WorldWideScience

Sample records for anode supported planar

  1. Realisation of an anode supported planar SOFC system

    Energy Technology Data Exchange (ETDEWEB)

    Buchkremer, H.P.; Stoever, D. [Institut fuer Werkstoffe der Energietechnik, Juelich (Germany); Diekmann, U. [Zentralabteilung Technologie, Juelich (Germany)] [and others

    1996-12-31

    Lowering the operating temperature of S0FCs to below 800{degrees}C potentially lowers production costs of a SOFC system because of a less expensive periphery and is able to guarantee sufficient life time of the stack. One way of achieving lower operating temperatures is the development of new high conductive electrolyte materials. The other way, still based on state-of-the-art material, i.e. yttria-stabilized zirconia (YSZ) electrolyte, is the development of a thin film electrolyte concept. In the Forschungszentrum Julich a program was started to produce a supported planar SOFC with an YSZ electrolyte thickness between 10 to 20 put. One of the electrodes, i.e. the anode, was used as support, in order not to increase the number of components in the SOFC. The high electronic conductivity of the anode-cermet allows the use of relatively thick layers without increasing the cell resistance. An additional advantage of the supported planar concept is the possibility to produce single cells larger than 10 x 10 cm x cm, that is with an effective electrode cross area of several hundred cm{sup 2}.

  2. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  3. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  4. Anode Support Creep

    DEFF Research Database (Denmark)

    2015-01-01

    Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature....

  5. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    Science.gov (United States)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  6. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  7. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  8. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...... of the processing steps and their interdependence. A large database for several thousand anode-supported SOFCs manufactured annually at the Risoe National Laboratory in collaboration with Topsoe Fuel Cell A/S has been constructed. This enables a statistical analysis of the various controlling parameters. Some...

  9. Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Shy, S.S.; Chien, C.W. [Department of Mechanical Engineering, National Central University, 300 Jhong-da Road, Jhong-li 32001 (China); Lee, C.H. [Institute of Nuclear Energy Research, Lung-tan, Tao-yuan 32546 (China)

    2010-04-15

    This study reports effects of porosity ({epsilon}), permeability (k) and tortuosity ({tau}) of anodic microstructures to peak power density (PPD) of a single-unit planar anode-supported SOFC based on 3D electrochemical flow models using measured porous transport properties. Applying particle image velocimetry, a transparent porous rib-channel with different {epsilon} is applied to measure an effective viscosity ({mu}{sub e}) in the Brinkman equation commonly used to predict flow properties in porous electrodes. It is found that, contrary to the popular scenario, {mu}{sub e} is not equal to the fluid viscosity ({mu}{sub f}), but it is several orders in magnitude smaller than {mu}{sub f} resulting in more than 10% difference on values of PPD. Numerical analyses show: (1) while keeping k and {tau} fixed with {epsilon} varying from 0.2 to 0.6, the highest PPD occurs at {epsilon} = 0.3 where the corresponding triple-phase-boundary length is a maximum; (2) PPD increases slightly with k when k{<=}10{sup -11} m{sup 2} due to the diffusion limitation in anode; and (3) PPD decreases with {tau} when {tau}>1.5 due to the accumulation of non-depleted products. Hence, a combination of {epsilon}=0.3, k=10{sup -11}m{sup 2}, and {tau}=1.5 is suggested for achieving higher cell performance of planar SOFC. (author)

  10. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.; Albert, Istvan U.; Regan, John M.

    2013-01-01

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected

  11. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  12. Study of Internal and External Leaks in Tests of Anode-Supported SOFCs

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hendriksen, Peter Vang; Hagen, Anke

    2008-01-01

    A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass Spectrome......A planar anode-supported solid oxide fuel cell (SOFC) has been tested to investigate gas tightness of the electrolyte and the applied seals. Gas leaks reduce the efficiency of the SOFC and it is thus important to determine and minimise them. Probe gases (He and Ar) and a Quadrupole Mass...... Spectrometer were used to detect both internal (through electrolyte) and external (through seals) gas leaks. The internal gas leak through the electrolyte was quantified under different conditions, as was the external leak from the surroundings to the anode. The internal gas leak did not depend on the pressure...... difference between the anode and the cathode gas compartment, and can thus be described as diffusion driven. External leaks between the surroundings and the anode, but not the cathode gas compartment was observed. They were influenced by the pressure difference and are thus driven by both concentration...

  13. Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; De Silveira, G. [Materials Technology Laboratory, Natural Resources Canada, CANMET, 405 Rochester Street, Ottawa, Ontario (Canada) K1A OG3

    2003-04-01

    Lanthanum gallate doped with strontium and magnesium (LSGM) is a promising electrolyte system for intermediate temperature solid oxide fuel cells (SOFCs). The reported formation of interfacial layers in monolithic type SOFCs based on lanthanum gallate is of concern because of its impact on the performance of the fuel cell. Planar anode-supported SOFC elements (without the cathode) were prepared by the tape casting technique in order to determine the nature of the anode/electrolyte interface after sintering. Two anode systems were studied, one a NiO-CeO{sub 2} cermet, and the other, a modified lanthanum gallate anode containing manganese. Sintering studies were conducted at 1250, 1300, 1350, 1400 and 1450 C to determine the effect of temperature on the interfacial characteristics. Scanning electron microscopy (SEM) revealed a significant diffusion of Ni from the NiO-CeO{sub 2} anode resulting in the formation of an interfacial layer regardless of sintering temperature. Significant La diffusion from the electrolyte into the anode was also observed. In the case of the modified lanthanum gallate anode containing manganese, there was no interfacial layer formation, but a significant diffusion of Mn into the electrolyte was observed.

  14. Investigation on multi-frequency oscillations in InGaAs planar Gunn diode with multiple anode-cathode spacings

    Science.gov (United States)

    Li, B.; Alimi, Y.; Ma, G. L.

    2016-12-01

    Current oscillations in an AlGaAs/InGaAs/AlGaAs-based two-dimensional electron gas (2DEG)-based hetero-structure have been investigated by means of semiconductor device simulation software SILVACO, with an interest on the charge domain formation at large biases. Single-frequency oscillations are generated in planar Gunn diodes with uniform anode and cathode contacts. The oscillation frequency reduces as the applied bias voltage increases. We show that it is possible to create multiple, independent charge domains in a novel Gunn diode structure with designed multiple anode-cathode spacings. This enables simultaneous generation of multiple frequency oscillations in a single planar device, in contrast to traditional vertical Gunn diodes where only single-frequency oscillations can be achieved. More interestingly, frequency mixing in multiple-channel configured Gunn diodes appeared. This proof-of-concept opens up the possibility for realizing compact self-oscillating mixer at millimeter-wave applications.

  15. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  16. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  17. Detailed characterization of anode-supported SOFCs by impedance spectroscopy

    DEFF Research Database (Denmark)

    Barfod, R.; Mogensen, Mogens Bjerg; Klemensø, Trine

    2007-01-01

    Anode-supported thin electrolyte cells are studied by electrochemical impedance spectroscopy (EIS). The aim is to describe how the losses of this type of cells are distributed at low current density (around open-circuit voltage) as a function of temperature. An equivalent circuit consisting...

  18. Multiwire proportional chamber with a supporting line on anode wires

    International Nuclear Information System (INIS)

    Viktorov, V.A.; Golovkin, S.V.

    1980-01-01

    Results are presented of experimental investigations on a supporting line (wire) used in large-sized proportional chambers to compensate for electrostatic forces. The length of anode wires (gilded tungsten of 0.02 mm in diameter) in the chamber constituted 600 mm, the pitch 2 mm, the total number of channels 192. High-voltage electrodes are made of Cu-Be wire of 0.1 mm in diameter, the pitch is 2 mm. The gap between anode and cathode plates is 6 mm. The supporting line is an enamelled nichrome wire of 0.2 mm in diameter enclosed in an additional fluoroplastic insulation. The outside diameter was equal to 0.4 mm. The supporting line was placed through the centre of the chamber at right angles and immediately adjacent to anode wires with the tension of 2000 g. A negative compensating potential was applied to it. The controllable parameter was the chamber efficiency at variable paAameters: (1) an operating voltage in the chamber; (2) Vsub(c) - a compensating potential of the supporting line, and (3) a beam axis relative coordinate. The performed investigations showed that the supporting line of this type is simple and reliable in operation (electric breakdown occurs at Vsub(c) > 3.5 kV). The noneffective zone in the supporting region can be reduced to approximately 2.4 mm which constitutes approximately 0.3% of the chamber total sensitive region

  19. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  20. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  1. Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...... time in the same frequency range for both cells (~10 Hz), possibly indicating that the same physical process was affected in both types of cell. However, deconvolution of the impedance data was not straightforward. When n-values of the constant phase elements in the otherwise identical equivalent...

  2. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  3. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  4. Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supports

    DEFF Research Database (Denmark)

    Verbraeken, Maarten C.; Sudireddy, Bhaskar Reddy; Vasechko, Viacheslav

    2018-01-01

    All ceramic anode supported half cells of technically relevant scale were fabricated in this study, using a novel strontium titanate anode material. The use of this material would be highly advantageous in solid oxide fuel cells due to its redox tolerance and resistance to coking and sulphur...... poisoning. Successful fabrication was possible through aqueous tape casting of both anode support and electrolyte layers and subsequent lamination. Screen printing of electrolyte layers onto green anode tapes was also attempted but resulted in cracked electrolyte layers upon firing. Microstructural...

  5. Effect of Sintering Temperature and Applied Load on Anode-Supported Electrodes for SOFC Application

    Directory of Open Access Journals (Sweden)

    Xuan-Vien Nguyen

    2016-08-01

    Full Text Available Anode-supported cells are prepared by a sequence of hot pressing and co-sintering processes for solid oxide fuel cell (SOFC applications. Commercially available porous anode tape (NiO/YSZ = 50 wt %/50 wt %, anode tape (NiO/YSZ = 30 wt %/70 wt %, and YSZ are used as the anode substrate, anode functional layer, and electrolyte layer, respectively. After hot pressing, the stacked layers are then sintered at different temperatures (1250 °C, 1350 °C, 1400 °C and 1450 °C for 5 h in air. Different compressive loads are applied during the sintering process. An (La,SrMnO3 (LSM paste is coated on the post-sintered anode-supported electrolyte surface as the cathode, and sintered at different temperatures (1100 °C, 1150 °C, 1200 °C and 1250 °C for 2 h in air to generate anode-supported cells with dimensions of 60 × 60 mm2 (active reaction area of 50 × 50 mm2. SEM is used to investigate the anode structure of the anode-supported cells. In addition, confocal laser scanning microscopy is used to investigate the roughness of the cathode surfaces. At sintering temperatures of 1400 °C and 1450 °C, there is significant grain growth in the anode. Furthermore, the surface of the cathode is smoother at a firing temperature of 1200 °C. It is also found that the optimal compressive load of 1742 Pa led to a flatness of 168 µm/6 cm and a deformation of 0.72%. The open circuit voltage and power density of the anode-supported cell at 750 °C were 1.0 V and 178 mW·cm−2, respectively.

  6. Infiltration of commercially available, anode supported SOFC’s via inkjet printing

    NARCIS (Netherlands)

    Mitchell-Williams, T.B.; Tomov, R.I.; Saadabadi, S.A.; Krauz, M.; Purushothaman Vellayani, A.; Glowacki, B.A.; Kumar, R.V.

    2017-01-01

    Commercially available anode supported solid oxide fuel cells (NiO-8YSZ/8YSZ/LSCF- 20 mm in diameter) were anode infiltrated with gadolinium doped ceria (CGO) using a scalable drop-on-demand inkjet printing process. Cells were infiltrated with two different precursor solutions—water based or

  7. Preparation of functional layers for anode-supported solid oxide fuel cells by the reverse roll coating process

    Science.gov (United States)

    Mücke, R.; Büchler, O.; Bram, M.; Leonide, A.; Ivers-Tiffée, E.; Buchkremer, H. P.

    The roll coating technique represents a novel method for applying functional layers to solid oxide fuel cells (SOFCs). This fast process is already used for mass production in other branches of industry and offers a high degree of automation. It was utilized for coating specially developed anode (NiO + 8YSZ, 8YSZ: 8 mol% yttria-stabilized zirconia) and electrolyte (8YSZ) suspensions on green and pre-sintered tape-cast anode supports (NiO + 8YSZ). The layers formed were co-fired in a single step at 1400 °C for 5 h. As a result, the electrolyte exhibited a thickness of 14-18 μm and sufficient gas tightness. Complete cells with a screen-printed and sintered La 0.65Sr 0.3MnO 3- δ (LSM)/8YSZ cathode yielded a current density of 0.9-1.1 A cm -2 at 800 °C and 0.7 V, which is lower than the performance of non-co-fired slip-cast or screen-printed Jülich standard cells with thinner anode and electrolyte layers. The contribution of the cell components to the total area-specific resistance (ASR) was calculated by analyzing the distribution function of the relaxation times (DRTs) of measured electrochemical impedance spectra (EIS) and indicates the potential improvement in the cell performance achievable by reducing the thickness of the roll-coated layers. The results show that the anode-supported planar half-cells can be fabricated cost-effectively by combining roll coating with subsequent co-firing.

  8. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    International Nuclear Information System (INIS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-01-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  9. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  10. Enzymatic studies on planar supported membranes using a widefield fluorescence LAURDAN Generalized Polarization imaging approach

    DEFF Research Database (Denmark)

    Brewer, Jonathan R.; Thoke, Henrik Seir; Stock, Robeto

    2017-01-01

    studied structural and dynamical transformations induced by Sphingomyelinase D (SM-D) on planar supported membranes composed of N-lauroyl sphingomyelin (C12SM). GP data show the evolution of an initially compositionally homogeneous symmetric bilayer existing in a single liquid disordered phase...

  11. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  12. Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC)

    Science.gov (United States)

    Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy

    2017-12-01

    The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.

  13. Relaxation of stresses during reduction of anode supported SOFCs

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Jørgensen, Peter Stanley

    2016-01-01

    To assess the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of a Ni-YSZ anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. Thus, the phenomenon of accelerated creep during reduction has to be considered both in the production of stacks and in the analysis of the stress field...... of reduction should decrease significantly over minutes. In this work these internal stresses are measured in-situ before and after the reduction by use of X-ray diffraction. This is done by determining the elastic micro-strains (correlating to the stresses), which are assessed from the widening of the Bragg...

  14. Planar, Polysilazane?Derived Porous Ceramic Supports for Membrane and Catalysis Applications

    OpenAIRE

    Konegger, Thomas; Williams, Lee F.; Bordia, Rajendra K.

    2015-01-01

    Porous, silicon carbonitride?based ceramic support structures for potential membrane and catalysis applications were generated from a preceramic polysilazane precursor in combination with spherical, ultrahigh?molecular weight polyethylene microparticles through a sacrificial filler approach. A screening evaluation was used for the determination of the impact of both porogen content and porogen size on pore structure, strength, and permeability characteristics of planar specimens. By optimizin...

  15. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    Ni-3YSZ in the operating temperature through numerical micromechanical modeling. Three-dimensional microstructures of Ni-3YSZ anode supports are reconstructed from a two-dimensional image stack obtained via focused ion beam tomography. Time-dependent stress distributions in the microscopic scale...... are computed by the finite element method. The macroscopic creep response of the porous anode support is determined based on homogenization theory. It is shown that micromechanical modeling provides an effective tool to study the effect of microstructures on the macroscopic properties....

  16. Effect of interlayer on structure and performance of anode-supported SOFC single cells

    International Nuclear Information System (INIS)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-01-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm 2 at 800 deg. C and 0.44 W/cm 2 at 700 deg. C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer

  17. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    Science.gov (United States)

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Infiltrated SrTiO3:FeCr‐based Anodes for Metal‐Supported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Reddy Sudireddy, Bhaskar; Persson, Åsa Helen

    2013-01-01

    The concept of using electronically conducting anode backbones with subsequent infiltration of electrocatalytic active materials has been used to develop an alternative solid oxide fuel cell (SOFC) design based on a ferritic stainless steel support. The anode backbone consists of a composite made...

  19. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, X.H.; Wu, J.B.; Cao, Y.Q.; Zhang, P.; Lin, Y.; Guo, R.Q.

    2016-01-01

    Cobalt nanosheet arrays supported silicon film is prepared and used as anode materials for lithium ion batteries. The film is fabricated using chemical bath deposition, hydrogen reduction and radio-frequency magnetron sputtering techniques. The microstructure and morphology are characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). In this composite film, the silicon layer is supported by interconnected aligned cobalt nanosheet arrays that act as the three-dimensional current collector and buffering network. The electrochemical performance as anode materials for lithium ion batteries is investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The results show that the film prepared by sputtering for 1500 s exhibits high capacity, good rate capability and stable cycle ability. It is believed that the cobalt nanosheet arrays play important roles in the electrochemical performance of the silicon layer.

  20. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation...

  1. Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells

    DEFF Research Database (Denmark)

    Klemensø, Trine; Boccaccini, Dino; Brodersen, Karen

    2014-01-01

    The conventional solid oxide cell is based on a Ni–YSZ support layer, placed on the fuel side of the cell, also known as the anode supported SOFC. An alternative design, based on a support of porous 3YSZ (3 mol.% Y2O3–doped ZrO2), placed on the oxygen electrode side of the cell, is proposed...... of the support can be done simultaneously with forming the oxygen electrode, since some of the best performing oxygen electrodes are based on infiltrated LSC. The potential of the proposed structure was investigated by testing the mechanical and electrical properties of the support layer. Comparable strength...... properties to the conventional Ni/YSZ support were seen, and sufficient and fairly stable conductivity of LSC infiltrated 3YSZ was observed. The conductivity of 8–15 S cm–1 at 850 °C seen for over 600 h, corresponds to a serial resistance of less than 3.5 m Ω cm2 of a 300 μm thick support layer....

  2. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber....

  3. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  4. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size...... of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  5. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely

  6. Anode-supported SOFC operated under single-chamber conditions at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.; Roa, J.J.; Segarra, M. [Department of Materials Science and Metallurgical Engineering, University of Barcelona, E-08028, Barcelona (Spain); Capdevila, X.G. [Center of Design and Optimization in Avanced Materials, Parc Cientific of Barcelona, E-08028, Barcelona (Spain); Pinol, S. [Institute of Materials Science of Barcelona (CSIC), Campus of the UAB, Bellaterra E-08193, Barcelona (Spain)

    2011-02-15

    Anode-supported SOFC was fabricated using gadolinia doped ceria (GDC) as the electrolyte (15 {mu}m of thickness), Ni-GDC as the anode and La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}-GDC as the cathode. Catalytic activities of the electrodes and electrical properties of the cell were determined, using mixtures of methane + air, under single-chamber conditions. This work assessed with special and wide emphasis the effect of temperature, gas composition and total flow rate on the cell performance. As a result, operational temperature range of the fuel cell was approximately between 700 and 800 C, which agrees with the results corresponding to the catalytic activities of electrodes. While Ni-GDC anode was enough active towards methane partial oxidation at cell temperatures higher than 700 C, the LSC-GDC cathode was enough inactive towards partial and total oxidation of methane at cell temperatures lower than 800 C. Under optimised gas compositions (CH{sub 4}/O{sub 2}) ratio (1) and total flow rate (530 mL min {sup -1}), power densities of 145 and 235 mW cm {sup -2} were obtained at 705 and 764 C, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Investigation of methane steam reforming in planar porous support of solid oxide fuel cell

    International Nuclear Information System (INIS)

    Yang Yongping; Du Xiaoze; Yang Lijun; Huang Yuan; Xian Haizhen

    2009-01-01

    Adopting the porous support in integrated-planar solid oxide fuel cell (IP-SOFC) can reduce the operating temperature by reducing thickness of electrolyte layer, and also, provide internal reforming environment for hydrogen-rich fuel gas. The distributions of reactant and product components, and temperature of methane steam reforming for IP-SOFC were investigated by the developed physical and mathematical model with thermodynamic analysis, in which eleven possible reaction mechanisms were considered by the source terms and Arrhenius relationship. Numerical simulation of the model revealed that the progress of reforming reaction and the distribution of the product, H 2 , were influenced by the operating conditions, included that of temperature, ratio of H 2 O and CH 4 , as well as by the porosity of the supporting material. The simulating results indicate that the methane conversion rate can reach its maximum value under the operating temperature of 800 deg. C and porosity of ε = 0.4, which rather approximate to the practical operating conditions of IP-SOFC. In addition, characteristics of carbon deposition on surface of catalyst were discussed under various operating conditions and configuration parameters of the porous support. The present works provided some theoretical explanations to the numerous experimental observations and engineered practices

  8. Planar, Polysilazane-Derived Porous Ceramic Supports for Membrane and Catalysis Applications.

    Science.gov (United States)

    Konegger, Thomas; Williams, Lee F; Bordia, Rajendra K

    2015-10-01

    Porous, silicon carbonitride-based ceramic support structures for potential membrane and catalysis applications were generated from a preceramic polysilazane precursor in combination with spherical, ultrahigh-molecular weight polyethylene microparticles through a sacrificial filler approach. A screening evaluation was used for the determination of the impact of both porogen content and porogen size on pore structure, strength, and permeability characteristics of planar specimens. By optimizing both the composition as well as cross-linking parameters, maximum characteristic biaxial flexural strengths of 65 MPa and porosities of 42% were achieved. The evolution of an interconnected, open-pore network during thermal porogen removal and conversion of the preceramic polymer led to air permeabilities in the order of 10 -14 m 2 . The materials were further exposed to long-term heat treatments to demonstrate the stability of properties after 100 h at 800°C in oxidizing, inert, and reducing environments. The determined performance, in combination with the versatile preparation method, illustrates the feasibility of this processing approach for the generation of porous ceramic support structures for applications at elevated temperatures in a variety of fields, including membrane and catalysis science.

  9. Dynamic Neuromuscular Control of the Lower Limbs in Response to Unexpected Single-Planar versus Multi-Planar Support Perturbations in Young, Active Adults.

    Science.gov (United States)

    Malfait, Bart; Staes, Filip; de Vries, Aijse; Smeets, Annemie; Hawken, Malcolm; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine

    2015-01-01

    An anterior cruciate ligament (ACL) injury involves a multi-planar injury mechanism. Nevertheless, unexpected multi-planar perturbations have not been used to screen athletes in the context of ACL injury prevention yet could reveal those more at risk. The objective of this study was to compare neuromuscular responses to multi-planar (MPP) and single-planar perturbations (SPP) during a stepping-down task. These results might serve as a basis for future implementation of external perturbations in ACL injury screening programs. Thirteen young adults performed a single leg stepping-down task in eight conditions (four MPP and four SPP with a specified amplitude and velocity). The amplitudes of vastus lateralis (VL), vastus medialis (VM), hamstrings lateralis (HL), hamstrings medialis (HM) EMG activity, medio-lateral and anterior-posterior centre of mass (COM) displacements, the peak knee flexion and abduction angles were compared between conditions using an one-way ANOVA. Number of stepping responses were monitored during all conditions. Significantly greater muscle activity levels were found in response to the more challenging MPP and SPP compared to the less challenging conditions (p neuromuscular activity were found between the MPP conditions and their equivalents in the SPP. Eighteen stepping responses were monitored in the SPP versus nine in the MPP indicating that the overall neuromuscular control was even more challenged during the SPP which was supported by greater COM displacements in the SPP. The more intense MPP and SPP evoked different neuromuscular responses resulting in greater muscle activity levels compared to small perturbations. Based on the results of COM displacements and based on the amount of stepping responses, dynamic neuromuscular control of the knee joint appeared less challenged during the MPP. Therefore, future work should investigate extensively if other neuromuscular differences (i.e. co-activation patterns and kinetics) exist between MPP

  10. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell...... was tested at 700 deg. C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current evoltage relationships. No measurable degradation in the cell voltage or increase...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  11. Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support.

    Science.gov (United States)

    Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric

    2017-11-01

    The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼ 0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between...

  13. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  14. Anode-supported single-chamber SOFCs based on gadolinia doped ceria electrolytes

    Directory of Open Access Journals (Sweden)

    Morales, M.

    2008-12-01

    Full Text Available The utilization of anode supported electrolytes is a useful strategy to increase the electrical properties of the solid oxide fuel cells, because it is possible to decrease considerably the thickness of the electrolytes. We have prepared successfully singlechamber fuel cells of gadolinia doped ceria electrolytes Ce1-xGdxO2-y (CGO supported on an anode formed by a cermet of Ni-CGO. Mixtures of precursor powders of NiO and gadolinium doped ceria with different particle sizes and compositions were analyzed to obtain optimal bulk porous anodes to be used as anode supported fuel cells. Doped ceria electrolytes were prepared by sol-gel related techniques. Then, ceria based electrolytes were deposited by dip coating at different thickness (15-30 µm using an ink prepared with nanometric powders of electrolytes dispersed in a commercial liquid polymer. Cathodes of La1-xSrxCoO3-s (LSCO were also prepared by sol-gel related techniques and were deposited by dip coating on the electrolyte thick films. Finally, electrical properties were determined in a single-chamber reactor where propane as fuel was mixed with synthetic air above the higher explosive limit. Stable density currents were obtained in these experimental conditions, but flow rates of the carrier gas and propane partial pressure were determinants for the optimization of the electrical properties of the fuel cells.

    La utilización de electrolitos soportados en el ánodo es una estrategia muy útil para mejorar las propiedades eléctricas de las pilas de combustible de óxido sólido, debido a que permiten disminuir considerablemente el espesor de los electrolitos. Para este trabajo, se han preparado exitosamente pilas de combustible de óxido sólido con electrolitos de ceria dopada con Gd, Ce1-xGdxO2-y (CGO soportados sobre un ánodo formado por un cermet de Ni/CGO. Dichas pilas se han

  15. Potential and limitations of S-layers as support for planar lipid bilayers

    International Nuclear Information System (INIS)

    Kiene, E.

    2011-01-01

    then after chemical modification and no additional activation step was necessary. The lipid bilayer was fabricated by binding and fusion of discoidal lipid structures, so-called bicelles, while monitoring the process in AFM and QCM-D. As an exemplary transmembrane protein, the nicotinic acetylcholine receptor nAChR was isolated from T. californica and purified using magnetic beads coated with an nAChR specific antibody. An S-layer supported membrane could be fabricated by chemical adsorption and fusion of bicelles, but no bicelles could be bound using the Ni-HIS-interaction on the recombinant S-layer. Further crystallisation and Ni-HIS-tag binding studies, including TEM analysis, as well as near surface charge (zeta-potential) measurements of the inner and outer surface of SbpA lattices, gave interesting insights into the folding and crystallisation ability and the accessibility of the C-terminal HIS-tag of the recombinant protein. In conclusion, S-layer lattices were found to be a potentially powerful tool for nanobiotechnologic applications including the build-up of supported planar lipid membranes. However, great effort needs to be put into the thorough analysis of 3D structural models and subsequently into the optimisation of S-layer crystallisation processes and the accessibility of functional moieties. (author) [de

  16. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Science.gov (United States)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  17. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong [Physics Division, Institute of Nuclear Energy Research, Lungtan, Taoyuan 32546 (China)

    2008-05-15

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with {proportional_to}60 {mu}m in thickness and {proportional_to}0.054 S cm{sup -1} conductivity at 800 C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with {proportional_to}30 {mu}m in thickness and {proportional_to}30% porosity has a minimum resistance after being heated at 1000 C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 C for 2 h has a minimum inherent resistance and achieves output power densities of {proportional_to}440 mW cm{sup -2} at 800 C, {proportional_to}275 mW cm{sup -2} at 750 C and {proportional_to}170 mW cm{sup -2} at 700 C. Results from SEM, XRD, ac impedance analysis and I-V-P measurements are presented here. (author)

  18. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    DEFF Research Database (Denmark)

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Iridium oxide (IrO2) currently represents a state of the art electrocatalyst for anodic oxygen evolution. Since iridium is both expensive and scarce, the future practical application of this process makes it essential to reduce IrO2 loading on the anodes of PEM water electrolysers. In the present...

  19. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  20. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    Science.gov (United States)

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  1. A comprehensive CFD model of anode-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Jeon, Dong Hyup

    2009-01-01

    The two-dimensional comprehensive CFD model of anode-supported SOFCs operating at intermediate temperature has been presented. This model provides transport phenomena of gas species with electrochemical characteristics and micro-structural properties, and predicts SOFC performance. The mathematical model solves conservation of electrons and ions, continuity equation, conservation of momentum, conservation of mass, and conservation of energy. A continuum micro-scale model based on statistical properties together with a mole-based conservation model was employed. CFD technique was used to solve the set of governing equations. The cell performance was decomposed with contributions of each overpotential and was presented at several operating temperatures with analysis of effective diffusivity. It was found that the contribution of potential gain due to temperature rising was considerably high. However it became non-significant at high operating temperature due to decreasing of effective diffusivity in AFL. These results showed that the performance and the distributions of current density, overpotentials, and mole fractions of gas species have a strong dependence upon temperature. From these results, it was concluded that the conservation of energy should be accommodated in comprehensive SOFC model. Also the useful information for the effect of parameters on cell performance and transport phenomena was provided

  2. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  3. Development and testing of anode-supported solid oxide fuel cells with slurry-coated electrolyte and cathode

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, R.; Muccillo, E.N.S.; Fonseca, F.C.; Franca, Y.V.; Porfirio, T.C. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, C.P. 11049, Pinheiros, S. Paulo, SP 05422-970 (Brazil); de Florio, D.Z. [Instituto de Quimica, UNESP, R. Prof. Francisco Degni s/n, Araraquara, SP 14801-970 (Brazil); Berton, M.A.C.; Garcia, C.M. [Instituto de Tecnologia para o Desenvolvimento, DPMA, C.P. 19067, Curitiba, PR 81531-980 (Brazil)

    2006-06-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). The whole project consisted of the preparation of the component materials: anode, cathode and electrolyte, and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Several anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3}+NiO) thick anode/(ZrO{sub 2}:Y{sub 2}O{sub 3}) thin electrolyte/(La{sub 0.65}Sr{sub 0.35}MnO{sub 3}+ZrO{sub 2}:Y{sub 2}O{sub 3}) thin cathode have been prepared and tested at 700 and 800{sup o}C after in situ H{sub 2} anode reduction. The main results show that the slurry-coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  4. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    Science.gov (United States)

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.

  5. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  6. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Koenig, B.W. [National Inst. of Health, Bethesda, MD (United States)

    1994-12-31

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q {approx} 0.3{Angstrom}{sup -1}, covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D{sub 2}O and silicon-matched (38% D{sub 2}O/62% H{sub 2}O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions.

  7. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    International Nuclear Information System (INIS)

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F.; Koenig, B.W.

    1994-01-01

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q ∼ 0.3 Angstrom -1 , covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D 2 O and silicon-matched (38% D 2 O/62% H 2 O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions

  8. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  9. Experiments in anodic film effects during electrorefining of scrap U-10Mo fuels in support of modeling efforts

    Energy Technology Data Exchange (ETDEWEB)

    Van Kleeck, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Willit, J.; Williamson, M.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fentiman, A.W. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01

    A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling. In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.

  10. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers

    DEFF Research Database (Denmark)

    Askou, Hans Jakob; Jakobsen, Rasmus Neergaard; Fojan, Peter

    2008-01-01

    . The present study indicates that the mode of action for indolicidin can be best described by a stepwise interaction of the peptide with the membrane. Formation of pores however can not be supported on the basis of our experiments. (Cited By) View on PubMed PMID: 19049026 Udgivelsesdato: SEP...

  11. Methanation on mass-selected Ru nanoparticles on a planar SiO2 model support: The importance of under-coordinated sites

    DEFF Research Database (Denmark)

    Masini, Federico; Strebel, Christian Ejersbo; McCarthy, David Norman

    2013-01-01

    Mass-selected Ru nanoparticles were deposited onto planar SiO2 support and their capability for the methanation reaction investigated. The catalytic activity for the methanation reaction at 100mbar under hydrogen rich conditions (1:99 CO/H2 ratio) was measured as a function of particle size. We f...

  12. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  13. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2015-01-01

    at a current load of 0.25Acm-2. The results were compared with literature on the sulfur tolerance of the conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicate, that the nanostructured Ni:GDC MS-SOFC based...... anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. © 2015 ECS - The Electrochemical Society...

  14. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    International Nuclear Information System (INIS)

    Liu, Q L; Fu, C J; Chan, S H; Pasciak, G

    2011-01-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm x 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO 3 -YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm 2 at 800 deg. C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  15. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    Science.gov (United States)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  16. Construction of SnO2?Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties

    OpenAIRE

    Zhu, Chengling; Chen, Zhixin; Zhu, Shenmin; Li, Yao; Pan, Hui; Meng, Xin; Imtiaz, Muhammad; Zhang, Di

    2017-01-01

    Inspired by nature, herein we designed a novel construction of SnO2 anodes with an extremely high lithium storage performance. By utilizing small sheets of graphene oxide, the partitioned-pomegranate-like structure was constructed (SnO2@C@half-rGO), in which the porous clusters of SnO2 nanoparticles are partially supported by reduced graphene oxide sheets while the rest part is exposed (half-supported), like partitioned pomegranates. When served as anode for lithium-ion batteries, SnO2@C@half...

  17. Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Graves, Christopher R.

    3000 hours of 0.25A/cm2 galvanostatic testing at 650 ºC was shown. Furthermore, it was shown on button cells that if the cathode side consisted of a dense CGO barrier layer in combination with a LSC cathode, a performance with an area specific resistance (ASR) of 0.27 Ω cm2 at 650 ºC could be obtained....... These performance and durability characteristics are very encouraging but despite several papers on metal supported SOFC with this type of infiltrated anode [1-3], the performance and the factors controlling the performance and durability is not yet well understood. Only some initial data on symmetrical cells...

  18. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  19. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2016-01-01

    galvanostatic operation at a current load of 0.25 Acm−2. The results were compared with literature on the sulfur tolerance of conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicates, that the nanostructured...... Ni:GDC MS-SOFC based anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. Furthermore, it was shown that the believed extension of the electrochemical three-phase-boundary reaction zone in the presence of GDC must be very limited and cannot account for the higher...

  20. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  1. Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere

    DEFF Research Database (Denmark)

    Xu, Na; Chen, Ming; Han, Minfang

    2018-01-01

    In this work, we investigated the long-term oxidation behavior of a Ni-Fe (1:1 weight ratio) support for solid oxide fuel cell (SOFC) applications. Ni-Fe supports were obtained through tape casting, high temperature sintering and pre-reducing in 97% H2/N2 (9/91)-3% H2O at 750 and 1000 °C, respect...... annealed in the two atmospheres maintained sufficiently high conductivity. The results from the current work demonstrate that the porous Ni-Fe support can be well employed in SOFCs, especially metal-supported SOFCs....

  2. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

    Science.gov (United States)

    Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening

    2018-06-01

    Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.

  3. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  5. Preparation and electrochemical characterisation of supporting SOFC–Ni–YZT anodes

    NARCIS (Netherlands)

    Holtappels, P.; Verbraeken, M.; Vogt, U.; Blank, David H.A.; Boukamp, Bernard A.

    2006-01-01

    Symmetrical cells consisting of Ni–Y0.20Ti0.18Zr0.62O1.90 (Ni–YZT) cermet electrodes on a Ni–YSZ support have been investigated with respect to the hydrogen/water partial pressures. Impedance spectra at open circuit potential were obtained as function of temperature and analysed in terms of a

  6. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    Science.gov (United States)

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Sudireddy, Bhaskar Reddy

    2015-01-01

    poisoning. The ceria can be incorporated as a Ni:GDC cermet anode, but also via infiltration of ceria and doped ceria into the conventional Ni:YSZ cermet anode. Both approaches have been reported to improve the tolerance towards sulfur poisoning [1-3]. In the present study we report the performance...... concentrations of 2, 5 and 10 ppm in hydrogen fuel, during galvanostatic operation at a current load of 0.25 Acm-2. The results are illustrated and compared with the conventional SOFC Ni:YSZ cermet anode in figure 1, where the relative increase in anode polarization resistance as a function of Ni sulfur coverage...... is shown. The comparison indicate the MS-SOFC anode of the present study to be more tolerant towards sulfur poisoning than the conventional Ni:YSZ cermet anode. [1] K. Sasaki et al., J. Electrochem. Soc., 153, A2023–A2029 (2006). [2] L. Zhang et al., International Journal of Hydrogen Energy, 35, 12359...

  8. Fabrication and tests of anode supported solid oxide fuel cell; Fabricacao e testes de celula a combustivel de oxido solido suportada no anodo

    Energy Technology Data Exchange (ETDEWEB)

    Florio, D.Z. de [UNESP, Araraquara, SP (Brazil)], e-mail: dzflorio@ipen.br; Fonseca, F.C.; Franca, Y.V.; Muccillo, E.N.S.; Muccillo, R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Berton, M.A.C.; Garcia, C.M. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)

    2006-07-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). Ceramic single cells were fabricated by low-cost methods, and emphasis was given to the use of ready available raw materials. The whole project consisted of the preparation of the component materials - anode, cathode, and electrolyte - and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3} + NiO) anode / (ZrO{sub 2}:Y{sub 2}O{sub 3}) electrolyte / (La{sub 0.65}Sr{sub 0.35}MnO{sub 3} + ZrO{sub 2}:Y{sub 2}O{sub 3}) cathode have been prepared and tested at 700 deg C and 800 deg C after in situ H{sub 2} anode reduction. The main results show that the slurry coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  9. Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    International Nuclear Information System (INIS)

    Amedi, Hamid Reza; Bazooyar, Bahamin; Pishvaie, Mahmoud Reza

    2015-01-01

    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations qualitatively match experimental data of the literature. Results also demonstrate that countercurrent flow pattern leads to an even distribution of temperature, more uniform current density along the cell and thus is more enduring and superior to the concurrent flow pattern. Afterward, the thorough 3-dimensional model is used for state estimation instead of a real cell. To estimate states, the model is simplified and changed to a 1-dimensional model along flow streams. This simplified model includes uncertainty (because of simplifying assumptions of the model), noise, and disturbance (because of measurements). The behaviors of extended and ensemble Kalman filter as an observer are evaluated in terms of estimating the states and filtering the noises. Results demonstrate that, like extended Kalman filter, ensemble Kalman filter properly estimates the states with 20 sets. - Highlights: • A 3-dimensional model for one cell of SOFC (solid oxide fuel cells) is presented. • Higher voltages and thermal stress in countercurrent than concurrent flow pattern. • State estimation of the cell is examined by ensemble and extended Kalman filters. • Ensemble with 20 sets is as good as extended Kalman filter.

  10. Poly(aniline) nanowires in sol-gel coated ITO: A pH-responsive substrate for planar supported lipid bilayers

    Science.gov (United States)

    Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott

    2011-01-01

    Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069

  11. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  12. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    Science.gov (United States)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  13. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  14. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  15. Development and fabrication of a new concept planar-tubular solid oxide fuel cell (PT-SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Chen, F. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui (China); Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Ding, D. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gao, J. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui (China)

    2011-06-15

    The paper reports a new concept of planar-tubular solid oxide fuel cell (PT-SOFC). Emphasis is on the fabrication of the required complex configuration of Ni-yttria-stabilised zirconia (YSZ) porous anode support by tert-butyl alcohol (TBA) based gelcasting, particularly the effects of solid loading, amounts of monomers and dispersant on the rheological behaviour of suspension, the shrinkage of a wet gelcast green body upon drying, and the properties of final sample after sintering at 1350 C and reduction from NiO-YSZ to Ni-YSZ. The results show that the gelcasting is a powerful method for preparation of the required complex configuration anode support. The anode support resulted from an optimised suspension with the solid loading of 25 vol% has uniform microstructure with 37% porosity, bending strength of 44 MPa and conductivity of 300 S cm{sup -} {sup 1} at 700 C, meeting the requirements for an anode support of SOFC. Based on the as-prepared anode support, PT-SOFC single cell of Ni-YSZ/YSZ/LSCF has been fabricated by slurry coating and co-sintering technique. The cell peak power density reaches 63, 106 and 141 mW cm {sup -} {sup 2} at 700, 750 and 800 C, respectively, using hydrogen as fuel and ambient air as oxidant. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  17. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  18. Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries

    Science.gov (United States)

    Yang, Shuai; Miao, Juan; Wang, Qiufen; Lu, Mengwei; Sun, Jiufang; Wen, Tao

    2016-12-01

    Graphitized carbon (GC), nanodiamond (ND) and graphene (GE) supported Li4Ti5O12 (LTO) composites have been synthesized via a solid-state reaction, respectively. The particle sizes of LTO/GC, LTO/ND and LTO/GE are smaller than pure LTO. When tested as the anode for lithium ion batteries, the discharge capacities of LTO, LTO/GC, LTO/ND and LTO/GE composites are 100.1 mAh g-1, 150.4 mAh g-1, 90.4 mAh g-1 and 218.3 mAh g-1 at the current density of 175 mA g-1 after 500 cycles. Their rate capacities retain 59.8%, 80.0%, 81.0% and 85.7% at the current density of 175 mA g-1, 438 mA g-1, 875 mA g-1 and 175 mA g-1, respectively. Moreover, the recovery rates of their rate capacities are 78.6%, 83.4%, 88.9% and 90.1% when returned to the current density of 175 mA g-1, respectively. The reasons can be attributed to the synergistic effect between GC (ND and GE) and LTO as well as the features of the different carbon supports. This strategy, with the carbon constituting a good supporting structure, is an effective way to improve the cycling performance of anode materials for lithium ion batteries.

  19. Progress in Metal-Supported Axial-Injection Plasma Sprayed Solid Oxide Fuel Cells Using Nanostructured NiO-Y0.15Zr0.85O1.925 Dry Powder Anode Feedstock

    Science.gov (United States)

    Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.

    2013-06-01

    A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.

  20. Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes.

    Science.gov (United States)

    Jalife-Jacobo, H; Feria-Reyes, R; Serrano-Torres, O; Gutiérrez-Granados, S; Peralta-Hernández, Juan M

    2016-12-05

    Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Construction of SnO2-Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties.

    Science.gov (United States)

    Zhu, Chengling; Chen, Zhixin; Zhu, Shenmin; Li, Yao; Pan, Hui; Meng, Xin; Imtiaz, Muhammad; Zhang, Di

    2017-06-12

    Inspired by nature, herein we designed a novel construction of SnO 2 anodes with an extremely high lithium storage performance. By utilizing small sheets of graphene oxide, the partitioned-pomegranate-like structure was constructed (SnO 2 @C@half-rGO), in which the porous clusters of SnO 2 nanoparticles are partially supported by reduced graphene oxide sheets while the rest part is exposed (half-supported), like partitioned pomegranates. When served as anode for lithium-ion batteries, SnO 2 @C@half-rGO exhibited considerably high specific capacity (1034.5 mAh g -1 after 200 cycles at 100 mA g -1 ), superior rate performance and remarkable durability (370.3 mAh g -1 after 10000 cycles at 5 A g -1 ). When coupled with graphitized porous carbon cathode for lithium-ion hybrid capacitors, the fabricated devices delivered a high energy density of 257 Wh kg -1 at ∼200 W kg -1 and maintained 79 Wh kg -1 at a super-high power density of ∼20 kW kg -1 within a wide voltage window up to 4 V. This facile and scalable approach demonstrates a new architecture for graphene-based composite for practical use in energy storage with high performance.

  2. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    Science.gov (United States)

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  3. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. Spectroscopic and nonlinear photophysical characterization of organic octupolar-compounds supported by anodic-alumina nanotube-arrays

    International Nuclear Information System (INIS)

    Morales-Saavedra, O.G.; Ontiveros-Barrera, F.G.; Hennrich, G.; Mata-Zamora, M.E.; Rodriguez-Rosales, A.A.; Banuelos, J.G.

    2011-01-01

    Highlights: → Preparation of organic-inorganic nanostructured hybrid materials. → Insertion of octupolar compounds in alumina nanotube arrays. → Linear and nonlinear photophysical characterization of solid-state hybrid structures. → Fabrication of photonic materials. - Abstract: Amorphous anodic alumina membranes (AAM) comprising highly ordered nanometric porous arrays (porous anodic aluminas: PAA) with 1D-nanotube dimensions of ∼75 nm in diameter and 45 microns in depth were successfully prepared and used as nanostructured host networks for different functionalized octupolar chromophores (named here Oct-(n)). Atomic force microscopy (AFM) studies performed on the developed hybrid systems confirmed a homogeneous insertion of these organic molecules into the PAA nanotube-arrays. Samples with high structural quality were selected for several photophysical characterizations: Comprehensive X-ray diffraction (XRD) and optical spectroscopic characterizations performed according to UV-vis absorption, photoluminescent (PL) and Raman measurements revealed the structural and optical performance of these molecules within the PAA-confinement. Since the implemented optical chromophores were specifically functionalized for nonlinear optical (NLO) applications, the obtained Oct-(n)/PAA-based amorphous hybrids were also characterized according to cubic NLO-techniques such as third harmonic generation (THG) and the Z-Scan method. PAA-confined octupolar chromophores have shown interesting linear and NLO optical properties which have not yet been intensively investigated in bulk hybrid systems; hence, the obtained hybrid nanostructures represent a promising field of investigation in the route to functional octupolar-based materials, where different self-assembled molecular structures may be formed, giving rise to enhanced linear and NLO-properties.

  5. One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries

    Science.gov (United States)

    Li, Ruihong; Li, Junli; Qi, Kaiyu; Ge, Xin; Zhang, Qiwei; Zhang, Bangwen

    2018-03-01

    Silicon is one of the most promising candidates for next-generation anode of Lithium-ion batteries. However, poor electrical conductivity and large volume change during alloying/dealloying hinder its practical use. Here we reported a three-dimensional (3D) nitrogen and sulfur codoped graphene supported silicon nanoparticles composite (SN-G/Si) through one-step hydrothermal self-assembly. The obtained SN-G/Si was investigated in term of instrumental characterizations and electrochemical properties. The results show that SN-G/Si as a freestanding anode in LIBs delivers a reversible capacity of 2020 mAh g-1 after 100 cycles with coulombic efficiency of nearly 97%. The excellent electrochemical performance is associated with the unique structure and the synergistic effect of SN-G/Si, in which SN-G provides volume buffer for nano Si as the flexible loader, short paths/fast channels for electron/Li ion transport as porous skeleton, and low charge-transfer resistance.

  6. Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte

    International Nuclear Information System (INIS)

    Guo Weimin; Liu Jiang; Zhang Yaohui

    2008-01-01

    Anode-supported solid oxide fuel cells (SOFCs) comprising NiO-samarium-doped ceria (SDC) (Sm 0.2 Ce 0.8 O 1.9 ) composite anode, thin tri-layer electrolyte, and La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 (LSCF)-La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM) composite cathode were fabricated. The thin tri-layer consisting of an 11-μm thick LSGM electrolyte layer and a 12-μm thick La 0.4 Ce 0.6 O 1.8 (LDC) layer on each side of the LSGM was prepared by centrifugal casting and co-firing technique. The performance of the cells operated with humidified H 2 as fuel and ambient air as oxidant showed a maximum power density of 1.23 W cm -2 at 800 deg. C. A stability test of about 100 h was carried out and some deterioration of output power was observed, while the open circuit voltage (OCV) kept unchanged. Impedance measurements showed that both the electrolyte ohmic resistance and the electrode polarization increased with time and the latter dominated the degradation

  7. Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Guo Weimin [College of Chemistry, South China University of Technology, Guangzhou 510640, Guangdong (China); Liu Jiang [College of Chemistry, South China University of Technology, Guangzhou 510640, Guangdong (China)], E-mail: jiangliu@scut.edu.cn; Zhang Yaohui [College of Chemistry, South China University of Technology, Guangzhou 510640, Guangdong (China)

    2008-05-20

    Anode-supported solid oxide fuel cells (SOFCs) comprising NiO-samarium-doped ceria (SDC) (Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9}) composite anode, thin tri-layer electrolyte, and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3} (LSCF)-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM) composite cathode were fabricated. The thin tri-layer consisting of an 11-{mu}m thick LSGM electrolyte layer and a 12-{mu}m thick La{sub 0.4}Ce{sub 0.6}O{sub 1.8} (LDC) layer on each side of the LSGM was prepared by centrifugal casting and co-firing technique. The performance of the cells operated with humidified H{sub 2} as fuel and ambient air as oxidant showed a maximum power density of 1.23 W cm{sup -2} at 800 deg. C. A stability test of about 100 h was carried out and some deterioration of output power was observed, while the open circuit voltage (OCV) kept unchanged. Impedance measurements showed that both the electrolyte ohmic resistance and the electrode polarization increased with time and the latter dominated the degradation.

  8. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán-Duque, Fernando L. [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Palma-Goyes, Ricardo E. [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia); González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No 186, C.P 09340, México D.F (Mexico); Peñuela, Gustavo [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: rtorres@matematicas.udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia)

    2014-08-15

    Highlights: • Pathway and efficiency are linked to the current-electrode–electrolyte interaction. • Unlike BDD, IrO{sub 2} route was independent of current but dependent on the electrolyte. • IrO{sub 2}/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} routes were via IrO{sub 3} and chlorine species, respectively. • BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems were favored at low and high currents, respectively. - Abstract: Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO{sub 2}) used as anode materials were tested with Na{sub 2}SO{sub 4} or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode–electrolyte interaction. With BDD, the degradation pathway depends on i: If i < the limiting current density (i{sub lim}), CV is mainly degraded by ·OH radicals, whereas if i > i{sub lim}, generated oxidants play a major role in the CV elimination. When IrO{sub 2} was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na{sub 2}SO{sub 4} on IrO{sub 2} seems to occur via IrO{sub 3}; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na{sub 2}SO{sub 4} electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO{sub 2}. Thus, the IrO{sub 2}/Cl{sup −} and BDD/SO{sub 4}{sup 2−} systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems is favored at low and high current densities, respectively.

  9. Development and manufacturing of tape casted, anode-supported solid oxide fuel cells; Entwicklung und Herstellung von foliengegossenen, anodengestuetzten Festoxidbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schafbauer, Wolfgang

    2010-07-01

    Solid oxide fuel cells offer high potential in transforming the chemical energy of hydrogen or natural gas into electrical energy. Due to the high efficiency of fuel cells, lots of effort has been made in the improvement of net efficiency and in materials development during the last years. Recently, the introduction of high performance, low-cost production technologies become more and more important. At the Institute of Energy Research IEF-1 of Forschungszentrum Julich, standard SOFCs were processed by time and work consuming methods. On the way to market entrance, product costs have to be reduced drastically. The aim of this thesis is the introduction of a high efficient low-cost processing route for the SOFC manufacturing. Therefore, the well-known and well established shaping technology tape casting was used for generating the anode substrates. As the first goal of this approach, two different tape casting slurries were developed in order to get substrates in the thickness range from 300 to 500 {mu}m after sintering. After shaping of the substrates, sinter regimes for the different necessary coatings were adapted to the novel substrate types in order to obtain cells with high performance and strength. Therefore, the different coating technologies like screen printing and vacuum slip casting were used for cell manufacturing. The optimization of the different coating steps during cell manufacturing led to high performance SOFCs with a 10% higher power output compared to the Julich state-of-the-art SOFC. Additional experiments verified the workability of the novel tape cast substrates for the manufacturing of near-net-shape SOFC. Finally, the novel cell types based on tape cast substrates were assembled to stacks with up to ten repeating units. Stack tests showed identical performance and degradation compared to stacks containing state-of-the-art SOFCs. Thus, the complete lifetime circle of a SOFC starting from powder preparation to stack assembly has been

  10. Graphite-supported 2,2′-bipyridine-capped ultrafine tin nanoparticles for anodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Nabais, Catarina; Schneider, Raphaël; Willmann, Patrick; Billaud, Denis

    2012-01-01

    Highlights: ► 2,2′-bipyridine capped Sn nanoparticles as anode materials for Li-ion batteries. ► High dispersion of Sn nanoparticles at the surface of the graphite matrix. ► The introduction of 2,2′-bipyridine improves the capacity and cycling stability. ► A stable reversible capacity of ca. 480 mA h g −1 after 20 cycles was observed. - Abstract: Monodisperse and small tin nanoparticles were prepared from a 2,2′-bipyridine–tin(+2) chloride complex using sodium borohydride as reducing agent. When the synthesis was conducted in the presence of graphite, Sn particles with an average diameter of ca. 29 nm well-dispersed at the surface of graphite were obtained. Electrochemical lithium insertion was carried out in these materials. A stable reversible capacity of ca. 480 mA h g −1 , value 37% higher than that of pure graphite, was found.

  11. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  12. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  13. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the d......In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  14. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.

    Science.gov (United States)

    Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A

    2017-07-12

    Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control

  15. Synthesis of graphitized carbon, nanodiamond and graphene supported Li_4Ti_5O_1_2 and comparison of their electrochemical performance as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Shuai; Miao, Juan; Wang, Qiufen; Lu, Mengwei; Sun, Jiufang; Wen, Tao

    2016-01-01

    Highlights: • We synthesized graphitized carbon, nanodiamond and graphene supported Li_4Ti_5O_1_2, respectively. • The order of the capacities is LTO/GE > LTO/GC > LTO > LTO/ND after 500 cycles. • The rate capabilities and cycling stabilities are in the order of LTO/GE > LTO/ND > LTO/GC > LTO. - Abstract: Graphitized carbon (GC), nanodiamond (ND) and graphene (GE) supported Li_4Ti_5O_1_2 (LTO) composites have been synthesized via a solid-state reaction, respectively. The particle sizes of LTO/GC, LTO/ND and LTO/GE are smaller than pure LTO. When tested as the anode for lithium ion batteries, the discharge capacities of LTO, LTO/GC, LTO/ND and LTO/GE composites are 100.1 mAh g"−"1, 150.4 mAh g"−"1, 90.4 mAh g"−"1 and 218.3 mAh g"−"1 at the current density of 175 mA g"−"1 after 500 cycles. Their rate capacities retain 59.8%, 80.0%, 81.0% and 85.7% at the current density of 175 mA g"−"1, 438 mA g"−"1, 875 mA g"−"1 and 175 mA g"−"1, respectively. Moreover, the recovery rates of their rate capacities are 78.6%, 83.4%, 88.9% and 90.1% when returned to the current density of 175 mA g"−"1, respectively. The reasons can be attributed to the synergistic effect between GC (ND and GE) and LTO as well as the features of the different carbon supports. This strategy, with the carbon constituting a good supporting structure, is an effective way to improve the cycling performance of anode materials for lithium ion batteries.

  16. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Jacob, Riko

    We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  17. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface.

    Science.gov (United States)

    Kai, Siqi; Li, Xu; Li, Bolin; Han, Xiaofeng; Lu, Xiaolin

    2017-12-20

    Hydrolysis of planar phospholipids catalyzed by honey bee venom phospholipase A 2 (bvPLA 2 ) was studied. Experiments demonstrated that Ca 2+ ions mediated between the lipids and bvPLA 2 , induced reorientation of bvPLA 2 , and activated hydrolysis. One of the hydrolysis products, fatty acids, was desorbed, and the other one, lysophospholipids, self-organized at the interface.

  18. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  19. Graphene supported Sn-Sb rate at carbon core-shell particles as a superior anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangqiang; Chen, Peng; Wang, Yong [Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University (China); Wu, Minghong; Pan, Dengyu [Institute of Nanochemistry and Nanobiology, Shanghai Univ. (China)

    2010-10-15

    This paper reports the preparation and Li-storage properties of graphene nanosheets(GNS), GNS supported Sn-Sb rate at carbon (50-150 nm) and Sn-Sb nanoparticles (5-10 nm). The best cycling performance and excellent high rate capabilities were observed for GNS-supported Sn-Sb rate at carbon core-shell particles, which exhibited initial capacities of 978, 850 and 668 mAh/g respectively at 0.1C, 2C and 5C (1C = 800 mA/g) with good cyclability. Besides the GNS support, the carbon skin around Sn-Sb particles is believed to be a key factor to improve electrochemical properties of Sn-Sb. (author)

  20. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Yongjiao; Zang, Jianbing; Dong, Liang; Pan, Hong; Yuan, Yungang; Wang, Yanhui

    2013-01-01

    Highlights: • The graphitized nanodiamond (GND) showed a higher oxidation-resistance than XC-72. • The PtNi/GND electrocatalytic exhibited greater stability than PtNi/XC-72. • The PtNi/GND had a better catalytic activity for MOR and ORR than Pt/GND. -- Abstract: Surface graphitized nanodiamond (GND) with a diamond core covered by a graphitic carbon shell was prepared by annealing ND at the temperature of 1300 °C in a vacuum of 10 −3 Pa. PtNi electrocatalysts were prepared by a microwave heating polyol method using the prepared GND as a support. The composition and morphology of the PtNi electrocatalysts supported on GND (PtNi/GND) were characterized by X-ray diffraction, transmission electron microscopy and energy dispersion spectra. The results showed that nano-scaled PtNi alloy particles with an atomic ratio of approximately 1:1 were uniformly deposited on the GND through co-reduction process. The electrocatalytic activities of the PtNi/GND electrocatalysts for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) were investigated by cyclic voltammetry, chronoamperometry and linear sweep voltammetry. The PtNi/GND exhibited better electrocatalytic activities than the Pt/GND either for MOR and ORR. In comparison with traditional carbon support Vulcan XC-72, GND showed higher oxidation-resistance, and consequently led to greater stability for the PtNi/GND than PtNi/XC-72

  1. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  2. A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes

    Science.gov (United States)

    Kowase, Takayuki; Hori, Keisuke; Hasegawa, Kei; Momma, Toshiyuki; Noda, Suguru

    2017-09-01

    Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%-60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature ≥2000 °C, much higher than the melting point of Si (1414 °C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/gfilm, 230 mAh/cm3, and 0.644 mAh/cm2 with a moderate Si-based performance of 863 mAh/gSi at the 100th cycle.

  3. Effect of heat treatment on stability of gold particle modified carbon supported Pt-Ru anode catalysts for a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Li Xiaowei; Liu Juanying; Huang Qinghong; Vogel, Walter; Akins, Daniel L.; Yang Hui

    2010-01-01

    Carbon supported Au-PtRu (Au-PtRu/C) catalysts were prepared as the anodic catalysts for the direct methanol fuel cell (DMFC). The procedure involved simple deposition of Au particles on a commercial Pt-Ru/C catalyst, followed by heat treatment of the resultant composite catalyst at 125, 175 and 200 o C in a N 2 atmosphere. High-resolution transmission electron microscopy (HR-TEM) measurements indicated that the Au nanoparticles were attached to the surface of the Pt-Ru nanoparticles. We found that the electrocatalytic activity and stability of the Au-PtRu/C catalysts for methanol oxidation is better than that of the PtRu/C catalyst. An enhanced stability of the electrocatalyst is observed and attributable to the promotion of CO oxidation by the Au nanoparticles adsorbed onto the Pt-Ru particles, by weakening the adsorption of CO, which can strongly adsorb to and poison Pt catalyst. XPS results show that Au-PtRu/C catalysts with heat treatment lead to surface segregation of Pt metal and an increase in the oxidation state of Ru, which militates against the dissolution of Ru. We additionally find that Au-PtRu/C catalysts heat-treated at 175 o C exhibit the highest electrocatalytic stability among the catalysts prepared by heat treatment: this observation is explained as due to the attainment of the highest relative concentration of gold and the highest oxidation state of Ru oxides for the catalyst pretreated at this temperature.

  4. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method

    Science.gov (United States)

    Abdullah, N.; Kamarudin, S. K.; Shyuan, L. K.; Karim, N. A.

    2017-12-01

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1 PtRu, respectively, compared with the other samples.

  5. Processing of composites based on NiO, samarium-doped ceria and carbonates (NiO-SDCC as anode support for solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Lily Siong Mahmud

    2017-09-01

    Full Text Available NiO-SDCC composites consisting of NiO mixed with Sm-doped ceria (SDC and carbonates (Li2CO3 and Na2CO3 were sintered at different temperatures and reduced at 550 °C. The influence of reduction on structure of the NiO-SDCC anode support for solid oxide fuel cells (SOFCs was investigated. Raman spectra of the NiO-SDCC samples sintered at 500, 600 and 700 °C showed that after reducing at 550 °C NiO was reduced to Ni. In addition, SDC and carbonates (Li2CO3 and Na2CO3 did not undergo chemical transformation after reduction and were still detected in the samples. However, no Raman modes of carbonates were identified in the NiO-SDCC pellet sintered at 1000 °C and reduced at 550 °C. It is suspected that carbonates were decomposed at high sintering temperature and eliminated due to the reaction between the CO32– and hydrogen ions during reduction in humidified gases at 550 °C. The carbonate decomposition increased porosity in the Ni-SDCC pellets and consequently caused formation of brittle and fragile structure unappropriated for SOFC application. Because of that composite NiO-SDC samples without carbonates were also analysed to determine the factors affecting the crack formation. In addition, it was shown that the different reduction temperatures also influenced the microstructure and porosity of the pellets. Thus, it was observed that Ni-SDC pellet reduced at 800 °C has higher electrical conductivity of well-connected microstructures and sufficient porosity than the pellet reduced at 550 °C.

  6. Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO{sub 3} based electrolyte film with high power density

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395 (Japan); Eto, Hiroyuki [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-Shi, Ibaraki 311-0102 (Japan); Inagaki, Toru [The Kansai Electric Power Co., Inc., 11-20 Nakoji 3-Chome, Amagasaki, Hyogo 661-0974 (Japan)

    2010-10-01

    Optimization of sintering temperature for NiO-Fe{sub 2}O{sub 3} composite oxide substrate was studied in order to obtain a dense substrate with smooth surface. By in situ reduction, the substrate was changed to a porous Ni-Fe alloy metal. The volumetric shrinkage and porosity of the substrate were also studied systematically with the Ni-Fe substrate reduced at different temperatures. A Sr and Mg-doped LaGaO{sub 3} (LSGM) thin film was prepared on dense substrate by the pulsed laser deposition (PLD) method. The LSGM film with stoichiometric composition was successfully prepared under optimal deposition parameters and a target composition. Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSC55) cathode was prepared by the slurry coating method on the deposited film. Prepared SOFC single cell shows high power density and the maximum power density (MPD) achieved was 1.79, 0.82 and 0.29 W cm{sup -2} at 973, 873 and 773 K, respectively. After thermal cycle from 973 to 298 K, the cell shows almost theoretical open circuit potential (1.1 V) and the power density of 1.62 W cm{sup -2}, which is almost the same as that at first cycles. Therefore, the Ni-Fe porous metal support made by the selective reduction is highly promising as a metal anode substrate for SOFC using LaGaO{sub 3} thin film. (author)

  7. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  8. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  9. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  10. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    Science.gov (United States)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  11. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Science.gov (United States)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  12. Feasibility of Parylene Coating for Planar Electroporation Copper Electrodes

    Directory of Open Access Journals (Sweden)

    Vitalij NOVICKIJ

    2017-08-01

    Full Text Available This paper is focused on the feasibility study of parylene as a biocompatible coating for planar electroporation microelectrodes. The planar parallel and the circular interdigitated electrodes are applied in the analysis. The electrodes feature 100 μm width with a 300 μm gap between anode and cathode. The parylene coating thickness was varied in the 250 nm – 2 μm range. The resultant electric field distribution evaluation has been performed using the finite element method. The electrodes have been applied in electroporation experiments with Saprolegnia parasitica. For reference the additional experiments using conventional electroporation cuvette (1 mm gap have been performed. It has been determined that the parylene coating with hydrophobic properties has limited applicability for the passivation of the planar electroporation electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14953

  13. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Wei Yin

    2016-06-01

    Full Text Available Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  14. Inspection of anode and field wires for the COMPASS drift chamber, DC5, with Environmental Scanning Electron Microscope

    Science.gov (United States)

    Cyuzuzo, Sonia

    2014-09-01

    The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13

  15. Beyond level planarity

    NARCIS (Netherlands)

    Angelini, P.; Da Lozzo, G.; Di Battista, G.; Frati, F.; Patrignani, M.; Rutter, I.; Hu, Y.; Nöllenburg, M.

    2016-01-01

    In this paper we settle the computational complexity of two open problems related to the extension of the notion of level planarity to surfaces different from the plane. Namely, we show that the problems of testing the existence of a level embedding of a level graph on the surface of the rolling

  16. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  17. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  18. Column Planarity and Partially-Simultaneous Geometric Embedding

    Czech Academy of Sciences Publication Activity Database

    Barba, L.; Evans, W.; Hoffmann, M.; Kusters, V.; Saumell, Maria; Speckmann, B.

    2017-01-01

    Roč. 21, č. 6 (2017), s. 983-1002 ISSN 1526-1719 Grant - others:GA MŠk(CZ) LO1506; GA MŠk(CZ) EE2.3.30.0038 Institutional support: RVO:67985807 Keywords : column planarity * unlabeled level planarity * simultaneous geometric embedding Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  19. How to draw a planarization

    NARCIS (Netherlands)

    Bläsius, T.; Radermacher, M.; Rutter, I.; Steffen, B.; Baier, C.; van den Brand, M.; Eder, J.; Hinchey, M.; Margaria, T.

    2017-01-01

    We study the problem of computing straight-line drawings of non-planar graphs with few crossings. We assume that a crossing-minimization algorithm is applied first, yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing, that fixes the topology of the resulting drawing.

  20. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  1. A novel design of anode-supported solid oxide fuel cells with Y 2O 3-doped Bi 2O 3, LaGaO 3 and La-doped CeO 2 trilayer electrolyte

    Science.gov (United States)

    Guo, Weimin; Liu, Jiang

    Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.

  2. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  3. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  4. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  5. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-05-15

    Pressed graphite felt (thickness {proportional_to}350 {mu}m) with electrodeposited PtRu (43 g m{sup -2}, 1.4:1 atomic ratio) or PtRuMo (52 g m{sup -2}, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m{sup -2} with PtRuMo at 5500 A m{sup -2} and 353 K while under the same conditions PtRu yielded 1925 W m{sup -2}. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation. (author)

  6. High-performance Li-ion Sn anodes with enhanced electrochemical properties using highly conductive TiN nanotubes array as a 3D multifunctional support

    Science.gov (United States)

    Pu, Jun; Du, Hongxiu; Wang, Jian; Wu, Wenlu; Shen, Zihan; Liu, Jinyun; Zhang, Huigang

    2017-08-01

    High capacity electrodes are demanded to increase the energy and power density of lithium ion batteries. However, the cycling and rate properties are severely affected by the large volume changes caused by the lithium insertion and extraction. Structured electrodes with mechanically stable scaffolds are widely developed to mitigate the adverse effects of volume changes. Tin, as a promising anode material, receives great attentions because of its high theoretic capacity. There is a critical value of tin particle size above which tin anodes readily crack, leading to low cyclability. The electrode design using mechanical scaffolds must retain tin particles below the critical size and concurrently enable high volumetric capacity. It is a challenge to guarantee the critical size for high cyclability and space utilization for high volumetric capacity. This study provides a highly conductive TiN nanotubes array with submicron diameters, which enable thin tin coating without sacrificing the volumetric capacity. Such a structured electrode delivers a capacity of 795 mAh gSn-1 (Sn basis) and 1812 mAh cmel-3 (electrode basis). The long-term cycling shows only 0.04% capacity decay per cycle.

  7. Planar metasurface retroreflector

    Science.gov (United States)

    Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2017-07-01

    Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation, provide a new optical design framework that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters.

  8. Routed planar networks

    Directory of Open Access Journals (Sweden)

    David J. Aldous

    2016-04-01

    Full Text Available Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\\em routes} rather than {\\em edges} as primitives. This article is intended to introduce the relevant (discrete setting notion of {\\em routed network} to graph theorists. We give a naive classification of all 71 topologically different such networks on 4 leaves, and pose a variety of challenging research questions.

  9. Electrochemical Behavior of TiO(x)C(y) as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders.

    Science.gov (United States)

    Calvillo, Laura; García, Gonzalo; Paduano, Andrea; Guillen-Villafuerte, Olmedo; Valero-Vidal, Carlos; Vittadini, Andrea; Bellini, Marco; Lavacchi, Alessandro; Agnoli, Stefano; Martucci, Alessandro; Kunze-Liebhäuser, Julia; Pastor, Elena; Granozzi, Gaetano

    2016-01-13

    To achieve complete oxidation of ethanol (EOR) to CO2, higher operating temperatures (often called intermediate-T, 150-200 °C) and appropriate catalysts are required. We examine here titanium oxycarbide (hereafter TiOxCy) as a possible alternative to standard carbon-based supports to enhance the stability of the catalyst/support assembly at intermediate-T. To test this material as electrocatalyst support, a systematic study of its behavior under electrochemical conditions was carried out. To have a clear description of the chemical changes of TiOxCy induced by electrochemical polarization of the material, a special setup that allows the combination of X-ray photoelectron spectroscopy and electrochemical measurements was used. Subsequently, an electrochemical study was carried out on TiOxCy powders, both at room temperature and at 150 °C. The present study has revealed that TiOxCy is a sufficiently conductive material whose surface is passivated by a TiO2 film under working conditions, which prevents the full oxidation of the TiOxCy and can thus be considered a stable electrode material for EOR working conditions. This result has also been confirmed through density functional theory (DFT) calculations on a simplified model system. Furthermore, it has been experimentally observed that ethanol molecules adsorb on the TiOxCy surface, inhibiting its oxidation. This result has been confirmed by using in situ Fourier transform infrared spectroscopy (FTIRS). The adsorption of ethanol is expected to favor the EOR in the presence of suitable catalyst nanoparticles supported on TiOxCy.

  10. Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lanyan; Wang, Xin, E-mail: wangxin@scnu.edu.cn [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics (China); Yin, Fuxing [Synergy Innovation Institute of GDUT (China); Zhang, Chengwei [Hebei University of Technology, Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology (China); Gao, Jinwei; Liu, Junming [South China Normal University, Institute of Advanced Materials, South China Academy of Advanced Optoelectronics (China); Zhou, Guofu [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics (China); Zhang, Yongguang, E-mail: yongguangzhang@hebut.edu.cn; Bakenov, Zhumabay [Synergy Innovation Institute of GDUT (China)

    2017-02-15

    Three-dimensional ZnO nanorod arrays on flexible high surface area carbon cloth were successfully synthesized and directly used as negative electrodes for lithium-ion batteries without using any binder additive. The structure and morphology of the as-prepared hybrid ZnO electrode were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). When tested as anodes in a lithium cell, the hybrid electrode demonstrated a high discharge capacity along with excellent rate capability and good cycling stability, delivering a reversible capacity of 891 mAh g{sup −1} at the second cycle and retaining a capacity of 469 mAh g{sup −1} after 100 cycles.

  11. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  12. Multi-anode deep well radiation detector

    International Nuclear Information System (INIS)

    Rogers, A.H.; Sullivan, K.J.; Mansfield, G.R.

    1984-01-01

    An inner cylindrical cathode and outer cylindrical cathode are concentrically positioned about a vertical center axis. Vertical anode electrodes extend parallel to the center axis and are symmetrically arranged around the inter-cylinder space between the cathodes. The ends of the anode wires are supported by a pair of insulator rings and mounted near the top and bottom of the cathode cylinders. A collection voltage applied to each anode wire for establishing an inward radial E field to the inner cathode cylinder and an outward radial E field to the outer cathode cylinder. The anode-cathode assembly is mounted within a housing containing a conversion gas. A radioactive sample is inserted into the inner cathode which functions as a tubular, deep well radiation window between the sample environment and the conversion gas environment. A portion of the gamma radiations passing through the inter-cylinder region interact with the conversion gas to produce free electrons which are accelerated by the E fields and collected on the anode wires. The extremely small diameter of the anode wires intensifies the electric fields proximate each wire causing avalanche multiplication of the free electrons resulting in a detectable charge pulse. (author)

  13. Planar Dirac diffusion

    International Nuclear Information System (INIS)

    Leo, Stefano de; Rotelli, Pietro

    2009-01-01

    We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each ''particle'' (wave packet) contribution. (orig.)

  14. Simplifying massive planar subdivisions

    DEFF Research Database (Denmark)

    Arge, Lars; Truelsen, Jakob; Yang, Jungwoo

    2014-01-01

    We present the first I/O- and practically-efficient algorithm for simplifying a planar subdivision, such that no point is moved more than a given distance εxy and such that neighbor relations between faces (homotopy) are preserved. Under some practically realistic assumptions, our algorithm uses ....... For example, for the contour map simplification problem it is significantly faster than the previous algorithm, while obtaining approximately the same simplification factor. Read More: http://epubs.siam.org/doi/abs/10.1137/1.9781611973198.3...

  15. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  16. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  17. Design of special planar linkages

    CERN Document Server

    Zhao, Jing-Shan; Ma, Ning; Chu, Fulei

    2013-01-01

    Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering.Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reach

  18. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  19. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    Science.gov (United States)

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  1. Planar elliptic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, Mark [Los Alamos National Laboratory

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  2. Improved Dynamic Planar Point Location

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Arge, Lars; Georgiadis, Loukas

    2006-01-01

    We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time.......We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time....

  3. Contracting a planar graph efficiently

    DEFF Research Database (Denmark)

    Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam

    2017-01-01

    the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...

  4. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in O(logn/loglogn+t) worst case time and updates in O(logn/loglogn) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model....

  5. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  6. Synthesis of graphitized carbon, nanodiamond and graphene supported Li{sub 4}Ti{sub 5}O{sub 12} and comparison of their electrochemical performance as anodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai; Miao, Juan, E-mail: miaojuan@hpu.edu.cn; Wang, Qiufen, E-mail: grp2009wqf@163.com; Lu, Mengwei; Sun, Jiufang; Wen, Tao

    2016-12-15

    Highlights: • We synthesized graphitized carbon, nanodiamond and graphene supported Li{sub 4}Ti{sub 5}O{sub 12}, respectively. • The order of the capacities is LTO/GE > LTO/GC > LTO > LTO/ND after 500 cycles. • The rate capabilities and cycling stabilities are in the order of LTO/GE > LTO/ND > LTO/GC > LTO. - Abstract: Graphitized carbon (GC), nanodiamond (ND) and graphene (GE) supported Li{sub 4}Ti{sub 5}O{sub 12} (LTO) composites have been synthesized via a solid-state reaction, respectively. The particle sizes of LTO/GC, LTO/ND and LTO/GE are smaller than pure LTO. When tested as the anode for lithium ion batteries, the discharge capacities of LTO, LTO/GC, LTO/ND and LTO/GE composites are 100.1 mAh g{sup −1}, 150.4 mAh g{sup −1}, 90.4 mAh g{sup −1} and 218.3 mAh g{sup −1} at the current density of 175 mA g{sup −1} after 500 cycles. Their rate capacities retain 59.8%, 80.0%, 81.0% and 85.7% at the current density of 175 mA g{sup −1}, 438 mA g{sup −1}, 875 mA g{sup −1} and 175 mA g{sup −1}, respectively. Moreover, the recovery rates of their rate capacities are 78.6%, 83.4%, 88.9% and 90.1% when returned to the current density of 175 mA g{sup −1}, respectively. The reasons can be attributed to the synergistic effect between GC (ND and GE) and LTO as well as the features of the different carbon supports. This strategy, with the carbon constituting a good supporting structure, is an effective way to improve the cycling performance of anode materials for lithium ion batteries.

  7. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  8. Preparation and study of IrO2/SiC–Si supported anode catalyst for high temperature PEM steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Tomás García, Antonio Luis; Petrushina, Irina

    2011-01-01

    A novel catalyst material for oxygen evolution electrodes was prepared and characterised by different techniques. IrO2 supported on a SiC–Si composite was synthesised by the Adams fusion method. XRD and nitrogen adsorption experiments showed an influence of the support on the surface properties o...

  9. Co-Mn-Al Mixed Oxides on Anodized Aluminum Supports and Their Use as Catalysts in the Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa; Ludvíková, Jana; Raabová, H.

    2013-01-01

    Roč. 464, AUG 15 (2013), s. 181-190 ISSN 0926-860X R&D Projects: GA ČR GAP106/10/1762 Institutional support: RVO:67985858 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides * supported catalysts * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.674, year: 2013

  10. Study on AN Intermediate Temperature Planar Sofc

    Science.gov (United States)

    Wang, Shaorong; Cao, Jiadi; Chen, Wenxia; Lu, Zhiyi; Wang, Daqian; Wen, Ting-Lian

    An ITSOFC consisted of Ni/YSZ anode supported YSZ composite thin film and La0.6Sr0.4CoO3 (LSCO) cathode combined with a Ce0.8Sm0.2O1.9 (CSO) interlayer was studied. Tape cast method was applied to prepare green sheets of Ni/YSZ anode supported YSZ composite thin film. After isostatic pressing and cosintering, the YSZ film on the Ni/YSZ anode was gas-tight dense, and 15-30μm thick. The area of the composite film was over 100 cm2. A CSO interlayer was sintered on to the YSZ electrolyte film to protect LSCO cathode from reaction with YSZ at high temperatures. The LSCO cathode layer was screen printed onto the CSO interlayer and sintered at 1200°C for 3h to form a single cell. The obtained single cell was operated with H2 as fuel and O2 as oxidant. The cell performance and impedance were measured and discussed relating with the component contributions.

  11. A Fully Automated Web-Based Program Improves Lifestyle Habits and HbA1c in Patients With Type 2 Diabetes and Abdominal Obesity: Randomized Trial of Patient E-Coaching Nutritional Support (The ANODE Study).

    Science.gov (United States)

    Hansel, Boris; Giral, Philippe; Gambotti, Laetitia; Lafourcade, Alexandre; Peres, Gilbert; Filipecki, Claude; Kadouch, Diana; Hartemann, Agnes; Oppert, Jean-Michel; Bruckert, Eric; Marre, Michel; Bruneel, Arnaud; Duchene, Emilie; Roussel, Ronan

    2017-11-08

    The prevalence of abdominal obesity and type 2 diabetes mellitus (T2DM) is a public health challenge. New solutions need to be developed to help patients implement lifestyle changes. The objective of the study was to evaluate a fully automated Web-based intervention designed to help users improve their dietary habits and increase their physical activity. The Accompagnement Nutritionnel de l'Obésité et du Diabète par E-coaching (ANODE) study was a 16-week, 1:1 parallel-arm, open-label randomized clinical trial. Patients with T2DM and abdominal obesity (n=120, aged 18-75 years) were recruited. Patients in the intervention arm (n=60) had access to a fully automated program (ANODE) to improve their lifestyle. Patients were asked to log on at least once per week. Human contact was limited to hotline support in cases of technical issues. The dietetic tool provided personalized menus and a shopping list for the day or the week. Stepwise physical activity was prescribed. The control arm (n=60) received general nutritional advice. The primary outcome was the change of the dietary score (International Diet Quality Index; DQI-I) between baseline and the end of the study. Secondary endpoints included changes in body weight, waist circumference, hemoglobin A1c (HbA1c) and measured maximum oxygen consumption (VO2 max). The mean age of the participants was 57 years (standard deviation [SD] 9), mean body mass index was 33 kg/m² (SD 4), mean HbA1c was 7.2% (SD 1.1), and 66.7% (80/120) of participants were women. Using an intention-to-treat analysis, the DQI-I score (54.0, SD 5.7 in the ANODE arm; 52.8, SD 6.2 in the control arm; P=.28) increased significantly in the ANODE arm compared to the control arm (+4.55, SD 5.91 vs -1.68, SD 5.18; between arms Pchanges improved significantly in the intervention. Among patients with T2DM and abdominal obesity, the use of a fully automated Web-based program resulted in a significant improvement in dietary habits and favorable clinical and

  12. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  13. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  14. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Materials Technology Labs., CANMET, Natural Resources Canada, Ottawa, ON (Canada)

    1998-09-01

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700 C with respect to the J-V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen. (orig.)

  15. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    Science.gov (United States)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  16. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  17. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  18. Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability

    International Nuclear Information System (INIS)

    Liu Wan-Hai; Jiang Hong-Bin; Ma Wen-Fang; Wang Xiang

    2016-01-01

    The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. (paper)

  19. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  20. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  1. Development of cofired type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hiroaki; Sakamoto, Sadaaki; Zhou, Hua-Bing [Murata Manufacturing Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    We have developed fabrication process for planar SOFC fabricated with cofired anode/electrolyte/cathode multilayers and interconnects. By cofiring technique for the multilayers, we expect to reduce the thickness of the electrolyte layers, resulting in decrease of innerimpedance, and achieve low production cost. On the other hand, the cofiring technique requires that the sintering temperature, the shrinkage profiles and the thermal expansion characteristics of all component materials should be compatible with the other. It is, therefore, difficult to cofire the multilayers with large area. Using the multilayers with surface area of 150cm{sup 2}, we fabricated the multiple cell stacks. The maximum power of 5x4 multiple cell stack (5 planes of cells in series, 4 cells in parallel in each planes 484cm{sup 2} effective electrode area of each cell planes) was 601W (0.25Wcm{sup -2}, Uf=40%). However, the terminal voltage of the multiple cell stack decreased by the cause of cell cracking, gas leakage and degradation of cofired multilayers. This paper presents the improvements of cofired multilayers, and the performance of multiple cell stacks with the improved multilayers.

  2. High resolution measurements supported by electronic structure calculations of two naphthalene derivatives: [1,5]- and [1,6]-naphthyridine—Estimation of the zero point inertial defect for planar polycyclic aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gruet, S., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr; Pirali, O. [AILES Beamline, Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette (France); Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS – Université Paris Sud, 91405 Orsay Cedex (France); Goubet, M., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS – Université Lille 1, 59655 Villeneuve d’Ascq Cedex (France)

    2014-06-21

    Polycyclic aromatic hydrocarbons (PAHs) molecules are suspected to be present in the interstellar medium and to participate to the broad and unresolved emissions features, the so-called unidentified infrared bands. In the laboratory, very few studies report the rotationally resolved structure of such important class of molecules. In the present work, both experimental and theoretical approaches provide the first accurate determination of the rotational energy levels of two diazanaphthalene: [1,5]- and [1,6]-naphthyridine. [1,6]-naphthyridine has been studied at high resolution, in the microwave (MW) region using a Fourier transform microwave spectrometer and in the far-infrared (FIR) region using synchrotron-based Fourier transform spectroscopy. The very accurate set of ground state (GS) constants deduced from the analysis of the MW spectrum allowed the analysis of the most intense modes in the FIR (ν{sub 38}-GS centered at about 483 cm{sup −1} and ν{sub 34}-GS centered at about 842 cm{sup −1}). In contrast with [1,6]-naphthyridine, pure rotation spectroscopy of [1,5]-naphthyridine cannot be performed for symmetry reasons so the combined study of the two intense FIR modes (ν{sub 22}-GS centered at about 166 cm{sup −1} and ν{sub 18}-GS centered at about 818 cm{sup −1}) provided the GS and the excited states constants. Although the analysis of the very dense rotational patterns for such large molecules remains very challenging, relatively accurate anharmonic density functional theory calculations appeared as a highly relevant supporting tool to the analysis for both molecules. In addition, the good agreement between the experimental and calculated infrared spectrum shows that the present theoretical approach should provide useful data for the astrophysical models. Moreover, inertial defects calculated in the GS (Δ{sub GS}) of both molecules exhibit slightly negative values as previously observed for planar species of this molecular family. We adjusted

  3. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO2 nanorod nanocomposites for high-rate lithium-ion battery anodes

    Science.gov (United States)

    Cheng, Jianli; Gu, Guifang; Ni, Wei; Guan, Qun; Li, Yinchuan; Wang, Bin

    2017-07-01

    Three-dimensional graphene-supported TiO2 nanorod nanocomposites (3D GS-TNR) are prepared using graphene oxide hydrogel as a restricted-area nanoreactor in the hydrothermal process, in which well-distributed TiO2 nanorods with a width of approximately 5 nm and length of 30 nm are conformally embedded in the 3D interconnected graphene network. The 3D graphene oxide not only works as a restricted-area nanoreactor to constrain the size, distribution and morphology of the TiO2; it also work as a highly interconnected conducting network to facilitate electrochemical reactions and maintain good structural integration when the nanocomposites are used as anode materials in lithium-ion batteries. Benefiting from the nanostructure, the 3D GS-TNR nanocomposites show high capacity and excellent long-term cycling capability at high current rates. The 3D GS-TNR composites deliver a high initial charge capacity of 280 mAh g-1 at 0.2 C and maintain a reversible capacity of 115 mAh g-1, with a capacity retention of 83% at 20 C after 1000 cycles. Meanwhile, compared with that of previously reported TiO2-based materials, the 3D GS-TNR nanocomposites show much better performance, including higher capacity, better rate capability and long-term cycling stability.

  4. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    Science.gov (United States)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  5. Ambient mass spectrometry: From the planar to the non-planar surface analysis

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Cvačka, Josef

    2017-01-01

    Roč. 15, č. 1 (2017), s. 31 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : ambient mass spectrometry * thin layer chromatography * non-planar surface analysis Subject RIV: CB - Analytical Chemistry, Separation

  6. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  7. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  8. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  9. Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Feng, Jing; Li, Qin; Wang, Huijun; Zhang, Min; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2018-04-17

    Metal silicates are good candidates for use in lithium ion batteries (LIBs), however, their electrochemical performance is hindered by their poor electrical conductivity and volume expansion during Li+ insertion/desertion. In this work, one-dimensional core-shell structured MnSiO3 supported with carbon nanotubes (CNTs) (referred to as CNT@MnSiO3) with good conductivity and electrochemical performance has been successfully synthesized using a solvothermal process under moderate conditions. In contrast to traditional composites of CNTs and nanoparticles, the CNT@MnSiO3 composite in this work is made up of CNTs with a layer of MnSiO3 on the surface. The one-dimensional CNT@MnSiO3 nanotubes provide a useful channel for transferring Li+ ions during the discharge/charge process, which accelerates the Li+ diffusion speed. The CNTs inside the structure not only enhance the conductivity of the composite, but also prevent volume expansion. A high reversible capacity (920 mA h g-1 at 500 mA g-1 over 650 cycles) and good rate performance were obtained for CNT@MnSiO3, showing that this strategy of synthesizing coaxial CNT@MnSiO3 nanotubes offers a promising method for preparing other silicates for LIBs or other applications.

  10. Amorphous Ni(Fe)OxHy-coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting

    Science.gov (United States)

    Shen, Junyu; Wang, Mei; Zhao, Liang; Zhang, Peili; Jiang, Jian; Liu, Jinxuan

    2018-06-01

    The development of highly efficient, robust, and cheap water oxidation electrodes is a major challenge in constructing industrially applicable electrolyzers for large-scale production of hydrogen from water. Herein we report a hierarchical stainless steel mesh electrode which features Ni(Fe)OxHy-coated self-supported nanocone arrays. Through a facile, mild, low-cost and readily scalable two-step fabrication procedure, the electrochemically active area of the optimized electrode is enlarged by a factor of 3.1 and the specific activity is enhanced by a factor of 250 at 265 mV overpotential compared with that of a corresponding pristine stainless steel mesh electrode. Moreover, the charge-transfer resistance is reduced from 4.47 Ω for the stainless steel mesh electrode to 0.13 Ω for the Ni(Fe)OxHy-coated nanocone array stainless steel mesh electrode. As a result, the cheap and easily fabricated electrode displays 280 and 303 mV low overpotentials to achieve high current densities of 500 and 1000 mA cmgeo-2, respectively, for oxygen evolution reaction in 1 M KOH. More importantly, the electrode exhibits a good stability over 340 h of chronopotentiometric test at 50 mA cmgeo-2 and only a slight attenuation (4.2%, ∼15 mV) in catalytic activity over 82 h electrolysis at a constant current density of 500 mA cmgeo-2.

  11. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  12. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  13. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  14. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  15. Development of a Planar Undulator

    International Nuclear Information System (INIS)

    Deyhim, Alex; Johnson, Eric; Kulesza, Joe; Lyndaker, Aaron; Waterman, Dave; Eisert, Dave; Green, Michael A.; Rogers, Greg; Blomqvist, K. Ingvar

    2007-01-01

    The design of a planar pure permanent magnet undulator is presented. The design requirements and mechanical difficulties for holding, positioning, and driving the magnetic arrays are explored. The structural, thermal, and electrical considerations that influenced the design are then analyzed. And finally detailed magnetic measurements are presented

  16. Casimir stress inside planar materials

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-09-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies. Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied in predicting how inhomogeneous fluids respond to Casimir forces.

  17. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  18. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  19. Graphene supported Li{sub 2}SiO{sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} nanocomposites with improved electrochemical performance as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiufen, E-mail: grp2009wqf@163.com; Yang, Shuai; Miao, Juan, E-mail: miaojuan@hpu.edu.cn; Lu, Mengwei; Wen, Tao; Sun, Jiufang

    2017-05-01

    Highlights: • We synthesized Graphene supported Li{sub 2}SiO{sub 3}@Li{sub 4}Ti{sub 5}O{sub 12}. • The discharge capacity is 399.2 mAh g{sup −1} at the current density of 150 mA g{sup −1} after 200 cycles. • The charge rate capacities retain 89.1% at the current density from 150 mA g{sup −1} to 750 mA g{sup −1}. • The recovery rates of the charge capacities are 91.0% when returned the current density of 150 mA g{sup −1}. - Abstract: Graphene supported Li{sub 2}SiO{sub 3}@Li{sub 4}Ti{sub 5}O{sub 12} (GE@LSO/LTO) nanocomposites have been synthesized via a hydrothermal route and following calcination. LSO/LTO nanospheres are adhered to the graphene nanosheets with the size of 50–100 nm, in which both LSO and LTO particles are attached together. When tested as the anode for lithium ion batteries, the initial discharge and charge capacities of GE@LSO/LTO are 720.6 mAh g{sup −1} and 463.4 mAh g{sup −1} at the current density of 150 mA g{sup −1}. After 200 cycles, the discharge and charge capacities can be remained of 399.2 mAh g{sup −1} and 398.9 mAh g{sup −1}, respectively. Moreover, the charge rate capacities of GE@LSO/LTO composites retain 89.1% at the range of current density from 150 mA g{sup −1} to 750 mA g{sup −1}. And its recovery rates are 91.0% when the current density back to 150 mA g{sup −1}. In addition, the reversible capacity and cycle stability of GE@LSO/LTO are better than that of LTO and LSO/LTO. The reasons can be attributed to the synergistic effect between GE and LSO/LTO as well as the features of GE supports.

  20. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  1. Level shift and charm mass: a test of asymptotic planarity

    International Nuclear Information System (INIS)

    Palmer, W.F.; Pinsky, S.S.; Shi, C.C.

    1976-01-01

    Level shifts and mixings away from exact exchange degeneracy are examined with respect to the ''asymptotic planarity'' predictions of Chew and Rosenzweig. It is found that the data in the J/sup P/ = 0 - , 1 - , and 2 + multiplets support neither the general shape nor the special relation proposed by Chew and Rosenzweig for the tensor and vector ''cylinder'' corrections

  2. Planar defects and dislocations in transition-metal disilicides

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Čák, M.; Šob, Mojmír; Inui, H.

    2015-01-01

    Roč. 58, Mar (2015), s. 43-49 ISSN 0966-9795 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : intermetallics * dislocation structure * planar fault s * ab-initio calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.541, year: 2015

  3. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Sudireddy, Bhaskar Reddy

    2017-01-01

    performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated....... The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm−2 with a fuel utilization of 31...

  4. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  5. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  6. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  8. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  9. Influence of the anodizing process variables on the acidic properties of anodic alumina films

    Directory of Open Access Journals (Sweden)

    D.E. Boldrini

    Full Text Available Abstract In the present work, the effect of the different variables involved in the process of aluminum anodizing on the total surface acidity of the samples obtained was studied. Aluminum foils were treated by the electro-chemical process of anodic anodizing within the following variable ranges: concentration = 1.5-2.5 M; temperature = 303-323 K; voltage = 10-20 V; time = 30-90 min. The total acidity of the samples was characterized by two different methods: acid-base titration using Hammett indicators and potentiometric titration. The results showed that anodizing time, temperature and concentration were the main variables that determined the surface acid properties of the samples, and to a lesser extent voltage. Acidity increased with increasing concentration of the electrolytic bath, whereas the rest of the variables had the opposite effect. The results obtained provide a novel tool for variable selection in order to use synthetized materials as catalytic supports, adding to previous research based on the morphology of alumina layers.

  10. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  11. Forming lead-based anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnichuk, V I; Voitsekhovich, R I

    1972-01-01

    Lead-based anodes can be produced by forming a layer of lead dioxide by chemical treatment in a solution of sulfuric acid in potassium permanganate at 80 to 100/sup 0/. The solution is mixed by compressed air. (RWR)

  12. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  13. Numerical investigation of the effect of operating parameters on a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Raj, Abhishek; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Effects of operating parameters on a planar type of SOFC are investigated. • The studies carried out by developing a three dimensional mathematical model. • The cell performance is enhanced at high temperatures and cathode stoichiometry. • Cathode stoichiometry has a high influence on the cell performance. • The effect of anode stoichiometry on the cell performance is low. - Abstract: The three operating parameters – temperature, stoichiometry and the degree of humidification – constitute key factors required to ensure high performance of the solid oxide fuel cell (SOFC). A careful trade-off between performance and parasitic loads is required in order to optimize the output. The present study numerically analyzes the influence of the key operating parameters on the performance of planar type of SOFC and parasitic loads utilizing a validated three dimensional mathematical model which takes into account of the conservation of mass, momentum, species and charge. The numerical results indicate that the cell performance is enhanced at high temperatures and cathode stoichiometry and it declines with increasing cathode relative humidity. Furthermore, cathode stoichiometry is found to have higher influence on the cell performance as compared to the anode stoichiometry. The gain in cell performance however, has to be balanced with the changing parasitic load requirement from pumping, humidification and heating. The results presented herein can assist in the selection of optimum or near-to-optimum operating parameters for high performance planar type SOFC

  14. Sealing of cavities with lateral feed-throughs by anodic bonding

    DEFF Research Database (Denmark)

    Fléron, René; Jensen, Flemming

    2003-01-01

    The SESiBon(1)) project under the EU Growth programme has focussed on the investigation and exploitation of various silicon bonding techniques. Both standard silicon to pyrex wafer bonding and the more advanced silicon-to-silicon thin film anodic bonding has been investigated. Here we present...... the results of the work done to enable bonding of structured wafer surfaces, allowing lateral feed-throughs into sealed cavities.Lateral feed throughs are formed by means of RIE in a high-doped poly-silicon film deposited on an oxidized 4" silicon wafer. Next a BPSG (Boron Phosphorus Silicate Glass) layer...... is deposited in a PECVD reaction chamber onto the structured surface. The BPSG is used as an intermediate planarization layer. Planarization is done by annealing the wafer in a N2-O2-H2O ambient for 4 - 8h @ 900 degreesC. After planarization the two wafers are bonded together, sealing the cavities.Our work...

  15. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  16. Magneto-Plasmonic Properties of Au/Fe/Au Planar Nanostructures: Theory and Experiments

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Lesňák, M.; Otipka, P.; Sobota, Jaroslav

    2016-01-01

    Roč. 12, č. 1 (2016), s. 136-141 ISSN 2211-8128 Institutional support: RVO:68081731 Keywords : magneto-plasmonics * planar nanostructures * response factors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  18. Model-supported interpretation of the electrochemical characteristics of solid oxide fuel cells with Ni/YSZ cermet anodes; Modellgestuetzte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden

    Energy Technology Data Exchange (ETDEWEB)

    Gewies, Stefan

    2009-01-29

    This work presents the development, validation and application of a multiscale model for the detailed description of a solid oxide fuel cell (SOFC) with a Ni/YSZ (nickel/yttria-stabilized zirconia) cermet anode. The aim of the study is the identification of the physico-chemical loss processes, as seen in impedance spectra and polarization curves. The model consists of an elementary kinetic description of the electrochemistry including the development of an electrical double layer at the electrode/electrolyte interface of the cermet anode, a homogenized description of charge and gas-phase transport in the electrodes as well as a macroscopic description of convective and diffusive mass transport in the gas phase above the electrodes. For the rst time this study allows for a complete description of the impedance spectra of a diffusively fuel-supplied cermet anode. By comparing simulations with experiments on symmetrical cells (University of Karlsruhe) three dominant loss processes could be identified. The model was extended to account for the description of segmented SOFCs. In correspondence with experimental data (German Aerospace Center) the simulations show strong gradients in current densities and gas concentrations. (orig.)

  19. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  20. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  1. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  2. Non-planar ABJ theory and parity

    International Nuclear Information System (INIS)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.

  3. Modeling the planar configuration of extraordinary magnetoresistance

    International Nuclear Information System (INIS)

    El-Ahmar, S; Pozniak, A A

    2015-01-01

    Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)

  4. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  5. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  6. Carbon Anode Materials

    Science.gov (United States)

    Ogumi, Zempachi; Wang, Hongyu

    Accompanying the impressive progress of human society, energy storage technologies become evermore urgent. Among the broad categories of energy sources, batteries or cells are the devices that successfully convert chemical energy into electrical energy. Lithium-based batteries stand out in the big family of batteries mainly because of their high-energy density, which comes from the fact that lithium is the most electropositive as well as the lightest metal. However, lithium dendrite growth after repeated charge-discharge cycles easily will lead to short-circuit of the cells and an explosion hazard. Substituting lithium metal for alloys with aluminum, silicon, zinc, and so forth could solve the dendrite growth problem.1 Nevertheless, the lithium storage capacity of alloys drops down quickly after merely several charge-discharge cycles because the big volume change causes great stress in alloy crystal lattice, and thus gives rise to cracking and crumbling of the alloy particles. Alternatively, Sony Corporation succeeded in discovering the highly reversible, low-voltage anode, carbonaceous material and commercialized the C/LiCoO2 rocking chair cells in the early 1990s.2 Figure 3.1 schematically shows the charge-discharge process for reversible lithium storage in carbon. By the application of a lithiated carbon in place of a lithium metal electrode, any lithium metal plating process and the conditions for the growth of irregular dendritic lithium could be considerably eliminated, which shows promise for reducing the chances of shorting and overheating of the batteries. This kind of lithium-ion battery, which possessed a working voltage as high as 3.6 V and gravimetric energy densities between 120 and 150 Wh/kg, rapidly found applications in high-performance portable electronic devices. Thus the research on reversible lithium storage in carbonaceous materials became very popular in the battery community worldwide.

  7. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  8. A preliminary study of a miniature planar 6-cell PEMFC stack combined with a small hydrogen storage canister

    Science.gov (United States)

    Zhang, Xigui; Zheng, Dan; Wang, Tao; Chen, Cong; Cao, Jianyu; Yan, Jian; Wang, Wenming; Liu, Juanying; Liu, Haohan; Tian, Juan; Li, Xinxin; Yang, Hui; Xia, Baojia

    The fabrication and performance evaluation of a miniature 6-cell PEMFC stack based on Micro-Electronic-Mechanical-System (MEMS) technology is presented in this paper. The stack with a planar configuration consists of 6-cells in serial interconnection by spot welding one cell anode with another cell cathode. Each cell was made by sandwiching a membrane-electrode-assembly (MEA) between two flow field plates fabricated by a classical MEMS wet etching method using silicon wafer as the original material. The plates were made electrically conductive by sputtering a Ti/Pt/Au composite metal layer on their surfaces. The 6-cells lie in the same plane with a fuel buffer/distributor as their support, which was fabricated by the MEMS silicon-glass bonding technology. A small hydrogen storage canister was used as fuel source. Operating on dry H 2 at a 40 ml min -1 flow rate and air-breathing conditions at room temperature and atmospheric pressure, the linear polarization experiment gave a measured peak power of 0.9 W at 250 mA cm -2 for the stack and average power density of 104 mW cm -2 for each cell. The results suggested that the stack has reasonable performance benefiting from an even fuel supply. But its performance tended to deteriorate with power increase, which became obvious at 600 mW. This suggests that the stack may need some power assistance, from say supercapacitors to maintain its stability when operated at higher power.

  9. Intense pulsed light-ion beam generated by planar type self-magnetically insulated diode

    International Nuclear Information System (INIS)

    Yoshikawa, T.; Masugata, K.; Ito, M.; Matsui, M.; Yatsui, K.

    1984-01-01

    New type of ion diode named ''Planar Type Self-Magnetically Insulated Diode'' (PSID) has been developed. By using a 1.5-mm-thick-polyethylene sheet as an anode surface, we have obtained Vsub(d) (diode voltage) -- 886 kV, Isub(d) (diode current) -- 180 kA, and Isub(i) (net ion current) -- 52 kA, yielding the diode efficiency of ion production to be -- 30 %. Multiple-shots operation (more than 40 shots) has been possible with good reproducibility in such a relatively high powers above. (author)

  10. Aerogel and xerogel composites for use as carbon anodes

    Science.gov (United States)

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  11. Geodesic distance in planar graphs

    International Nuclear Information System (INIS)

    Bouttier, J.; Di Francesco, P.; Guitter, E.

    2003-01-01

    We derive the exact generating function for planar maps (genus zero fatgraphs) with vertices of arbitrary even valence and with two marked points at a fixed geodesic distance. This is done in a purely combinatorial way based on a bijection with decorated trees, leading to a recursion relation on the geodesic distance. The latter is solved exactly in terms of discrete soliton-like expressions, suggesting an underlying integrable structure. We extract from this solution the fractal dimensions at the various (multi)-critical points, as well as the precise scaling forms of the continuum two-point functions and the probability distributions for the geodesic distance in (multi)-critical random surfaces. The two-point functions are shown to obey differential equations involving the residues of the KdV hierarchy

  12. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Science.gov (United States)

    Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui

    2018-05-01

    In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  13. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  14. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-05-01

    Full Text Available In flexible OLEDs (FOLEDs, the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  15. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  16. Attractive planar panelization using dynamic relaxation principles

    NARCIS (Netherlands)

    Gauss, Florian; Teuffel, Patrick

    2015-01-01

    In the presented paper a new method is proposed to approximate a given NURBS surface with a PQ (Planar Quad) mesh. The desired mesh layout will be generated in then attracted to the target surface. The process iteratively pulls the mesh vertices towards the target surface and then planarizes the

  17. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...

  18. Planar Algebra of the Subgroup-Subfactor

    Indian Academy of Sciences (India)

    The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of R ⋊ H ⊂ R ⋊ G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor R G ⊂ R H and the -invariant planar subalgebra ...

  19. Piecewise planar Möbius bands

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2005-01-01

    t is shown that a closed polygon with an odd number of vertices is the median of exactly one piecewise planar cylinder and one piecewise planar Möbius band, intersecting each other orthogonally. A closed polygon with an even number of vertices is in the generic case neither the median...

  20. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  1. A novel design of anode-supported solid oxide fuel cells with Y{sub 2}O{sub 3}-doped Bi{sub 2}O{sub 3}, LaGaO{sub 3} and La-doped CeO{sub 2} trilayer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Weimin [School of Chemistry and Engineering, South China University of Technology, The Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, Guangzhou 510640 (China); Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006 (China); Liu, Jiang [School of Chemistry and Engineering, South China University of Technology, The Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, Guangzhou 510640 (China)

    2010-12-15

    Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 {mu}m)/LSGM (19 {mu}m)/LDC (13 {mu}m) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 {mu}m)/LDC (17 {mu}m) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output. (author)

  2. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  3. Child-Langmuir flow with periodically varying anode voltage

    International Nuclear Information System (INIS)

    Rokhlenko, A.

    2015-01-01

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed by a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance

  4. Variability in DMSA reporting following urinary tract infection in children: pinhole, planar, and pinhole with planar

    International Nuclear Information System (INIS)

    Rossleigh, M.A.; Christian, C.L.; Craig, J.C.; Howman-Giles, R.B.; Grunewald, S.

    2004-01-01

    Purpose: To determine whether the provision of DMSA images obtained by pinhole collimation reduces inter-observer variability of reporting compared with planar DMSA images alone. Methods: One hundred consecutive DMSA images were independently interpreted three times (pinhole alone, planar alone, pinhole and planar) by four participating nuclear medicine specialists from different departments and in random order. The presence or absence of renal parenchymal abnormality was classified using the modified four level grading system of Goldraich with mean values for the 6 comparisons reported. Results: The proportion of DMSA images interpreted as abnormal was 31% for planar, 34% for pinhole and 33% for planar with pinhole. Agreement was 89% for planar alone, 89% for pinhole alone and 90% for planar with pinhole, with kappa values 0.74, 0.75 and 0.80 respectively for the normal-abnormal scan classification of individual children. These results did not vary appreciably whether interpretation of patients, kidneys or kidney zones was compared. Reasons for disagreement in reporting included different interpretations of 'abnormalities' as normal anatomical variations (splenic impression, fetal lobulation, duplex collecting systems, column of Bertin) or true parenchymal abnormalities, different adjustments in thresholds for reporting abnormality when images were technically suboptimal, different weighting given to pinhole and planar images when both were provided, and error. Conclusion: Four experienced nuclear medicine physicians showed substantial agreement in the interpretation of planar alone, pinhole alone and planar with pinhole DMSA images, but the provision of both sets of images, planar and pinhole, did not reduce variability. (authors)

  5. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  6. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  7. A simple method for determining the activity of large-area beta sources constructed from anodized aluminum foils

    International Nuclear Information System (INIS)

    Stanga, D.

    2014-01-01

    A simple method has been developed for determining the activity of large-area beta reference sources in anodized aluminum foils. It is based on the modeling of the transmission of beta rays through thin foils in planar geometry using Monte Carlo simulation. The method was checked experimentally and measurement results show that the activity of large-area beta reference sources in anodized aluminum foils can be measured with standard uncertainties smaller than the limit of 10% required by ISO 8769. - Highlights: • A method for determining the activity of large-area beta sources is presented. • The method is based on a model of electron transport in planar geometry. • The method makes use of linear programming for determining the activity. • The uncertainty of the method is smaller than 10%

  8. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  9. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  10. Mechanical constraint and release generates long, ordered horizontal pores in anodic alumina templates

    International Nuclear Information System (INIS)

    Bolger, Ciara T; Petkov, Nikolay; Holmes, Justin D; Fois, Giovanni; Cross, Graham L W; Sassiat, Nicolas; Burke, Micheál; Quinn, Aidan J

    2012-01-01

    We describe the formation of long, highly ordered arrays of planar oriented anodic aluminum oxide (AAO) pores during plane parallel anodization of thin aluminum ‘finger’ microstructures fabricated on thermally oxidized silicon substrates and capped with a silicon oxide layer. The pore morphology was found to be strongly influenced by mechanical constraint imposed by the oxide layers surrounding the Al fingers. Tractions induced by the SiO 2 substrate and capping layer led to frustrated volume expansion and restricted oxide flow along the interface, with extrusion of oxide into the primary pore volume, leading to the formation of dendritic pore structures and meandering pore growth. However, partial relief of the constraint by a delaminating interfacial fracture, with its tip closely following the anodization front, led to pore growth that was highly ordered with regular, hexagonally packed arrays of straight horizontal pores up to 3 µm long. Detailed characterization of both straight and dendritic planar pores over a range of formation conditions using advanced microscopy techniques is reported, including volume reconstruction, enabling high quality 3D visualization of pore formation. (paper)

  11. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  12. Three-dimensional anode engineering for the direct methanol fuel cell

    Science.gov (United States)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  13. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  14. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  15. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  16. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  17. Planar solid oxide fuel cells: the Australian experience and outlook

    Science.gov (United States)

    Godfrey, Bruce; Föger, Karl; Gillespie, Rohan; Bolden, Roger; Badwal, S. P. S.

    Since 1992, Ceramic Fuel Cells (CFCL) has grown to what is now the largest focussed program globally for development of planar ceramic (solid oxide) fuel cell, SOFC, technology. A significant intellectual property position in know-how and patents has been developed, with over 80 people involved in the venture. Over $A60 million in funding for the activities of the company has been raised from private companies, government-owned corporations and government business-support programs, including from energy — particularly electricity — industry shareholders that can facilitate access to local markets for our products. CFCL has established state-of-the-art facilities for planar SOFC R&D, with their expansion and scaling-up to pilot manufacturing capability underway. We expect to achieve commercial introduction of our market-entry products in 2002, with prototype systems expected to be available from early 2001.

  18. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  19. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  20. Planar impact experiments for EOS measurements

    International Nuclear Information System (INIS)

    Furnish, M.D.

    1993-01-01

    The community concerned with the numerical modeling of groundshock produced by underground nuclear tests must have access to materials data to benchmark models of rock behavior. Historically the primary source of these data has been planar impact experiments. These experiments have involved gun, explosive and electrical launchers. Other methods of introducing planar shocks include shock driving by in-contact explosives or laser bursts. This paper briefly describes gun launcher-based planar impact methods used to characterize geological materials at Sandia National Laboratories

  1. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  2. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  3. Double shell planar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  4. The design and manufacture of a notch structure for a planar InP Gunn diode

    International Nuclear Information System (INIS)

    Bai Yang; Jia Rui; Wu De-Qi; Jin Zhi; Liu Xin-Yu

    2013-01-01

    A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits. We design two kinds of InP-based Gunn diodes. One has a fixed diameter of cathode area, but has variable spacing between anode and cathode; the other has fixed spacing, but a varying diameter. The threshold voltage and saturated current exhibit their strong dependences on the spacing (10 μm–20 μm) and diameter (40 μm–60 μm) of the InP Gunn diode. The threshold voltage is approximately 4.5 V and the saturated current is in a range of 293 mA–397 mA. In this work, the diameter of the diode and the space between anode and cathode are optimized. The devices are fabricated using a wet etching technique and show excellent performances. The results strongly suggest that low-cost and reliable InP planar Gunn diodes can be used as single chip terahertz sources. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Modified planar functions and their components

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried Meidl

    2017-01-01

    functions in odd characteristic as a vectorial bent function. We finally point out that though these components behave somewhat different than the multivariate bent4 functions, they are bent or semibent functions shifted by a certain quadratic term, a property which they share with their multivariate......Zhou ([20]) introduced modified planar functions in order to describe (2n; 2n; 2n; 1) relative difference sets R as a graph of a function on the finite field F2n, and pointed out that projections of R are difference sets that can be described by negabent or bent4 functions, which are Boolean...... functions given in multivariate form. One of the objectives of this paper is to contribute to the understanding of these component functions of modified planar functions. Moreover, we obtain a description of modified planar functions by their components which is similar to that of the classical planar...

  6. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  7. The non-planarity of the benzene molecule in the X-ray structure of the chelated bismuth(III) heteroboroxine complex is not supported by quantum mechanical calculations

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Sedlák, Robert; Pecina, Adam; Rulíšek, Lubomír; Dostál, L.; Moncól, J.; Růžička, A.; Hobza, Pavel

    2016-01-01

    Roč. 45, č. 2 (2016), s. 462-465 ISSN 1477-9226 R&D Projects: GA ČR GBP208/12/G016; GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 Keywords : crystal structures * arene complexes * sigma hole Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.029, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/dt/c5dt04381f

  8. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  9. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation.......A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  10. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...

  11. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  12. Electron Sources of the Diode Type with Cathode and Anode of High Temperature Superconductors

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The planar electron sources of the diode type with cathode and anode of high temperature superconductors (HTSC) are considered. Explosive emission cathode on the basis of bismuth ceramics (Bi-Ca-Sr-Cu-O) allows forming microsecond pulse (duration > 1 μs) and low energy electron beams (10-25 keV). Tube anode of HTSC in superconducting phase compresses the pulsed electron beam (K = 2-8). It leads to an increase of the beam power density. The high voltage of the generator of Arkad'ev-Marx type (U = 100-600 kV) and the generator with double L C-line are used for experiments. The pulsed method of measuring of the HTSC critical current with the help of pulsed high current electron beam is described. (author). 16 refs., 13 figs

  13. Melt impregnation as a post processing treatment for performance enhancement in high capacity 3D microporous tin-copper-nickel intermetallic anode for Li-ion battery supported by electrodeposited nickel scaffold: A structural study

    Science.gov (United States)

    Sengupta, Srijan; Patra, Arghya; Mitra, Arijit; Jena, Sambedan; Das, Karabi; Majumder, Subhasish Basu; Das, Siddhartha

    2018-05-01

    This paper communicates stabilization of a Sn anode by impregnating it within the porous framework of a Ni-scaffold. The impregnation is carried out by electrodeposition Sn on Ni-foam followed by heating at 300 °C for 1 h. The Ni-foam was also electrodeposited on a Cu foil prior to deposition of Sn. The melting step leads to the formation of Nisbnd Sn and Cusbnd Sn intermetallics within pores of the Ni-scaffold. Snsbnd Cu/Ni intermetallics lithiate following the active-inactive strategy in which the inactive Cu/Ni buffers the volume expansion while Sn lithiates. Furthermore, this entire process takes place within Ni-scaffold which resists material pulverization and delamination and provide better electronic pathway for charge transfer. This active-inactive Sn:Snsbnd Cu/Ni intermetallic within a protected Ni-scaffold assembly results in 100th cycle discharge capacity of 587.9 mA h/g at a rate of 500 mA/g (0.5 C), and superior rate capability delivering 463 mAh/g at a rate of 2 A/g (2 C) while retaining structural integrity as compared to pure Sn electrodeposited (without heat-treatment) on the nickel scaffold.

  14. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  15. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  16. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  17. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  18. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  19. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  20. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  1. Evanescent field refractometry in planar optical fiber.

    Science.gov (United States)

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  2. Technical errors in planar bone scanning.

    Science.gov (United States)

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  3. Planar quantum squeezing and atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Q. Y.; Drummond, P. D.; Reid, M. D. [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  4. Inkjet-based adaptive planarization (Conference Presentation)

    Science.gov (United States)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    Planarization is a critical unit step in the lithography process because it enables patterning of surfaces with versatile pattern density without compromising on the stringent planarity and depth-of-focus requirements. In addition to nanoscale pattern density variation, parasitics such as pre-existing wafer topography, can corrupt the desired process output after planarization. The topography of any surface can be classified in three broad categories, depending upon the amplitude and spatial wavelength of the same [1], [2]: (i) nominal shape, (ii) nanotopography and (iii) roughness. The nominal shape is given by the largest spatial wavelengths, typically back is one technique used for micron scale device manufacturing [3]. As the name implies, a glass dielectric is spin-coated on the substrate followed by etching in a chemistry that ensures equal etching rates for both the sacrificial glass and the underlying film or substrate material. Photoresists may also be used instead of glass. However, the global planarity that can be achieved by this technique is limited. Also, planarization over a large isolated topographical feature has been studied for the reverse-tone Jet-and-Flash Imprint Lithography process, also known as JFIL-R [4]. This relies on surface tension and capillary effects to smoothen a spin-coated Si containing film that can be etched to obtain a smooth profile. To meet the stringent requirement of planarity in submicron device technologies Chemical Mechanical Planarization (CMP) is the most widely used planarization technology [5], [6]. It uses a combination of abrasive laden chemical slurry and a mechanical pad for achieving planar profiles. The biggest concern with CMP is the dependence of material removal rate on the pattern density of material, leading to the formation of a step between the high density and low-density. The step shows up as a long-range thickness variation in the planarized film, similar in scale to pre-existing substrate topography

  5. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  6. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  7. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  8. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  9. Planar random motions with drift

    Directory of Open Access Journals (Sweden)

    E. Orsingher

    2002-01-01

    different speeds, switching at Poisson paced times. We are able to obtain, in some cases, the explicit distribution of the position (X(t,Y(t, t>0 in all its components (the discrete one, lying on the edge ∂Qt of the probability support Qt, as well as the absolutely continuous one, concentrated inside Qt.

  10. Study and characterization of the irreversible transformation of electrically stressed planar Ti/TiO{sub x}/Ti junctions

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, N.; Puyoo, E., E-mail: etienne.puyoo@insa-lyon.fr; Le Berre, M.; Albertini, D.; Baboux, N.; Chevalier, C.; Ayadi, K.; Grégoire, J.; Gautier, B.; Calmon, F. [Institut des Nanotechnologies de Lyon, Université de Lyon, INL UMR 5270, CNRS, INSA de Lyon, Villeurbanne F-69621 (France)

    2015-10-14

    We investigate the properties and characteristics of planar Ti/TiO{sub x}/Ti junctions, which consist of transverse TiO{sub x} lines drawn on Ti test patterns. Junctions are elaborated by means of local anodic oxidation using atomic force microscopy. An irreversible morphological transformation occurring in a reproducible manner is observed when these planar junctions are electrically stressed under ambient atmosphere. Structural and chemical analyses based on transmission electron microscopy techniques reveal the extension of the initial amorphous TiO{sub x} into a crystalline rutile phase. This irreversible transformation is proven to vanish completely if the electrical stress occurs under vacuum atmosphere. Finally, we carry out temperature dependent electrical measurements in order to elucidate their conduction mechanism: Schottky emission above an ultra-low potential barrier is assumed to dominate under vacuum atmosphere whereas ionic conduction seems to prevail in air.

  11. The effect of foil purity on morphology of anodized nanoporous ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wierzbicka, Ewa; Syrek, Karolina [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Sulka, Grzegorz D., E-mail: sulka@chemia.uj.edu.pl [Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow (Poland); Pisarek, Marcin; Janik-Czachor, Maria [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Anodization of Zr with different purities in an aqueous electrolyte was studied. • The structural parameters of formed anodic oxides were compared. • Effect of Zr foil purity on the hexagonal arrangement of pores and cells in anodic ZrO{sub 2} was investigated. • Current efficiency and rate of anodic oxide formation were estimated. - Abstract: A two-step electrochemical formation of nanoporous zirconium oxide layers on different zirconium foils (purity 99.2% and 99.8%) was investigated. Anodizations were carried out at 20 V in an electrolyte composed of 1 M (NH{sub 4}){sub 2}SO{sub 4} and 0.15 M NH{sub 4}F. It was found that the thickness of grown oxide layer, and consequently, the rate of oxide formation depend slightly on the Zr substrate purity. The pore nucleation and anodization process occur easier in the presence of higher concentration of impurities. From top view SEM images, the structural parameters of oxide layers such as pore diameter, interpore distance, pore density, wall thickness and porosity of anodic oxide layers were estimated for both types of used substrates. On the other hand, cell size, intercell distance and cell density were evaluated from the bottom side of anodic oxide layers. A special emphasis was put on the qualitative analysis of hexagonal arrangement of nanopores and cells. The nanopore and cells arrangements in formed oxides were evaluated using various approaches based on Delaunay triangulations, angular distribution functions (ADFs) and pair distribution functions (PDFs). These results were supported by calculations of percentage of defective pores and cells for both types of used Zr substrates. The use of low purity Zr for anodizing does not affect drastically the morphology of formed nanoporous zirconia and offers a promising perspective to reduce production costs and increase availability of this material.

  12. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  13. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  14. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    Science.gov (United States)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  15. Development of conventional and single-chamber planar solid oxide fuel cells by screen-printing; Developpement de piles a combustible de type SOFC, conventionnelles et mono-chambres, en technologie planaire par serigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Rotureau, D.

    2005-06-15

    This work is the first of a new research theme of the laboratory in the field of solid oxide planar fuel cells. With his high experience in the sensor field, the objectives were to realize prototypes using a 'low cost' technology like screen-printing, using classical materials in the field of fuel cells, rather than researching new materials having optimum properties which may be damaged during the realisation of the complete fuel cell. These materials are yttria stabilised zirconia (YSZ) for electrolyte, strontium doped lanthanum manganite (LSM) for cathode and a nickel oxide-YSZ cermet (NiO-YSZ) for anode. The first part of the study consists in structural and electrical characterizations of chosen materials, both on dense pellets and on screen-printed layers of YSZ, LSM or NiO-YSZ. These characterizations showed a good adequation of our materials for a fuel cell application. The second part consists in testing realised prototypes on electrolyte support and on anode support with screen-printed electrodes and electrolyte. The weak obtained performances are mainly due to the low functional temperature (800 C), the thickness of the electrolyte support (about 1 mm) and the porosity of the YSZ screen-printed layers. Finally, we tested in the same time an original device in which both electrodes are exposed to a fuel and air mixture. This promising device inspired from the research on potentiometric sensors developed in the team by N. Guillet (2001), avoids the tightness problem encountered with two gaseous chambers. Moreover, the performances obtained are just twice below than those obtained with a conventional fuel cell with two gaseous chambers. (author)

  16. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    OpenAIRE

    CHEN Gao-hong; HU Yuan-sen; YU Mei; LIU Jian-hua; LI Guo-ai

    2017-01-01

    Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance ...

  17. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    Science.gov (United States)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3

  18. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  19. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  20. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  1. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  2. Planar quark diagrams and binary spin processes

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1986-01-01

    Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed

  3. Image Alignment by Piecewise Planar Region Matching

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.

    2014-01-01

    Robust image registration is a challenging problem, especially when dealing with severe changes in illumination and viewpoint. Previous methods assume a global geometric model (e.g., homography) and, hence, are only able to align images under predefined constraints (e.g., planar scenes and

  4. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt

    2006-01-01

    We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  5. Alliances and Bisection Width for Planar Graphs

    DEFF Research Database (Denmark)

    Olsen, Martin; Revsbæk, Morten

    2013-01-01

    An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polyn...

  6. A planar calculus for infinite index subfactors

    OpenAIRE

    Penneys, David

    2011-01-01

    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  7. A Planar Calculus for Infinite Index Subfactors

    Science.gov (United States)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  8. Connected feedback vertex set in planar graphs

    NARCIS (Netherlands)

    Grigoriev, Alexander; Sitters, René

    2010-01-01

    We study the problem of finding a minimum tree spanning the faces of a given planar graph. We show that a constant factor approximation follows from the unconnected version if the minimum degree is 3. Moreover, we present a polynomial time approximation scheme for both the connected and unconnected

  9. Are ghosts necessary in planar gauges?

    International Nuclear Information System (INIS)

    Kummer, W.

    1988-01-01

    The introduction of Faddeev-Popov ghosts in axial gauges and especially in the ones of the planar type is not a technical necessity for the general proof of renormalization and gauge independence. It is shown that all necessary identities for Green's functions and for one-particle-irreducible vertices arise in a completely ghost-free formulation as well

  10. Asymmetric anode and cathode extraction structure fast recovery diode

    Science.gov (United States)

    Xie, Jiaqiang; Ma, Li; Gao, Yong

    2018-05-01

    This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).

  11. Description of SOFC anode behavior by a mathematical modelling procedure

    International Nuclear Information System (INIS)

    Ielo, I.; Maggio, G.; Antonucci, V.; Giordano, N.

    1993-01-01

    One of the principal objectives in the development of SOFC is the identification of a stable Ni-cermet anode material with low polarization at high current density. In this respect, a mathematical approach, based on theoretical considerations, has been made in order to identify the optimal combination of geometrical and morphological characteristics of the system. The two limiting cases of diffusion-controlled and kinetic-controlled mechanisms are taken into account. Results in terms of limiting current have been treated by substituting into the related equations morphological parameters (surface area and pore size distribution of the support, metal content and surface area, electrode film thickness). Results are compared to existing experimental data and the influence of various parameters on the overall anode performance is evaluated. 2 tabs., 24 refs

  12. Compositional control of continuously graded anode functional layer

    Science.gov (United States)

    McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.

    2012-10-01

    In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).

  13. Searching for planar signatures in WMAP

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Bernui, Armando; Pereira, Thiago S.

    2009-01-01

    We search for planar deviations of statistical isotropy in the Wilkinson Microwave Anisotropy Probe (WMAP) data by applying a recently introduced angular-planar statistics both to full-sky and to masked temperature maps, including in our analysis the effect of the residual foreground contamination and systematics in the foreground removing process as sources of error. We confirm earlier findings that full-sky maps exhibit anomalies at the planar (l) and angular (l) scales (l,l) = (2,5),(4,7), and (6,8), which seem to be due to unremoved foregrounds since this features are present in the full-sky map but not in the masked maps. On the other hand, our test detects slightly anomalous results at the scales (l,l) = (10,8) and (2,9) in the masked maps but not in the full-sky one, indicating that the foreground cleaning procedure (used to generate the full-sky map) could not only be creating false anomalies but also hiding existing ones. We also find a significant trace of an anomaly in the full-sky map at the scale (l,l) = (10,5), which is still present when we consider galactic cuts of 18.3% and 28.4%. As regards the quadrupole (l = 2), we find a coherent over-modulation over the whole celestial sphere, for all full-sky and cut-sky maps. Overall, our results seem to indicate that current CMB maps derived from WMAP data do not show significant signs of anisotropies, as measured by our angular-planar estimator. However, we have detected a curious coherence of planar modulations at angular scales of the order of the galaxy's plane, which may be an indication of residual contaminations in the full- and cut-sky maps

  14. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  15. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  16. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  17. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  18. I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper; Tao, Yufei; Tsakalidis, Konstantinos

    2013-01-01

    We study the static and dynamic planar range skyline reporting problem in the external memory model with block size B, under a linear space budget. The problem asks for an O(n/B) space data structure that stores n points in the plane, and supports reporting the k maximal input points (a.k.a.skyli...

  19. An Efficient Method for Synthesis of Planar Multibody Systems including Shape of Bodies as Design Variables

    DEFF Research Database (Denmark)

    Hansen, Michael R.; Hansen, John Michael

    1998-01-01

    A point contact joint has been developed and implemented in a joint coordinate based planar multibody dynamics analysis program that also supports revolute and translational joints. Further, a segment library for the definition of the contours of the point contact joints has been integrated...

  20. Prism coupling technique for characterization of the high refractive index planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Prajzler, V.; Nekvindová, P.; Varga, Marián; Bruncko, J.; Remeš, Zdeněk; Kromka, Alexander

    2016-01-01

    Roč. 18, 11-12 (2016), s. 915-921 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : high index contrast * optical planar waveguides * zinc oxide * nanocrystalline diamond * gallium nitride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.449, year: 2016

  1. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulatio...... and mock-ups are presented....

  2. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  3. Anode plasma and focusing reb diodes

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Swain, D.W.; Hadley, G.R.; Mix, L.P.

    1975-01-01

    The use of electrical, optical, x-ray, and particle diagnostics to characterize the production of anode plasma and to monitor its influence on beam generation and focusing is reviewed. Studies using the Nereus accelerator show that after cathode turn-on, deposition of several kJ/gm on the anode is necessary before ions from hydrocarbons, adsorbed gases, and heavier metallic species are detected. The actual time at which ions are liberated depends on several factors, one of which is the specific heat of the anode substrate. Once formed, anode ions cross the A-K gap (with an energy equal to the diode voltage) and interact with the cathode to produce an axially peaked beam profile, a ''pinch'' which does not follow the critical current criterion. Experiments with externally generated anode plasma show that this type of pinch can be attracted to localized areas on the anode. Preliminary observations on Hydra indicate the anode plasma composition is similar to that on Nereus. The effect of this plasma on pinch dynamics currently is under investigation

  4. Anode baking process optimization through computer modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D.; Lancaster, D.; Crowell, B. [Noranda Aluminum, New Madrid, MO (United States); Ouellet, R.; Jiao, Q. [Noranda Technology Centre, Pointe Claire, PQ (Canada)

    1998-12-31

    Carbon anodes used in aluminum electrolysis are produced in vertical or horizontal type anode baking furnaces. The carbon blocks are formed from petroleum coke aggregate mixed with a coal tar pitch binder. Before the carbon block can be used in a reduction cell it must be heated to pyrolysis. The baking process represents a large portion of the aluminum production cost, and also has a significant effect on anode quality. To ensure that the baking of the anode is complete, it must be heated to about 1100 degrees C. To improve the understanding of the anode baking process and to improve its efficiency, a menu-driven heat, mass and fluid flow simulation tool, called NABSIM (Noranda Anode Baking SIMulation), was developed and calibrated in 1993 and 1994. It has been used since then to evaluate and screen firing practices, and to determine which firing procedure will produce the optimum heat-up rate, final temperature, and soak time, without allowing unburned tar to escape. NABSIM is used as a furnace simulation tool on a daily basis by Noranda plant process engineers and much effort is expended in improving its utility by creating new versions, and the addition of new modules. In the immediate future, efforts will be directed towards optimizing the anode baking process to improve temperature uniformity from pit to pit. 3 refs., 4 figs.

  5. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  6. Hydrogen consumption and power density in a co-flow planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)

    2009-06-15

    In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)

  7. Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Søgaard, Martin; Mogensen, Mogens Bjerg

    2014-01-01

    Investigations of Ni/ScYSZ cermets were performed by electrochemical impedance spectroscopy (EIS) using different symmetric designs: electrolyte supported (ESC) and anode supported (ASC) cells. The obtained spectra were analyzed using distribution of relaxation times (DRT), and complex non......-linear least squares fitting (CNLS). Depending on the cell design, one or two low frequency gas transport related processes have been identified, and fitted with generalized finite Warburg (GFW) elements. One was related to gas diffusion in a stagnant layer above the anode (ESC+ASC), and the other to gas...... diffusion in the anode support layer (ASC). A higher frequency process has also been identified, and correlated to the charge transfer (CT) combined with ionic conduction in the ceramic matrix. This has been fitted using a transmission line model (TML), which correlates the exhibited responses...

  8. Transition of W7-X non-planar coils from manufacturing to assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ehrke, G. [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: gunnar.ehrke@ipp.mpg.de

    2009-06-15

    The main magnetic field of Wendelstein 7-X fusion experiment (W7-X) at Max-Planck-Institut fuer Plasmaphysik Greifswald, Germany will be provided by 50 non-planar coils and supported by 20 planar coils. The non-planar coils were delivered by a consortium (CON) consisting of Babcock Noell GmbH Germany (BNG) and ASG Superconductors S.p.A. Italy (ASG). The coil production ended with the delivery of the last non-planar coil in March 2008 at the manufacturing branch of BNG in Zeitz, Germany. The construction of the coils was characterised by design changes, many rework actions and resulting time delays. Due to these numerous adjustments and changes a continuous improvement process was needed. This paper will give an overview about the transition of the non-planar coils from the acceptance tests at the manufacturer site to the beginning of the assembly at IPP. Furthermore this report will highlight technical interfaces in the period of transition.

  9. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  10. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  11. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    283.6 eV. Keywords. Anodization; phosphoric acid; anodization time; anodized aluminium oxide; aluminium. ... of anodization.5–7 The AAO layer has a large band gap, good ..... transmittance increases as the anodised membrane is heated to ...

  12. Integration of lateral porous silicon membranes into planar microfluidics.

    Science.gov (United States)

    Leïchlé, Thierry; Bourrier, David

    2015-02-07

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  13. Cache-Oblivious Planar Orthogonal Range Searching and Counting

    DEFF Research Database (Denmark)

    Arge, Lars; Brodal, Gerth Stølting; Fagerberg, Rolf

    2005-01-01

    present the first cache-oblivious data structure for planar orthogonal range counting, and improve on previous results for cache-oblivious planar orthogonal range searching. Our range counting structure uses O(Nlog2 N) space and answers queries using O(logB N) memory transfers, where B is the block...... size of any memory level in a multilevel memory hierarchy. Using bit manipulation techniques, the space can be further reduced to O(N). The structure can also be modified to support more general semigroup range sum queries in O(logB N) memory transfers, using O(Nlog2 N) space for three-sided queries...... and O(Nlog22 N/log2log2 N) space for four-sided queries. Based on the O(Nlog N) space range counting structure, we develop a data structure that uses O(Nlog2 N) space and answers three-sided range queries in O(logB N+T/B) memory transfers, where T is the number of reported points. Based...

  14. Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

    Science.gov (United States)

    Balázs, Ivan; Melcher, Jindřich; Pešek, Ondřej

    2017-10-01

    The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

  15. Optimum Exploration for the Self-Ordering of Anodic Porous Alumina Formed via Selenic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-01-01

    Improvements of the regularity of the arrangement of anodic porous alumina formed by selenic acid anodizing were investigated under various operating conditions. The oxide burning voltage increased with the stirring rate of the selenic acid solution, and the high applied voltage without oxide burning was achieved by vigorously stirring the solution. The regularity of the porous alumina was improved as the anodizing time and surface flatness increased. Conversely, the purity of the 99.5–99.999...

  16. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  17. Regular shock refraction in planar ideal MHD

    International Nuclear Information System (INIS)

    Delmont, P; Keppens, R

    2010-01-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  18. Planar algebra of the subgroup-subfactor

    Indian Academy of Sciences (India)

    We think of R α G as the II1-factor (R ∪{ug: g ∈ G}) ⊂ L(L2(R)), where ug(ˆx) ..... define a global trace on P, where for 0± the trace for P0± ∼= C is the obvious identity .... function for strings is either a local maximum or a local minimum. ..... In order to understand how the inclusion tangles act on the subgroup-subfactor planar.

  19. Planar graphical models which are easy

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  20. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  1. Determinantal spanning forests on planar graphs

    OpenAIRE

    Kenyon, Richard

    2017-01-01

    We generalize the uniform spanning tree to construct a family of determinantal measures on essential spanning forests on periodic planar graphs in which every component tree is bi-infinite. Like the uniform spanning tree, these measures arise naturally from the laplacian on the graph. More generally these results hold for the "massive" laplacian determinant which counts rooted spanning forests with weight $M$ per finite component. These measures typically have a form of conformal invariance, ...

  2. Hairy planar black holes in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aceña, Andrés [Instituto de Ciencias Básicas, Universidad Nacional de Cuyo,Mendoza (Argentina); Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique,UMR 5672, CNRS, École Normale Supérieure de Lyon,46 allé d’Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Mann, Robert [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute,31 Caroline Street North Waterloo, Ontario N2L 2Y5 (Canada)

    2014-01-28

    We construct exact hairy planar black holes in D-dimensional AdS gravity. These solutions are regular except at the singularity and have stress-energy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated c-function.

  3. Planar Quantum Mechanics: an Intriguing Supersymmetric Example

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.

  4. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  5. Electronic properties of electrolyte/anodic alumina junction during porous anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka Street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany); InnoMat GmbH, Chemnitz (Germany); Goedel, Werner A. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2007-03-15

    The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 deg. C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.

  6. EFFECT OF PHOSPHORIC ACID CONCENTRATION AND ANODIZING TIME ON THE PROPERTIES OF ANODIC FILMS ON TITANIUM

    Directory of Open Access Journals (Sweden)

    DIMAS L. TORRES

    2015-07-01

    Full Text Available In this study, it was investigated the influence of electrolyte concentration and anodizing time on the electrochemical behaviour and morphology of anodic films formed on commercially pure Ti. Electrochemical methods and surface analyses were used to characterize the films. It was found that the electrolyte concentration and anodizing time affect the growth and protective characteristics of films in a physiologic medium. It was possible to observe their non-uniformity on Ti substrates under the tested conditions. In potentiodynamic profiles, it was observed that passivation current values are affected by an anodizing time increase. Variations in impedance spectra were associated with an increase of defects within the film.

  7. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  8. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  9. Modeling and optimization of planar microcoils

    International Nuclear Information System (INIS)

    Beyzavi, Ali; Nguyen, Nam-Trung

    2008-01-01

    Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is needed to optimize their use in actuation applications. This paper first develops an analytical model for calculating the magnetic field of a planar microcoil. The model was validated by experimental data from microcoils fabricated on printed circuit boards (PCB). The model was used for calculating the field strength and the force acting on a magnetic object. Finally, the effect of different coil parameters such as the magnitude of the electric current, the gap between the wires and the number of wire segments is discussed. Both analytical and experimental results show that a smaller gap size between wire segments, more wire segments and a higher electric current can increase both the magnitude and the gradient of the magnetic field, and consequently cause a higher actuating force. The planar coil analyzed in the paper is suitable for applications in magnetic droplet-based microfluidics

  10. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  11. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  12. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  13. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2010-01-01

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  14. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  15. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  16. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  17. Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Persson, Åsa Helen; Nielsen, Jimmi

    2012-01-01

    The concept of using highly electronically conducting backbones with subsequent infiltration of electrocatalytic active materials, has recently been used to develop an alternative SOFC design based on a ferritic stainless steel support. The metal-supported SOFC is comprised of porous and highly e...... changes occurring in the anode layer during testing. The results indicate that the STN component in the anode seems to have a positive effect on the corrosion stability of the FeCr-particles in the anode layer.......) and FeCr. Electrochemical characterization and post test SEM analysis have been used to get an insight into the possible degradation mechanisms of this novel electrode infiltrated with Gd-doped CeO2 and Ni. Accelerated oxidation/corrosion experiments have been conducted to evaluate the microstructural...

  18. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  19. Experimental study of anode processes in plasma arc cutting

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Chumak, Oleksiy; Šonský, Jiří; Heinrich, M.; Stehrer, T.; Pauser, H.

    2013-01-01

    Roč. 46, č. 6 (2013), 065202-065202 ISSN 0022-3727 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 ; RVO:61388998 Keywords : Arc cutting * anode attachment * pilot arc * steam plasma cutting * torch * fluctuations * JET Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (UT-L) Impact factor: 2.521, year: 2013 http://iopscience.iop.org/0022-3727/46/6/065202/pdf/0022-3727_46_6_065202.pdf

  20. A MongoDB-Based Management of Planar Spatial Data with a Flattened R-Tree

    Directory of Open Access Journals (Sweden)

    Longgang Xiang

    2016-07-01

    Full Text Available This paper addresses how to manage planar spatial data using MongoDB, a popular NoSQL database characterized as a document-oriented, rich query language and high availability. The core idea is to flatten a hierarchical R-tree structure into a tabular MongoDB collection, during which R-tree nodes are represented as collection documents and R-tree pointers are expressed as document identifiers. By following this strategy, a storage schema to support R-tree-based create, read, update, and delete (CRUD operations is designed and a module to manage planar spatial data by consuming and maintaining flattened R-tree structure is developed. The R-tree module is then seamlessly integrated into MongoDB, so that users could manipulate planar spatial data with existing command interfaces oriented to geodetic spatial data. The experimental evaluation, using real-world datasets with diverse coverage, types, and sizes, shows that planar spatial data can be effectively managed by MongoDB with our flattened R-tree and, therefore, the application extent of MongoDB will be greatly enlarged. Our work resulted in a MongoDB branch with R-tree support, which has been released on GitHub for open access.

  1. Planar Poincare chart - A planar graphic representation of the state of light polarization

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.

    1989-01-01

    The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.

  2. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  3. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  4. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  5. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  6. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  7. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  8. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  9. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Abd-Elnaiem, Alaa M.; Mebed, A.M.; El-Said, Waleed Ahmed; Abdel-Rahim, M.A.

    2014-01-01

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  10. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  11. Planar permanent magnet multipoles: Measurements and configurations

    International Nuclear Information System (INIS)

    Cremer, T.; Tatchyn, R.

    1995-05-01

    Biplanar arrays of N rectangular permanent magnet (PM) blocks can be used to generate high quality N-pole fields in close proximity to the array axis. In applications featuring small-diameter charged particle beams, N-poles of adequate quality can be realized at relatively low cost using small volumes of PM material. In this paper we report on recent measurements performed on planar PM multipoles, and discuss techniques for improving the field quality of such devices at distances appreciably far away from the axis. Applications to hybrid/PM insertion device designs for linac-driven Free Electron Laser (FEL) operation in the x-ray range are described

  12. Broadband Planar 5:1 Impedence Transformer

    Science.gov (United States)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  13. Development of planar waveguides in zinc telluride

    International Nuclear Information System (INIS)

    Valette, Serge

    1977-02-01

    Zinc telluride (ZnTe) is one of the most attractive semi-conductors for monolithic integrated optics. In this study, the general characteristics of the planar optical waveguides achieved by implantation of light ions in ZnTe are investigated. Different aspects of prism-coupling and coherent light guiding have been taken up theoretically and experimentally. Some assumptions about the physical origin of these structures are discussed in order to explain all these results and the weak losses which have been measured. [fr

  14. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  15. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  16. Some remarks on non-planar Feynman diagrams

    International Nuclear Information System (INIS)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz

    2013-12-01

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  17. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  18. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  19. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong; Majumdar, Apala; Erban, Radek

    2012-01-01

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  20. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  1. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  2. Planar patch clamp: advances in electrophysiology.

    Science.gov (United States)

    Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels

    2008-01-01

    Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.

  3. Overview of Planar Magnetic Technology — Fundamental Properties

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    The momentum towards high efficiency, high frequency, and high power density in power supplies limits wide use of conventional wire-wound magnetic components. This article gives an overview of planar magnetic technologies with respect to the development of modern power electronics. The major...... advantages and disadvantages in the use of planar magnetics for high frequency power converters are covered, and publications on planar magnetics are reviewed. A detailed survey of winding conduction loss, leakage inductance and winding capacitance for planar magnetics is presented so power electronics...

  4. Investigation of the Arc-Anode Attachment Area by Utilizing a High-Speed Camera

    Czech Academy of Sciences Publication Activity Database

    Ondáč, Peter; Mašláni, Alan; Hrabovský, Milan

    2016-01-01

    Roč. 3, č. 1 (2016), s. 1-5 ISSN 2336-2626 R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : plasma * arc * anode * attachment * camera * wave Subject RIV: BL - Plasma and Gas Discharge Physics http://ppt.fel.cvut.cz/ppt2016.html#number1

  5. Novel Lead dioxide-Graphite-Polymer composite anode for electrochemical chlorine generation

    Czech Academy of Sciences Publication Activity Database

    Gedam, N.; Neti, R.N.; Kormunda, M.; Šubrt, Jan; Bakardjieva, Snejana

    2015-01-01

    Roč. 169, JUL (2015), s. 109-116 ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : beta-Lead dioxide * Graphite * Polymer composite anode * Chlorine generation * Cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  6. Guidelines for optimization of planar HDR implants

    International Nuclear Information System (INIS)

    Zwicker, R.D.; Schmidt-Ullrich, R.

    1996-01-01

    Purpose: Conventional low dose rate (LDR) planar Ir-192 implants are typically carried out using at most a few different source strengths. Remote afterloading offers a much higher degree of flexibility with individually programmable dwell times. Dedicated software is available to generate individual dwell times producing isodose surfaces which contour as closely as possible the target volume. The success of these algorithms in enclosing the target volume while sparing normal tissues is dependent on the positioning of the source guides which constrain the dwell points. In this work we provide source placement guidelines for optimal coverage and dose uniformity in planar high dose rate (HDR) implants. The resulting distributions are compared with LDR treatments in terms of dose uniformity and early and late tissue effects. Materials and methods: Computer studies were undertaken to determine source positions and dwell times for optimal dose uniformity in planar HDR implants, and the results were compared to those obtained using corresponding LDR implant geometries. The improvements in the dose distributions achieved with the remote after loader are expected to help offset the increased late tissue effects which can occur when LDR irradiation is replaced with a few large HDR fractions. Equivalent differential volume-dose (DVD) curves for early and late effects were calculated for different numbers of HDR fractions using a linear-quadratic model and compared to the corresponding curves for the LDR regime. Results: Tables of source placement parameters were generated as guidelines for achieving highly homogeneous planar HDR dose distributions. Differential volume-dose data generated inside the target volume provide a quantitative measure of the improvement in real dose homogeneity obtained with remote afterloading. The net result is a shift of the peak in the DVD curve toward lower doses relative to the LDR implant. The equivalent DVD curves for late effects obtained

  7. The aluminum anode in deep ocean environments

    International Nuclear Information System (INIS)

    Schreiber, C.F.

    1989-01-01

    Results of field and mini-plant studies are presented for A1 + 0.045% Hg + 0.1% Si + 0.45% Zn* and A1 + 0.015% In + 0.1% Si + 3% Zn** anodes in varying depths of natural seawater. Current capacity and potential information are presented. In addition to information on anode current capacity and potential, polarization curves were obtained on both aluminum alloys using potentiostatic techniques at a simulated ocean depth of 1090 ft. (332 m). These data were compared with similarly run experiments at ocean surface pressures. As a basis of comparison, zinc anodes (U.S. Mil-A-18001H) were included as a companion alloy. Information gained on zinc is sufficient to accurately represent the behavior of this alloy. Results conclude that conditions of high pressure (and low temperature) associated with the alloys under test did not alter their galvanic behavior from that noted at the ocean surface

  8. Infrared radiative properties of anodized aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.C.; Sharma, A.

    1983-10-01

    Measurements of anodic film thicknesses and their total hemispherical thermal emittance for various current densities (0.55-3.85 ampere/dm/sup 2/), anodizing times (1-20 min), and oxalic acid concentrations (1-6 wt.%) show a linear relationship between the film thickness and the total hemispherical thermal emittance (epsilon). Changes in oxalic acid concentration (2-4 wt.%) have no significant effect on the film growth-rate and the rate at which epsilon increases with increasing anodizing time. Measurements of epsilon for wavelengths from 3 to 30 ..mu..m show that the film growth-rate has a marked effect on the I.R. radiative properties of aluminum.

  9. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  10. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  11. Three-dimensional anode engineering for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, A.; Oloman, C.W.; Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2009-09-05

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 {mu}m, while a novel flow-by anode showed the best performance with a thickness of 200-300 {mu}m. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2{sup 3} + 1) factorial experiments on a cell with anode area of 5 cm{sup 2} and excess oxidant O{sub 2} at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm{sup 3} min{sup -1} and 353 K the peak power density was 2380 W m{sup -2} with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m{sup -2} under the same conditions. (author)

  12. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  13. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    Science.gov (United States)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  14. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  15. In situ observations of microstructural changes in SOFC anodes during redox cycling

    DEFF Research Database (Denmark)

    Klemensø, Trine; Appel, C. C.; Mogensen, Mogens Bjerg

    2006-01-01

    The anode-supported solid oxide fuel cell (SOFC) degrades when the anode is subjected to redox cycling. The degradation has qualitatively been related to microstructural changes in the nickel-yttria stabilized zirconia anode of the tested cells. In this work, the microstructural changes were...... observed in situ using environmental scanning electron microscopy. In the reduced state, a dynamic rounding of the nickel particles occurred. The oxide growth upon re-oxidation depended on the oxidation kinetics. During rapid oxidation, the NiO particles divided into 2-4 particles, which grew...... into the surrounding voids. For slower oxidation, an external oxide layer was seen to develop around the individual particles. (c) 2006 The Electrochemical Society....

  16. X-ray tube rotating anode

    International Nuclear Information System (INIS)

    Friedel, R.

    1979-01-01

    The anode disk of the X-ray rotating anode is blackened on the surface outside the focal spot tracks in order to improve the heat radiation. In particular the side opposite the focal spot tracks is provided with many small holes, the ratio of depth to cross-section ('pit ratio') being as large as possible: ranging from 2:1 to 10:1. They are arranged so densely that the radiating surface will nearly have the effect of a black body. (RW) [de

  17. Rotating anode X-ray tubes

    International Nuclear Information System (INIS)

    Webley, R.S.

    1981-01-01

    In a rotating anode x-ray tube it is proposed to mount the rotating anode, or means such as a shaft affixed to it, to rotate on bearings in a race the seating for which is cooled by a suitable coolant flow. A suitable bellows arrangement allows the coolant pressure to determine the contact pressure of the seating on the bearings. This allows the thermal impedance to be varied and the bearing wear to be optimised therewith as well as allowing adjustment for wear. The use of two bellows allows the seating section therebetween to move towards the other section as the rollers wear. (author)

  18. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    Science.gov (United States)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  19. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  20. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  1. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  2. Design and investigation of properties of nanocrystalline diamond optical planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Prajzler, V.; Varga, Marián; Nekvindová, P.; Remeš, Zdeněk; Kromka, Alexander

    2013-01-01

    Roč. 21, č. 7 (2013), s. 8417-8425 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP108/11/0794; GA MŠk LH12186; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : waveguides, planar * diamond machining * optical design and fabrication Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.525, year: 2013

  3. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Babchenko, Oleg; Varga, Marián; Stuchlík, Jiří; Jirásek, Vít; Prajzler, Václav; Nekvindová, P.; Kromka, Alexander

    2016-01-01

    Roč. 618, Nov (2016), s. 130-133 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-05053S Grant - others:AV ČR(CZ) MOST-15-04 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : hydrogenated amorphous silicon * nanocrystalline diamond * planar waveguides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.879, year: 2016

  4. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  5. Planar Hall Effect Sensors for Biodetection

    DEFF Research Database (Denmark)

    Rizzi, Giovanni

    . In the second geometry (dPHEB) half of the sensor is used as a local negative reference to subtract the background signal from magnetic beads in suspension. In all applications below, the magnetic beads are magnetised using the magnetic field due to the bias current passed through the sensor, i.e., no external...... as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field...... hybridisation in real-time, in a background of suspended magnetic beads. This characteristic is employed in single nucleotide polymorphism (SNP) genotyping, where the denaturation of DNA is monitored in real-time upon washing with a stringency buffer. The sensor setup includes temperature control and a fluidic...

  6. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  7. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  8. Anions, quantum particles in planar systems

    International Nuclear Information System (INIS)

    Monerat, Germano Amaral

    2000-03-01

    Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)

  9. Dielectric response of planar relativistic quantum plasmas

    International Nuclear Information System (INIS)

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  10. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  11. Discrete approach to complex planar geometries

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.

    1974-01-01

    Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)

  12. Two solvable problems of planar geometrical optics.

    Science.gov (United States)

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  13. Coupling Planar Cell Polarity Signaling to Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Axelrod

    2002-01-01

    Full Text Available Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP. The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

  14. Morphing Planar Graph Drawings with a Polynomial Number of Steps

    DEFF Research Database (Denmark)

    Alamdari, Soroush; Angelini, Patrizio; Chan, Timothy M.

    2013-01-01

    In 1944, Cairns proved the following theorem: given any two straight-line planar drawings of a triangulation with the same outer face, there exists a morph (i.e., a continuous transformation) between the two drawings so that the drawing remains straight-line planar at all times. Cairns’s original...

  15. Design and measurements of the double layer planar motor

    NARCIS (Netherlands)

    Rovers, J.M.M.; Jansen, J.W.; Lomonova, E.

    2013-01-01

    Moving-magnet magnetically levitated planar motors are considered for use as a wafer stage in the semiconductor lithographic industry. This puts high requirements on the accuracy and the dissipated power and cooling performance of such motors. A novel planar motor topology is developed, which

  16. The peeling process of infinite Boltzmann planar maps

    DEFF Research Database (Denmark)

    Budd, Timothy George

    2016-01-01

    criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can...

  17. Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents

    Czech Academy of Sciences Publication Activity Database

    Němcová, A.; Galal, O.; Skeldon, P.; Kuběna, Ivo; Šmíd, Miroslav; Briand, E.; Vickridge, I.; Ganem, J.-J.; Habazaki, H.

    2016-01-01

    Roč. 219, NOV (2016), s. 28-37 ISSN 0013-4686 Institutional support: RVO:68081723 Keywords : magnesium * anodic film * enrichment Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 4.798, year: 2016

  18. The Sheath-less Planar Langmuir Probe

    Science.gov (United States)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  19. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    Science.gov (United States)

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  20. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  1. Linear sweep anodic stripping voltammetry: Determination of ...

    Indian Academy of Sciences (India)

    The aim of this work is to determine Cr(VI) in water resources by anodic stripping voltammetry using SPE-. AuNPs modified electrode .... surface area about 4 fold). 3.2 Optimization of Parameters ..... in water samples. The above system offers a.

  2. Growth of anodic films on niobium

    International Nuclear Information System (INIS)

    Gomes, M.A.B.; Bulhoes, L.O.S.

    1988-01-01

    The analysis of the response of the galvanostatic growth of anodic films on niobium metal in aqueous solutions is shown. The first spark voltage showed a dependence upon value of current density that could be explained as the incorporation of anions into the film. (M.J.C.) [pt

  3. Spinal Anodes for Lithium-Ion Batteries

    CSIR Research Space (South Africa)

    Ferg, E

    1994-11-01

    Full Text Available , and layered LiCoO2. The electrochemical data demonstrated that Li+ ions will shuttle between two transition-metal host structures (anode and cathode) at a reasonably high voltage with a concomitant change in the oxidation state of the transition metal cations...

  4. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  5. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  6. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  7. Yangian-type symmetries of non-planar leading singularities

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven [Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Meidinger, David [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-05-18

    We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in N = 4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.

  8. On Longest Cycles in Essentially 4-Connected Planar Graphs

    Directory of Open Access Journals (Sweden)

    Fabrici Igor

    2016-08-01

    Full Text Available A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle C such that . For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least ¾ n vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of G are presented if G is an essentially 4-connected planar graph of maximum degree 4 or G is an essentially 4-connected maximal planar graph.

  9. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  10. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    Science.gov (United States)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  11. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  12. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  13. Fe_3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, You-Guo; Lin, Xi-Le; Zhang, Xiao-Hui; Pan, Qi-Chang; Yan, Zhi-Xiong; Wang, Hong-Qiang; Chen, Jian-Jun; Li, Qing-Yu

    2015-01-01

    ABSTRACT: Fe_3C@carbonnanocapsules(*)/expanded graphite composite was successfully prepared by a new and facile method, including mix of starting materials and heat treatment of the precursor. It is featured by unique 3-D structure, where expanded graphite acts as scaffold to ensure a continuous entity, and Fe_3C particles coated by carbon nanocapsules are embedded intimately. The Fe_3C nanoparticles encased in carbon nanocapsules act as catalyst in the modification of SEI film during the cycles. The interesting 3-D architecture which aligns the conductivity paths in the planar direction with expanded graphite and in the axial direction with carbon nanocapsules minimizes the resistance and enhances the reversible capacity. The prepared composite exhibits a high reversible capacity and excellent rate performance as an anode material for lithium ion batteries. The composite maintains a reversible capacity of 1226.2 mAh/g after 75 cycles at 66 mA/g. When the current density increases to 200 mA/g, the reversible capacity maintains 451.5 mAh/g. The facile synthesis method and excellent electrochemical performances make the composite expected to be one of the most potential anode material for lithium ion batteries.

  14. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  15. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Science.gov (United States)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  16. Electro-Analytical Study of Material Interfaces Relevant for Chemical Mechanical Planarization and Lithium Ion Batteries

    Science.gov (United States)

    Turk, Michael C.

    galvanic corrosions in chemically controlled low-pressure CMP. The CMP specific functions of the slurry components are characterized in the tribo-electro-analytical approach by using voltammetry, open circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS) in the presence as well as in the absence of surface abrasion, both with and without the inclusion of colloidal silica (SiO2) abrasives. The results are used to understand the reaction mechanisms responsible for supporting material removal and corrosion suppression. The project carried out in the area of Li ion batteries (LIBs) uses electro-analytical techniques to probe electrolyte characteristics as well as electrode material performance. The investigation concentrates on optimizing a tactically chosen set of electrolyte compositions for low-to-moderate temperature applications of lithium titanium oxide (LTO), a relatively new anode material for such batteries. For this application, mixtures of non-aqueous carbonate based solvents are studied in combination with lithium perchlorate. The temperature dependent conductivities of the electrolytes are rigorously measured and analyzed using EIS. The experimental considerations and the working principle of this EIS based approach are carefully examined and standardized in the course of this study. These experiments also investigate the effects of temperature variations (below room temperature) on the solid electrolyte interphase (SEI) formation characteristics of LTO in the given electrolytes. This dissertation is organized as follows: Each experimental system and its relevance for practical applications are briefly introduced in each chapter. The experimental approach and the motivation for carrying out the investigation are also noted in that context. The experimental details specific to the particular study are described. This is followed by the results and their discussion, and subsequently, by the specific conclusions drawn from the given

  17. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  18. °Enhancing High Temperature Anode Performance with 2° Anchoring Phases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Robert A. [Montana State Univ., Bozeman, MT (United States); Sofie, Stephen W. [Montana State Univ., Bozeman, MT (United States); Amendola, Roberta [Montana State Univ., Bozeman, MT (United States)

    2015-10-01

    Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant or prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.

  19. Methods for making anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang; Liu, Wei; Xiao, Jie; Wang, Deyu; Yang, Z. Gary

    2015-05-26

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.

  20. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  1. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries

    Science.gov (United States)

    Zou, Mingzhong; Li, Jiaxin; Wen, WeiWei; Chen, Luzhuo; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2014-12-01

    Composites of Ag-incorporated carbon nanofibers (CNFs) confined with Fe2O3 nanoparticles (Ag-Fe2O3/CNFs) have been synthesized through an electrospinning method and evaluated as anodes for lithium batteries (LIBs). The obtained Ag-Fe2O3/CNF anodes show good LIB performance with a capacity of 630 mAh g-1 tested at 800 mA g-1 after 150 cycles with almost no capacity loss and superb rate performance. The obtained properties for Ag-Fe2O3/CNF anodes are much better than Fe2O3/CNF anodes without Ag-incorporating. In addition, the low-temperature LIB performances for Ag-Fe2O3/CNF anodes have been investigated for revealing the enhanced mechanism of Ag-incorporating. The superior electrochemical performances of the Ag-Fe2O3/CNFs are associated with a synergistic effect of the CNF matrix and the highly conducting Ag incorporating. This unique configuration not only facilitates electron conduction especially at a relative temperature, but also maintains the structural integrity of active materials. Meanwhile, the related analysis of the AC impedance spectroscopy and the corresponding hypothesis for DC impedance confirm that such configuration can effectively enhance the charge-transfer efficiency and the lithium diffusion coefficient. Therefore, CNF-supported coupled with Ag incorporating synthesis supplied a promising route to obtain Fe2O3 based anodes with high-performance LIBs especially at low temperature.

  2. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Hu Renzong; Zhu Min; Wang Hui; Liu Jiangwen; Liuzhang Ouyang; Zou Jin

    2012-01-01

    By applying the shape memory effect of the NiTi alloys to buffer the Sn anodes, we demonstrate a simple approach to overcome a long-standing challenge of Sn anode in the applications of Li-ion batteries – the capacity decay. By supporting the Sn anodes with NiTi shape memory alloys, the large volume change of Sn anodes due to lithiation and delithiation can be effectively accommodated, based on the stress-induced martensitic transformation and superelastic recovery of the NiTi matrix respectively, which leads to a decrease in the internal stress and closing of cracks in Sn anodes. Accordingly, stable cycleability (630 mA h g −1 after 100 cycles at 0.7C) and excellent high-rate capabilities (478 mA h g −1 at 6.7C) were attained with the NiTi/Sn/NiTi film electrode. These shape memory alloys can also combine with other high-capacity metallic anodes, such as Si, Sb, Al, and improve their cycle performance.

  3. Computational Study on a PTAS for Planar Dominating Set Problem

    Directory of Open Access Journals (Sweden)

    Qian-Ping Gu

    2013-01-01

    Full Text Available The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an O(2ckn time, c is a constant, (1+1/k-approximation algorithm for the planar dominating set problem. We show that the approximation ratio achieved by the mentioned application of the framework is not bounded by any constant for the planar dominating set problem. We modify the application of the framework to give a PTAS for the planar dominating set problem. With k-outer planar graph decompositions, the modified PTAS has an approximation ratio (1 + 2/k. Using 2k-outer planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k in O(22ckn time. We report a computational study on the modified PTAS. Our results show that the modified PTAS is practical.

  4. Pulsed laser planarization of metal films for multilevel interconnects

    International Nuclear Information System (INIS)

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs

  5. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Omar M. Pecho

    2015-10-01

    Full Text Available 3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB length and polarization resistance (Rpol. Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  6. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    Science.gov (United States)

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  7. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    Science.gov (United States)

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  8. Realizing all reduced syzygy sequences in the planar three-body problem

    International Nuclear Information System (INIS)

    Moeckel, Richard; Montgomery, Richard

    2015-01-01

    The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences. Each homotopy class corresponds to a unique ‘reduced’ syzygy sequence. We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum, repeatedly come very close to triple collision, and have lots of ‘stutters’—repeated syzygies of the same type, which cancel out up to homotopy. The heart of the proof stems from the work by one of us on symbolic dynamics arising out of the central configurations after the triple collision is blown up using McGehee's method. We end with a list of open problems. (paper)

  9. Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene

    Directory of Open Access Journals (Sweden)

    Masahiko Iyoda

    2010-02-01

    Full Text Available Cyclooctatetraene (COT, the first 4nπ-electron system to be studied, adopts an inherently nonplanar tub-shaped geometry of D2d symmetry with alternating single and double bonds, and hence behaves as a nonaromatic polyene rather than an antiaromatic compound. Recently, however, considerable 8π-antiaromatic paratropicity has been shown to be generated in planar COT rings even with the bond alternated D4h structure. In this review, we highlight recent theoretical and experimental studies on the antiaromaticity of hypothetical and actual planar COT. In addition, theoretically predicted triplet aromaticity and stacked aromaticity of planar COT are also briefly described.

  10. Optimal External-Memory Planar Point Enclosure

    DEFF Research Database (Denmark)

    Arge, Lars; Samoladas, Vasilis; Yi, Ke

    2007-01-01

    .g. spatial and temporal databases, and is dual to the important and well-studied orthogonal range searching problem. Surprisingly, despite the fact that the problem can be solved optimally in internal memory with linear space and O(log N+K) query time, we show that one cannot construct a linear sized......In this paper we study the external memory planar point enclosure problem: Given N axis-parallel rectangles in the plane, construct a data structure on disk (an index) such that all K rectangles containing a query point can be reported I/O-efficiently. This problem has important applications in e...... external memory point enclosure data structure that can be used to answer a query in O(log  B N+K/B) I/Os, where B is the disk block size. To obtain this bound, Ω(N/B 1−ε ) disk blocks are needed for some constant ε>0. With linear space, the best obtainable query bound is O(log 2 N+K/B) if a linear output...

  11. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  12. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes

    Directory of Open Access Journals (Sweden)

    Yun-Ting Chen

    2018-05-01

    Full Text Available In this work, a flexible micro-supercapacitor with interdigital planar buckypaper electrodes is presented. A simple fabrication process involving vacuum filtration method and SU-8 molding techniques is proposed to fabricate in-plane interdigital buckypaper electrodes on a membrane filter substrate. The proposed process exhibits excellent flexibility for future integration of the micro-supercapacitors (micro-SC with other electronic components. The device’s maximum specific capacitance measured using cyclic voltammetry was 107.27 mF/cm2 at a scan rate of 20 mV/s. The electrochemical stability was investigated by measuring the performance of charge-discharge at different discharge rates. Devices with different buckypaper electrode thicknesses were also fabricated and measured. The specific capacitance of the proposed device increased linearly with the buckypaper electrode thickness. The measured leakage current was approximately 9.95 µA after 3600 s. The device exhibited high cycle stability, with 96.59% specific capacitance retention after 1000 cycles. A Nyquist plot of the micro-SC was also obtained by measuring the impedances with frequencies from 1 Hz to 50 kHz; it indicated that the equivalent series resistance value was approximately 18 Ω.

  13. Planar screening by charge polydisperse counterions

    Science.gov (United States)

    Trulsson, M.; Trizac, E.; Šamaj, L.

    2018-01-01

    We study how a neutralising cloud of counterions screens the electric field of a uniformly charged planar membrane (plate), when the counterions are characterised by a distribution of charges (or valence), n(q) . We work out analytically the one-plate and two-plate cases, at the level of non-linear Poisson-Boltzmann theory. The (essentially asymptotic) predictions are successfully compared to numerical solutions of the full Poisson-Boltzmann theory, but also to Monte Carlo simulations. The counterions with smallest valence control the long-distance features of interactions, and may qualitatively change the results pertaining to the classic monodisperse case where all counterions have the same charge. Emphasis is put on continuous distributions n(q) , for which new power-laws can be evidenced, be it for the ionic density or the pressure, in the one- and two-plates situations respectively. We show that for discrete distributions, more relevant for experiments, these scaling laws persist in an intermediate but yet observable range. Furthermore, it appears that from a practical point of view, hallmarks of the continuous n(q) behaviour are already featured by discrete mixtures with a relatively small number of constituents.

  14. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  15. Stress measurements of planar dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert

    2016-01-01

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.

  16. Stress transmission in planar disordered solid foams

    International Nuclear Information System (INIS)

    Blumenfeld, Raphael

    2003-01-01

    Stress transmission in planar open-cell cellular solids is analysed using a recent theory developed for marginally rigid granular assemblies. This is made possible by constructing a one-to-one mapping between the two systems. General trivalent networks are mapped onto assemblies of rough grains, while networks where Plateau rules are observed, are mapped onto assemblies of smooth grains. The constitutive part of the stress transmission equations couples the stress directly to the local rotational disorder of the cellular structure via a new fabric tensor. An intriguing consequence of the analysis is that the stress field can be determined in terms of the microstructure alone independent of stress-strain information. This redefines the problem of structure-property relationship in these materials and poses questions on the relations between this formalism and elasticity theory. The deviation of the stress transmission equations from those of conventional solids has been interpreted in the context of granular assemblies as a new state of solid matter and the relevance of this interpretation to the state of matter of cellular solids is discussed

  17. Stress measurements of planar dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert [Biomaterials Science Center, University of Basel, Gewerbestrasse 14, 4123 Allschwil (Switzerland)

    2016-05-15

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.

  18. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  19. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  20. Electrocatalysis of anodic oxidation of ethanol

    Science.gov (United States)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  1. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    Tarasevich, M R; Korchagin, O V; Kuzov, A V

    2013-01-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  2. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  3. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  4. In operando X-ray diffraction strain measurement in Ni3Sn2 - Coated inverse opal nanoscaffold anodes for Li-ion batteries

    Science.gov (United States)

    Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; Almer, Jonathan D.; Okasinski, John S.; Braun, Paul V.; Dunand, David C.

    2017-11-01

    Volume changes associated with the (de)lithiation of a nanostructured Ni3Sn2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni3Sn2 anode material and its mechanically supporting Ni scaffold. Using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni3Sn2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiation (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni3Sn2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni3Sn2 is lower due to the lower (de)lithiation-induced contraction/expansion.

  5. Massive planar and non-planar double box integrals for light N f contributions to

    Science.gov (United States)

    von Manteuffel, Andreas; Studerus, Cedric

    2013-10-01

    We present the master integrals needed for the light fermionic two-loop corrections to top quark pair production in the gluon fusion channel. Via the method of differential equations we compute the results in terms of multiple polylogarithms in a Laurent series about d = 4, where d is the space-time dimension. The most involved topology is a non-planar double box with one internal mass. We employ the coproduct-augmented symbol calculus and show that significant simplifications are possible for selected results using an optimised set of multiple polylogarithms.

  6. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  7. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  8. Protection of MOS capacitors during anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  9. Planar waveguide concentrator used with a seasonal tracker.

    Science.gov (United States)

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  10. Design and construction of a planar motion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tanasovici, Gilberto [Protemaq Engenharia e Projetos, Santo Andre, SP (Brazil); Fucatu, Carlos H. [Technomar Engenharia Ltda., Sao Paulo, SP (Brazil); Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecatronica; Umeda, Carlos H. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2008-07-01

    This paper describes the design and construction of a PMM (Planar Motion Mechanism) towed by the IPT-SP main carriage. The IPT towing tank no. 2 is 220 m length and 6.6 m wide. The PMM provides a forced sway and/or yaw oscillation on a ship or other marine structure scaled model.. The maximum sway amplitude (transversal motion) is {+-}1 m, and the maximum sway velocity is 1.0 m/s, with a maximum carrying load of 1000 N. The maximum yaw velocity (rotation motion) is 36 deg/s. High-precision components were used in the construction, and the final estimated accuracy in the sway axis is 0.02 mm and approximately 0.1 deg for yaw motions. Finite Element Analysis and Structural Optimization techniques were used during the design stage. The PMM structure total mass is less than 1 ton, lighter than similar mechanisms in other institutions. A Man-Machine Interface was developed, and the operator is able to define the period and amplitude of sway and yaw motions, as well as the fade-in and fade-out time. An integral 3-component force load cell is installed in the end of the support axis, which measures the hydrodynamic loads on the captive model at low speed tests. This novel laboratorial facility allows the IPT to execute new kinds of experimental procedures, related to evaluation of hydrodynamic loads acting on ship hulls and offshore structures. (author)

  11. Fabrication and Characterization of Magnetic Nanowires in Anodic Alumina

    Science.gov (United States)

    Xiao, Z. L.; Han, Y. R.; Wang, H. H.; Welp, U.; Kwok, W. K.; Crabtree, G. W.

    2002-03-01

    Magnetic nanowires (cobalt, iron and nickel) with diameters down to 20 nm have been fabricated by electrodeposition. Both commercial and home-made anodized aluminum oxide (AAO) membranes with nanochannel arrays were used as templates. The structure and magnetization hysteresis of the specimens with nanowires were investigated with scanning electron microscope (SEM) and superconducting quantum interference device (SQUID), respectively. Growth of nanowires with both aqueous and dimethylsulfoxide (DMSO) solutions was conducted and better quality nanowires were obtained with the organic DMSO solution. The influence of the diameter, the length and the separation of the nanochannels on the magnetization orientation was investigated in detail. Work supported by the US Department of Energy (DOE), BES-Materials Science, Contract No. W-31-109-ENG-38.

  12. Pt -based anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2007-01-01

    In this work it is studied the electro-catalytic behavior of pure platinum and platinum-based alloys with Ru, Sn, Ir, and Os supported on carbon to the ethanol electro-oxidation in aims to develop anodic catalysts for direct ethanol fuel cells, additionally, porous electrodes and membrane electrode assemblies were built for proton exchange membrane fuel cells in which the electrodes were tested. Catalysts characterization was made by cyclic voltammetry whereas the fuel cells behavior tests were made by current-potential polarization curves. in general, all alloys show a lower on-set reaction potential and a higher catalytic activity than pure platinum. However, in the high over potential zone, pure platinum has higher catalytic activity than the alloys. In agreement with these results, the alloys studied here could be useful in fuel cells operating on moderated and low current

  13. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine

    2014-03-01

    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  14. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    KAUST Repository

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-01-01

    passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar

  15. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  16. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  17. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  18. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause......-phase flow model for establishing the effect of geometry and a two-phase flow model for studying the effect of dispersed gas bubbles. Both models account for turbulence and heat transport. By means of the developed models, it is elucidated that the circular-planar shape of the interdigitated flow field...

  19. Pt based anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijiang; Zhou, Zhenhua; Song, Shuqin; Li, Wenzhen; Sun, Gongquan; Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, GR 38334 Volos (Greece) 7

    2003-11-10

    In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt{sub 1}Sn{sub 1}/C>Pt{sub 1}Ru{sub 1}/C>Pt{sub 1}W{sub 1}/C>Pt{sub 1}Pd{sub 1}/C>Pt/C. Moreover, Pt{sub 1}Ru{sub 1}/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt{sub 1}Sn{sub 1}/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt{sub 1}Sn{sub 1}/C or Pt{sub 3}Sn{sub 2}/C or Pt{sub 2}Sn{sub 1}/C as anode catalyst showed better performances than those with Pt{sub 3}Sn{sub 1}/C or Pt{sub 4}Sn{sub 1}/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt{sub 1}Ru{sub 1}/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OH{sub ads}, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low

  20. Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing

    International Nuclear Information System (INIS)

    Sah, Santosh Prasad; Tatsuno, Yasuhiro; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-01-01

    Research highlights: → We examined dielectric breakdown of anodic alumina by single pulse anodizing. → Current transients and morphology of discharge channels are dependent upon electrolyte and voltage. → There is a good correlation between current transient and morphology of discharge channel. → Healing of open discharge pores occurs in alkaline silicate, but not in pentaborate electrolyte. - Abstract: Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.

  1. Numerical Analysis Of Buckling Of Von Mises Planar Truss

    Directory of Open Access Journals (Sweden)

    Kalina Martin

    2015-12-01

    Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.

  2. Flat panel planar optic display. Revision 4/95

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  3. On the maximum number of cycles in a planar graph

    DEFF Research Database (Denmark)

    Aldred, R.E.L.; Thomassen, Carsten

    2008-01-01

    Let G be a graph on p vertices with q edges and let r = q - p + 1. We show that G has at most 15/162(r) cycles. We also show that if G is planar, then G has at most 2(r-1) + o(2(r-1)) cycles. The planar result is best possible in the sense that any prism, that is, the Cartesian product of a cycle...... and a path with one edge, has more than 2(r-1) cycles....

  4. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  5. $1$-string $B_2$-VPG representation of planar graphs

    Directory of Open Access Journals (Sweden)

    Therese Biedl

    2016-09-01

    Full Text Available In this paper, we prove that every planar graph has a 1-string $B_2$-VPG representation—a string representation using paths in a rectangular grid that contain at most two bends. Furthermore, two paths representing vertices $u,v$ intersect precisely once whenever there is an edge between $u$ and $v$. We also show that only a subset of the possible curve shapes is necessary to represent $4$-connected planar graphs.

  6. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  7. Group theoretical construction of planar noncommutative phase spaces

    International Nuclear Information System (INIS)

    Ngendakumana, Ancille; Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-01

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given

  8. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  9. Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus

    Science.gov (United States)

    Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa

    2017-10-01

    A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  10. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  11. The value of filtered planar images in pediatric DMSA scans

    International Nuclear Information System (INIS)

    Mohammed, A.M.; Naddaf, S.Y.; Elgazzar, A.H.; Al-Abdul Salam, A.A.; Omar, A.A.

    2006-01-01

    The study was designed to demonstrate the value of filtered planar images in paediatric DMSA scanning. One hundred and seventy three patients ranged in age from 15 days to 12 years (mean: 4.3 years) with urinary tract infection (UTI) and clinical and/or laboratory suspicion of acute pyelonephritis (APN) were retrospectively studied. Planar images were filtered using Butterworth filter. The scan findings were reported as positive, negative or equivocal for cortical defects. Each scan was read in a double-blind fashion by two nuclear medicine physicians to evaluate inter-observer variations. Each kidney was divided into three zones, upper, middle and lower, and each zone was graded as positive, negative or equivocal for the presence of renal defects. Renal cortical defects were found in 66 patients (91 kidneys and 186 zones) with filtered images, 58 patients (81 kidneys and 175 zones) with planar images, and 69 patients (87 kidneys and 180 zones) with SPECT images. McNemar's test revealed statistically significant difference between filtered and planar images (p=0.038 for patients, 0.021 for kidneys and 0.034 for number of zones). Inter-observer agreement was 0.877 for filtered images, 0.915 for planar images and 0.915 for SPECT images. It was concluded that filtered planar images of renal cortex are comparable to SPECT images and can be used effectively in place of SPECT, when required, to shorten imaging time and eliminate motion artifacts, especially in the paediatric population. (author)

  12. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  13. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  14. Patterned titania nanostructures produced by electrochemical anodization of titanium sheet

    Science.gov (United States)

    Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline

    2017-07-01

    A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.

  15. A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror

    Science.gov (United States)

    Bakke, Thor; Vogl, Andreas; Żero, Oleg; Tyholdt, Frode; Johansen, Ib-Rune; Wang, Dag

    2010-06-01

    A novel piston-type micromirror with a stroke of up to 20 µm at 20 V formed out of a silicon-on-insulator wafer with integrated piezoelectric actuators was designed, fabricated and characterized. The peak-to-valley planarity of a 2 mm diameter mirror was better than 15 nm, and tip-to-tip tilt upon actuation less than 30 nm. A resonance frequency of 9.8 kHz was measured. Analytical and finite element models were developed and compared to measurements. The design is based on a silicon-on-insulator wafer where the circular mirror is formed out of the handle silicon, thus forming a thick, highly rigid and ultra-planar mirror surface. The mirror plate is connected to a supporting frame through a membrane formed out of the device silicon layer. A piezoelectric actuator made of lead-zirconate-titanate (PZT) thin film is structured on top of the membrane, providing mirror deflection by deformation of the membrane. Two actuator designs were tested: one with a single ring and the other with a double ring providing bidirectional movement of the mirror. The fabricated mirrors were characterized by white light interferometry to determine the static and temporal response as well as mirror planarity.

  16. A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror

    International Nuclear Information System (INIS)

    Bakke, Thor; Vogl, Andreas; Żero, Oleg; Tyholdt, Frode; Johansen, Ib-Rune; Wang, Dag

    2010-01-01

    A novel piston-type micromirror with a stroke of up to 20 µm at 20 V formed out of a silicon-on-insulator wafer with integrated piezoelectric actuators was designed, fabricated and characterized. The peak-to-valley planarity of a 2 mm diameter mirror was better than 15 nm, and tip-to-tip tilt upon actuation less than 30 nm. A resonance frequency of 9.8 kHz was measured. Analytical and finite element models were developed and compared to measurements. The design is based on a silicon-on-insulator wafer where the circular mirror is formed out of the handle silicon, thus forming a thick, highly rigid and ultra-planar mirror surface. The mirror plate is connected to a supporting frame through a membrane formed out of the device silicon layer. A piezoelectric actuator made of lead–zirconate–titanate (PZT) thin film is structured on top of the membrane, providing mirror deflection by deformation of the membrane. Two actuator designs were tested: one with a single ring and the other with a double ring providing bidirectional movement of the mirror. The fabricated mirrors were characterized by white light interferometry to determine the static and temporal response as well as mirror planarity.

  17. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    Science.gov (United States)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  18. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  19. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits.

    Science.gov (United States)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-05-09

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.

  20. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    OpenAIRE

    Gerrard Eddy Jai Poinern; Derek Fawcett; Nurshahidah Ali

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical ...