant for all samples. After sintering, mechanical behaviour of the composite has been studied.

  10. Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy bimaterials

    OpenAIRE

    Hattali, Lamine; Stéphane, Valette; Ropital, Francois; Mesrati, Nadir; Tréheux, Daniel

    2009-01-01

    This paper describes some technical limitations encountered in joining ceramics-ceramics or ceramics-metals, and how, to some extent, they have been practically overcome. The effect of the residual stresses on the strength of joints fabricated between alumina-alumina or alumina and the nickel base alloy HAYNES 214TM using a solid-state bonding technique with Ni interlayer was studied. Finite element analyses (FEA) for the elastic-plastic and elastic-plastic-creep behavior have also been used ...

  11. On the anode pressure and humidity regulation in PEM fuel cells: a nonlinear predictive control approach

    OpenAIRE

    Rosanas Boeta, Noe; Ocampo-Martínez, Carlos; Kunusch, Cristian

    2015-01-01

    In this paper, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the humidity in a Proton Exchange Membrane Fuel Cell (PEMFC) anode. The proposed control strategy uses two controllers in cascade to regulate the humidity and pressure in the anode, separately. With this strategy, safety and performance constraints for pressure and humidity can be guaranteed and external disturbances, as changes in stack current demand, are rejected. Peer Reviewed

  12. Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device

    CERN Document Server

    Uribe, Juliana; Gremillard, Laurent; Reynard, Bruno

    2013-01-01

    This paper considers the degradation of alumina and zirconia toughened alumina vs. alumina for hip implants. The materials are as assumed to be load bearing surfaces subjected to shocks in wet conditions. The load is a peak of force; 9 kN was applied over 15 ms at 2 Hz for 800,000 cycles. The volumetric wear and roughness are lower for ZTA than for alumina. The long ZTA ageing did not seem to have a direct influence on the roughness. The ageing increased the wear volumes of ZTA and it was found to have a higher wear resistance compared to alumina.

  13. Characterization of Glasses in One Type of Alumina Rich Fly Ash by Chemical Digestion Methods: Implications for Alumina Extraction

    OpenAIRE

    Lijun Zhao; Hanshuang Xiao; Baodong Wang; Qi Sun

    2016-01-01

    In recent years, one type of alumina rich fly ash (ARFA) with about 50 wt% of alumina has been extensively investigated for alumina extraction in China. Due to the silica in ARFA, alumina extraction would have to generate a huge amount of solid waste. There is a growing interest in the glasses in ARFA, because they are composed mainly of silica and could be removed prior to alumina extraction. In this work, the glasses in ARFA have been investigated by chemical methods, that is, acid and base...

  14. Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si

    International Nuclear Information System (INIS)

    An Al/Ta bilayer specimen prepared by a successive sputter-deposition of a 150-nm tantalum layer and a 180-nm aluminium layer onto a silicon wafer is anodically processed in a sequence of steps in oxalic acid electrolytes, at voltages of up to 53 V, which generates a 260-nm alumina film with well-ordered nanoporous structure. Further potentiodynamic reanodizing the specimen to 220 V causes the simultaneous growth of a 65-nm tantalum oxide layer beneath the alumina film and an array of oxide 'nanocolumns' (∼50 mn wide, ∼80 nm apart, ∼7 x 109 cm-2 population density) penetrating the alumina pores and reaching precisely to the top of the alumina film. The complete filling of the alumina pores is assisted by the high Pilling-Bedworth ratio for Ta/Ta2O5 and a substantially increased transport number for tantalum species (0.4), which is an average value of all migrating tantalum ions with different oxidation states. The nanocolumns are shown to be composed of a unique, regular mixture of Ta2O5 (dominating amount), suboxides TaO2 and TaOx (0.5 2O3, metallic Ta and Al aggregates, tantalum diboride (TaB2) and oxidized boron from the electrolyte. The ionic transport processes determining the self-organized growth of these planar oxide nanostructures are considered and described conceptually

  15. The Dynamics of Platinum Precipitation in an Ion Exchange Membrane

    CERN Document Server

    Burlatsky, S F; Atrazhev, V V; Dmitriev, D V; Kuzminyh, N Y; Erikhman, N S

    2013-01-01

    Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper...

  16. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite

    International Nuclear Information System (INIS)

    Graphene was oxidized with H2O2 to introduce additional anchoring sites for effective alumina coating on graphene by the sol–gel method. The X-ray photoelectron spectroscopy studies showed that the oxygen-containing groups such as hydroxyl group useful for coating were introduced by the oxidation. The transmission electron microscopy images and thermogravimetric analysis data demonstrated that the additional anchoring sites enhanced the efficiency of the alumina coating. A small amount of alumina-coated graphene synergistically improved the thermal conductivity of the alumina sphere/thermoplastic polyurethane (TPU) composite without any increase in the electrical conductivity, because the electrical conductivity of graphene effectively decreased by the alumina coating. Moreover, the synergistic effect of a small amount of graphene was enhanced by the alumina coating, and the stiffening of the alumina sphere/TPU composite due to the added graphene was alleviated by the alumina coating. - Highlights: • Oxidation of graphene with H2O2 introduced anchoring sites for alumina coating. • The anchoring sites improved the efficiency of alumina coating on graphene. • The alumina-coated graphene synergistically enhanced the thermal conductivity

  17. Performances of Anode-Supported BZCY Electrolyte and GBFN Cathode Membranes in Ammonia Synthesis at Atmospheric Pressure%阳极支撑BZCY电解质及GBFN阴极膜在常压合成氨中的性能研究

    Institute of Scientific and Technical Information of China (English)

    朱剑莉; 马桂林; 占忠亮

    2012-01-01

    BaZr0.1Ce0.7 Y0.2O3-α( BZCY) proton-conducting electrolyte and GdBaFeNiO5+δ(GBFN) cathode materials were prepared by the citric-nitrate process. A membrane reactor for ammonia synthesis was successfully fabricated through the following process; an anode-supported dense BZCY electrolyte membrane was first fabricated, and then on the membrane porous GBFN cathode membrane was fabricated by a simple spin coating process combined with heat treatment. The ammonia synthesis test was conducted by an electrolytic method using H2 and N2 as reactant gases. The results indicated that BZCY and GBFN were perovskite and double perovskite structures, respectively. The anode substrate showed good chemical compatibility between NiO and BZCY, and the maximum ammonia formation rate reached 1. 63 x 10-8 mol os~1ocm~2, which was higher than the reported values by similar methods to date. The high maximum ammonia formation rate mould be closely relevant to excellent electrical conduction performance for BZCY and excellent polarization performance for GBFN. The modification of Ag on the GBFN cathode was also beneficial for enhancing the ammonia formation rate.%采用硝酸盐-柠檬酸法制备了 BaZr0.1 Ce0.7 Y0.2 O3-α(BZCY)质子电解质及GdBaFeNiO5+δ(GBFN)阴极材料,用浆料旋涂法结合后续的热处理在NiO-BZCY阳极支撑体上制备致密的BZCY电解质薄膜,在电解质薄膜上制备多孔性GBFN阴极膜,成功地组装成合成氨膜反应器.以氢、氮气为反应气体,通过电解方法进行了常压合成氨试验.结果显示,BZCY及GBFN分别具有钙钛矿型及双钙钛矿型结构,NiO与BZ-CY具有良好的化学兼容性,合成氨产率高达1.63 ×10-8 mol·s-1·cm-2,高于迄今所报道的类似方法的合成氨产率.这与BZCY电解质膜优良的导电性能、GBFN膜优良的极化性能密切相关.Ag对GBFN的修饰也有利于氨产率的提高.

  18. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  19. Nanostructural Engineering of Optical Interferometric Biosensors Based on Nanoporous Anodic Alumina

    OpenAIRE

    Macias Sotuela, Gerard

    2015-01-01

    Aquesta tesi doctoral presenta els resultats d'estudis en l'efecte de les característiques nanoestructurals en biosensors òptics d'interferència basats en alúmina anòdica nanoporosa (NAA). Els biosensors òptics són dispositius altament sensibles capaços de detectar selectivament analits químics o bioquímics monitoritzant la interacció bioquímica entre un receptor d'origen biològic i l'analit en qüestió. En aquest treball s'han presentat les tècniques disponibles per al biosensat i els princip...

  20. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  1. Nano structural anodes for radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  2. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  3. Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration

    International Nuclear Information System (INIS)

    Highlights: • The model can predict voltage variation of a PEMFC operated at a varying-current. • Anode purge strategies are studied by simulation and experiments. • Performances of the PEMFC purged at different nitrogen concentrations are compared. • Anode purge based on current-integration with time is evaluated. - Abstract: When a proton exchange membrane fuel cell is operated in a dead-ended anode mode, its performance gradually decreases due to accumulation of nitrogen and liquid water. Many experimental studies show that nitrogen accumulation is mainly responsible for the performance drop. In this study, a dynamic mathematical model developed in our previous work is employed to predict the nitrogen accumulation in the anode and its corresponding cell voltage. The model is calibrated and validated using experimental data. A purge strategy based on nitrogen concentration in the anode is developed by the calibrated model and implemented into the controller for anode gas management. The performance variations of the single cell operated at a varying-current condition and purged at three nitrogen molar fractions are compared and discussed. Results show that simulated voltage variation agrees with experimental data. When the anode is purged at the nitrogen molar fraction of 0.15, the cell performance shows a dramatic variation. At the end of this study, anode purge based on current-integration with time is also evaluated

  4. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  5. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    Science.gov (United States)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  6. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  7. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  8. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  10. High-pressure phases of alumina

    Science.gov (United States)

    Lyle, Matthew; Pickard, Chris; Needs, Richard

    2014-03-01

    Alumina (Al2O3) has been widely used as a pressure standard in static diamond anvil cell experiments and is a major chemical component of the Earth. So a detailed knowledge of its high-pressure stability is of great importance in both materials science and deep Earth science. A phase transition is known to occur at roughly 80-100 GPa between corundum and the Rh2O3 (II) structure. A second phase transition to the CaIrO3 structure occurs at even higher pressures. Here we present a computational structure search to reveal three additional structures which are competitive at these pressures but hitherto unknown to be stable in high-pressure alumina.

  11. Li + ion diffusion in nanoscale alumina coatings

    Science.gov (United States)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  12. Slip casting alumina with Na-CMC

    Energy Technology Data Exchange (ETDEWEB)

    Ruys, A.J.; Sorrell, C.C. [Univ. of New South Wales, Sydney, New South Wales (Australia)

    1996-11-01

    Many forming methods are in common use for engineering ceramics. Of these, slip casting is an ideal forming method because of its low cost, simplicity and flexibility, potential for uniform particle packing and suitability to the production of articles of intricate shape. Slip casting nonclay materials, such as alumina, requires the use of both a deflocculant and a binder. There are many commercially available deflocculants and binders that can be tested in alumina casting slips. However, determination of a suitable deflocculant/binder combination and quantification of the optimal additions of the deflocculant/binder pair can be time consuming. Certain deflocculants are capable of acting as binders. One such additive is sodium carboxymethylcellulose (Na-cmc), a cellulose ether. Na-cmc is a powerful binder. It is a member of the carbohydrate binder group--the binder group with the strongest binding power. It is capable of acting as a deflocculant in glazes and nonclay casting slips.

  13. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  14. Activation of consolidation processes of alumina ceramics

    Science.gov (United States)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  15. Mesoscale Modelling of the Response of Aluminas

    International Nuclear Information System (INIS)

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response

  16. Phototransferred thermoluminescence and exoemission in alpha alumina

    Energy Technology Data Exchange (ETDEWEB)

    Iacconi, P.; Lapraz, D.; Alessandri-Fraccaro, M.F.; Addi, D. (Univ. de Nice-Sophia Antipolis (France). Lab. d' Emission Electronique et de Luminescence)

    1990-01-01

    {alpha}-Al{sub 2}O{sub 3}, irradiated by ionising radiation and submitted to UV illumination, presents a phototransfer phenomenon that is characterised by thermoluminescence (TL) and by thermostimulated exoelectronic emission (TSEE). The TL and the TSEE glow curves of {alpha}-alumina from -196 to 700{sup 0}C are compared, to parallel one phototransfer observation with another and to draw various conclusions concerning the stability of the traps involved in dosimetric applications. (author).

  17. Selective metallization of alumina by laser

    OpenAIRE

    Shrivastva, P.B.; Boose, C.A.; Kolster, B.H.; Harteveld, C; Meinders, B.

    1991-01-01

    Nickel has been selectively deposited on an alumina substrate without any pretreatment from a flow of a nickel acetate solution using the focused beam of an excimer laser. Nickel spots as well as nickel lines were drawn and subsequently plated with an electroless Ni-B coating. Excellent adhesion of the metallized layers was achieved, since with laser irradiation, both etching and deposition took place simultaneously.

  18. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    International Nuclear Information System (INIS)

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 μm were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications

  19. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  20. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  1. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    Science.gov (United States)

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. PMID:26346603

  2. Synthesis and characterization of single-crystalline alumina nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing; XU Xiang-yu; ZHANG Hong-zhou; CHEN Yao-feng; XU Jun; YU Da-peng

    2005-01-01

    Alumina nanowires were synthesized on large-area silicon substrate via simple thermal evaporation method of heating a mixture of aluminum and alumina powders without using any catalyst or template. The phase structure and the surface morphology of the as-grown sample were analyzed by X-ray diffractometry(XRD) and scanning electron microscopy (SEM), respectively. The chemical composition and the microstructure of the as-grown alumina nanowires were characterized using transmission electron microscope(TEM). The nanowires are usually straight and the single crystalline has average diameter of 40 nm and length of 3 - 5 μm. The growth direction is along the [002] direction. Well aligned alumina nanowire arrays were observed on the surface of many large particles. The catalyst-free growth of the alumina nanowires was explained under the framework of a vapor-solid(VS)growth mechanism. This as-synthesized alumina nanowires could find potential applications in the fabrication of nanodevices.

  3. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    Science.gov (United States)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  4. Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films

    Directory of Open Access Journals (Sweden)

    Craig A. Grimes

    2002-03-01

    Full Text Available The effect of pore size and uniformity on the response of nanoporous alumina, formed on aluminum thick films through an anodization process, to ammonia and humidity at room temperature is reported. Pore sizes examined range from 13 nm to 48 nm, with pore size standard deviations ranging from 2.6 nm to 7.8 nm. The response of the material to ammonia and humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm, standard deviation 2.6 nm, exhibits a factor of two change in impedance magnitude as it is cycled between an ammonia and argon environment. At 5 kHz the same sensor exhibits a well-behaved change in impedance magnitude of 103 over 20% to 90% relative humidity. Cole-Cole plots of the 5 Hz to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of adsorption and ion migration.

  5. Synthesis and characterization of ceramic membranes for micro filtration

    International Nuclear Information System (INIS)

    This paper presents the results of a preliminary research work in the development of ceramic membranes by moulding process. The two major objectives were to determine the effect of operating parameters ori- the membrane sheet and membrane characterization. The starting material for the membrane was powdered aluminum oxide and alumina granules. Alumina granules were obtained by spray drying of mixture of alumina with additives and binders under specific conditions. The membrane sheet was produced by mould pressing at various pressures and then sintering at different temperatures. Membrane characterization was done based on microstructure using SEM, pore size distribution, density, and porosity. Strong and porous membranes were produced at pressing force of 120 -140 kN and sintering temperature of 1400 -1500 'C. Pore size and porosity obtained was in the range of 2 -10 μ m, and 13 - 48% respectively. These membranes can be used for, microfiltration at elevated temperature and under extreme environmental condition. They can also be used as porous support for the production qf composite asymmetric UF/hyperfiltration, and gas separation membranes. Further work in the refinement of' pore-size and permeation studies is envisaged

  6. Atmospheric Moisture Content Effects on Ionic Liquid Wettability of Alumina

    OpenAIRE

    Brittle, S.; Samuel, A; W. B. Zimmerman

    2014-01-01

    The contact angles or wettability of 7 Ionic Liquids, on an alumina substrate, have been measured under two different storage conditions. The first using a small amount of moisture content, the second with no moisture content. The contact angle of Ionic Liquid droplets on an alumina substrate were measured using an Attension Theta instrument with automated software. The results show that a small amount of moisture improves the wettability of the Ionic Liquid – alumina system and therefore sub...

  7. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage

    Science.gov (United States)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Commercial sodium-sulphur or sodium-metal halide batteries typically need an operating temperature of 300-350 °C, and one of the reasons is poor wettability of liquid sodium on the surface of beta alumina. Here we report an alloying strategy that can markedly improve the wetting, which allows the batteries to be operated at much lower temperatures. Our combined experimental and computational studies suggest that addition of caesium to sodium can markedly enhance the wettability. Single cells with Na-Cs alloy anodes exhibit great improvement in cycling life over those with pure sodium anodes at 175 and 150 °C. The cells show good performance even at as low as 95 °C. These results demonstrate that sodium-beta alumina batteries can be operated at much lower temperatures with successfully solving the wetting issue. This work also suggests a strategy to use liquid metals in advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation.

  8. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples.

    Science.gov (United States)

    Qiu, Xiuzhen; Xu, Xian-Yan; Liang, Yong; Hua, Yongbiao; Guo, Huishi

    2016-01-15

    In this paper, a method for the synthesis of ractopamine molecularly imprinted polymers (MIPs) nanotube membranes on anodic alumina oxide (AAO) nanopore surface by atom transfer radical polymerization (ATRP) was presented, in which methacrylic acid (MAA) was selected as functional monomer with a polymerization rate of 1:6 between ractopamine and MAA by the computational investigations. The morphology of MIPs nanotube membranes characterized by scanning electron microscope (SEM) suggested a well growth in the AAO nanopore surface. A series of adsorption experiments revealed that the MIPs nanotube membranes showed better extraction capacity and good selectivity for ractopamine and its analogues than that of non-imprinted polymers (NIPs) nanotube membranes. In order to evaluate the usability of the MIPs nanotube membranes, a methodology by combining MIPs nanotube membranes extraction couple with high performance liquid chromatography (HPLC) detection for the determination of β2-agonists in complex samples was developed. The linear ranges were 10-1000 μg/L for ractopamine, 100-1000 μg/L for clenbuterol, epinephrine and dopamine, and 200-1000 μg/L for terbutaline. The detection limits were within the range of 0.074-0.25 μg/L and the RSDs (n=3) were from 2.8% to 4.3%. The method was successfully applied to the analysis of β2-agonists in spiked real samples, The recoveries of all the β2-agonists at the two concentration levels were found to be within the range of 86.3-97.0% and 82.8-95.7%, respectively. The RSDs were within 2.7-5.7%. The results demonstrated that the proposed method is very suitable for the determination of β2-agonists in pork samples. PMID:26709022

  9. Corrosion of Refractory Alumina-Graphite and Alumina-Graphite-Zirconia in Slag Containing Titania

    Institute of Scientific and Technical Information of China (English)

    XU Yuan; LIU Qing-cai; BAI Chen-guang; CHEN Deng-fu; Joseph W Newkirk

    2004-01-01

    The corrosion of refractory alumina-graphite and alumina-graphite-zirconia in the slag containing titania was studied by immersion tests (quasi-static and dynamic tests). Combining direct observation with microscopic investigations, a mechanism for corrosion was proposed based on the oxidation of graphite and the dissolution of refractory components. During the corrosion process, there are some special phenomena and laws that can be explained by the relation between the corrosion rate and the TiO2 mass percent, the rotational refractory velocity and the morphology of the deteriorated layer.

  10. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    OpenAIRE

    Anne Galarneau; Alexander Sachse; Sarah Hartmann

    2012-01-01

    A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1), large pore volumes (0.8 mL g−1) and the ��-Al2O3 phase is obtained at low temperature (500 °C). The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alu...

  11. Rheology of Alumina-Based Graphite-Containing Castables

    Institute of Scientific and Technical Information of China (English)

    YE Fangbao; M. Rigaud; LIU Xinhong; ZHONG Xiangchong

    2005-01-01

    In this work, the rheological behavior of ultra-low cement alumina-based castables with addition of flake graphite and extruded graphite pellets has been investigated by using IBB rheometer. Emphasis has been laid on the influence of the type and amount of carbon addition on rheological properties of the alumina-based castables and the results are compared with corresponding alumina castable samples without any carbon addition. It is found that alumina-based castables with extruded graphite pellets have good rheological behavior and flowability with lower water demand ( < 6. 3% )and no segregation during the shearing of castable.

  12. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  13. Microfabrication of hybrid fluid membrane for microengines

    Science.gov (United States)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2015-12-01

    This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

  14. Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell

    Science.gov (United States)

    Zhao, Zhibin; Wang, Zhaowen; Gao, Bingliang; Feng, Yuqing; Shi, Zhongning; Hu, Xianwei

    2016-06-01

    The anodic bubbles generated in aluminum electrolytic cells play a complex role to bath flow, alumina mixing, cell voltage, heat transfer, etc., and eventually affect cell performance. In this paper, the bubble dynamics beneath the anode were observed for the first time from bottom view directly in a similar industrial electrolytic environment, using a laboratory-scale transparent aluminum electrolytic cell. The corresponding cell voltage was measured simultaneously for quantitatively investigating its relevance to bubble dynamics. It was found that the bubbles generated in many spots that increased in number with the increase of current density; the bubbles grew through gas diffusion and various types of coalescences; when bubbles grew to a certain size with their surface reaching to the anode edge, they escaped from the anode bottom suddenly; with the increase of current density, the release frequency increases, and the size of these bubbles decreases. The cell voltage was very consistent with bubble coverage, with a high bubble coverage corresponding to a higher cell voltage. At low current density, the curves of voltage and coverage fluctuated in a regularly periodical pattern, while the curves became more irregular at high current density. The magnitude of voltage fluctuation increased with current density first and reached a maximum value at current density of 0.9 A/cm2, and decreased when the current density was further increased. The extra resistance induced by bubbles was found to increase with the bubble coverage, showing a similar trend with published equations.

  15. Synthesis of ordered mesoporous silica and alumina with controlled macroscopic morphologies

    Science.gov (United States)

    Alsyouri, Hatem Mohammad Sadi

    The ability to synthesize nanostructured inorganic materials with controlled microstructural and morphological features will provide materials with unique characteristics in unprecedented ways. This thesis investigates the synthesis of porous silica and alumina materials with controlled microstructures and desirable shapes using novel approaches based on template-assisted synthesis and chemical vapor deposition (CVD) techniques. It primarily focuses on fabricating mesoporous materials with unique microstructures and different morphologies (particles and membranes) and exploring the potential of the particle morphology in a polymer reaction application. The template-assisted growth of mesoporous silica under acidic and quiescent conditions at an oil-water interface can generate mesostructured silica at the interface with fibrous, gyroidal, spherical, and film morphologies. Synthesis conditions can be used to alter the growth environment and control the product morphology. Fiber morphology is obtained at narrow range of experimental conditions due to slow and one-dimensional diffusion of silicon alkoxide through the interface. Variation in these conditions can alter the axial growth of silica and yield non-fibrous shapes. The fibers grow from their base attached to the interface and coalesce to form fibers with larger diameters. Gas transport in the mesoporous silica fibers is governed by combination of Knudsen and surface diffusion mechanisms. Surface diffusion contributes to 40% of the net flow reflecting a highly smooth pore surfaces. Real Knudsen and surface diffusivities are in the order of 10-3 and 10 -5 cm2/s respectively. The one-dimensional mesopores are 45 time longer than the macroscopic fiber length and align helically around the fiber axis, confirming the literature observations, with a pitch value of 1.05 micron. For preparation of mesoporous silica materials as membranes, a novel counter diffusion self assembly (CDSA) approach is demonstrated. This

  16. Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device

    OpenAIRE

    Uribe, Juliana; Geringer, Jean; Gremillard, Laurent; Reynard, Bruno

    2011-01-01

    This paper considers the degradation of alumina and zirconia toughened alumina vs. alumina for hip implants. The materials are as assumed to be load bearing surfaces subjected to shocks in wet conditions. The load is a peak of force; 9 kN was applied over 15 ms at 2 Hz for 800,000 cycles. The volumetric wear and roughness are lower for ZTA than for alumina. The long ZTA ageing did not seem to have a direct influence on the roughness. The ageing increased the wear volumes of ZTA and it was fou...

  17. Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay

    OpenAIRE

    Numluk, Paweena; Chaisena, Aphiruk

    2012-01-01

    The rapid development of the global alumina industry has led to a considerable increase in the production alumina and processing of alumina from non-bauxitic sources. Lampang clays comprise various minerals that contain about 22.70 wt% of extractable alumina. Local clay was ground, activated by calcination and treated with sulfuric acid to extract alumina. In the activation step, the effects of temperature and time on the extraction of alumina and iron were investigated. The leaching experime...

  18. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  19. IMPROVED CORROSION RESISTANCE FOR ALUMINA REFRACTORY

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Patty L. Kleven

    1999-04-30

    In order to increase the efficiency of advanced coal-fired power systems, higher working fluid temperatures must be reached. Some system surfaces will have to be protected by covering them with corrosion-resistant refractories. Corrosion is the degradation of the material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases causing loss of material and, consequently, a decrease in the strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Earlier tests with several commercially available high-temperature castable refractories showed that the fused-alumina aggregate grains within the materials had the highest corrosion resistance of any of the castable materials. However, the cement holding the grains was easily attacked. Therefore, to improve the corrosion resistance and thermomechanical properties of alumina-based refractories, we attempted to change the cement to a more corrosion- and erosion-resistant bonding material through the addition of rare-earth oxides (REO). Phase diagrams were used to identify stable high-melting-temperature materials within the lanthanide-alumina series that could modify the bonding phase of the alumina-based refractory. Two mechanisms of reducing corrosion were investigated. One was the formation of corrosion-resistant layers within the refractory. The other was increased sintering to increase strength and seal continuous pores that would reduce slag penetration. Garnets (Re{sub 3}Al{sub 5}O{sub 12}) and perovskites (ReAl{sub 2}O{sub 3}), where Re is the REO, are two of the stable high-melting-temperature materials identified that were believed could be formed in the refractory matrix to help reduce corrosion rates. For the base refractory, Plicast 99 made by Plibrico was chosen. It is a 99% alumina castable composed of fused alumina aggregate and a cement made primarily from Alphabond

  20. The Influence Of The Way Of Alumina Addition On Properties Improvement Of 3YSZ Material

    Directory of Open Access Journals (Sweden)

    Drożdż E.

    2015-06-01

    Full Text Available Yttria-stabilized zirconia (YSZ is the best known ceramic-oxide material employed as a component of either solid electrolyte or anode cermet material for intermediate solid oxide fuel cell (IT - SOFC. The properties of traditionally produced (by mechanical mixing of oxides Al2O3/3YSZ composite with the same composition materials obtained by citrate and impregnation methods and with properties of pure tetragonal zirconia (3YSZ were compared. The materials were characterised by X-ray diffraction, SEM observations with EDX analysis, density and impedance spectroscopy measurements. The results shown that Al2O3/3YSZ composites reveals higher conductivity than pure 3YSZ and that addition of alumina (regardless of methods improve electric properties of resulting materials. Taking into account application of this materials as anode in IT-SOFC the determined values of energy activation of conductivity and microstructural properties of composites show that materials obtained by citric method are the most promising.

  1. Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating.

    Science.gov (United States)

    Briggs, E P; Walpole, A R; Wilshaw, P R; Karlsson, M; Pålsgård, E

    2004-09-01

    Thin, nano-porous, highly adherent layers of anodised aluminium formed on the surface of titanium alloys are being developed as coatings for metallic surgical implants. The layers are formed by anodisation of a 1-5 microm thick layer of aluminium which has been deposited on substrate material by electron beam evaporation. The surface ceramic layer so produced is alumina with 6-8 wt % phosphate ions and contains approximately 5 x 10(8) cm(-2) pores with a approximately 160 nm average diameter, running perpendicular to the surface. Mechanical testing showed the coatings' shear and tensile strength to be at least 20 and 10 MPa, respectively. Initial cell/material studies show promising cellular response to the nano-porous alumina. A normal osteoblastic growth pattern with cell number increasing from day 1 to 21 was shown, with slightly higher proliferative activity on the nano-porous alumina compared to the Thermanox control. Scanning electron microscopy (SEM) examination of the cells on the porous alumina membrane showed normal osteoblast morphology. Flattened cells with filopodia attaching to the pores and good coverage were also observed. In addition, the pore structure produced in these ceramic coatings is expected to be suitable for loading with bioactive material to enhance further their biological properties. PMID:15448410

  2. NMR Revealed Activated Alumina-Water Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rui; ZHOU Yan; HU Kai; JI Zhen-ping; CHENG Gong-zhen

    2005-01-01

    Three different spin-lattice relaxation times (T1) of water were obtained in activated alumina-water slurry system, which indicate that there exist three states of water: bound water, pore water and bulk water. The chemical shift (δH) decreases as the amount of water added to the system increases due to the differences in contribution of these three states of water in the samples. The δH value for adsorbed water decreases nearly linearly and T1 increases with elevating temperature, which result from the decrease in the content of bound water by the increase in thermal motion.

  3. Improved Synthesis Of Potassium Beta' '-Alumina

    Science.gov (United States)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  4. Conduction mechanism of single-crystal alumina

    Science.gov (United States)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  5. Anodes for Rechargeable Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  6. 3.5. Drying of cryolite-alumina concentrate

    International Nuclear Information System (INIS)

    This article is devoted to drying of cryolite-alumina concentrate. The drying process of cryolite-alumina concentrate at isothermal and polythermal conditions was studied. The kinetics and mechanism of the process were studied as well. The kinetics of concentrate drying under isothermal conditions was studied in air bath and results are presented.

  7. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    Science.gov (United States)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  8. Radiation dose determination by using powder Seydisehir alumina

    International Nuclear Information System (INIS)

    Thermoluminescence dosimeters (TLDs) is a passive dose measurement method used for the supervision, quality control and calibration during radiation dose measurements. Nowadays TLDs, including alumina, are largely used and investigated due to high sensitivity, physical and chemical stability, and re-usefulness. In this work, powder form of Seydisehir alumina is used as a thermoluminescence material and α and β radiation doses were measured.

  9. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    International Nuclear Information System (INIS)

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  10. Depositing Adherent Ag Films On Ti Films On Alumina

    Science.gov (United States)

    Honecy, Frank S.

    1995-01-01

    Report discusses cleaning of ceramic (principally, alumina) substrates in preparation for sputter deposition of titanium intermediate films on substrates followed by sputter deposition of outer silver films. Principal intended application, substrates sliding parts in advanced high-temperature heat engines, and outer silver films serve as solid lubricants: lubricating properties described in "Solid Lubricant for Alumina" (LEW-15495).

  11. Anodic oxidation of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A.; Borello, A.; Cabrini, A.

    1976-07-01

    The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications. The operative conditions to obtain hard, thick, compact oxide films resistant to thermal shocks have been determined. The influence of the bath composition and temperature on the oxide growth is reported.

  12. Comparison of deep desulfurization methods in alumina production process

    Institute of Scientific and Technical Information of China (English)

    刘战伟; 李旺兴; 马文会; 尹中林; 武国宝

    2015-01-01

    Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2− in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2− on alumina product quality is eliminated. However, the removal efficiency of2-23SOin sodium aluminate solution is very low by this method. Both S2− and2-23SO in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.

  13. Preliminary joining experiment of alumina pipes by using ceramics sleeve

    International Nuclear Information System (INIS)

    Preliminary experiments on alumina ceramics pipes joining by using shrinkable alumina sleeve and high melting point oxide solder have been carried out. Sleeves were prepared by way of sintering at relatively low temperature to shrink 1% during following joining process. As solder, alumina-calcia system was selected and paste containing alumina and calcium carbonate powder mixture was prepared. Joining was carried out by inserting the paste between sleeve and pipes, and by heating at 1500degC in air. By the shrink of sleeve and the formation of interface by solder, it was possible to realize the joined pipe without the vacuum leakage. The airtightness of the joined alumina pipes is almost equal to it of the metal pipe welding. (author)

  14. Dispersion Caused by Carbon Dioxide During Secondary Alumina Dissolution: A Lab-Scale Research

    Science.gov (United States)

    Yang, Youjian; Gao, Bingliang; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei; Yu, Jiangyu

    2014-06-01

    Secondary alumina is the byproduct of dry scrubbing in aluminum smelting. Secondary alumina has superior dissolution characteristics to primary alumina. Secondary alumina dissolves in pieces in molten cryolite, which results in larger contact area and better diffusion kinetics. In this work, the dissolution phenomenon of primary alumina, secondary alumina, and primary alumina doped with sodium carbonate or calcium carbonate (mass ratio = 10:1, 20:1) was observed and compared to estimate carbon-induced dispersion in industrial secondary alumina. Temperature fluctuations during sample dissolution were measured to evaluate the benefits of preheating on alumina dissolution. It was found that carbon mixed in secondary alumina significantly influences the dispersion of alumina particles at the moment of feeding, and thermodynamic analysis also shows that the combustion heat from carbon facilitates dispersion.

  15. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  16. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  17. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  18. Lightweight alumina refractory aggregate. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate, based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.

  19. Ultrasonic analysis of sintered alumina pellets

    International Nuclear Information System (INIS)

    Uranium dioxide pellets are used as fuel in Pressurized Water Reactors. These pellets require some degree of porosity to accommodate fission products generated during the burning of fuel. It is usual to utilize the Archimedes method to determine the sintered pellet porosity. For the determination of closed pores, samples of pellets need to be analyzed using micrography to calculate the distribution of the pores. The ultrasonic group of the Nuclear Engineering Institute (IEN) is developing a nondestructive characterization through ultrasonic technique in the frequency domain, this technique will permit to minimize the time for determination of porosity and increase the accuracy of measurement using only one technique, taking into account pores open and closed, and to be capable to analyze 100% of the pellets. Several studies have been conducted in order to validate this method. In this work, the frequency spectrum from alumina pellets were obtained by a 5MHz frequency transducer and by means of scanning electron microscope (SEM), it was possible to investigate the interior of the material and to associate its structure to the behavior of the ultrasonic wave. Each sintering temperature showed a characteristic ultrasonic signal that could be associated with the Alumina porosity. This result showed that this method is very sensitive to the pore distribution in the material because, even within the same temperature group, variations occurred according to distribution of pore sizes. (author)

  20. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    Science.gov (United States)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.