WorldWideScience

Sample records for annular velocity reduction

  1. Jenkins Model Based Ferrofluid Lubrication of a Curved Rough Annular Squeeze Film with Slip Velocity

    Directory of Open Access Journals (Sweden)

    J.R. Patel

    2015-06-01

    Full Text Available This paper deals with the combined effect of roughness and slip velocity on the performance of a Jenkins model based ferrofluid squeeze film in curved annular plates. Beavers and Joseph’s slip model has been adopted to incorporate the effect of slip velocity. The stochastic model of Christensen and Tonder has been deployed to evaluate the effect of surface roughness. The associated stochastically averaged Reynolds type equation is solved to derive the pressure distribution, leading to the calculation of load carrying capacity. The graphical representation makes it clear that although, the effect of transverse surface roughness is adverse in general, Jenkins model based ferrofluid lubrication provides some measures in mitigating the adverse effect and this becomes more manifest when the slip parameter is reduced and negatively skewed roughness occurs. Of course, a judicious choice of curvature parameters and variance (-ve add to this positive effect.

  2. Jenkins model based ferrofluid lubrication of a curved rough annular squeeze film: Effect of slip velocity

    Directory of Open Access Journals (Sweden)

    Patel Jimit R.

    2015-01-01

    Full Text Available This paper analyzes the combined effect of slip velocity and transverse roughness on the performance of a Jenkins model based ferrofluid lubrication of a squeeze film in curved rough annular plates. The slip model of Beavers and Joseph has been invoked to evaluate the effect of slip velocity. In order to find the effect of surface roughness the stochastic averaging model of Christensen and Tonder has been used. The pressure distribution is obtained by solving the concerned stochastically averaged Reynolds type equation. The load carrying capacity is calculated. The graphical representations of the results indicate that the effect of transverse surface roughness is adverse in general, however, the situation is relatively better in the case of negatively skewed roughness. Further, Jenkins model based ferrofluid lubrication offers some measures in reducing the adverse effect of roughness when slip parameter is kept at reduced level with a suitable ratio of curvature parameters. Lastly, the positive effect of magnetization gets a boost due to the combined effect of variance (-ve and negatively skewed roughness suitably choosing the aspect ratio.

  3. Impaired resting myocardial annular velocities are independently associated with mental-stress induced ischemia in patients with coronary heart disease

    Science.gov (United States)

    Ersboll, Mads; Enezi, Fawaz Al; Samad, Zainab; Sedberry, Brenda; Boyle, Stephen H.; O’Connor, Christopher; Jiang, Wei; Velazquez, Eric J.

    2014-01-01

    Structured Abstract Objectives To investigate the association between resting myocardial function as assessed by tissue Doppler myocardial velocities (TDI) and the propensity for developing mental stress induced ischemia (MSIMI). Background Tissue Doppler myocardial velocities detect preclinical cardiac dysfunction and clinical outcome in a range of conditions. However, little is known about the interrelationship between myocardial velocities and the propensity for developing MSIMI versus exercise stress induced myocardial ischemia (ESIMI). Methods Resting annular myocardial TDI velocities were obtained in 225 patients with known coronary heart disease who were subjected to both conventional exercise stress test as well as a battery of 3 mental stress tests. Diastolic early (e′) and late (a′) as well as systolic (s′) velocities were obtained and eas-index, an integrated measure of myocardial velocities, was calculated as e′/(a′ x s′). MSIMI was defined as 1) development or worsening of regional wall motion abnormality, 2) reduction in left ventricular ejection fraction ≥ 8%, and/or 3) ischemic ST-segment changes during one or more of the three mental stress tests. Results A total of 98 (43.7%) out of 225 patients exhibited MSIMI. Patients developing MSIMI had significantly lower s′ (7.0±1.7 vs 7.5±1.2, p=0.016) and a′ (8.9±1.8 vs 10.0±1.9, p<0.001) at baseline whereas e′ did not differ (6.5±1.7 vs. 6.5±1.8, p=0.85). Furthermore, the eas-index was significantly higher (0.11±0.04 vs. 0.09±0.03, p<0.0001).The eas-index remained significantly associated with the propensity for developing MSIMI (Odds ratio per 0.05 unit increase: 1.85; 95%CI: 1.21–2.82, p=0.004) after adjustment of resting LVEF, resting wall motion index score, gender and social circumstances of living. There was no association between resting eas-index and ESIMI. Conclusion MSIMI but not ESIMI is independently associated with resting abnormalities in myocardial systolic

  4. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    OpenAIRE

    A. R. Gowhari-Anaraki; Djavanroodi, F.; S. Shadlou

    2008-01-01

    The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. Th...

  5. Measuring air–sea gas exchange velocities in a large scale annular wind-wave tank

    Directory of Open Access Journals (Sweden)

    E. Mesarchaki

    2014-06-01

    Full Text Available In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470 and diffusivity (Schmidt number in water, Scw = 594 to 1194 were examined under various turbulent (u10 = 0.8 to 15 m s−1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100 surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O and methanol (CH3OH. Interestingly, a strong transfer velocity reduction (up to a factor of three was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  6. Mitral annular systolic velocity as a marker of preclinical systolic dysfunction among patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    Daskalov Ivaylo Rilkov

    2012-11-01

    Full Text Available Abstract Background The aim of this study was to investigate early changes in left ventricular longitudinal systolic function in patients with hypertension (HTN with and without concomitant diastolic dysfunction (DD and the clinical implications of these findings. Method We enrolled 299 patients with HTN and 297 age-matched patients with HTN and DD and compared both groups with an age-matched control group consisting of 100 healthy subjects. The long axis systolic function was investigated by determining the average peak systolic velocity of the septal and lateral mitral sites (Smavg using spectral pulsed wave tissue Doppler imaging (TDI. Results We found a strong negative trend toward the reduction of velocity, which is dependent on the grade of HTN, on the magnitude of DD, and also on the gender and age of the subjects (r=−0.891/-0.580; p Conclusion The strength of the study is the analysis of incremental changes in longitudinal contraction in patients with different stage of HTN but not so many the classification of the degree of systolic dysfunction. The importance of our results lies in the fact that these initial changes in systolic contraction could be used as an early sign that should prompt optimization of the treatment of HTN.

  7. Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)

    1998-03-01

    Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)

  8. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    Directory of Open Access Journals (Sweden)

    A. R. Gowhari-Anaraki

    2008-01-01

    Full Text Available The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. These parameters are chosen to be representative of typical practical situations and have been determined from evidence presented in the open literature. The extensive range of Q* obtained from the analyses are then used to obtain equivalent prediction equations using a statistical multiple non-linear regression model. The predictive equations for Q*, can also be used easily to calculate the C*-Integral values for extensive range of geometric parameters. The C*-Integral values obtained from predictive equations were also compared with those obtained from reference stress method (RSM. Finally, creep zone growth behavior was studied in the component during transient time.

  9. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  10. Enhanced reduction of velocity data obtained during CETA flight experiment

    Science.gov (United States)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    1993-05-01

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  11. Enhanced reduction of velocity data obtained during CETA flight experiment

    Science.gov (United States)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    1993-01-01

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  12. The relationship between mitral annular systolic velocity and ejection fraction in patients with preserved global systolic function of the left ventricle

    OpenAIRE

    Daskalov, Ivaylo Rilkov; Daskalova, Ivona Kirilova; Demirevska, Lilia Davidkova; Atzev, Borislav Georgiev

    2013-01-01

    Background The aim of the study was to investigate the relationship between the ejection fraction (EF) and the mitral annular systolic velocity (Sm) in patients with preserved left ventricular systolic function (EF>55%). The study task was to evaluate whether the assessment of Sm(avg) can be used as an alternative to the Simpson’s method in assessment of the EF. The expected benefit was that Sm could be used to predict EF, when EF is difficult to assess due to poor image quality (IQ). Method ...

  13. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    Science.gov (United States)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  14. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  15. The pollution reduction technology program for can-annular combustor engines - Description and results

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L.

    1976-01-01

    Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.

  16. Combined Effect of Slip Velocity and Roughness on the Jenkins Model Based Ferrofluid Lubrication of a Curved Rough Annular Squeeze Film

    Directory of Open Access Journals (Sweden)

    JIMITKUMAR PATEL

    2016-01-01

    Full Text Available This paper theoretically analyzes the combined effect of slip velocity and surface roughness on the performance of Jenkins model based ferrofluid squeeze film in curved annular plates. The effect of slip velocity has been studied resorting to the slip model of Beavers and Joseph. The stochastically averaging method of Christensen and Tonders has been deployed for studying the effect of surface roughness. The pressure distribution is derived by solving the associated stochastically averaged Reynolds type equation with suitable boundary conditions, leading to the computation of load carrying capacity. The graphical representations reveal that the transverse surface roughness adversely affects the bearing performance. However, Jenkins model based ferrofluid lubrication offers some scopes in minimizing this adverse effect when the slip parameter is kept at minimum. Of course, an appropriate choice of curvature parameters adds to this positive effect in the case of negatively skewed roughness. Moreover, it is established that this type of bearing system supports certain amount of load; even when there is no flow which does not happen in the case of conventional lubricant based bearing system.

  17. Simple Model for Gas Holdup and Liquid Velocity of Annular Photocatalytic External-Loop Airlift Reactor Under both Bubble and Developing Slug Flow

    Institute of Scientific and Technical Information of China (English)

    王一平; 陈为强; 黄群武; 冯加和; 崔勇

    2016-01-01

    Based on the momentum conservation approach, a theoretical model was developed to predict the su-perficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular exter-nal-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm2/s(2cs-SiO)and 5.0 mm2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predic-tions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to pre-dict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.

  18. Stability of cantilevered coaxial shells with internal and annular flow

    International Nuclear Information System (INIS)

    This paper is a theoretical study of the stability of cantilevered coaxial cylindrical shells conveying incompressible fluid in the annular space in- between and within the inner shell. The viscous effects of the mean flow are taken into account, but the perturbations of the equilibrium state on the basis of which stability is assessed is carried out by means of potential flow theory, thus neglecting unsteady viscous effects which are known to become important for narrow annular flows. Shell displacements are described by Flugge's equations of motion. Solution of the coupled fluid-structure equations is carried out by means of the Fourier Transform Method. The main finding of this research is that stability is lost by flutter for internal flow, according to both the inviscid and viscous variants of the theory; for annular flow, however, whereas inviscid theory predicts loss of stability by flutter, viscous theory (with dissipative effects included) predicts that the shell loses stability by divergence and then, at appreciably higher flow, by flutter. Reduction of the annular gap generally destabilizes the system; while increased steady viscous effects slightly stabilize the system for internal flow, they strongly destabilize it for annular flow. Increasing the length of the shell destabilizes the system for both internal and annular flows. The presence of internal flow in addition to annular flow tends to stabilize the system vis-a-vis the case of annular flow, but only at low flow velocities, having the opposite effect at higher flows; the same effects arise when the main flow is internal and an annular flow added to the system

  19. Oscillating annular liquid membranes

    International Nuclear Information System (INIS)

    The response of annular liquid membranes (e.g. used as protection systems in laser fusion reactors) to sinusoidal mass flow rate fluctuations at the nozzle exit is analyzed as a function of the amplitude and frequency of the axial velocity fluctuations at the nozzle exit and thermodynamic compression of the gas enclosed by the membrane. The pressure of the gases enclosed by the annular membrane and the axial distance at which the annular membrane merges on the symmetry axis are periodic functions of time which have the same period as that of the mass flow rate fluctuations at the nozzle exit. They are also nearly sinusoidal functions of time for small amplitudes of the mass flow rate fluctuations at the nozzle exit, and exhibit delay and lag times with respect to the sinusoidal axial velocity fluctuations at the nozzle exit. The delay and the lag times are functions of the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit and the polytropic exponent. The amplitudes of both the pressure of the gases enclosed by the annular liquid membrane and the convergence length increase and decrease, resp., as the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit, resp., are increased. They also increase as the polytropic exponent is increased. (orig.)

  20. MERIDL- VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MIDCHANNEL STREAM SURFACE OF AN AXIAL, RADIAL, OR MIXED FLOW TURBOMACHINE OR ANNULAR DUCT

    Science.gov (United States)

    Katsanis, T.

    1994-01-01

    This computer program was developed for calculating the subsonic or transonic flow on the hub-shroud mid-channel stream surface of a single blade row of a turbomachine. The design and analysis of blades for compressors and turbines ideally requires methods for analyzing unsteady, three-dimensional, turbulent viscous flow through a turbomachine. Since an exact solution is impossible at present, solutions on two-dimensional surfaces are calculated to obtain a quasi-three dimensional solution. When three-dimensional effects are important, significant information can be obtained from a solution on a cross-sectional surface of the passage normal to the flow. With this program, a solution to the equations of flow on the meridional surface can be carried out. This solution is chosen when the turbomachine under consideration has significant variation in flow properties in the hubshroud direction, especially when input is needed for use in blade-to-blade calculations. The program can also perform flow calculations for annular ducts without blades. This program should prove very useful in the design and analysis of any turbomachine. This program calculates a solution for two-dimensional, adiabatic shockfree flow. The flow must be essentially subsonic, but there may be local areas of supersonic flow. To obtain the solution, this program uses both the finite difference and the quasi-orthogonal (velocity gradient) methods combined in a way that takes maximum advantage of both. The finite-difference method solves a finite-difference equation along the meridional stream surface in a very efficient manner but is limited to subsonic velocities. This approach must be used in cases where the blade aspect ratios are above one, cases where the passage is curved, and cases with low hub-tip-ratio blades. The quasi-orthogonal method solves the velocity gradient equation on the meridional surface and is used if it is necessary to extend the range of solutions into the transonic regime. In

  1. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter;

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI, and...... inter-observer variability were tested using the Bland-Altman method in 125 patients. A relatively low bias between M-mode and TDI with respect to MA displacement (mean difference ± 1.96 standard deviation: 0.08 ± 0.35 cm) and a low bias between TDI and 2DSI with respect to MA peak systolic velocity (-0...

  2. Granuloma annulare.

    Science.gov (United States)

    Gupta, Diptesh; Hess, Brian; Bachegowda, Lohith

    2010-01-01

    We present a case of a 77-year-old, diabetic male with a 20-year history of a migratory erythematous, asymptomatic, generalized, nonscaly, and nonitchy rash that started over the dorsum of his left hand. On examination, there were multiple annular erythematous plaques, distributed symmetrically and diffusely over his torso and arms, with central clearing and no scales. A punch biopsy of the skin helped us to arrive at the diagnosis of a generalized granuloma annulare (GA). GA is a benign, self-limiting skin condition of unknown etiology that is often asymptomatic. The cause of this condition is unknown, but it has been associated with diabetes mellitus, infections such as HIV, and malignancies such as lymphoma. These lesions typically start as a ring of flesh-colored papules that slowly progress with central clearing. Lack of symptoms, scaling, or associated vesicles helps to differentiate GA from other skin conditions such as tinea corporis, pityriasis rosea, psoriasis, or erythema annulare centrifugum. Treatment is often not needed as the majority of these lesions are self-resolving within 2 years. Treatment may be pursued for cosmetic reasons. Available options include high-dose steroid creams, PUVA, cryotherapy, or drugs such as niacinamide, infliximab, Dapsone, and topical calcineurin inhibitors. PMID:20209383

  3. Bistability and hysteresis of annular impinging jets

    Science.gov (United States)

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  4. Enhanced data reduction of the velocity data on CETA flight experiment

    Science.gov (United States)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  5. Enhanced data reduction of the velocity data on CETA flight experiment. [Crew and Equipment Translation Aid

    Science.gov (United States)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    1993-01-01

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  6. A Model for the Calculation of Velocity Reduction Behind A Plane Fishing Net

    Institute of Scientific and Technical Information of China (English)

    GUI Fu-kun; LI Yu-cheng; ZHAO Yun-peng; DONG Guo-hai

    2006-01-01

    A model for the calculation of velocity reduction behind a fishing net is proposed in this paper. Comparisons are made between the calculated results and experimental data. It is shown that by the application of the effective adjacent area coefficient of fluid flowing around a solid structure to the fishing net, the calculated results agree well with the experimental data. The model proposed in this paper can also be applied to the analysis of the velocity reduction within a fishing cage and can be introduced into the numerical simulation of the hydrodynamic behavior of fishing cages for the improvement of computational accuracy.

  7. Improvement of image processing algorithms for annular flow

    International Nuclear Information System (INIS)

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  8. Optimal design of bodies of revolution of annular jet flow surface and analysis of the drag reduction mechanism%旋成体环形射流表面优化设计与减阻机理分析

    Institute of Scientific and Technical Information of China (English)

    赵刚; 李芳; 臧东阳

    2014-01-01

    With a focus on the problem of bionic jet drag reduction , a bionic jet surface model is presented by using the jet flow of shark cheeks as the prototype .Based on the orthogonal test design method , this paper goes into detail about numerical simulations by making a comparison between bodies of revolution of a bionic annular jet flow sur -face ( BRBAJFS ) and smooth bodies of revolution with the SST k-ωturbulence model .The results prove that BRBAJFS has obvious drag-reduction and energy-saving effects .The highest energy saving efficiency can be 262 and the corresponding rate of drag reduction is 27.74%.The jet velocity has the most important impact on energy saving efficiency and it has a linear relation with the energy saving efficiency , i.e., the energy saving efficiency will decrease with an increase in the jet velocity .Furthermore, the position of the jet hole has the greatest impact on the total resistance .When the jet hole is far away from the bottom of the bodies of revolution , the drag reduction effi-ciency will increase and BRBAJFS decreases the viscous friction resistance by decreasing the velocity gradient of the wall and increasing the area of counterblows .There can also be a decrease in the pressure drag resulting from the jet fluid complementing the bottom of the bodies of revolution fluid .%针对仿生射流表面减阻问题,以鲨鱼鳃部射流为原型,建立仿生射流表面模型,采用正交试验设计法,利用SST k-ω湍流模型对仿生环形射流表面旋成体与光滑旋成体进行数值模拟。结果表明:旋成体环形射流表面具有减阻节能效果,最高节能效率达262,此时的减阻率为27.74%;射流速度对节能效率影响最大,射流速度与节能效率呈线性关系,随着射流速度增大,节能效率减小,射流孔位置对总阻力的影响最大,随着射流孔远离旋成体底部,减阻率增大。旋成体环形射流表面通过减小壁面的速度梯

  9. Annular Flow Distribution test

    International Nuclear Information System (INIS)

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  10. Effect of Annular Slit Geometry on Characteristics of Spiral Jet

    Institute of Scientific and Technical Information of China (English)

    Shigeru Matsuo; Kwon-Hee Lee; Shinsuke Oda; Toshiaki Setoguchi; Heuy-Dong Kim

    2003-01-01

    A spiral flow using an annular slit connected to a conical cylinder does not need special device to generate a tangential velocity component of the flow and differs from swirling flows. Pressurized fluid is supplied to an annular chamber and injected into the convergent nozzle through the annular slit. The annular jet develops into the spiral flow. In the present study, a spiral jet discharged out of nozzle exit was obtained by using a convergent nozzle and an annular slit set in nozzle inlet, and the effect of annular slit geometry on characteristics of the spiral jet was investigated by using a Laser Doppler Velocimeter (LDV) experimentally. Furthermore, velocity distributions of the spiral jet were compared with those of a normal jet.

  11. Fracture density estimates in glaciogenic deposits from P-wave velocity reductions

    International Nuclear Information System (INIS)

    Subsidence-induced fracturing of glaciogenic deposits over coal mines in the southern Illinois basis alters hydraulic properties of drift aquifers and exposes these aquifers to surface contaminants. In this study, refraction tomography surveys were used in conjunction with a generalized form of a seismic fracture density model to estimate the vertical and lateral extent of fracturing in a 12-m thick overburden of loess, clay, glacial till, and outwash above a longwall coal mine at 90 m depth. This generalized model accurately predicted fracture trends and densities from azimuthal P-wave velocity variations over unsaturated single- and dual-parallel fractures exposed at the surface. These fractures extended at least 6 m and exhibited 10--15 cm apertures at the surface. The pre- and postsubsidence velocity ratios were converted into fracture densities that exhibited qualitative agreement with the observed surface and inferred subsurface fracture distribution. Velocity reductions as large as 25% were imaged over the static tension zone of the mine where fracturing may extend to depths of 10--15 m. Finally, the seismically derived fracture density estimates were plotted as a function of subsidence-induced drawdown across the panel to estimate the average specific storage of the sand and gravel lower drift aquifer. This value was at least 20 times higher than the presubsidence (unfractured) specific storage for the same aquifer

  12. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  13. Sap-flow velocity reduction by soil water deficit observed in a Lithocarpus edulis forest on Kyushu Island, Japan

    OpenAIRE

    Komatsu, Hikaru; Katayama, Ayumi; Kume, Tomonori; Otsuki, Kyoichi

    2007-01-01

    This paper examines transpiration reduction due to soil water deficits observed in a Lithocarpus edulis forest on Kyushu Island, south-western Japan. Continuous sap flow measurements were performed on six trees to monitor changes in tree transpiration rates. A reduction in sap flow velocity was observed in the period between late-September and late-October 2003. Precipitation amounts for this period were limited resulting in a corresponding low soil matric potential. A clear reduction in sap ...

  14. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Hwan [Department of Mechanical and Automotive Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Tae, Choon-Seob [Building Energy Research Center, KIER, 71-2 Jang-Dong Yusong-Gu, Daejon 305-343 (Korea, Republic of); Zaheeruddin, M. [Building Civil and Environmental Engineering, Concordia University, Montreal, Que. H3G 1M8 (Canada)]. E-mail: zaheer@bcee.concordia.ca

    2007-03-15

    The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant as a function of fluid velocity, temperature, and surfactant concentration were investigated. Several types of new surfactants, which contain amine-oxide and betaine, were developed. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC; cethyl trimethyl ammonium chloride) had DR of 0.6-0.8 at 1000-2000 ppm concentration with fluid temperature ranging between 50 and 60 {sup o}C. However, the DR was very low when the fluid temperature was 70-80 {sup o}C. The new amine oxide and betaine surfactant (SAOB; stearyl amine oxide + betaine) had lower DR at fluid temperatures ranging between 50 and 60 {sup o}C compared with CTAC. However, with fluid temperature ranging between 70 and 80 {sup o}C the DR was 0.6-0.8 when the concentration level was between 1000 and 2000 ppm.

  15. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction

    International Nuclear Information System (INIS)

    The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant as a function of fluid velocity, temperature, and surfactant concentration were investigated. Several types of new surfactants, which contain amine-oxide and betaine, were developed. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC; cethyl trimethyl ammonium chloride) had DR of 0.6-0.8 at 1000-2000 ppm concentration with fluid temperature ranging between 50 and 60 oC. However, the DR was very low when the fluid temperature was 70-80 oC. The new amine oxide and betaine surfactant (SAOB; stearyl amine oxide + betaine) had lower DR at fluid temperatures ranging between 50 and 60 oC compared with CTAC. However, with fluid temperature ranging between 70 and 80 oC the DR was 0.6-0.8 when the concentration level was between 1000 and 2000 ppm

  16. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  17. Stitching algorithm for annular subaperture interferometry

    Institute of Scientific and Technical Information of China (English)

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen

    2006-01-01

    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  18. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  19. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  20. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    International Nuclear Information System (INIS)

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities

  1. Generalized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  2. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  3. Optimum dimple diameter for friction reduction with laser surface texturing: the effect of velocity gradient

    International Nuclear Information System (INIS)

    The morphological texturing of surfaces has demonstrated high potential to reduce friction and wear. In order to understand the effect of different velocity gradients over the textured area on the optimum dimple diameter, we textured brass pins with round dimples having diameters between 20 and 200 μm. The dimple depth and packing density were kept constant. The samples were tested in a pin-on-disc fashion against sapphire discs and experiments were conducted under mixed lubrication and for two different sliding radii. Our results show that larger velocity gradients favor smaller dimples, whereas for the smaller velocity gradients, larger dimple diameters were beneficial. The effect of there being an influence of the velocity gradient was also found in computational fluid dynamics (CFD) simulations. Experimentally, friction forces could be reduced by up to 80%, demonstrating the tremendous potential of laser surface texturing (LST) to lower friction forces and reduce CO2 emissions. (paper)

  4. Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction

    OpenAIRE

    Quadrio, M.; Ricco, P; Viotti, C.

    2009-01-01

    Waves of spanwise velocity imposed at the walls of a plane turbulent channel flow are studied by Direct Numerical Simulations. We consider sinusoidal waves of spanwise velocity which vary in time and are modulated in space along the streamwise direction. The phase speed may be null, positive or negative, so that the waves may be either stationary or traveling forward or backward in the direction of the mean flow. Such a forcing includes as particular cases two known techniques for reducing fr...

  5. Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis

    Institute of Scientific and Technical Information of China (English)

    Songhua Wu(吴松华); Zhishen Liu(刘智深); Dapeng Sun(孙大鹏)

    2003-01-01

    The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper,we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distancedependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity.The results are compared by the evaluation of both the standard deviation and correlation coefficient.The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.

  6. Group Velocity Reduction of Light Pulses in Photorefractive Two-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    张国权; 董嵘; 许京军

    2003-01-01

    We show theoretically that the group velocity of light pulses can be reduced significantly by use of the steep dispersion properties of the phase coupling effect in the photorefractive two-wave mixing process. The group velocity of light pulses of the order of 0.1 m/s can be achieved in typical photorefractive BSOcrystals with an appropriate externally applied electric field and moving gratings of appropriate speeds. It is also shown that the slowly propagating light pulses can be set to be amplified after passing through the photorefractive material.

  7. The numerical calculation of heat transfer performance for annular flow of liquid nitrogen in a vertical annular channel

    Science.gov (United States)

    Sun, Shufeng; Wu, Yuyuan; Zhao, Rongyi

    2001-04-01

    According to a separated phase flow model for vertical annular two-phase flow in an annular channel, the liquid film thickness, distributions of velocities and temperatures in the liquid layer are predicted in the range of heat fluxes: 6000-12000 W/m 2, mass flux: 500-1100 kg/m2 s. The pressure drop along the flow channel and heat transfer coefficient are also calculated. The liquid film thickness is in the order of micrometers and heat transfer coefficient is 2800-7800 W/m2 K of liquid nitrogen boiling in narrow annular channels. The measured heat transfer coefficient is 29% higher than the calculated values. With the mass flux increasing and the gap of the annular channel decreasing, pressure drop and heat transfer coefficient increase.

  8. Diffractive analysis of annular resonators.

    Science.gov (United States)

    Morin, M; Bélanger, P A

    1992-04-20

    The modal properties of annular resonators are investigated by using an approximate version of the Kirchhoff-Fresnel integral. It is shown that the radial diffraction of a thin annular beam with a large inside radius is similar to that of a cylindrical field distribution. This permits the formal demonstration of the equivalence that exists between large Fresnel number annular resonators and infinite strip resonators. The model explains the properties of annular resonators that have been observed either experimentally or numerically by others, such as the lack of azimuthal discrimination. PMID:20720842

  9. Thread-annular flow in vertical pipes

    Science.gov (United States)

    Frei, Ch.; Lüscher, P.; Wintermantel, E.

    2000-05-01

    Thread injection is a promising method for different minimally invasive medical applications. This paper documents an experimental study dealing with an axially moving thread in annular pipe flow. Mass flow and axial force on the thread are measured for a 0.46 mm diameter thread in pipes with diameters between 0.55 and 1.35 mm. The experiments with thread velocities of up to 1.5 ms[minus sign]1 confirm the findings of theoretical studies that for clinical requirements the radius ratio between thread and pipe is crucial for the adjustments of mass ow and force on the thread.

  10. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  11. AFRODITE - passive flow control for skin-friction drag reduction using the method of spanwise mean velocity gradient

    Science.gov (United States)

    Fallenius, Bengt; Sattarzadeh, Sohrab; Downs, Robert; Shahinfar, Shahab; Fransson, Jens

    2015-11-01

    Over the last decade wind tunnel experiments and numerical simulations have shown that steady spanwise mean velocity gradients are able to attenuate the growth of different types of boundary layer disturbances. Within the AFRODITE research program different techniques to setup the spanwise mean velocity variations have been studied and their stabilizing effect leading to transition delay quantified. A successful boundary-layer modulator for transition delay has turned out to be the miniature-vortex generator and has been well documented during the past years. More recent ideas of setting up spanwise mean velocity gradients will be presented here. We show that, the non-linear interaction between a pair of oblique disturbance waves creating a streaky base flow, as well as the direct surface modulation by means of applying wavy surfaces in the spanwise direction, can both successfully be utilized for transition delay and hence skin-friction drag reduction. The European Research Council is gratefully acknowledged (ERC-StG-2010- 258339).

  12. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  13. Fabrication and Resintering of Annular UO2 Pellet

    International Nuclear Information System (INIS)

    Nuclear fuel is one of the most important components in a PWR affecting its safety and economy. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 800 μm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. Recently, Massachusetts Institute of Technology (MIT) has proposed an annular UO2 fuel with an internal cooling of each fuel rod. Annular fuel pellets with a voided central region have been used in VVER reactors without an internal cooling. Annular fuels with both internal and external cooling have been proposed for high temperature gas cooled reactors. However, commercial PWR reactors have not used such annular internally and externally cooled fuel rods, yet. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimension tolerance and the thermal stability of a pellet are very important from the viewpoint of fabrication technology, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In this study, annular UO2 pellets with various densities were fabricated and then a resintering test was conducted. The changes of dimension and density of the sintered pellets were characterized

  14. Optimal Flight for Ground Noise Reduction in Helicopter Landing Approach: Optimal Altitude and Velocity Control

    Science.gov (United States)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise during landing approach with an optimization technique, and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of Japan Aerospace Exploration Agency (JAXA) show that the noise of a helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model for a helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. Using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates large noise and decrease the flight time, which are different from conventional flight. Finally, we verify the validity of the optimal flight patterns through flight experiments. The actual flights following the optimal paths resulted in noise reduction, which shows the effectiveness of the optimization.

  15. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  16. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2

    DEFF Research Database (Denmark)

    Immink, R V; Secher, N H; Roos, C M;

    2006-01-01

    In the normocapnic range, middle cerebral artery mean velocity (MCA Vmean) changes approximately 3.5% per mmHg carbon-dioxide tension in arterial blood (PaCO2) and a decrease in PaCO2 will reduce the cerebral blood flow by vasoconstriction (the CO2 reactivity of the brain). When standing up MCA...... Vmean and the end-tidal carbon-dioxide tension (PETCO2) decrease, suggesting that PaCO2 contributes to the reduction in MCA Vmean. In a fixed body position, PETCO2 tracks changes in the PaCO2 but when assuming the upright position, cardiac output (Q) decreases and its distribution over the lung changes...

  17. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  18. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  19. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    DEFF Research Database (Denmark)

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9...... MPa. It was found that the measured tube film flow rate per unit tube perimeter is always many times greater than the corresponding rod film flow rate. Possible explanations for this asymmetry are discussed....

  20. Development of a Data Reduction Pipeline to Measure Stellar Radial Velocities Using Kutztown University's On-Campus Research Observatory

    Science.gov (United States)

    Fox, Odysseus; Reed, Phillip A.

    2016-01-01

    The Kutztown University Observatory (KUO) houses a 0.6m Ritchey-Chrétien telescope with a focal ratio of f/8. It is a dedicated observatory collecting data every clear night using the eShel model (Shelyak Instruments) echelle spectrograph. The spectral resolution is R = 11,000 and the final dispersion is 0.050 Å/pixel over the range of 4300 Å to 8100 Å.It is paramount to ensure accurate radial velocity (RV) measurements when conducting projects for research and education. RV measurements at KUO are used to determine the masses of spectroscopic binary stars, study pulsations of stellar photospheres (Cepheid variables), and to perform reconnaissance RV measurements of exoplanet candidates (reflex motion of host star).We present a data reduction pipeline program that produces RV measurements from observed spectra. After using the eShel's built in ThAr lamp for wavelength calibration, the program continuum normalizes the spectrum, creates a non-moving template (synthetic and/or observed spectrum), and corrects for barycentric motion. Finally, the program performs a cross correlation of the data and template to produce accurate RV measurements.Examples of completed and on-going projects at KUO are presented. We also demonstrate our ability to observe stellar RV's with uncertainties as good as 0.13 km/s. The eShel spectrograph is commercially available and is becoming popular among users of smaller telescopes. This data reduction pipeline will be useful to the increasing number of researchers utilizing the eShel spectrograph.

  1. Phase flow rate measurements of annular flows

    OpenAIRE

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  2. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

    Science.gov (United States)

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-04-15

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. PMID:25632021

  3. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  4. Annular-Efficient Triangulations of 3-manifolds

    CERN Document Server

    Jaco, William

    2011-01-01

    A triangulation of a compact 3-manifold is annular-efficient if it is 0-efficient and the only normal, incompressible annuli are thin edge-linking. If a compact 3-manifold has an annular-efficient triangulation, then it is irreducible, boundary-irreducible, and an-annular. Conversely, it is shown that for a compact, irreducible, boundary-irreducible, and an-annular 3-manifold, any triangulation can be modified to an annular-efficient triangulation. It follows that for a manifold satisfying this hypothesis, there are only a finite number of boundary slopes for incompressible and boundary-incompressible surfaces of a bounded Euler characteristic.

  5. Numerical Simulation of the Laval Annular Mechanical Foam Breaker for Foam Drilling

    Directory of Open Access Journals (Sweden)

    Pin Lu Cao

    2013-12-01

    Full Text Available The Computational Fluid Dynamics (CFD code, Fluent, is employed to simulate the flow phenomena inside the annular foam breaker in order to improve its performance. The numerical simulation results show that the value and the distribution of the negative pressure are very important for the annular foam breaker. The design of the Laval nozzle not only can increase the fluid velocity, but also can reduce the pressure value from -30.2 to -50.3 kPa compared with the common annular nozzle foam breaker. In order to improve the range of the internal negative pressure, the two-stage Laval annular foam breaker is designed in this study. The analysis results show the distance between the two annular slit have greatly influence on its performance. There is a small overlap area between the two negative pressure zones generated by the two annular slits. The smaller the value distance is, the larger the overlap zone is. When the value of the distance decreases to 50 mm, the minimum negative pressure can be reduced to approximately -65.5 kPa. Meanwhile, the range of the internal negative pressure is larger than the single Laval annular foam breaker, which is benefit to break foam.

  6. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Huang; Guoxin, Hu [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Fengchao, Wang [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed. (author)

  7. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hao [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Hu Guoxin [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: hugx@sjtu.edu.cn; Wang Fengchao [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed.

  8. CFD Simulation of Annular Centrifugal Extractors

    OpenAIRE

    Vedantam, S.; Wardle, K. E.; Tamhane, T. V.; Ranade, V. V.; Joshi, J. B.

    2012-01-01

    Annular centrifugal extractors (ACE), also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of cent...

  9. Granuloma annulare in herpes zoster scars.

    Science.gov (United States)

    Ohata, C; Shirabe, H; Takagi, K; Kawatsu, T

    2000-03-01

    A 54-year-old Japanese female developed granuloma annulare twice in herpes zoster scars. Soon after the second event, she developed ulcerative colitis, which was well controlled by sulfonamides and corticosteroid suppository. She had no history of diabetes mellitus. There was no recurrence of granuloma annulare by June of 1999. Granuloma annulare might have contributed to the complications of ulcerative colitis, although this had not been noticed before. PMID:10774142

  10. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2

    DEFF Research Database (Denmark)

    Immink, R V; Secher, N H; Roos, C M; Pott, F; Madsen, P L; van Lieshout, J J

    2006-01-01

    In the normocapnic range, middle cerebral artery mean velocity (MCA Vmean) changes approximately 3.5% per mmHg carbon-dioxide tension in arterial blood (PaCO2) and a decrease in PaCO2 will reduce the cerebral blood flow by vasoconstriction (the CO2 reactivity of the brain). When standing up MCA...

  11. Sea Carousel—A benthic, annular flume

    Science.gov (United States)

    Amos, Carl L.; Grant, J.; Daborn, G. R.; Black, K.

    1992-06-01

    A benthic annular flume (Sea Carousel) has been developed and tested to measure in situ the erodibility of cohesive sediments. The flume is equipped with three optical backscatter sensors, a lid rotation switch, and an electromagnetic (EM) flow meter capable of detecting azimuthal and vertical components of flow. Data are logged at rates up to 10·66 Hz. Erodibility is inferred from the rate of change in suspended sediment concentration detected in the annulus. The energy-density/wave number spectrum of azimuthal flow showed peaks in the energy spectrum at paddle rotation wave numbers (k) of 14 and 7 m -1 (macroturbulent time scales) but were not significant. Friction velocity ( U*), measured (1) at 1 Hz using a flush-mounted hot-film sensor, and (2) derived from measured velocity profiles in the inner part of the logarithmic layer gave comparable results for Ū* 0·32 m s -1. Radial velocity gradients were proportional to ( Ū y - 0·32 m s -1). Maximum radial differences in U* were 10% for Ū y = 0·5 ms -1. Suspended sediment mass concentration ( S) in the annulus resulted in a significant decrease (10·5%) in Ū* derived by method (1) over the range 0calibration with changes in S. Subaerial deployments of Sea Carousel caused severe substrate disturbance, water losses, and aeration of the annulus. Submarine deployments produced stable results, though dispersion of turbid flume water took place. Results clearly demonstrated the existence of 'Type I' and 'Type II' erosion documented from laboratory studies.

  12. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts

    NARCIS (Netherlands)

    Mahajan, V.N.; Aftab, M.

    2010-01-01

    The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as t

  13. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  14. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter;

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used to...

  15. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise.

    Science.gov (United States)

    Périard, J D; Racinais, S

    2015-06-01

    This study examined the influence of hyperthermia on middle cerebral artery mean blood velocity (MCA Vmean). Eleven cyclists undertook a 750 kJ self-paced time trial in HOT (35 °C) and COOL (20 °C) conditions. Exercise time was longer in HOT (56 min) compared with COOL (49 min; P partial pressure of CO2 (PETCO2 ; P pressure and oxygen uptake were lower from 50% of work completed onward in HOT compared with COOL (P pressure. PMID:25943664

  16. Exhaust emissions of a double annular combustor: Parametric study

    Science.gov (United States)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  17. Phase-Induced Intensity Noise Reduction with Improved Group Velocity Dispersion Tolerance in SAC-OCDMA Systems

    Directory of Open Access Journals (Sweden)

    Anuar M. Safar

    2013-02-01

    Full Text Available The demand for efficient optical communication systems has fuelled considerable research in developing techniques for eradicating phase-induced intensity noise (PIIN in spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA. This paper investigates the use of modified-AND subtraction detection technique to mitigate PIIN in SAC-OCDMA systems. The simulation results show that the modified-AND subtraction detection demonstrates better performance over the conventional AND detection approach. Furthermore, we have found that, from a transmission length of 40 km onwards, group velocity dispersion (GVD degrades SAC-OCDMA system performance apparently. Dispersion compensating fiber (DCF is used to lessen the influence of GVD caused by single mode fiber (SMF.

  18. Etizolam-induced superficial erythema annulare centrifugum.

    Science.gov (United States)

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  19. Fabrication of Annular Pellet for HANARO Irradiation Test of Dual Cooled Fuel

    International Nuclear Information System (INIS)

    One of the most important components in a Pressurized Water Reactor affecting its safety and economy is a nuclear fuel. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 8 mm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in the fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. An internally and externally cooled annular fuel has been considered seriously as a promising solution for an extended power uprate of a PWR fuel assembly. A dual cooled annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimensional changes of the annular fuel pellets during the early irradiation stage are very important, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In order to gain an insight to how the annular pellets deform, a HANARO irradiation test is planned for annular pellets with 5 different types. The detailed specification of the annular pellet was shown in Table 1. It is noted that Type C has the same pore structure as a commercial PWR pellet. The purpose of this paper is to report on the manufacturing process of an annular fuel pellet for a HANARO irradiation test

  20. Large eddy simulation of compressible turbulent channel and annular pipe flows with system and wall rotations

    Science.gov (United States)

    Lee, Joon Sang

    The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method with low Mach number preconditioning. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. The study focused on the effects of buoyancy and rotation on the structure of turbulence and transport processes including heat transfer. Several different physical arrangements were studied as outlined below. The effects of buoyancy were first studied in a vertical channel using large eddy simulation (LES). The walls were maintained at constant temperatures, one heated and the other cooled. Results showed that aiding and opposing buoyancy forces emerge near the heated and cooled walls, respectively. In the aiding flow, the turbulent intensities and heat transfer were suppressed at large values of Grashof number. In the opposing flow, however, turbulence was enhanced with increased velocity fluctuations. Another buoyancy study considered turbulent flow in a vertically oriented annulus. Isoflux wall boundary conditions with low and high heating were imposed on the inner wall while the outer wall was adiabatic. The results showed that the strong heating and buoyancy force caused distortions of the flow structure resulting in reduction of turbulent intensities, shear stress, and turbulent heat flux, particularly near the heated wall. Flow in an annular pipe with and without an outer wall rotation about its axis was first investigated at moderate Reynolds numbers. When the outer pipe wall was rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall. Secondly, a large eddy simulation has been performed to investigate the effect of swirl on the heat and momentum transfer in an annular pipe flow with a rotating inner wall. The simulations indicated that the Nusselt number and the wall friction coefficient increased with increasing rotation speed of the wall. It was also observed that the axial velocity

  1. The Growth of Instabilities in Annular Liquid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  2. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In...

  3. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    Science.gov (United States)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah

    2016-01-01

    borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity-depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  4. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  5. CFD Simulation of Annular Centrifugal Extractors

    Directory of Open Access Journals (Sweden)

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  6. Electrorheological damper with annular ducts for seismic protection applications

    Science.gov (United States)

    Makris, Nicos; Burton, Scott A.; Taylor, Douglas P.

    1996-10-01

    This paper presents the design, analysis, testing and modeling of an electrorheological (ER) fluid damper developed for vibration and seismic protection of civil structures. The damper consists of a main cylinder and a piston rod that pushes an ER fluid through a stationary annular duct. The behavior of the damper can be approximated with Hagen - Poiseuille flow theory. The basic equations that describe the fluid flow across an annular duct are derived. Experimental results on the damper response with and without the presence of electric field are presented. As the rate of deformation increases, viscous stresses prevail over field-induced yield stresses and a smaller fraction of the total damper force can be controlled. Simple physically motivated phenomenological models are considered to approximate the damper response with and without the presence of electric field. Subsequently, the performance of a multilayer neural network constructed and trained by an efficient algorithm known as the Dependence Identification Algorithm is examined to predict the response of the electrorheological damper. A combination of a simple phenomenological model and a neural network is then proposed as a practical tool to approximate the nonlinear and velocity-dependent damper response.

  7. Study on annular mist flow in pipe, 1

    International Nuclear Information System (INIS)

    An annular mist flow using air and water at room temperature has been studied experimentally in a vertical pipe with a nozzle along the axis of the pipe for supplying liquid. Observations were made of flow patterns of liquid on the inner surface of the pipe, and measurements were made of pressure losses in pipe, profiles of radial distribution of liquid droplets and total flow rates of the liquid droplets. Changes of these four factors along the pipe were measured in the non-equilibrium region. It was found that the non-equilibrium length should be decided by a position where any changes in the four factors mentioned above could not be recognized in the axial direction. For relatively high velocities of air, i.e., for apparent gaseous Reynolds number R sub(ego) >= 9.4 x 104, it was ascertained that the annular mist flow reached equilibrium at a distance of 170 - 190 diameters from the nozzle outlet when apparent liquid Reynolds number R sub(elo) = 62.1 - 183.6. (author)

  8. A modified stitching algorithm for testing rotationally symmetric aspherical surfaces with annular sub-apertures

    Science.gov (United States)

    Hou, Xi; Wu, Fan; Yang, Li; Wu, Shi-bin; Chen, Qiang

    2006-02-01

    Annular sub-aperture stitching technique has been developed for low cost and flexible testing rotationally symmetric aspherical surfaces, of which combining accurately the sub-aperture measurement data corrupted by misalignments into a complete surface figure is the key problem. An existed stitching algorithm of annular sub-apertures can convert sub-aperture Zernike coefficients into full-aperture Zernike coefficients, in which use of Zernike circle polynomials represents sub-aperture data over both circle and annular domain. Since Zernike circle polynomials are not orthogonal over annular dominion, the fitting results may give wrong results. In this paper, the Zernike polynomials and existed stitching algorithm have been reviewed, and a modified stitching algorithm with Zernike annular polynomials is provided. The performances of a modified algorithm on the reconstruction precision are studied by comparing with the algorithm existed. The results of computer simulation show that the sub-aperture data reduction with the modified algorithm is more accurate than that obtained with the existed algorithm based on Zernike circle polynomials, and the undergoing matrix manipulation is simpler.

  9. Annular bilayer magnetoelectric composites: theoretical analysis.

    Science.gov (United States)

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  10. Experimental Study on the Characteristics of Liquid Layer and Disturbance Waves in Horizontal Annular Flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.

  11. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  12. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  13. Aerodynamic performance of an annular classical airfoil cascade

    Science.gov (United States)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  14. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 104. In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  15. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  16. DNS for laminarization of turbulent forced gas flows in annular tube with strong heating

    International Nuclear Information System (INIS)

    A direct numerical simulation (DNS) of annular flow with turbulent transport of a variable property has been carried out to grasp and understand a laminarization phenomena caused by a strong heating. In this study, the inlet Reynolds number based on a bulk velocity and a hydraulic diameter was set to be constant; Reb = 9700. The number of computational grids used in this study was 2304 x 128 x 194 in the z-, r- and φ-directions, respectively. (author)

  17. A New Approach to Designing the S-Shaped Annular Duct for Industrial Centrifugal Compressor

    OpenAIRE

    Ivan Yurko; German Bondarenko

    2014-01-01

    The authors propose an analytical method for designing the inlet annular duct for an industrial centrifugal compressor using high-order Bezier curves. Using the design of experiments (DOE) theory, the three-level full factorial design was developed for determination of influence of the dimensionless geometric parameters on the output criteria. Numerical research was carried out for determination of pressure loss coefficients and velocity swirl angles using the software system ANSYS CFX. Optim...

  18. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  19. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...

  20. Azimuthally forced flames in an annular combustor

    Science.gov (United States)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  1. Turbulence modification in vertical upward annular flow passing through a throat section

    International Nuclear Information System (INIS)

    Experimental studies on the turbulence modification in annular two-phase flow passing through a throat section were carried out. The turbulence modification in multi-phase flow due to the interactions between two-phases is one of the most interesting scientific issues and has attracted research attention. In this study, the gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves

  2. Characterization and modeling of annular two-phase flows

    International Nuclear Information System (INIS)

    Three aspects of annular two-phase flow are studied: (a) wave motion on falling films, (b) flow transition from downflow to upflow, and (c) the upflow. For the case of wave motion on falling films, it is shown that the assumption of the Nusselt velocity profile for finite-amplitude waves is solution of the wave profile, wave velocity, and velocity components within the wave is developed. An algorithm based on collocation methods is also detailed and can be applied to extend the model to solve for higher order terms in the velocity profile. Comparisons with experimental studies show good agreement. Flow transition and the upflow experiments are conducted in a 5.08 x 10-2m inner diameter, 6.5m long Plexiglas column. The liquid rates are varied from 0 to 0.126 kg/s and the gas rates from 0 to 0.0524 kg/s. At four measuring stations along the length of the column, an electrical conductance technique which employs two electrodes mounted flush with the wall is utilized to measure film thickness and pressure transducers are used to make the pressure measurements. Flow visualization studies indicate that flooding takes place as a result of entrainment from the crests of large waves. The effect of column length and pore size of the feed device on flooding velocities is studied. No previous correlation or theory is found to be fully adequate. A speculative interaction among system parameters is proposed to form a basis for a physical model for flooding phenomena

  3. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models

    Science.gov (United States)

    Miller, R. L.; Schmidt, G. A.; Shindell, D. T.

    2006-09-01

    We examine the annular mode within each hemisphere (defined here as the leading empirical orthogonal function and principal component of hemispheric sea level pressure) as simulated by the Intergovernmental Panel on Climate Change Fourth Assessment Report ensembles of coupled ocean-atmosphere models. The simulated annular patterns exhibit a high spatial correlation with the observed patterns during the late 20th century, though the mode represents too large a percentage of total temporal variability within each hemisphere. In response to increasing concentrations of greenhouse gases and tropospheric sulfate aerosols, the multimodel average exhibits a positive annular trend in both hemispheres, with decreasing sea level pressure (SLP) over the pole and a compensating increase in midlatitudes. In the Northern Hemisphere, the trend agrees in sign but is of smaller amplitude than that observed during recent decades. In the Southern Hemisphere, decreasing stratospheric ozone causes an additional reduction in Antarctic surface pressure during the latter half of the 20th century. While annular trends in the multimodel average are positive, individual model trends vary widely. Not all models predict a decrease in high-latitude SLP, although no model exhibits an increase. As a test of the models' annular sensitivity, the response to volcanic aerosols in the stratosphere is calculated during the winter following five major tropical eruptions. The observed response exhibits coupling between stratospheric anomalies and annular variations at the surface, similar to the coupling between these levels simulated elsewhere by models in response to increasing GHG concentration. The multimodel average is of the correct sign but significantly smaller in magnitude than the observed annular anomaly. This suggests that the models underestimate the coupling of stratospheric changes to annular variations at the surface and may not simulate the full response to increasing GHGs.

  4. Management of Periocular Granuloma Annulare Using Topical Dapsone

    Science.gov (United States)

    Patel, Mayha; Shitabata, Paul; Horowitz, David

    2015-01-01

    Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321

  5. Non-Newtonian fluid flow in annular pipes and entropy generation: Temperature-dependent viscosity

    Indian Academy of Sciences (India)

    M Yürüsoy; B S Yilbaş; M Pakdemirli

    2006-12-01

    Non-Newtonian fluid flow in annular pipes is considered and the entropy generation due to fluid friction and heat transfer in them is formulated. A third-grade fluid is employed to account for the non-Newtonian effect, while the Reynolds model is accommodated for temperature-dependent viscosity. Closed-form solutions for velocity, temperature, and entropy fields are presented. It is found that entropy generation number increases with reducing non-Newtonian parameter, while it is the reverse for the viscosity parameter, which is more pronounced in the region close to the annular pipe inner wall.

  6. Laser anemometer measurements in an annular cascade of core turbine vanes and comparison with theory

    Science.gov (United States)

    Goldman, L. J.; Seashultz, R. G.

    1982-01-01

    Laser measurements were made in an annular cascade of stator vanes operating at an exit critical velocity ratio of 0.78. Velocity and flow angles in the blade to blade plane were obtained at every 10 percent of axial chord within the passage and at 1/2 axial chord downstream of the vanes for radial positions near the hub, mean and tip. Results are presented in both plot and tabulated form and are compared with calculations from an inviscid, quasi three dimensional computer program. The experimental measurements generally agreed well with these theoretical calculations, an indication of the usefulness of this analytic approach.

  7. Fully developed laminar mixed convection through a vertical annular duct filled with porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kou, H.S.; Huang, D.K. [Tatung Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-01-01

    The fully developed laminar mixed convection through a vertical annular duct embedded in a porous medium has been solved by using the non-Darcian flow model, where thermal boundary conditions on inner and outer walls are prescribed as isothermal-isothermal, isothermal-isoflux, and isoflux-isothermal, separately. The analytical solution has been derived to obtain velocity and temperature profiles, mass flow rate, wall friction factor and heat carried out by fluid. Finally, the parametric zones for flow characteristics of velocity distribution with the upward or downward flow are demonstrated.

  8. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  9. Velocity Memory

    OpenAIRE

    Makin, Alexis David James

    2011-01-01

    This Thesis, entitled ‘Velocity Memory’ is submitted to the University of Manchester by Alexis David James Makin (30/09/2010) for the degree of Doctor of Philosophy. It is known that primates are sensitive to the velocity of moving objects. We can also remember velocity information after moving objects disappear. This cognitive faculty has been investigated before, however, the literature on velocity memory to date has been fragmented. For example, velocity memory has been disparately descri...

  10. Performance of annular high frequency thermoacoustic engines

    Science.gov (United States)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  11. Annular Alopecia Areata: Report of Two Cases

    OpenAIRE

    Bansal, Manish; Manchanda, Kajal; Pandey, SS

    2013-01-01

    Alopecia areata (AA) is an auto-immune disorder characterized by the appearance of non-scarring bald patches affecting the hair bearing areas of the body. Scalp is the most common site of involvement. AA can affect any age group. The usual pattern of the hair loss is oval or round. We hereby, report two cases of annular and circinate pattern of AA due to its unusual morphology.

  12. Annular pancreas associated with duodenal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Enrico; Bronnimann; Silke; Potthast; Tatjana; Vlajnic; Daniel; Oertli; Oleg; Heizmann

    2010-01-01

    Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancre...

  13. Z-pinch of an annular gas jet

    International Nuclear Information System (INIS)

    The implosion and thermalization of an annular argon plasma is investigated. The plasma is produced by the z-pinch of an annular jet of argon gas, using a marx bank-transmission line system which delivers a peak current of 415 kA in 200 ns. The annulus implodes from its initial diameter of 2.5 cm and reaches a peak velocity of approx.2.8 x 107 cm/sec. Measurements of the plasma's radius, thickness, electron density, and average ionization state as a function of time are performed. When the imploding plasma reaches the axis, an 8 ns pulse of soft (0.1-1 keV) x rays is emitted. X rays with energies between 1 and 6 keV are also observed, and are emitted in a single pulse 2 to 5 ns wide. The thermalized plasma is inhomogeneous along the axial direction; vacuum ultraviolet spectroscopy indicates that some regions are approx.270 eV, with Ar XIV in abundance, while x-ray spectroscopy indicates that other regions of the plasma have only highly ionized argon (XVI-XVIII). Although a thermal interpretation of the x-ray spectra would indicate an electron temperature of approx.1 keV, there is evidence that an energetic beam of electrons develops in the thermalized plasma. When this beam is included in the analysis of the x-ray spectra, it is found that the temperature in the hot spots could be as low as 400 eV. The electron density in the thermalized plasma is estimated to be greater than or equal to 1020 cm-3

  14. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    International Nuclear Information System (INIS)

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 μm. This test was performed at the FIVPET facility

  15. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2007-08-15

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 {mu}m. This test was performed at the FIVPET facility.

  16. Investigations of mass transfer in annular gas-liquid flow in a microreactor

    Directory of Open Access Journals (Sweden)

    Sobieszuk Paweł

    2016-03-01

    Full Text Available The paper presents an investigation of mass transfer in gas-liquid annular flow in a microreactor. The microreactor had a meandered shape with a square cross-section of the channel (292×292 μm, hydraulic diameter 292 μm and 250 mm in length. The rate of CO2 absorption from the CO2/N2 mixture in NaOH (0.1 M, 0.2 M, 0.7 M, 1.0 M and 1.5 M water solutions was measured. Two velocities of gas flow and two velocities of liquid flow were used. In two cases a fully developed annular flow at the beginning of the channel was observed, whilst in two cases annular flow was formed only in about 2/3 of the microchannel length. Based on the measurements of CO2 absorption rate, the values of volumetric liquid - side mass transfer coefficients with the chemical reaction were determined. Then physical values of coefficients were found. Obtained results were discussed and their values were compared with the values predicted by literature correlations.

  17. Vibration analysis of annular-like plates

    Science.gov (United States)

    Cheng, L.; Li, Y. Y.; Yam, L. H.

    2003-05-01

    The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of "recessive" modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for "dominant" modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.

  18. Development of an annular arc accelerator shock tube driver

    Science.gov (United States)

    Leibowitz, L. P.

    1973-01-01

    An annular arc accelerator (ANAA) shock tube driver has been developed that deposits the energy of an arc discharge into a flowing gas, which then expands and cools without any delay for the opening of a diaphragm. A simplified one-dimensional flow analysis of the ANAA shock tube has been performed, which indicates that shock velocities greater than 40 km/sec may be obtained using a 300-kJ capacitor bank. The ANAA driver consists of a high-pressure driver, an expansion section, and an electrode section. In operation, the cold gas driver is pressurized until the diaphragm bursts, sending a pressure front down the expansion tube to the arc section. When the accelerated flow arrives at the electrode section, a 100-capacitor, 300-kJ capacitor bank is discharged either by breaking an insulating diaphragm between the electrodes or by the triggering of a series of external switches. Shock velocities of 28 km/sec have been obtained, and modifications are described that are expected to improve performance.

  19. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    Science.gov (United States)

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  20. A New Approach to Designing the S-Shaped Annular Duct for Industrial Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Ivan Yurko

    2014-01-01

    Full Text Available The authors propose an analytical method for designing the inlet annular duct for an industrial centrifugal compressor using high-order Bezier curves. Using the design of experiments (DOE theory, the three-level full factorial design was developed for determination of influence of the dimensionless geometric parameters on the output criteria. Numerical research was carried out for determination of pressure loss coefficients and velocity swirl angles using the software system ANSYS CFX. Optimal values of the slope for a wide range of geometric parameters, allowing minimizing losses in the duct, have been found. The study has used modern computational fluid dynamics techniques to develop a generalized technique for future development of efficient variable inlet guide vane systems. Recommendations for design of the s-shaped annular duct for industrial centrifugal compressor have been given.

  1. THE PERTURBATION SOLUTIONS OF THE FLOW IN A ROTATING CURVED ANNULAR PIPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the flow in a rotating curved annular pipe isexamined by a perturbation method. A second order perturbation solution is presented. The characteristics of the secondary flow and the axial flow are studied in detail.The study indicates that the loops of the secondary flow are more complex than those in a curved annular pipe without rotation and its numbers depend on the ratio of the Coriolis force to centrifugal force F. As F ≈- 1 , the secondary flow has eight loops and its intensity reaches the minimum value, and the distribution of the axial flow is like that of the Poiseuille flow. The position of the maximum axial velocity is pushed to either outer bend or inner bend, which is also determined by F.

  2. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gong, X.W.; Hu, G.X.; Li, Y.H. [Shanghai Jiao Tong University, Shanghai (China). School for Mechanical & Power Engineering

    2006-06-21

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle mode and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.

  3. Light propagation characteristics through the annular coupled-cavity waveguides based on the two-dimensional square-lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    FENG Shuai; LI Yu-xi; AO Ling; REN Cheng

    2011-01-01

    The light propagation characteristics through the annular coupled-resonator cavity waveguides are systematically analyzed by the finite-difference time-domain (FDTD) method. It is found that this kind of waveguide has more minbands owing to the increasing of the cavity's size, compared with the traditional line-typed coupled-resonator waveguide. The group velocity of light propagation can be reduced for a further degree when the adjacent annular cavities are interlaced in the perpendicular direction, and a group velocity about 0.00067c (c is the light speed in vacuum) can be obtained.

  4. Stable relocation of the radial head without annular ligament reconstruction using the Ilizarov technique to treat neglected Monteggia fracture: two case reports

    Directory of Open Access Journals (Sweden)

    Wani Shareef A

    2010-10-01

    Full Text Available Abstract Introduction A Monteggia facture dislocation is not an uncommon injury, and the diagnosis can often be missed. Long-term follow-up of untreated Monteggia fracture dislocations reveals development of premature arthritis, pain, instability, and loss of pronation and supination. Methods involving annular ligament reconstruction require post-operative immobilization and use of transcapitellar pinning for maintenance of reduction, and thus a delay in rehabilitation. The literature reports satisfactory results with methods that involve ulnar osteotomy and open reduction of the radial head without annular ligament reconstruction. We used the Ilizarov method in two cases with neglected Monteggia fracture dislocations to stably reduce the radial head without open reduction and annular ligament reconstruction. Case presentation We report two cases of neglected Monteggia fracture dislocation, in two Kashmiri boys aged four and six years. Using ulnar osteotomy with distraction osteogenesis, we were able to relocate the radial head gradually and maintain the reduction without a requirement for open reduction and annular ligament reconstruction. Conclusion Distraction lengthening and hyperangulation in different planes by use of the Ilizarov technique effectively reduces the radial head without open reduction and annular ligament reconstruction.

  5. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  6. Ultrasonogrphic diagnosis of snapping annular ligament in the elbow

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jee Won; Kim Su Jin; Lim, Hyun Kyong; Bae, Kee Jeong [SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-01-15

    Elbow snapping by annular ligament is rare and may be difficult to diagnose, when this Epub ahead of print condition is not familiar. We report a case of elbow snapping by annular ligament diagnosed by ultrasonography, which was confirmed by arthroscopic observation. The ultrasonographic findings were thickening of the annular ligament and snapping in and out of the radiocapitellar joint during elbow flexion and extension on dynamic ultrasonography.

  7. Escape Velocity

    OpenAIRE

    Nikola Vlacic

    2010-01-01

    In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  8. Granuloma annulare localized to the shaft of the penis

    DEFF Research Database (Denmark)

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  9. Deep variant of Erythema Annulare Centrifugum

    OpenAIRE

    Ahu Yorulmaz; Ferda Artuz; Devrim Tuba Unal

    2014-01-01

    A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1). It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1).

  10. Deep variant of Erythema Annulare Centrifugum

    Directory of Open Access Journals (Sweden)

    Ahu Yorulmaz

    2014-10-01

    Full Text Available A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1. It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1.

  11. Visualization of the annular synthetic jet

    Czech Academy of Sciences Publication Activity Database

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    Praha: Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 13-16 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012. Praha (CZ), 15.02.2012-17.02.2012] R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * annular jet * visualization Subject RIV: BK - Fluid Dynamics

  12. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  13. Interfacial friction in cocurrent upward annular flow

    Science.gov (United States)

    Hossfeld, L. M.; Bharathan, D.; Wallis, G. B.; Richter, H. J.

    1982-03-01

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor.

  14. Air-water countercurrent annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    1979-09-01

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes.

  15. Annular diffraction of very unstable light nuclei

    International Nuclear Information System (INIS)

    Because they are brittle, unstable light nuclei can produce an annular diffraction pattern observed on their decay products with large cross sections. With such a simple model, the 9Li angular distribution observed in the 11Li fragmentation have been reproduced together with the reaction cross-section and the fragmentation yield provided recoil effects from neutron emission are included. It results that for this projectile and for light targets, diffraction is the main source of transverse momentum for 9Li whereas for neutrons it originates from its emission energy in the 11Li center of mass

  16. Air-water countercurrent annular flow

    International Nuclear Information System (INIS)

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes

  17. Auto-thermal combustion of lean gaseous fuels utilizing a recuperative annular double-layer catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Budzianowski, W.M. [Wroclaw Univ. of Technology, Wroclaw (Poland). Div. of Chemical and Biochemical Processes, Faculty of Chemistry; Miller, R. [Wroclaw Univ. of Technology, Wroclaw (Poland). Inst. of Power Engineering and Fluid Mechanics, Faculty of Mechanical and Power Engineering

    2008-08-15

    This study investigated the auto-thermal combustion of lean gaseous fuels in a recuperative annular double-layer catalytic converter. An analysis of the stationary and transient performance of annular converters was presented. The feasibility of lean gaseous mixture combustion in auto-thermally operated recuperative annular double-layer catalytic converters was investigated. The aim of the study was to build a process model using mass, energy, and momentum differential balances. The model was used to study the static behaviour of a recuperative annular double layer converter; an annular converter operating in transient conditions; and energy accumulation and recuperation interactions. The effects of fuel temperature, external cooling, and fuel concentration were examined. Results of the study showed that a substantial reduction of the inter- and intra-phase resistances to mass and heat transfer was obtained. It was demonstrated that the use of a low value for the substrate's thermal conductivity accelerated ignition and retarded extinction. The recuperative converter was able to transfer short-time inlet disturbances of various parameters due to the energy accumulation and temporal reversed recuperation which counteracted destructive overheating of the catalysts. The stability analyses showed stable and unstable branches of solutions for the different parameters of the recuperative converter. 21 refs., 1 tab., 23 figs.

  18. Turbulent structure at the midsection of an annular flow

    Science.gov (United States)

    Ghaemi, S.; Rafati, S.; Bizhani, M.; Kuru, E.

    2015-10-01

    The turbulent flow in the midsection of an annular gap between two concentric tubes at Reynolds number of 59 200-90 800 based on hydraulic diameter (dh = 57 mm) and average velocity is experimentally investigated. Measurements are carried out using particle tracking velocimetry (PTV) and planar particle image velocimetry (PIV) with spatial resolution of 0.0068dh (size of the binning window) and 0.0129dh (size of the interrogation window), respectively. Both PTV and PIV results show that the location of maximum mean streamwise velocity (yU) does not coincide with the locations of zero shear stress (yuv), minimum streamwise velocity fluctuation (yu2), and minimum radial velocity fluctuation (yv2). The separation between yU and yuv is 0.013dh based on PTV while PIV underestimates the separation distance as 0.0063dh. Conditional averages of turbulent fluctuations based on the four quadrants across the annulus demonstrate that the inner and outer wall flows overlap in the midsection. In the midsection, the flow is subject to opposing sweep/ejection events originating from both the inner and outer walls. The opposite quadrant events of the two boundary layers cancel out at yuv while the local minimum of spatial correlation of u (maximum mixing of the two wall flows) occurs at yU. Investigation of the budget of Reynolds shear stress showed that production and advection terms act towards the coincidence of the yU and yuv while the dissipation term works against the coincidence of the two points. The location of max also overlaps with zero dissipation of . The production of turbulent kinetic energy is slightly negative in the narrow region between yU and yuv. This negative production acts towards smoothing the mean velocity profile at the joint of the two wall flows by equalizing its curvature (∂2/∂y2) on the two sides of yU. The small separation distance of the yU and yuv is associated with slight deviation from the fully developed condition.

  19. Detonation diffraction from an annular channel

    Science.gov (United States)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  20. 圆管段塞流型速度分布与减阻规律研究%A Research on Velocity Profile and Drag Reduction Law of Slug Flow in Pipe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Research work in this paper is done about drag reduction by aeration from the view of basic equations of fluid mechanics.By analyzing phases velocity profiles and resistance lawv resulted from gas slug in the pipe center,the condition that the secondary flow occurs,phases velocity profiles,formula of drag reduction and a curve of drag reduction have been obtained.The curve shows that the drag reduction law is affected by proportion of gas,and the drag reduction rarely happens in slug flow.While gas proportion is in a certain scope,the drag resistance is aggrandized greatly.Therefore some measures should be taken to avoid slug pattern while drag reduction by aeration is applied.%以流体力学基本方程为基础,通过对气体在管道中心形成段塞流的相速度分布和阻力规律分析,得到了二次流发生的条件、各相流体速度分布、减阻率关系式以及减阻率曲线。减阻率曲线表明,段塞流的含气量影响其阻力规律,段塞流能产生的减阻很小,而当气体含量处于增阻范围内时,却能使阻力增加很大。因此在利用掺气减阻时应控制段塞流流型的出现。

  1. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  2. Seismic response of liquid sloshing in the annular region formed by coaxial circular cylinders

    International Nuclear Information System (INIS)

    As to the sloshing of liquid in the storage tanks having free surface in earthquakes, there have been many reports, but these are limited to those of relatively simple structures and forms. As the cxamples of complex structures, there are chemical reaction towers, stress removal tanks for BWRs, reactor vessels for FBRs and so on. In these structures, annular parts are formed inside, and as to the sloshing in such annular parts, there is only the report of Aslam et al. In this study, examination was carried out on the earthquake response of the liquid sloshing in the annular part of a double walled cylinder which appears relatively frequently among complex structures. In the analysis, attenuation was taken into account in addition to the method of Aslam et al., the walls of an axisymmetric vessel were regarded as rigid, and infinitesinal displacement and incompressible invicid fluid were assumed. The velocity potential satisfying boundary conditions was determined assuming irrotational flow, and the solution of transient response when n sine waves resonating with the sloshing of first order mode were inputted was derived. Two kinds of double walled vessels were vibrated with a large vibrating table, and the response was measured. (Kako, I.)

  3. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  4. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  5. A two-dimensional parabolic model for vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br

    2010-07-01

    This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)

  6. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    Science.gov (United States)

    2010-05-04

    ... Recommended Practice (RP) 90. As explained in API RP 90, Section 3, Annular Casing Pressure Management Program... Institute's Recommended Practice for managing annular casing pressure. New regulations are needed because... Continental Shelf lessees to follow best industry practices for wells with sustained casing pressure....

  7. Obtention of an empirical equation for annular channels

    International Nuclear Information System (INIS)

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  8. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  9. Flooding velocities for air and water in vertical tubes

    International Nuclear Information System (INIS)

    An investigation of the limiting, or flooding, velocities for countercurrent annular flow of air and water in vertical tubes is reported. The data are correlated in terms of dimensionless groups which are similar to those already in use for describing flooding in packed towers. The relevance of the results to the problem of burnout in boiling equipment is discussed. (author)

  10. Computation of Flow through an Annular Diffuser and Volute Exhaust

    Directory of Open Access Journals (Sweden)

    M. Arun

    2006-04-01

    Full Text Available Turbulent flow in a diffuser with swirl occurs in many commonly used fluid mechanicaldevices,eg, diffusers located downstream of a gas turbine, and in certain types of combustionchambers. Diffusers are widely used for converting kinetic energy to pressure, and a reliableprediction method of such flows with the required flow conditions would lead to the design offluid machinery with improved efficiency. As a first step, turbulent swirling flow through a 12oincluded angle conical diffuser for a swirl parameter, m = 0.18 was numerically investigated usingvarious turbulence models like standard k- , RNG-based k- , shear-stress transport (SST kandReynolds stress model (RSM. Though the comparison between the experimental and thepredicted mean velocity profile by RSM is superior to that by RNG kandSST models, the lattertwo models give closer comparison with the experimental pressure distribution. Subsequently,computation of flow inside a complex duct involving axisymmetric annular diffuser, transitionfrom rectangular to circular cross section, and exit pipe have been carried out using RNG kandSST k models.The comparison of computed and experimental results indicates that theSST k modelgives predictions with reasonable accuracy.

  11. DCH dispersal and entrainment experiment in a scaled annular cavity

    International Nuclear Information System (INIS)

    The objective of this experiment was to measure the amount of corium dispersal and the droplet size distribution during high pressure melt ejection from a CE reactor. The melt and the steam flowed to the containment through a narrow annular cavity. The experiment was carried out on a 1/20th scaled model of the cavity and the containment. The scaling was based on dimensionless numbers obtained from a two-phase flow model of the dispersal and entrainment mechanisms in the cavity. Furthermore, the model shows that the flow in the cavity was choked, so high levels of dispersal and entrainment were possible. The experiment consisted of air-water, air-helium, air-woods metal and helium-woods metal tests; the main result being that the level of dispersal was very high in all cases. The woods metal data supported a separated flow model in the cavity, implying that the gas choked velocity was very high and the droplets very small. In contrast, the measured drop sizes for the water tests were much larger than the separated flow model predictions. This discrepancy could not be resolved because the entrainment mechanism is not properly understood at the present time. (orig.)

  12. Missed Monteggia fracture in children: Is annular ligament reconstruction always required?

    Directory of Open Access Journals (Sweden)

    Bhaskar Atul

    2009-01-01

    Full Text Available Background: Chronic (neglected radiocapitellar joint dislocation is one of the feared complications of Monteggia fractures especially when associated with subtle fracture of the ulna bone. Many treatment strategies have been described to manage chronic Monteggia fracture and the need for annular ligament reconstruction is not always clear. The purpose of this study is to highlight the management of missed Monteggia fracture with particular emphasis on utility of annular ligament reconstruction by comparing the two groups of patients. Materials and Methods: In a prospective study 12 patients with mean age of 7.4 years, who presented with neglected Monteggia fractures, were studied. All children underwent open reduction of the radiocapitellar joint. Five children (Group A were treated with angulation-distraction osteotomy of ulna and annular ligament reconstruction and six cases (Group B required only angulation-distraction osteotomy of ulna without ligament reconstruction. In one case an open reduction of the radiocapitellar joint was sufficient to reduce the radial head and this was included in Group B. The gap between injury and presentation was from 3 months to 18 months (mean 9 months. Ten patients were classified as Bado I, and one each as Bado II and III respectively. We used the Kim′s criteria to score our results. Result: The mean follow-up period was 22 months. All ulna osteotomies healed uneventfully. The mean loss of pronation was 15 degree in Group A and 10 degree in Group B. Elbow flexion improved from the preoperative range and no child complained of pain, deformity and restriction of activity. The elbow score was excellent in 10 cases, and good in two cases. Conclusion: Distraction-angulation osteotomy of the ulna suffices in most cases of missed monteggia fracture and the need for annular ligament reconstruction is based on intraoperative findings of radial head instability.

  13. Effect of annular secondary conductor in a linear electromagnetic stirrer

    Indian Academy of Sciences (India)

    R Madhavan; V Ramanarayanan

    2008-10-01

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder. Experimental and numerical simulations are performed for a 2-pole in house built 15 kW linear electromagnetic stirrer (EMS). It is observed for a supply current of 200 A at 30 Hz the force densities in the hollow annular ring is 67% higher than the equivalent solid cylinder. The same values are 33% for annular ring with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are validated with experimental results.

  14. Modeling Mist to Annular Flow Development in the Discharge of a Compressor

    OpenAIRE

    Wujek, Scott S.; Hrnjak, Predrag S.

    2012-01-01

    A model has been created to describe the development of flow leaving a compressor as it transitions from mist to annular flow. Flow parameters such as the drop size, drop speed, drop concentration, film thickness, and film velocity change as a function of length. Parameters such as refrigerant flow rates, oil in circulation ratios, and fluid properties are accounted for in these models. While some flow development work is found in the open literature for air-water or steam-water flows, little...

  15. Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure

    Science.gov (United States)

    Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.

    Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.

  16. Detection and analysis of transition from annular to intermittent flow in vertical tubes

    International Nuclear Information System (INIS)

    In vertical co-current gas-liquid flow, the transition from annular to intermittent flow occurs when gas core becomes interrupted by liquid bridges due to the instability of the interfacial capillary waves. An analytical model is formulated to explain the liquid bridging in terms of the growth of finite amplitude interfacial capillary waves. Experimental results show that the longest wave length, which is associated with the transition, is about eight times the wave length of waves moving with the velocity of the liquid film. (author). 12 refs., 8 figs

  17. Gas-liquid annular flow in vertical circular tubes with liquid penetrated in nucleus

    International Nuclear Information System (INIS)

    A semi-analytical model is proposed for fully developed upward gas-liquid annular flow inside vertical circular tubes, by utilizing wall-known turbulence algebraic models for single-phase flows, within both streams, combined with empirical correlations for the gas-liquid interface friction factor. Direct integration of the associated momentum equations provide the velocity distribution for each phase, as well as overall quantities of practical interest such as liquid film thickness and pressure gradient. The effects of liquid droplets entrainment in the gas is specialized empirical correlations. Extensive comparisons with experimental results are made in order to demonstrate the consistency of the proposed model. (author)

  18. Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine

    Science.gov (United States)

    Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry

    Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.

  19. Assessment of TRAC-PF1/MOD1 for countercurrent - annular and stratified flows

    International Nuclear Information System (INIS)

    I performed an independent assessment of the Transient Reactor Analysis Code, TRAC-PF1/MOD1, using air-water countercurrent-flow limitation data in circular pipes for annular, annular-mist, and stratified flows. Tubes were configurated in the vertical direction with different lengths and diameters and at angles of 60 deg, 40 deg, 20 deg, and 0 deg from the horizontal, respectively. Also, comparisons were made with data from a horizontal tube with an inclined riser at the end that simulated a pressurized water reactor (PWR) hot leg. TRAC-PF1/MOD1 was modified to study the effects of using two different correlations for interfacial shear in the annular-mist flow regime: the Wallis and Bharathan correlations. TRAC-PF1/MOD1 with the Wallis correlation predicts the point of no water penetration (bypass point) in the annular-mist flow regime except for the 40 deg inclined tube. However, for the region of partial water penetration, use of the Bharathan correlation in TRAC-PF1/MOD1 gives better agreement with data. Additional form losses were required at both ends of the tube to predict the flow rate of falling water accurately for the vertical tube. In the stratified-flow regime, TRAC-PF1/MOD1 underpredicts the air velocity which gives the bypass point but gives good agreement for the region of partial penetration. For the case of a simulated PWR hot leg, the code yields similar results to those obtained for the stratified-flow regime. (author)

  20. Dual-Band Annular-Ring Microstrip Patch Antenna for Satellite Applications

    Directory of Open Access Journals (Sweden)

    Tvs Divakar

    2014-08-01

    Full Text Available A dual-band circularly polarized antenna fed by four apertures that covers the bands of GPS, Galileo, is introduced. The ARSAs designed using FR4 substrates in the L and S bands have 3-dB axial-ratio bandwidths (ARBWs of as large as 37% and 52%, respectively, whereas the one using an RT5880 substrate in the L band, 61%. In these 3-dB axial-ratio bands, impedance matching with VSWR<=1.8 is also achieved. Three wideband planar baluns are used to achieve good axial ratio and VSWR. The results of the annular-ring microstrip antenna show good performance of a dual-band operation, which meets the requirement of Global Navigation Satellite System (GNSS applications.

  1. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  2. Hydrodynamics of annular-dispersed flow

    International Nuclear Information System (INIS)

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  3. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    Directory of Open Access Journals (Sweden)

    Shaohui Liu

    2013-10-01

    Full Text Available We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP. Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients.

  4. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  5. The development of an annular-beam, high power free-electron maser for future linear colliders

    International Nuclear Information System (INIS)

    Work is underway to develop a 17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. We plan to use a 500 keV, 5 kA, 6-cm-dia annular electron beam to excite a TM02 mode Raman FEM amplifier in a corrugated cylindrical waveguide. The annular beam will run close to the interaction device walls to reduce the power density in the fields, and to greatly reduce the kinetic energy loss caused by beam potential depression associated with the space charge which is a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. A key advantage of the annular beam is that the reduced plasma wave number can be tuned to achieve phase stability for an arbitrary correlation of interaction strength with beam velocity. It should be noted that this technique for improving phase stability of an FEM is not possible with a solid beam klystron. The annular beam FEM provides the opportunity to extend the output power of sources in the 17 GHz regime by well over an order of magnitude with enhanced phase stability. The design and experimental status are discussed. (author)

  6. Detonation Initiation by Annular Jets and Shock Waves

    OpenAIRE

    Shepherd, Joseph E.

    2005-01-01

    The objective of this research is to experimentally determine the feasibility of initiating detonation in fuel-air mixtures using only the energy in hot, compressed air. The existing 6-inch shock tube at Caltech was used to create hot, high-pressure air behind a reflected shock wave. The hot air created an imploding annular shock wave when it jetted through an annular orifice into a 76-mm-diameter, 1-m-long tube attached to the end of the shock tube. A special test section with an annular ...

  7. Assessment of Inner Channel Blockage on the Annular Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; In, W. K.; Oh, D. S.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A dual-cooled annular fuel for a pressurized water reactor (PWR) has been introduced for a significant amount of reactor power uprate. The Korea Atomic Energy Research Institute (KAERI) has been performing a research to develop a dual-cooled annular fuel for the power uprate of 20% in an optimized PWR in Korea, OPR1000. An inner channel blockage is principal one of technical issues of the annular fuel rod. The inner channel in an annular fuel is isolated from the neighbor channels unlike the outer channels. The inner channel will be faced with a DNB accident by the partial blockage. In this paper, the largest fractional channel blockage was assessed by subchannel analysis code MATRA-AF and an end plug design to complement inlet blockage of inner channel was estimated by CFD code, CFD-ACE

  8. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  9. Principle of radial transport in low temperature annular plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Bldg 60, Mills Road, Australian Capital Territory 2601 (Australia)

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  10. Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

    CERN Document Server

    Knaster, J R; Chatelaine, A; Flakowski, D; Girard, C; Ivaldi, S; Laurent, Jean Michel; Monteiro, I; Rossi, A; Veness, R J M

    2003-01-01

    The LHC will be the world next generation accelerator to be operational in 2007 at CERN. The UHV requirements force the installation of ion pumps in the experimental areas of ATLAS. Due to the unacceptable particle background that standards ion pumps may generate, a reduction in the amount of material constitutive of the pump body is required. Hence, an stainless steel 0.8 mm thick body annular triode ion pump has been designed. A pumping speed of ~ 20 l/s at 10-9 mbar is provided by 15 pumping elements. Finite elements analysis and destructive tests have been performed in its design. Final vacuum tests results are shown.

  11. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    OpenAIRE

    Rishi Hassan; P Arunprasath; Padmavathy, L.; K Srivenkateswaran

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the clas...

  12. Annular bright and dark field imaging of soft materials

    International Nuclear Information System (INIS)

    Here polyethylene, as an example of an important soft material, was studied by STEM annular bright and dark field. The contrast as function of the probe size/shape and the detector collection angle are discussed. The results are compared to conventional bright field transmission electron microscopy, electron energy filtered imaging and energy dispersive spectroscopy mapping. Annular bright and dark field gave a higher contrast than conventional transmission and analytical mapping techniques

  13. Elastic instability in stratified core annular flow

    CERN Document Server

    Bonhomme, Oriane; Leng, Jacques; Colin, Annie

    2010-01-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic -- it is caused by viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  14. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    Science.gov (United States)

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices. PMID:26903412

  15. Assessment of the annular mist interfacial shear in Trac-PF1/MOD1 against downcomer bypass and tie-plate flooding data

    International Nuclear Information System (INIS)

    The TRAC-PF1/MOD1 thermal-hydraulic analysis code is assessed against steady-state downcomer bypass and tie-plate flooding data. For the conditions typical of these data, the calculated flow regime is annular and annular mist. Two different correlations for the annular flow interfacial shear are studied: the Wallis correlation and a correlation by Bharathan. The results show that at low vapor velocity the Wallis correlation underpredicts the interfacial shear and allows excessive water penetration for both the downcomer and tie-plate geometry. Use of the Bharathan correlation raises the interfacial shear in this regime and gives better agreement with the data. It is shown that using the Wallis correlation with a constant multiple of five provides agreement similar to that of Bharathan. The Bharathan correlation however is preferred because it includes the effects of scale as well as film thickness

  16. Sonographic evaluation of digital annular pulley tears

    International Nuclear Information System (INIS)

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  17. Annular burnout data from rod bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests

  18. Orbital velocity

    CERN Document Server

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  19. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind...

  20. X-ray diffraction from bone employing annular and semi-annular beams

    International Nuclear Information System (INIS)

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  1. Mass transfer in back to back elbows arranged in an out of plane configuration under annular two phase flow conditions

    International Nuclear Information System (INIS)

    Highlights: • Mass transfer in back to back elbows in an out of plane configuration was measured. • Tests were performed under annular two phase air–water conditions. • Highest mass transfer was on the outer wall of the first elbow. • The mass transfer on the second elbow was always less than that in the first elbow. • The mass transfer increased with an increase in the air superficial velocity. - Abstract: The mass transfer in back-to-back elbows arranged in an out of plane configuration has been measured under annular two phase air–water flow conditions. The measurements were performed using a wall dissolving technique with the elbow sections cast from gypsum. Experiments were performed to study the effect of increasing the water and air superficial velocities, and the effect of separation distance between the elbows. The highest mass transfer for all cases occurs on the outer wall of the first elbow, and the magnitude was not affected by the separation distance between the elbows. The maximum mass transfer in the second elbow was approximately 60 percent of the maximum value in the first elbow. The mass transfer increased with an increase in either the water or air superficial velocity, with the air velocity having a greater effect. The roughness development in the upstream pipe was modest, but was significant in the regions of high mass transfer on the first and second elbow

  2. Experimental and numerical investigation of an entrance blockage of an inner channel in dual-cooled annular nuclear fuel

    International Nuclear Information System (INIS)

    A dual-cooled annular nuclear fuel for a Pressurized Water Reactor (PWR) has been introduced for a significant increase in reactor power. The Korea Atomic Energy Research Institute (KAERI) has been researching the development of a dual-cooled annular fuel for a power increase in an optimized PWR in Korea, OPR-1000. The main advantage of a dual-cooled annular fuel is an increased heat transfer area and a reduction in the fuel temperature, which would result in reduced fission gas release and increased fuel melting margin and Departure from Nucleate Boiling (DNB) margin. The annular fuel rod is configured to allow the coolant flow through the inner channel as well as outer channel. Since the inner channel is isolated from the neighbor channels unlike the outer channels, an inner channel blockage is one of the principal technical issues of a dual-cooled annular fuel. Due to a partial blockage, the inner channel may be faced with a DNB accident. A conceptual design used to complement the entrance blockage of an inner channel was suggested by KAERI. The through holes in this design are formed on a cylindrical wall of the lower end plug. When the inner channel is blocked by debris, coolant for the inner channel will be supplied through the side holes. But due to very unusual shape of the lower end plug, it is difficult to estimate the flow resistance of the side flow holes using empirical correlations available in the open literatures. Experimental and Computational Fluid Dynamics (CFD) studies were performed to investigate the bypass flow through the side holes of the lower end plug to complement the entrance blockage of an inner channel. The form loss coefficient in the side holes was also estimated by using the pressure drop along the bypass flow path and DNB Ratio (DNBR) margin was estimated by a subchannel analysis code. (author)

  3. Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow

    Science.gov (United States)

    Paı¨Doussis, M. P.; Luu, T. P.; Prabhakar, S.

    2008-01-01

    A theoretical model is developed for the dynamics of a hanging tubular cantilever conveying fluid downwards; the fluid, after exiting from the free end, is pushed upwards in the outer annular region contained by the cantilever and a rigid cylindrical channel. This configuration thus resembles that of a drill-string with a floating fluid-powered drill-bit. The linear equation of motion is solved by means of a hybrid Galerkin Fourier method, as well as by a conventional Galerkin method. Calculations are conducted for a very slender system with parameters appropriate for a drill-string, for different degrees of confinement of the outer annular channel; and also for another, bench-top-size experiment. For wide annuli, the dynamics is dominated by the internal flow and, for low flow velocities, the flow increases the damping associated with the presence of the annular fluid. For narrow annuli, however, the annular flow is dominant, tending to destabilize the system, giving rise to flutter at remarkably low flow velocities. The mechanisms underlying the dynamics are also considered, in terms of energy transfer from the fluid to the cantilever and vice versa, as are possible applications of this work.

  4. Numerical simulations of heat transfer in an annular fuel channel with three-dimensional spacer ribs set up periodically under a fully developed turbulent flow

    International Nuclear Information System (INIS)

    Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations κ-ε turbulence model was applied to the present turbulent analysis. In particular, the κ-ε turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)

  5. Numerical simulations of heat transfer in an annular fuel channel with three-dimensional spacer ribs set up periodically under a fully developed turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kazuyuki; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1996-06-01

    Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations {kappa}-{epsilon} turbulence model was applied to the present turbulent analysis. In particular, the {kappa}-{epsilon} turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)

  6. Far-field Diffraction Properties of Annular Walsh Filters

    Directory of Open Access Journals (Sweden)

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  7. Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly Flow

    Directory of Open Access Journals (Sweden)

    Gérard PINEAU

    2011-09-01

    Full Text Available For some applications it must be considered that the flow in the annular seal contains a mixture of liquid and gas. The multiphase character of the flow is described by the volume fraction of gas (usually air contained in the liquid under the form of bubbles.The fluid is then a homogenous mixture of air and liquid all thru the annular seal. Its local gas volume fraction depends on the pressure field and is calculated by using a simplified form of the Rayleigh-Plesset equation.The influence of such of a multiphase (bubbly flow on the dynamic characteristics of a straight annular seal is minimal because the volume of the fluid is reduced.The situation is quite different for textured annular (damper seals provided with equally spaced deep cavities intended to increase the damping capabilities and to reduce the leakage flow rate.As a by-product, the volume of the fluid in the seal increases drastically and the compressibility effects stemming from the bubbly nature of the flow are largely increased even for a low gas volume fraction. The present work depicts the influence of the gas volume fraction on the dynamic characteristics of a textured annular seal. It is shown that variations of the gas volume fraction between 1% and 0.1% can lead to frequency dependent stiffness, damping and added mass coefficients.

  8. Flooding in vertical counter-current annular flow

    International Nuclear Information System (INIS)

    The hydrodynamic characteristics of falling liquid films inside a vertical tube (50.8 mm ID and 244 cm high) with counter-current interfacial shear at the onset of flooding have been investigated experimentally. High speed video photography and a flow visualization technique were utilized to investigate the mechanisms involved in the initiation of the flooding phenomenon over a wide range of liquid film Reynolds number (ReL=Γ4/μ) from 1391 to 6584 at a distance of 150 cm from the liquid inlet. The present experimental data indicated neither the interfacial wave growth nor reversal in the wave propagation could be responsible for the initiation of flooding. Also the measured velocity profiles indicated only a slight reduction in liquid velocity within a narrow region very close to the gas-liquid interface, and no flow reversal in the liquid film at the measurement location.

  9. Flooding in vertical counter-current annular flow

    International Nuclear Information System (INIS)

    The hydrodynamic characteristics of falling liquid films inside a vertical tube (50.8 mm ID and 244 cm high) with counter-current interfacial shear at the onset of flooding have been investigated experimentally. High speed video photography and a flow visualization technique were utilized to investigate the mechanisms involved in the initiation of the flooding phenomenon over a wide range of liquid film Reynolds number (ReL = 4Γ/μ) from 1391 to 6584 at a distance of 150 cm from the liquid inlet. The present experimental data indicated neither the interfacial wave growth nor reversal in the wave propagation could be responsible for the initiation of flooding. Also the measured velocity profiles indicated only a slight reduction in liquid velocity within a narrow region very close to the gas-liquid interface, and no flow reversal in the liquid film at the measurement location. (author)

  10. Experimental study on annular-flow-induced vibrations of a simply-supported tube in a finite-length loose gap support

    International Nuclear Information System (INIS)

    Several methods to predict the dynamic behavior of a rod subjected to annular flow have been developed. These include the linearized potential flow theory based model by Mateescu, Paidoussis and Sim, and the pressure-loss model by Hobson and Langthjem. Recently, Kang, Mureithi and Pettigrew proposed a theory based on the pressure-loss model with consideration of flow friction. They showed the critical flow velocity of a simply-supported cylinder could go down to a dimensionless velocity of 2.4. The basic dynamics due to annular flow are known by virtue of these models. For heat exchanger tubes, the support causes highly confined annular flow with a divergent or convergent flow at the exit or the entrance of the support, which is due to chamfering of the support hole for manufacturing convenience. Gorman, Goden, and Planchard qualitatively reported that a finite-length diffuser caused a thimble tube in a pressurized water reactor to reach dynamic instability. Yasuo and Paidoussis tried to solve the flow induced instability problem of heat exchanger tubes subjected to axial flow in a diffuser-shaped, loose intermediate support. They suggested critical flow velocity equations either for divergence or flutter. Application of this theory to practical problems is, however, limited because of the inaccurate prediction of the critical flow velocity for flutter. The purpose of this study is to obtain experimentally the critical flow velocity of a cylinder subjected to annular flow in a finite-length narrow-gap support at the middle of the cylinder and to identify instability

  11. DNS of forced gas flows in annular flow with strong heating

    International Nuclear Information System (INIS)

    Full text of publication follows: A direct numerical simulation (DNS) with turbulent transport of annular flow has been carried out with a variable property. In this study, the inlet Reynolds number based on a bulk velocity and a hydraulic diameter was set to be constant; Re=9700. The fluid is Helium gas which is heated wall at inner wall and adiabatic wall at outer wall. The experimental data are provided as a basis of the comparison with the computational results. This condition exactly corresponds to one of some experiments (Fuji et al., 1991). Present DNS code is modified from the pipe one (Satake et al., 2000). The number of computational grids at main region used in this study was 2304 x 128 x 192 in the z-, r- and Φ-directions, respectively. Annular channel with two direction of periodic boundary condition is used as driver unit to provide fully developed turbulence to main region. The turbulent quantities such as the mean flow, temperature fluctuations, turbulent stresses and the turbulent statistics were obtained via present DNS. (authors)

  12. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow

    International Nuclear Information System (INIS)

    Highlights: ► New method to predict the entrained liquid fraction in annular two-phase flow. ► Circular and non-circular tubes, adiabatic and evaporating conditions covered. ► Large underlying experimental database (2460 points). ► New method explicit and fully stand-alone. ► New method based on just 1 dimensionless group: the core flow Weber number. - Abstract: A new method to predict the entrained liquid fraction in annular two-phase flow is presented. The underlying experimental database contains 2460 data points collected from 38 different literature studies for 8 different gas–liquid or vapor–liquid combinations (R12, R113, water–steam, water–air, genklene–air, ethanol–air, water–helium, silicon–air), tube diameters from 5.0 mm to 95.3 mm, pressures from 0.1 to 20.0 MPa and covers both adiabatic and evaporating flow conditions, circular and non-circular channels and vertical upflow, vertical downflow and horizontal flow conditions. Annular flows are regarded here as a special form of a liquid atomization process, where a high velocity confined spray, composed by the gas phase and entrained liquid droplets, flows in the center of the channel dragging and atomizing the annular liquid film that streams along the channel wall. Correspondingly, the liquid film flow is assumed to be shear-driven and the energy required to drive the liquid atomization is assumed to be provided in the form of kinetic energy of the droplet-laden gas core flow, so that the liquid film–gas core aerodynamic interaction is ultimately assumed to control the liquid disintegration process. As such, the new prediction method is based on the core flow Weber number, representing the ratio of the disrupting aerodynamic force to the surface tension retaining force, a single and physically plausible dimensionless group. The new prediction method is explicit, fully stand-alone and reproduces the available data better than existing empirical correlations, including in

  13. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  14. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  15. Air entrainment into annular water flows in a vertical pipe

    International Nuclear Information System (INIS)

    An experimental investigation was carried out on air entrainment into water flowing downward in a vertical pipe. Local flow rates of water and air in a fluid layer of annular flow, formed on the pipe wall, were measured precisely by using a small tube probe. Measurements were also made of local flow rates of water and air in bubbly flow downstream of annular water flow. Distributions of local flow rates in the radial direction of the pipe for annular flow regime indicate that the fluid layer consists of a water layer adjacent to the pipe wall and a water-air (two-phase fluid) layer located inside of the water layer. The water-air layer is formed as a result of air entrainment. The departure of air bubbles from a water pool to air phase was found for bubbly flow regime. (author)

  16. Application of Vectors to Relative Velocity

    Science.gov (United States)

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  17. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    Directory of Open Access Journals (Sweden)

    Rishi Hassan

    2016-01-01

    Full Text Available Annular elastolytic giant cell granuloma (AEGCG is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis.

  18. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis.

    Science.gov (United States)

    Hassan, Rishi; Arunprasath, P; Padmavathy, L; Srivenkateswaran, K

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis. PMID:27057492

  19. Portal annular pancreas: the pancreatic duct ring sign on MRCP.

    Science.gov (United States)

    Lath, Chinar O; Agrawal, Dilpesh S; Timins, Michael E; Wein, Melissa M

    2015-12-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  20. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    Directory of Open Access Journals (Sweden)

    Chinar O. Lath, MD

    2015-12-01

    Full Text Available Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature.

  1. Flow Visualisation of Annular Liquid Sheet Instability & Atomisation

    CERN Document Server

    Duke, Daniel; Soria, Julio

    2012-01-01

    Fluid dynamics videos of unstable thin annular liquid sheets are presented in this short paper. These videos are to be presented in the Gallery of Fluid Motion for the American Physical Society 65th Annual Meeting of the Division of Fluid Dynamics in San Diego, CA, 18-20 November 2012. An annular sheet of thickness h=1mm and mean radius R=18.9mm is subjected to aerodynamic axial shear from co-flowing air at various shear rates on both the inner and outer surface at a liquid sheet Reynolds Number of Re=500.

  2. Annular-intermittent flow regime transition model and its application to boil-off pattern transition and dryout model

    International Nuclear Information System (INIS)

    A model is developed to describe the transition of annular flow to intermittent flow in a vertical two-phase flow system. The instability of the disturbance wave, which is a dominant wave shape at the boundary between annular flow and intermittent flow, is considered as the governing mechanism and this instability is described by the concept of hyperbolicity breaking in the characteristic equation. The developed model is validated by comparing its predictions of gas superficial velocity for the transition with the experimental data available from the literature, and comparing those with the predictions of the other correlations. The comparison results show that the developed model gives better predictions for the transition condition than the existing correlations and the effects of fluid properties, geometry and liquid flow rate on the transition are well considered by the developed model. It is found that the predictions of the developed model have much smaller bias than those of the other correlations; the average of the prediction error is 3% for the present model. The standard deviation of the prediction errors of the present model reaches 28%, which is the smallest among the models compared here. Through the core uncovery experiments, it has been known that the low power and high power core boil-off patterns are observed in the high pressure core uncovery following a small-break loss-of-coolant accident. The developed model for the annular to intermittent flow regime transition was applied to the classification of low power boil-off and high power boil-off patterns. At first, the applicability of the developed criterion to the rod-bundle geometry is demonstrated using the flow pattern transition data taken by Bergles et al. and Venkateswararao. It is shown that the developed criterion well predicts the boundary between low power boil-off and high power boil-off through the comparisons of the predicted annular to intermittent flow transition conditions with

  3. The performance of an annular vane swirler. [to aid in modeling gas turbine combustor flowfields and swirling confined flow turbulence

    Science.gov (United States)

    Lilley, D. G.; Sander, G. F.

    1983-01-01

    In connection with the desirability of optimizing the design of a gas turbine combustion chamber, there exists a need for a more complete understanding of the fluid dynamics of the flow in such chambers. In order to satisfy this need, experimental and theoretical research is being conducted with the objective to study two-dimensional axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions. The flow enters the test section and proceeds into a larger chamber. Inlet swirl vanes are adjustable to a variety of vane angles. The present investigation concentrates on the time-mean flow characteristics which are generated by the upstream annular swirler. The investigation makes use of a five-hole pitot probe technique. A theoretical analysis of swirl numbers associated with several idealized exit velocity profiles is included, and values of the ratio of maximum swirl velocity to maximum axial velocity at different swirl strengths are given for each case.

  4. Research on the annular lithium jet concept for future laser-fusion reactors. Final report No. 3, Sept 1977--Dec 1978

    International Nuclear Information System (INIS)

    Experiments have been performed to determine the length for convergence or closure of a vertical, hollow annular water jet due to the action of surface tension forces. The data agree well with theoretical predictions up to a velocity of about 3 m/s. At higher velocities, the convergence lengths are less than predicted and this is attributed to the jet acting as an ejector pump and thereby reducing the air pressure inside the annulus to slightly sub-atmospheric values. The stability of such a jet is also discussed in the light of the fact that no hydrodynamic instabilities have been observed to date. Finally the results of a series of experiments on the flow spreading or splitting due to the presence of wedge-shaped obstacles in the path of the annular jet flow are described

  5. Flows and torques in Brownian ferrofluids subjected to rotating uniform magnetic fields in a cylindrical and annular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Diaz, I.; Cortes, A.; Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9000 (United States); Cedeño-Mattei, Y. [Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9019 (United States); Perales-Perez, O. [Department of Engineering Science and Materials, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9044 (United States)

    2014-01-15

    Ferrofluid flow in cylindrical and annular geometries under the influence of a uniform rotating magnetic field was studied experimentally using aqueous ferrofluids consisting of low concentrations (<0.01 v/v) of cobalt ferrite nanoparticles with Brownian relaxation to test the ferrohydrodynamic equations, elucidate the existence of couple stresses, and determine the value of the spin viscosity in these fluids. An ultrasound technique was used to measure bulk velocity profiles in the spin-up (cylindrical) and annular geometries, varying the intensity and frequency of the rotating magnetic field generated by a two pole stator winding. Additionally, torque measurements in the cylindrical geometry were made. Results show rigid-body like velocity profiles in the bulk, and no dependence on the axial direction. Experimental velocity profiles were in quantitative agreement with the predictions of the spin diffusion theory, with a value of the spin viscosity of ∼10{sup −8} kg m/s, two orders of magnitude larger than the value estimated earlier for iron oxide based ferrofluids, and 12 orders of magnitude larger than estimated using dimensional arguments valid in the infinite dilution limit. These results provide further evidence of the existence of couple stresses in ferrofluids and their role in driving the spin-up flow phenomenon.

  6. A numerical model for fluid-structure coupling of a confined cylinder submitted to an axial annular flow

    International Nuclear Information System (INIS)

    Maintaining the PWR components under reliable operating conditions requires a complex design to prevent various damaging processes including wear problems due to flow induced vibration. To improve wear prediction in PWR components, EDF has undertaken a comprehensive program oriented both on experimental and computational studies. The present paper illustrates one aspect of this program, proposing a numerical model for fluid-structure coupling of a cylindrical center body submitted to an axial annular flow. This model has been developed in the case of an incompressible, single phase, viscous fluid, and for a confined geometry with variable section passage. The structural response is expended in terms of the normal modes of the system. Due to the particular geometry of the problem, a specific numerical procedure has been implemented to provide a good approximate solution of the unsteady Navier-Stokes equations. The boundary conditions and dissipative terms taken into account in the modelization are of particular interest and are developed in detail. In the stable operating region, it provides the evolution versus flow velocity, of the modal characteristics of the coupled fluid-structure system. Consequently, the critical flow velocity can be computed as the velocity at which the damping ratio becomes zero. As a final step, an experimental validation is presented: the results obtained with the numerical model are compared to previously published experimental data concerning an oscillating cylinder submitted to an unsteady annular flow. (authors). 5 figs., 15 refs

  7. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.)

  8. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    OpenAIRE

    Dazhuan Wu; Leqin Wang; Qinglei Jiang; Lulu Zhai

    2011-01-01

    The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The ...

  9. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  10. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  11. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement. 15 claims

  12. Localized granuloma annulare and autoimmune thyroid disease. Are they associated?

    OpenAIRE

    Moran, J; Lamb, J.

    1995-01-01

    This case report identifies a temporal relationship between the diagnosis of localized granuloma annulare and the subsequent development of primary hypothyroidism in a previously healthy 10-year-old girl. We suspect these disorders are associated, but any association between them requires further study.

  13. Fluxon dynamics in long annular Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.; Shchukin, A.V.; Filippenko, L.; Monaco, R

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on...

  14. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  15. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    Science.gov (United States)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  16. Enhancing VVER annular proliferation resistance fuel with minor actinides

    International Nuclear Information System (INIS)

    reactivity control of the systems into which they are incorporated. In the study, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems

  17. Exploring flocculation of suspended burned sediment using an annular flume

    Science.gov (United States)

    Blake, W. H.; Clarke, P.; Manning, A. J.; Fitzsimons, M. F.

    2010-05-01

    The frequency and severity of wildfire events are predicted to increase in many fire-prone areas of the world with implications for erosion, sediment transport and sedimentation. While cohesive suspended sediment is known to be transported primarily as flocculated material in river channels, with important implications for catchment nutrient and contaminant fluxes, there has been little work to date to explore the effect of burning on suspended sediment flocculation processes. Since heating has profound effects on surface soil biogeochemistry, it can be hypothesised that in-channel flocculation processes may also be affected as burned eroded material is transported through the catchment system. Using an annular flume and LISST-ST (Laser in Situ Scatter and Transmissometry with Settling Tube) particle size analyser, short-term suspended sediment flocculation dynamics were examined in burned and unburned sediment collected from a wildfire-impacted catchment, Southern Peloponnese, Greece. Fine sediment (stresses (0.1, 0.3, 0.6 and 0.9 Pa). Experiments were undertaken for a range of suspended sediment concentrations (111, 222 and 333 mg l-1) of burned and unburned material. For each shear and sediment concentration scenario, the flume was operated for 30 minutes to induce a theoretical equilibrium between flocs and fluid shear stress after which 5 replicate subsamples were collected and analysed for effective particle size using the LISST-ST. Material was also analysed for absolute particle size following chemical and ultrasonic dispersion. At the two higher sediment concentrations, the effective particle size distribution of unburned material notably coarsened at shear stresses of 0.1-0.3 Pa in comparison to the absolute particle size distribution. This is reflected in a reduction of the percentage of 250 μm) e.g. from 14.4 ± 4.1 % to 5.9 ± 2.0 % at the highest sediment concentration. While similar increases in effective particle size were seen at the lower

  18. Characteristics of horizontal two-phase helium flow at low mass velocities

    International Nuclear Information System (INIS)

    Two-phase helium flows experimental and theoretical exploration results, including data on flow regimes, pressure drop, and void fraction, are presented. The circular, annular, and slot channels are examined. All the considered data are for low mass velocities and near-adiabatic conditions

  19. Study of film boiling dispersed two phase in narrow annular gap

    International Nuclear Information System (INIS)

    Experimental investigation on film boiling dispersed two phase friction pressure drop in narrow annular gap with deionized water was performed in three types of narrow annular gap. The friction pressure drop differences were compared between narrow annular gap and circular channel was compared in the paper. The influence of narrow annular gap on friction pressure drop was examined in this paper. Results showed that the modified Sadatomi's correlation can be used to calculate film boiling dispersed two-phase friction pressure drop in narrow annular gap for engineering application

  20. Effect of wall wettability on droplet entrainment in vertical upward annular two-phase flow

    International Nuclear Information System (INIS)

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid annular two-phase flow in a vertical pipe, an experimental study was performed using two test pipes: an acrylic pipe and a FEP pipe. Measured contact angles on the acrylic and FEP pipe surfaces were 60deg and 80deg, respectively. Basic flow characteristics such as liquid film thickness and liquid entrainment ratio were respectively measured by a laser focus displacement meter and a suction method. At relatively high gas flow rate and low liquid flow rate conditions, a reduction of the surface wettability by the FEP pipe enhanced the interfacial waves on liquid film, and caused an increase in the liquid entrainment ratio and a decrease in the liquid film thickness. (author)

  1. ANNULAR PANCREAS CAUSING DUODENAL OBSTRUCTION: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Swish Kumar

    2016-01-01

    Full Text Available Annular pancreas is a rare congenital anomaly characterized by the band of pancreatic tissue of variable width partially or completely encircling the duodenum. This abnormality, although at times clinically silent or may be the cause of a broad spectrum of diseases. Complications range from neonatal intestinal obstruction to more complex pathologies in the adult such as pancreatitis, duodenal stenosis or duodenal or gastric ulceration. This condition is important to recognise, because radiologists are usually the first person to diagnose such condition. We report the case of a young patient of 10 years old female hospitalized for epigastric pain and repeated episodes of vomiting, in whom radiological investigations showed an annular pancreas. No other congenital anomaly of the intra-abdominal organs was noted. Both the rarity of this congenital abnormality and its probability of successful correction by surgical means have prompted us to make the following presentation.

  2. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  3. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  4. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  5. Axisymmetric buckling of laminated thick annular spherical cap

    Science.gov (United States)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  6. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-04-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter (S r = r 2 /r 1), dimensionless temperature ratio (θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  7. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99Mo from the fissioning of 235U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  8. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  9. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Science.gov (United States)

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. PMID:25997390

  10. Annular electron beam production on gamble II using a magnetically insulated splitter

    International Nuclear Information System (INIS)

    Annular electron beams have been tested using a post-hole convolute or magnetically insulated splitter (MIS) to feed current to both sides of a ring cathode. Beams were produced on the BLACKJACK 3 generator using a coaxial feed and from BLACKJACK 5 with a triplate feed. On BLACKJACK 3, annular cathodes with 5 cm and 10 cm mean diameters were tested. The cathodes were fed in four places by a MIS. The cathodes were 1.2 cm wide made from stainless steel or brass. Typical anode/cathode gap spacings were 0.6 cm. Experiments were performed at power levels of about 0.6 TW and energies of 30-40 kJ. Typical voltages were 0:6-1 MV with currents of about 0.8 MA. Diagnostics were diode voltage, diode current, and an X-ray pinhole camera. For the 10 cm cathode, current was measured before and after the MIS. The current on each side of the ring was measured separately. The beam voltage was determined from the diode voltage by an inductive correction. The annular beams had a linear current density of about 30 kA/cm and about 60 kA/cm for the 10 cm and 5 cm, respectively. The beam diameter at the cathode could be varied by changing the inductance on each side of the ring cathode and thereby the current balance. The impedance behavior could be modeled using the critical current formulation with a closure velocity of 3.5-4.5 cm/us. The BLACKJACK 5 geometry was a triplate feed. The ring cathode was fed by generators of 0.5 and 0.75 Ω, respectively. The MIS was used to combine the power before the cathode. The cathode had a mean diameter of 25 cm and width of 1.5-3 cm. Experiments were performed at power levels up to about6 TW and energies greater than or equal to200 kJ. Typical operating parameters were about 2 MV and 3 MA

  11. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316. ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  12. Heat transfer to liquid sodium flowing through annular channel, (4)

    International Nuclear Information System (INIS)

    An experimental study was carried out to clarify the heat transfer characteristics of liquid sodium flowing turbulently through an annular channel. For a concentric condition, average psi(=average epsilonH/epsilonM) was found to agree with that proposed by Aoki or Ramm for circular tube. For eccentric conditions, circumferential temperature variations around the inner wall were measured and Nusselt numbers were evaluated. Numerical calculations were also made for temperature fields and compared with the measurements. (author)

  13. Unusual Presentation of Acute Annular Urticaria: A Case Report

    OpenAIRE

    Gilles Guerrier; Jean-Marc Daronat; Roger Deltour

    2011-01-01

    Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history...

  14. Fluxon dynamics in long annular Josephson tunnel junctions

    OpenAIRE

    Martucciello, N.; Mygind, Jesper; Koshelets, V. P.; Shchukin, A. V.; Filippenko, L.; Monaco, R.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is...

  15. Ignition sequence of an annular multi-injector combustor

    OpenAIRE

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  16. Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers

    OpenAIRE

    Wolf, Pierre

    2011-01-01

    Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the...

  17. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author)

  18. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    Science.gov (United States)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  19. Entrainment in vertical annular two-phase flow

    International Nuclear Information System (INIS)

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  20. Treatment of generalized granuloma annulare - a systematic review.

    Science.gov (United States)

    Lukács, J; Schliemann, S; Elsner, P

    2015-08-01

    Granuloma annulare (GA) is a benign inflammatory skin disease. Localized GA is likely to resolve spontaneously, while generalized GA (GGA) is rare and may persist for decades. GGA usually is resistant to a variety of therapeutic modalities and takes a chronic course. The objective of this study was to summarize all reported treatments of generalized granuloma annulare. This is a systematic review based on MEDLINE, Embase and Cochrane Central Register search of articles in English and German and a manual search, between 1980 and 2013, to summarize the treatment of generalized granuloma annulare. Most medical literature on treatment of GGA is limited to individual case reports and small series of patients treated without a control group. Randomized controlled clinical studies are missing. Multiple treatment modalities for GGA were reported including topical and systemic steroids, PUVA, isotretinoin, dapsone, pentoxifylline, hydroxychloroquine, cyclosporine, IFN-γ, potassium iodide, nicotinamide, niacinamide, salicylic acid, dipyridamole, PDT, fumaric acid ester, etanercept, infliximab, adalimumab. While there are numerous case reports of successful treatments in the literature including surgical, medical and phototherapy options, well-designed, randomized, controlled clinical trials are required for an evidence-based treatment of GGA. PMID:25651003

  1. The influence of annular seal clearance to the critical speed of the multistage pump

    International Nuclear Information System (INIS)

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest

  2. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, Andrea C.; Schubring, DuWayne; Shedd, Timothy A. [University of Wisconsin, Madison, WI (United States)], e-mail: cashwood@wisc.edu, e-mail: dlschubring@wisc.edu, e-mail: shedd@engr.wisc.edu

    2009-07-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s{sup -1} and gas superficial velocities from 35 to 85 m s{sup -1}, the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  3. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    International Nuclear Information System (INIS)

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s-1 and gas superficial velocities from 35 to 85 m s-1, the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  4. A study on the annular leakage-flow-induced vibrations. 1st report. Stability for translational and rotational single-degree-of-freedom systems

    International Nuclear Information System (INIS)

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  5. Correlation of bubble rise velocity and volume

    International Nuclear Information System (INIS)

    This project was conducted at Westinghouse's Savannah River Laboratories (SRL). The goal of SRL is to make certain that the modifications on the reactor are safe for those working at the plant as well as the general public. One of the steps needed to insure safety is the knowledge of the occurrences that result from a plenum pipe breakage. When a plenum pipe breaks, two things occur: air is sucked into the pipe and is trapped in the cooling water; and water used to cool the fuel rods is lost. As a result of these occurrences, the water is slowed down by both the loss in water pressure and the upward force of air bubbles pushing against the downward force of the water. The project required the conducting of tests to find the bubble velocity in an annular ribbed pipe filled with stagnant water. This document discusses the methodology and results of this testing

  6. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case

    OpenAIRE

    Kawaida, Hiromichi; KONO, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-01-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving panc...

  7. Repeated mitral valve replacement in a patient with extensive annular calcification

    OpenAIRE

    Kitamura Tadashi; Fukuda Sachito; Sawada Takahiro; Miura Sumio; Kigawa Ikutaro; Miyairi Takeshi

    2011-01-01

    Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular...

  8. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  9. Development of probabilistic design method for annular fuel. Development of BORNFREE-CEPTAR code

    International Nuclear Information System (INIS)

    The increase of linear power and burn-up during the reactor operation is considered as one of measures for the utility of fast reactor in future, and then the application of annular fuels is under consideration. In order to make a design for thus annular fuels, annular fuel design code 'CEPTAR' has been developed in Japan Atomic Energy Agency (JAEA). In addition, probabilistic fuel design code 'BORNFREE' has been also developed for the reasonable fuel design with safety and the quantitative evaluation of design margin. In this study, aiming at the development of probabilistic design method, we developed BORNFREE-CEPTAR code to develop the reasonable design method for annular fuels. As the results of probability evaluation of fuel melting at the transient at the initial power increase, by using the probabilistic annular fuel design code 'BORNFREE-CEPTAR', the melting probability for annular fuels was estimated to be approximately two figures lower than that for solid fuels, and the remarkable decrease of melting probability, which was caused by the fuel restructuring effect, was seen in the estimation results for solid fuels, on the other hand, the results for annular fuels indicated that this effect was comparably small. In addition, the permissive linear power for annular fuels tended to enhance from that for solid fuels with the increase of initial central-hole diameter under the similar fuel melting probability condition. This indicated the possibility of higher linear power operation for high-density annular fuels than low-density solid fuels. (author)

  10. Electron beam diagnostic system using computed tomography and an annular sensor

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  11. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  12. Modeling of annular film dryout with Cobra-TF

    International Nuclear Information System (INIS)

    The COBRA-TF computer code uses a two-fluid, three-field and three-dimensional formulation to model a two-phase flow field in a specific geometry. The liquid phase is divided in a continuous liquid field and a separate dispersed field, which is used to describe the entrained liquid drops. For each space dimension, the code solves three momentum equations, three mass conservation equations and two energy conservation equations. Entrainment and depositions models are implemented into the code to model the mass transfer between the two liquid fields. In annular flow condition critical heat flux is caused by annular film dryout. Film dryout is a complex function of the film flow rate, the applied heat flux, and the entrainment from the liquid film to the continuous vapor region, and the deposition of entrained droplets back to the liquid film. Because of the three-field approach, COBRA-TF hydrodynamic equations are able to predict dry-out by solving directly the film dry-out as a hydrodynamic process rather than using an empirical dry-out correlation. The dry-out is driven by the hydraulic calculation and the prediction is the result of the combined effect of the entrainment, the deposition models and interfacial heat transfer. The paper discusses the annular film entrainment and deposition models used in the code as well as the logic, which is used to determine the dry-out phenomena as the film thickness decreases. The obtained results with COBRA-TF are compared with the test data from the Bennett Tube Dry-out Experiments. In general, the COBRA-TF prediction of the dry-out location is in good agreement with Bennett test data. In particular, results show that the predicted dry-out length tends to be longer than the measured value and in the post dry-out region the wall temperature, which is dependent on vapor superheat, tends to be underestimated by the code. (authors)

  13. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Low-mass-velocity two-phase flow in a vertical pipe shows lower void fraction than high-mass-velocity two-phase flow even though their qualities are the same. In order to clarify the flow characteristics of the low-mass-velocity two-phase flow, air-water two-phase flow experiments were conducted under the froth or annular flow conditions. Experimental results show that wall shear stress is positive even though both gas and liquid superficial velocities are positive. Measured water film average velocity is negative under this condition. These results indicate that local flow reversal should exist along the channel wall. This local flow reversal gives to the low void fraction in low-mass-velocity two-phase flow. It is also clarified that the drift flux model can be applied to the low-mass-velocity two-phase flow with local reversal. (author)

  14. Characteristic analysis of a double stator annular linear electromagnetic pump

    International Nuclear Information System (INIS)

    A annular linear induction electromagnetic pump (ALIP) is generally used to transport liquid sodium coolants for liquid metal reactors. In the present study, the theoretical induction of a developing equation has been carried out for a double stator version of the ALIP which is noticebly employed for the sodium circulation of a large flowrate. The computerzed P-Q relation, which is represented by the pump geometrical and electrical variables, has been applied to a double stator version of the ALMR EM pump. An induced equation was verified by the compared analysis with the known data on the P-Q characteristic according to the input currents

  15. A high efficiency annular dark field detector for STEM.

    Science.gov (United States)

    Kirkland, E J; Thomas, M G

    1996-01-01

    A new high efficiency annular dark field (ADF) detector for an HB501 STEM (Scanning Transmission Electron Microscope) has been constructed and tested. This detector uses a single crystal YAP scintillator and a solid quartz light pipe extending from the scintillator (inside the vacuum) to the photomultiplier tube (outside the vacuum). A factor of approximately 100 improvement in signal relative to the original detector has been obtained. This has substantially improved the signal to noise ratio in the recorded high resolution ADF-STEM images. PMID:22666919

  16. Unusual Presentation of Acute Annular Urticaria: A Case Report

    Directory of Open Access Journals (Sweden)

    Gilles Guerrier

    2011-01-01

    Full Text Available Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history and physical examination can reliably orientate necessary diagnostic testing and allow for appropriate treatment.

  17. Analytic vortex dynamics in an annular Bose-Einstein condensate

    Science.gov (United States)

    Toikka, L. A.; Suominen, K.-A.

    2016-05-01

    We consider analytically the dynamics of an arbitrary number and configuration of vortices in an annular Bose-Einstein condensate obtaining expressions for the free energy and vortex precession rates to logarithmic accuracy. We also obtain lower bounds for the lifetime of a single vortex in the annulus. Our results enable a closed-form analytic treatment of vortex-vortex interactions in the annulus that is exact in the incompressible limit. The incompressible hydrodynamics that is developed here paves the way for more general analytical treatments of vortex dynamics in non-simply-connected geometries.

  18. New fluxon resonant mechanism in annular Josephson tunnel structures

    International Nuclear Information System (INIS)

    A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system

  19. Critical heat flux prediction for the annular core research reactor

    International Nuclear Information System (INIS)

    This paper reports on best estimate predictions of Critical Heat Flux Ratio (CHFR) obtained to support the upgrade of the Annular Core Research Reactor (ACRR) at Sandia National Laboratories for 2 to 4 MWt. The CHF productions are based on the University of New Mexico's (UNM)-CHF correlations in conjunction with the Global Conditions Hypothesis (GCH). Results indicate that for the range of inlet water temperature of 293 to 333 K, CHFR predictions range from 3.9 to 2.1, which is more than sufficient to support the proposed ACRR upgrade

  20. Interfacial friction in cocurrent upward annular flow. Final report

    International Nuclear Information System (INIS)

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor

  1. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  2. A self-standing two-fluid CFD model for vertical upward two-phase annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: yang_liu@mail.dlut.edu.c [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China); Li, W.Z.; Quan, S.L. [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China)

    2011-05-15

    Research highlights: A mathematic model for two-phase annular flow is established in this paper. Pressure loss and wall shear stress increase with inlet gas and liquid flow velocities. Droplet mass fraction distribution exhibits a concave profile radially. - Abstract: In this paper, a new two-fluid CFD (computational fluid dynamics) model is proposed to simulate the vertical upward two-phase annular flow. This model solves the basic mass and momentum equations for the gas core region flow and the liquid film flow, where the basic governing equations are accounted for by the commercial CFD package Fluent6.3.26. The liquid droplet flow and the interfacial inter-phase effects are accounted for by the programmable interface of Fluent, UDF (user defined function). Unlike previous models, the present model includes the effect of liquid roll waves directly determined from the CFD code. It is able to provide more detailed and, the most important, self-standing information for both the gas core flow and the film flow as well as the inner tube wall situations.

  3. Numerical Investigation on the Influence of Nozzle Lip Thickness on the Flow Field and Performance of an Annular Jet Pump

    Institute of Scientific and Technical Information of China (English)

    LongZhou Xiao; XinPing Long; XueLong Yang

    2014-01-01

    The performance of an annular jet pump ( AJP ) is determined by its area ratio A ( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q ( ratio of primary and secondary flow rate, Qs/Qj ) , while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1�75. With the increasing flow rate ratio and nozzle lip thickness, a small vortex forms at the nozzle lip and keeps on growing. However, as the flow rate ratio or nozzle lip thickness is extremely low, the vortex at the lip vanishes thoroughly. Moreover, the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q≤0�13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q≥0�13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit, which shift the recirculation downstream. Finally, based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.

  4. A disturbance wave instability model for annular-to-intermittent flow transition in vertical two-phase flow system

    International Nuclear Information System (INIS)

    A model is developed to describe the transition from annular flow to intermittent flow in a vertical two-phase flow system. Since the instability of the disturbance wave, which is a dominant wave shape at the boundary between annular flow and intermittent flow, is considered as a governing mechanism, this instability described by the concept of hyperbolicity breaking in the characteristic equation is included in the model. The developed model is validated by comparing its predictions of gas superficial velocity for the transition with experimental data available in the literature, and comparing those with the predictions of the other correlations. The comparison results show that the model gives better predictions for the transition condition than existing correlations, and the effects of fluid properties, geometry and liquid flow rate on the transition are well considered by the developed model. The average of prediction errors is 3% for the present model. The standard deviation of the prediction errors of the model reaches 28%, which is the smallest among the models compared here. (author)

  5. Pore Velocity Estimation Uncertainties

    Science.gov (United States)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  6. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Shin, C. H.; Bang, J. G.; Kim, D. H.; Kim, S. K.; Lim, I. S.; Koo Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2010-09-15

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  7. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    International Nuclear Information System (INIS)

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  8. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  9. Investigation of azimuthal staging concepts in annular gas turbines

    Science.gov (United States)

    Noiray, Nicolas; Bothien, Mirko; Schuermans, Bruno

    2011-10-01

    In this work, the influence of azimuthal staging concepts on the thermoacoustic behavior of annular combustion chambers is assessed theoretically and numerically. Staging is a well-known and effective method to abate thermoacoustic pulsations in combustion chambers. However, in the case of, for example, fuel staging the associated inhomogeneity of equivalence ratio may result in increased levels of NOx emissions. In order to minimize this unwanted effect a staging concept is required in which the transfer functions of the burners are changed while affecting the equivalence ratio as little as possible. In order to achieve this goal, a theoretical framework for predicting the influence of staging concepts on pulsations has been developed. Both linear and nonlinear analytical approaches are presented and it is shown that the dynamics of azimuthal modes can be described by coupled Van der Pol oscillators. A criterion based on the thermoacoustic coupling strength and on the asymmetry degree provides the modal behavior in the annular combustor, i.e. standing or traveling waves. The model predictions have been verified by numerical simulations of a heavy-duty gas turbine using an in-house thermoacoustic network-modeling tool. The interaction between the heat release of the flame and the acoustic field was modeled using measured transfer functions and source terms. These numerical simulations confirmed the original theoretical considerations.

  10. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  11. Local prediction of subcooled boiling flow in an annular channel with the influence of bubble coalescence and break-up mechanisms

    International Nuclear Information System (INIS)

    Population balance equations combined with a three-dimensional two-fluid model are employed to predict subcooled boiling flow at low pressure in a vertical annular channel. The MUSIG (MUltiple-SIze-Group) model implemented in CFX4.4 is extended to account for the wall nucleation and condensation in the subcooled boiling regime. Comparison of model predictions against local measurements is made for the void fraction, bubble Sauter diameter and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcoolings. Good agreement is achieved with the local radial void fraction, bubble Sauter diameter and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress to overcome the deficiency of the extended MUSIG model by the consideration of an algebraic slip model to account for bubble separation. (author)

  12. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  13. A magnetorheological valve with both annular and radial fluid flow resistance gaps

    International Nuclear Information System (INIS)

    In order to increase the efficiency of magnetorheological (MR) valves, Ai et al (2006) proposed an MR valve simultaneously possessing annular and radial fluid flow resistance channels with the assumption that the magnetic flux densities at the annular and radial fluid flow gaps are identical. In this paper, an MR valve simultaneously possessing annular and radial fluid flow resistance channels is designed, fabricated, modeled and tested. A model for the developed MR valve is produced and its performances are theoretically predicted based on the average magnetic flux densities in the annular and radial fluid flow gaps through finite element analysis. The theoretical results for the developed MR valve are compared with the experimental results. In addition, the performances of the developed MR valve are theoretically and experimentally compared with those of the MR valve with only annular fluid flow gaps. It has been shown that the theoretical results match well with the experimental results. Mainly attributed to the radial fluid flow gaps, the pressure drops across the MR valve with both annular and radial fluid flow gaps are larger than those across the MR valve with only annular fluid flow gaps for varying valve parameters. The radial fluid flow gaps in the MR valve can reach a higher efficiency and larger controllable range than those by annular fluid flow gaps to some extent

  14. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source

    International Nuclear Information System (INIS)

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) δ (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) δ (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  15. Multiple lesions of granuloma annulare on the hand in a patient with scabies

    Directory of Open Access Journals (Sweden)

    Al Aboud K

    2011-08-01

    Full Text Available Khalid Al Aboud1, Daifullah Al Aboud21Department of Dermatology, King Faisal Hospital, Makkah; 2Department of Dermatology, Taif University, Taif, Kingdom of Saudi ArabiaAbstract: Granuloma annulare induced by scabies infection has been described previously in three patients. In this report, we share our observation of a fourth case.Keywords: granuloma annulare, scabies, skin

  16. DC intrinsic Josephson effect in 1{mu}m-lateral-size annular Bi-2212 stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.J.; Yamashita, T. [Tohoku Univ., Sendai (Japan). Research Inst. of Electrical Comunication; Latyshev, Y.I.; Pavlenko, V.N. [Tohoku Univ., Sendai (Japan); Inst of Radio-Engineerig and Electronics Russian Academic of Sciences, Moscow (Russian Federation)

    1999-11-10

    Small annular junctions were the subjects of particular interest last decade because of possibility of flux trapping (see, e.g. [1]). Related magnetic field can contain radial component affecting Josephson critical current. Here we report on the first studies of intrinsic dc Josephson effect [2] in small annular type Bi-2212 mesas and its sensitivity to the trapped flux. (translated by NEDO)

  17. In-Reactor Densification of Dual Cooled Annular Fuel Pellet during Irradiation Test at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Kim, Dong Joo; Kwon, Hyoung Mun; Kim, Keon Sik; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    These advantages result in a considerably low pellet centerline temperature. Because of this considerably low pellet temperature, in-reactor behavior of an annular pellet, such as densification and swelling may be significantly different from that of the conventional PWR solid pellet. Since the pellet temperature of an annular fuel rod is lower than that of a PWR solid fuel rod by several hundred degrees, the in-reactor densification and swelling of a dual cooled annular fuel pellet might be considered as athermal phenomena due to a low pellet temperature. In order to investigate the in-reactor behavior of the annular UO{sub 2} pellet, HANARO irradiation test was planned and conducted for annular pellets with 5 different types. Post irradiation test is being carried out in the KAERI's PIE facility. In this study, we are going to report the preliminary results of PIE test on the inreactor densification behavior of a dual cooled annular fuel pellet. Irradiation test of dual cooled annular UO{sub 2} pellet was conducted at the OR-4 hole in HANARO by using a non-instrumented test rig. The preliminary results of PIE test on the in-reactor densification behavior showed that the irradiated pellets densified much more than expected values based on MATPRO relations of inreactor densification at low temperature in the annular pellet with low initial sintered density. It might be attributed to the higher fission rate during HANARO irradiation.

  18. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  19. Steady thermocapillary-buoyant convection in a shallow annular pool.Part 2: Two immiscible fluids

    Institute of Scientific and Technical Information of China (English)

    You-Rong Li; Shuang-Cheng Wang; Chun-Mei Wu

    2011-01-01

    This work is devoted to the study of steady thermocapillary-buoyant convection in a system of two horizontal superimposed immiscible liquid layers filling a lateral heated thin annular pool.The governing equations are solved using an asymptotic theory for the aspect ratios e → 0.Asymptotic solutions of the velocity and temperature fields are obtained in the core region away from the cylinder walls.In order to validate the asymptotic solutions,numerical simulations are also carried out and the results are compared to each other.It is found that the present asymptotic solutions are valid in most of the core region.And the applicability of the obtained asymptotic solutions decreases with the increase of the aspect ratio and the thickness ratio of the two layers.For a system of gallium arsenide (lower layer) and boron oxide (upper layer),the buoyancy slightly weakens the thermocapillary convection in the upper layer and strengthens it in the lower layer.

  20. Measurement of sound velocity profiles in fluids for process monitoring

    Science.gov (United States)

    Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.

    2012-12-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  1. Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant

    CERN Document Server

    Sato, Toshiki

    2016-01-01

    We present the first direct ejecta velocity measurements of Tycho's supernova remnant (SNR). Chandra's high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We identified an annular region (~3.3'-3.5'), where the surface brightness in the Si, S, and Fe K lines reaches a peak while the line width reaches a minimum value. These minimum line widths correspond to ion temperatures of ~1 MeV for each of the three species, in excellent ...

  2. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  3. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    Science.gov (United States)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  4. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    Science.gov (United States)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  5. Chaotic heat transfer enhancement in rotating eccentric annular-flow systems

    International Nuclear Information System (INIS)

    Thermal Taylor dispersion theory for time-periodic systems was used to study the extent of chaotic laminar heat transfer enhancement and axial thermal dispersion occurring during combined transverse and axial annular flow between two nonconcentric circular cylinders undergoing alternate rotations. A local Newton's open-quotes law of coolingclose quotes heat transfer boundary condition was used on the outer cylinder; the inner cylinder was supposed insulated. The effective heat transfer coefficient bar H* describing the global rate of heat loss from the system (differing in general from the true microscale Newton's law heat transfer coefficient h on the outer cylinder) was calculated as a function of the system parameters, to quantify the extent of chaotic heat transfer enhancement. The axial thermal Taylor dispersivity provided an independent measure of the effects of chaotic mixing, as did the axial thermal velocity. Calculations were performed for three different cases: (i) concentric cylinder rotation (the resulting circular transverse flow has no effect upon the effective transport properties); (ii) nonconcentric counter-rotating circular cylinders, each undergoing a steady rotation, creating a time-independent transverse flow field; (iii) nonconcentric counter- and co-rotating circular cylinders, each undergoing time-periodic alternate rotation while the other remains at rest. A open-quotes regularclose quotes enhancement of the heat transfer rate over the concentric cylinder case was observed in case (ii), arising from the presence of a secondary-flow recirculation region. Enhancement due to chaotic advection was observed in case (iii) [about 50% more than that of case (ii) and more than double that of case (i), other things equal]. Concomitant values of the axial thermal Taylor dispersivity and axial thermal velocity confirmed the existence of enhanced transverse transport due to chaotic advection. (Abstract Truncated)

  6. Study of startup conditions of a pulsed annular reactor; Estudo das reacoes de partida de um reator anelar pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mario Augusto Bezerra da

    2003-10-15

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  7. Stability of core-annular flow of power-law fluids in the presence of interfacial surfactant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is

  8. MHD stability analysis of a liquid sodium flow at the annular gap of an EM pump

    International Nuclear Information System (INIS)

    Highlights: ► A MHD stability analysis on an electromagnetic pump was carried out. ► Small perturbations for MHD fields were considered in sinusoidal form. ► Critical Reynolds number depends on the Hartman number and perturbed wave number. ► A magnetic field has a significant stabilizing effect on liquid sodium flow. - Abstract: A stability analysis of a viscous, incompressible, and electrically conducting liquid sodium flow in an annular linear induction electromagnetic pump for sodium coolant circulation of a Sodium Fast Reactor (SFR) was carried out when transverse magnetic fields permeate the sodium fluid across the narrow annular gap. Due to a negligible skin effect and the presence of a magnetic core outside the gap, radial magnetic field is assumed to be constant over the narrow channel gap, and the steady state solution of the axial velocity is obtained as a function of radius. Small perturbations for MHD fields were considered in sinusoidal form as a function of the angular frequency and wave number, and the resulting equations were linearized. The solutions of the perturbed equations were sought in the form of a linear combination of independent orthogonal functions in a non-dimensional radial interval (0, 1), and each orthogonal function was chosen to satisfy the boundary conditions of adhesion to the solid walls of the channel. Under the assumption that solutions of the equations were not oscillated rapidly according to the radial coordinate, finite numbers of orthogonal polynomials were considered. As a result, simultaneous equations with coefficients of steady-state solutions were arranged, and dispersion relations between angular frequency and wave number of perturbed state were sought. The imaginary part of the angular frequency was taken into consideration from the condition of existence of a nontrivial solution of the system, which leads to the relation between critical Reynolds number (Recr) and Hartmann number (Ha). In the present study

  9. Inertial Wave Excitation and Wave Attractors in an Annular Tank: DNS

    Science.gov (United States)

    Klein, Marten; Ghasemi, Abouzar; Harlander, Uwe; Will, Andreas

    2014-05-01

    Rotation is the most relevant aspect of geophysical fluid dynamics, manifesting itself by the Coriolis force. Small perturbations to the state of rigid body rotation can excite inertial waves (waves restored by Coriolis force) with frequencies in the range 0 fluid so that inertial waves remain the only waves in the mathematical model, which can transport kinetic energy and angular momentum. In geophysics, inertial waves have received a lot attention over the last decades. A spherical shell, for instance, is already non-simple in a sense that its inertial mode's spatial structures are complex, forming so-called wave attractors [1]. But also other containers have been investigated, e.g., cylinders and boxes from the viewpoints of normal mode excitation [2,3], mean flow generation and boundary layer flow [4]. A simple wave attractor was found in a prism, which can be seen as idealized ocean basin [5]. However, local mechanisms of wave excitation are still not very well understood. In order to contribute to the ongoing discussion, we consider an annular geometry. Its rectangular symmetry was broken by replacing the inner cylinder with a frustum of apex half-angle α = 5.7°. The annular gap is filled with a fluid of kinematic viscosity ν. The whole vessel rotates with a mean angular velocity Ω0 around its axis of symmetry. Ekman numbers investigated are 1 ≠« E = ν(Ω0H2)-1 ≥ 10-5. Similarly to [1-5] we perturb the system by longitudinal libration, Ω(t) = Ω0(1 + ɛsinωt), where ω > 0 denotes the frequency and 0 Fluids (2012), vol. 24, 076602. [3] A. Sauret, D. Cébron, M. Le Bars and S. Le Dizès, Phys. Fluids (2012), vol. 24, 026603. [4] F. H. Busse, Physica D, vol. 240 (2011), pp. 208-211. [5] L. R. M. Maas, J. Fluid Mech. (2001), vol. 437, pp. 13-28.

  10. Numerical simulation of a viscoelastic flow through a concentric annular with BSD scheme, influence of the Deborah number; Simulacao numerica do escoamento laminar de fluido viscoelastico PTT (Phan-Thien-Tanner) em tubo anular concentrico - influencia do numero de Deborah

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambros, Alder C.; Vitorassi, Pedro H.; Franco, Admilson T.; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Matins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Perfuracao

    2008-07-01

    The success of oil well drilling process depends on the correct prediction of the velocities and stresses fields inside the gap between the drill string and the rock formation. Using CFD is possible to predict the behavior of the drilling fluid flow along the annular space, from the bottom to the top of the well. Commonly the drilling fluid is modeled as a Herschel-Bulkley fluid. An alternative is to employ a non-linear viscoelastic model, like the one developed by Phan-Thien-Tanner (PTT). In the present work the PTT constitutive equation is used to model the drilling fluid flow along the annular space. Thus, this work investigates the influence of the Deborah number on the laminar flow pattern through the numerical solution of the equations formed by the coupled velocity-pressure-stress fields. The results are analyzed and validated against the analytical solution for the fully developed annular pipe flow. The relation between the Deborah number (De) and the entry length is investigated, along with the influence of high values of Deborah number on the friction factor, stress and velocity fields. (author)

  11. Effect of flow obstacle on droplet sizes in vertical annular air-water flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Droplet size distributions have been measured for air-water annular-mist flow in a vertical 12.0 mm diameter pipe at atmospheric pressure. A laser diffraction technique has been employed using a Malvern Spraytec instrument. The test section was specially designed for meticulous measurement in the present experiment: any optical windows were not used to avoid problems arose from glass contamination by sucking the liquid film through the wall just below the measurement elevation. Sauter mean diameters measured in this work decreased simply with an increase of air superficial velocity, whereas the dependence on water superficial velocity showed complicated dependency on air velocity. The effect of a flow obstacle on droplet size distribution was also investigated. A small tube was placed in the centerline of the test section as an obstacle. Three obstacles having different blockage ratio were tested. It is found through the present experiments that the obstacle effect is not so significant for the blockage ratio of up to 0.3, and the droplet diameter decreases to approximately 80% in average. Based on the data, an empirical correlation to predict Sauter diameter was developed by modifying the existing correlation. A hydraulic equivalent diameter that takes account of the blockage ratio is applied to the characteristic length in the correlation. (author)

  12. Liquid transfer and entrainment correlation for droplet-annular flow

    International Nuclear Information System (INIS)

    A correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasi-equilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, cand total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which has not been available previously

  13. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Directory of Open Access Journals (Sweden)

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  14. An in-house developed annular bright field detection system

    International Nuclear Information System (INIS)

    Annular bright field (ABF) detectors have been developed in the last few years allowing the direct imaging of low-Z atoms from oxygen down to hydrogen. These types of detectors are now available as standard attachments for the latest generation of top-end electron microscopes. However these systems cannot always be installed in previous generation microscopes. In this paper we report the preliminary results of an in-house implementation of a ABF detection system on a CEOS aberration corrected JEOL 2200FS STEM. This has been obtained by exploiting the standard BF detector coupled with a high vacuum compatible, X-ray tight and retractable shadowing mechanism. This results in the acquisition of near zero-angle scattered electrons with inner collection semi-angle from 2.0 mrad to 23 mrad and outer semi-angle in the range from 3.0 mrad to 35 mrad. The characteristics and performances of this ABF detection system are discussed

  15. Mathematical model for multicomponent separations on the continuous annular chromatograph

    International Nuclear Information System (INIS)

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally

  16. Mathematical model for multicomponent separations on the continuous annular chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  17. A Novel Design of Magnetorheological Damper with Annular Radial Channel

    Directory of Open Access Journals (Sweden)

    Shisha Zhu

    2016-01-01

    Full Text Available With the development of automotive vibration technology, the semiactive suspension system with adjustable damping force and high reliability is taken seriously. The magnetorheological damper (MRD that applies intelligent material (magnetorheological fluid is the key element of this system. It can achieve a continuous and adjustable damping and then reaches the purpose of comfort. In order to improve the damping effect of MRD, this paper presents a MRD, which has magnetorheological (MR effect along annular radial channel. The paper completely designs the structure and magnetic circuit of MRD. Based on the theory of electromagnetism and MR fluid dynamics, the paper analyzes and tests the external characteristics of the MRD by the MATLAB/Simulink and the vibration experiment. The results compared with ordinary MRD reveal that the damping force obviously increases and has wide adjustable range, thus verifying the reasonableness of the damper design.

  18. Investigation of a low NOx full-scale annular combustor

    Science.gov (United States)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  19. Development of annular targets for 99MO production-1999

    International Nuclear Information System (INIS)

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99Mo

  20. Application study on fast extracting plutonium with annular centrifugal extractor

    International Nuclear Information System (INIS)

    An extraction system with annular centrifugal extractors has been designed to separate plutonium. It worked well when centrifugal speed was ranged from 2000 to 8000 r/min and organic-aqueous flow ratio (o/a) ranged from 1/3 to 1, without obvious entraining phenomenon Pu (IV) in 6 mol/L HNO3 solution was fast extracted and separated, using 0.1 mol/L TOPO/Cyclohexane as extraction solvent and 0.01 mol/L oxalic acid as back extraction solvent. The extraction ratio of two stages was larger than 90%, and the back ratio per stage was more than 96%. The extraction system shows fast operating speed and high extraction ratio, therefore it is suitable for fast extracting Pu. (authors)

  1. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  2. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  3. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    Science.gov (United States)

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  4. Intermittent Flow of Granular Matter in an Annular Geometry

    Science.gov (United States)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  5. Periocular granuloma annulare: a case report and review of literature.

    Science.gov (United States)

    Chiang, Katherine; Bhalla, Rohan; Mesinkovska, Natasha A; Piliang, Melissa P; Tamburro, Joan E

    2014-01-01

    Granuloma annulare (GA) is a granulomatous dermatosis that rarely presents on the face and is extremely uncommon in the periocular region. We report our experience with the presentation and management of GA lesions on the eyelids of a 17-year-old girl. We performed a review of published literature and identified 13 cases of pediatric periocular GA. One additional case was identified upon review of all pediatric GA cases at the Cleveland Clinic Foundation. Review of these cases suggests that periocular GA is a benign condition that spontaneously regresses within a few months. GA nodules have a predilection for the upper eyelids. A greater incidence is noted in African American children. Awareness of the self-resolving nature of this condition can prevent unnecessary surgical excisions in affected children. PMID:23551387

  6. Magnetically guided free surface annular NaK flow experiment

    International Nuclear Information System (INIS)

    In order to gain basic information on the magnetically guided liquid metal Li waterfall type blanket concept for ICF reactors and liquid metal Li free surface flow for FMIT type accelerator target, an experimental study was conducted by using LINAK (NaK: 50 l, Ar: 0-0.3 MPa) device. A 45 mm O.D. and 25 mm I.D. annular free jet of NaK, which flowed downwards coaxially through a superconducting magnet (2.7 Tmax, B=0.38 T at the nozzle exit), was formed in vacuum chamber and at the nozzle exit where magnetic flux density B was divergent. The experiment covered ranges of U=0.5-2.5 m/s and B=0-0.38 T at the nozzle exit. Photographic and VTR observations were made on the behavior of outer surface of annular flow. The results are summarized as follows. (1) When B=0 T, the downward flow was rather convergent due to the surface tension. (2) By applying B, the flow became divergent like a cone shell and more stable. The divergent half angle increased with intensifying B. (3) The experimental results on the flow divergence agreed fairly well with the numerical analysis which took into account the MHD force, the surface tension and the gravitational force. (4) No growth of outer surface disturbance occurred within an attained maximum divergent half angle of 8deg or less. The results are considered to be encouraging for applying to ICF blanket and FMIT type target. (author)

  7. Annular fuel pin heat transfer and lumped model correction

    International Nuclear Information System (INIS)

    Fuel pin heat transfer studies are important in nuclear reactor accident analysis. Based on the requirement of accuracy and the speed of the computation, a simple lumped heat transfer method or detailed numerical methods are chosen to solve the heat transfer equations. In a nuclear reactor design calculations, accuracy of the solution is very important than the speed. In a nuclear reactor simulator, the speed is important. Lumped model assumes fuel pellet is solid without central hole and the heat transfer coefficient is constant across the fuel pin. In the present study a new modified lumped heat transfer model is developed to consider the annular fuel pin's central hole, and the heat transfer coefficient is made as a function of average fuel pin temperature. Transient analyses are carried out with the above said modifications for a typical LMFBR annular fuel pin. The results of lumped heat transfer model are almost matching with the accurate numerical schemes like Crank-Nicolson method. Comparisons of results with Crank-Nicolson methods are good for small step reactivity addition, ramp reactivity insertion and large step reactivity addition, ramp reactivity insertion with and without reactivity feedbacks. Comparisons of results are good for LOFA also, with and without reactivity feedbacks. With the consideration of reactivity feedbacks, fuel temperature calculated through the present modified lumped model is matching well with Crank-Nicolson methods, and the nominal power also matching well. The modified lumped heat transfer model can be used in nuclear reactor simulation studies and in conservative accident analyses where fastness of the solution is a matter of concern. (author)

  8. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  9. Laser-induced retinal damage thresholds for annular retinal beam profiles

    Science.gov (United States)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  10. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging of...... RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....

  11. Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Chun, Tae-Hyun, E-mail: thchun@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Oh, Dong-Seok, E-mail: dsoh1@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); In, Wang-Kee, E-mail: wkin@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel array is evaluated. Black-Right-Pointing-Pointer The subchannel analysis code for the dual-cooled annular fuel, MATRA-AF is validated. Black-Right-Pointing-Pointer We evaluate the sensitivity for geometry tolerances and operating parameter. Black-Right-Pointing-Pointer We decide the essential design parameters to uprate the power generation by dual-cooled annular fuel. Black-Right-Pointing-Pointer A thermal margin amount accommodating a 20% power-uprate seems viable. - Abstract: An internally and externally cooled annular fuel was proposed for an advance PWR, which can endure substantial power uprating. KAERI is pursuing the development for a reloading of power uprated annular fuel for the operating PWR reactors of OPR-1000. In this paper, the characteristics and verification of the MATRA-AF are described. The thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel is calculated for the major design parameters and its performance is compared against the reference 16 Multiplication-Sign 16 cylindrical fuel assembly. In particular, the enhancements of the thermal hydraulic performance of dual-cooled annular fuel are estimated for the 100% normal power reactor core. The purpose of this study is to estimate a normal power for OPR-1000 with dual-cooled annular fuel, and ultimately to assess the feasibility of 120% core power. The parametric study was carried out for the fuel rod dimension, gap conductance, thermal diffusion coefficients, and pressure loss of the spacer grids. As a result of the analysis on the nominal power, annular fuel showed a sufficient margin available on DNB and fuel pellet temperature relative to cylindrical fuel. The margin amount seems accommodating a 20% power-uprate seems viable.

  12. Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Highlights: • Pin and assembly lift-off forces are compared between solid and annular fuel. • Annular fuel experiences much stronger uplift forces. • Much stronger hold-down forces are required by annular fuel assembly. • Engineering modifications for hold-down mechanisms are required by annular fuel. - Abstract: In the PWR core, the fuel assembly is firmly seated on the lower core plate during operation. However, if the hydraulic force exerted on the fuel assembly by coolant flow is too large and the fuel assembly is lifted-off from the lower core plate, the excessive vibration will cause fuel failure. Therefore, the hydraulic lift-off issue needs to be addressed when the advanced fuel assembly is developed. It has been shown that the advanced annular fuel design with internal cooling allows power uprating up to 50% while the peak temperature of the fuel can be reduced and the MDNBR can be maintained. However, if the coolant condition in the core is kept unchanged, increasing the core power by 50% requires the core flow rate also increase proportionally, which will give rise to the hydraulic lift-off, an important issue to be addressed. In this paper, taking the 17 × 17 solid fuel design as the reference, the hydraulic lift-off issue is investigated for proposed 12 × 12 and 13 × 13 annular fuel designs. Both the steady-state and start-up operating conditions are evaluated. It is found that the hydraulic lift-off indeed is an issue for annular fuel design which requires careful analysis. By comparison, the lift-off forces and hold-down forces required for the externally and internally cooled annular fuels (13 × 13 and 12 × 12 arrays) are several times larger than that of the referenced solid fuel (17 × 17 array). Therefore, the hold-down mechanism for annular fuel needs to be carefully designed

  13. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    Science.gov (United States)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  14. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  15. Effect of multi-velocity-difference in traffic flow

    Institute of Scientific and Technical Information of China (English)

    Mo Ye-Liu; He Hong-Di; Xue Yu; Shi Wei; Lu Wei-Zhen

    2008-01-01

    Based on the optimal velocity models, an extended model is proposed, in which multi-velocity-difference ahead is taken into consideration. The damping effect of the multi-velocity-difference ahead has been investigated by means of analytical and numerical methods. Results indicate that the multi-velocity-difference leads to the enhancement of stability of traffic flow, suppression of the emergence of traffic jamming, and reduction of the energy consumption.

  16. Drag Reduction of Biopolymer Flows

    Directory of Open Access Journals (Sweden)

    R.J. Poole

    2011-01-01

    Full Text Available Drag reduction of rigid and semi-rigid biopolymers-scleroglucan (0.005 and 0.01% w/w and xanthan gum (0.0124 and 0.07% w/w-in a circular pipe and a concentric annular pipe (radius ratio κ = 0.5 have been investigated experimentally. The objective here is to assess and study the behaviour of these polymers and compare to the drag reduction by flexible polymers available in the literature. Pressure-drop, mean axial and complete Reynolds normal stress data measurements on the polymer solutions were conducted using laser Doppler anemometry. Measurements were also performed on the Newtonian solvent (water for comparison. Rheological characterization of the polymers conducted over a wide range of concentrations (0.005-0.75% w/w showed increased shear-thinning ability of the polymer solutions with increasing solution concentration. The pressure-drop measurements indicate that the effectiveness of these polymers as drag-reducing agents is only mildly dependent on the Reynolds number. Qualitative assessment of the turbulent peak values in the circular pipe flow shows behaviour resembling that of low drag-reducing (DR≤40% flexible polymer solutions data available in the literature such as carboxymethylcellulose with increases in u'+ and decreases both in w'+ and v'+ generally when compared to that of the Newtonian flow at the same Reynolds number. The peak values of the turbulent fluctuation levels (normalized with UB in the annular pipe, however, shows a decreasing trend of the axial component below 40% drag reduction. Above this drag-reduction limit, the peak levels seemed to increase, generally, with drag reduction. Decrease in both w'/UB and v'/UB when compared to that of the Newtonian flow are observed at the same Reynolds number for all drag-reducing flows, similar to what is observed in the pipe-flow study.

  17. The theory of rotational flow of drilling fluids inside the oil well and its applications for obtaining the relation between angular velocity of the drill pipe string and the torque acting on it; part two: visco-plastic drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Slawomirski, M.R.

    1979-01-01

    An examination is made of the flow of viscoplastic fluids in the space between two coaxial pipes with regard for rotation of the inner pipe. An analytical solution is provided for the task to determine the nature of distribution of flow velocity of the drilling fluid in the annular space and distribution of angular velocities in the flow. A relationship is obtained between the angular velocity of the drilling string and the torque acting on it. In this case, cases are examined where there is no flow nucleus, where the flow nucleus occupies the entire section of the annular space and an intermediate case where the flow nucleus only occupies part of the annular space limited by a certain radius. The solutions are given for different rheological models: Bingam, Khershel-Balkli and Kasson.

  18. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  19. Origin of pulsar velocities

    International Nuclear Information System (INIS)

    Ever since pulsars were found to have significant proper motions, the origin of the velocities has been an intriguing question. The more recent finding that the velocities display a significant correlation with the derived magnetic moments of the pulsars has made the origin of the velocities appear even more mysterious. Arguments are given to show that the above correlation is not causal, but accidental. Pulsar velocities are determined by their binary histories and not governed in any way by their magnetic fields. 10 references, 4 figures

  20. About measuring velocity dispersions

    Science.gov (United States)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  1. Method of improving image sharpness for annular-illumination scanning electron microscopes

    Science.gov (United States)

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  2. Ultra-Wide-Band Microstrip Concentric Annular Ring Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Salima Azzaz-Rahmani

    2012-01-01

    Full Text Available In this paper, a new design technique for bandwidth enhancement of concentric microstrip annular ring slot antennas is presented. Using this technique, an Ultra-Wide-Band antenna is designed with simulated bandwidth of 111.29%.

  3. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  4. Effect of January 15, 2010 annular solar eclipse on meteorological parameters over Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Nisha, P.G.; Mohankumar, K.

    Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper...

  5. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  6. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  7. Boiling two-phase flow and heat transfer in concentric annular tube

    International Nuclear Information System (INIS)

    The boiling flow resistance and heat transfer characteristics is experimentally investigated under the outer tube wall heating condition in a concentric annular tube with 2.1 mm gap size. The results show that the flow resistance in the annular tube is greater than that in circular tube, as well as the boiling heat transfer becomes enhanced. The heat transfer coefficient has close relationship with the pressure, thermal equilibrium quality, mass flux, heat flux, gap size of the annular tube, and heat models as well. The physical explanation about the enhancement boiling heat transfer in the annular tube is proposed with both micro-film evaporation mechanics and bubble disturbance mechanics. The correlations to calculate the flow friction coefficient and heat transfer coefficient are proposed based on the experimental data. (authors)

  8. An application of liquid sublayer dryout mechanism to the prediction of critical heat flux under low pressure and low velocity conditions in round tubes

    International Nuclear Information System (INIS)

    Based on several experimental evidences for nucleate boiling in annular film and the existence of residual liquid film flow rate at the critical heat flux (CHF) location, the liquid sublayer dryout (LSD) mechanism under annular film is firstly introduced to evaluate the CHF data at low pressure and low velocity (LPLV) conditions, which would not be predicted by a normal annular film dryout (AFD) model. In this study, the CHF occurrence due to annular film separation or breaking down is phenomenologically modelled by applying the LSD mechanism to this situation. In this LSD mechanism, the liquid sublayer thickness, the incoming liquid velocity to the liquid sublayer, and the axial distance from the onset of annular flow to the CHF location are used as the phenomena-controlling parameters. From the model validation on the 1406 CHF data points ranging over P = 0.1 - 2 MPa, G = 4 - 499 kg/m2s, L/D = 4 - 402, most of CHF data (more than 1000 points) are predicted within ±30% error bounds by the LSD mechanism. However, some calculation results that critical qualities are less than 0.4 are considerably overestimated by this mechanism. These overpredictions seem to be caused by inadequate CHF mechanism classification criteria and an insufficient consideration of the flow instability effect on CHF. Further studies for a new classification criterion screening the CHF data affected by flow instabilities and a new bubble detachment model for LPLV conditions are needed to improve the model accuracy. (author)

  9. Non-approximate method for designing annular field of two-mirror concentric system

    Institute of Scientific and Technical Information of China (English)

    Yuanshen Huang; Dongyue Zhu; Baicheng Li; Dawei Zhang; Zhengji Ni; Songlin Zhuang

    2012-01-01

    Annular field aberrations of a three-reflection concentric system, which are composed of two spherical mirrors, are analyzed. An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane. Aberrations are determined by the object height and aperture angle. In this letter, the general expression of the system aberration is derived using the geometric method, and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles. The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is, the smaller the system aberration is. The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.%Annular field aberrations of a three-reflection concentric system,which are composed of two spherical mirrors,are analyzed.An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane.Aberrations are determined by the object height and aperture angle.In this letter,the general expression of the system aberration is derived using the geometric method,and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles.The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is,the smaller the system aberration is.The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.

  10. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    International Nuclear Information System (INIS)

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect

  11. Recent achievements on annular Josephson structures and their application as radiation detectors

    International Nuclear Information System (INIS)

    One of the stimulating area of superconductors investigations lies in the achieved and potential applications as radiation detectors. Results concerning annular Josephson junctions in this context are discussed. Fundamental aspects, mainly related to the fluxon dynamics in such structures, are discussed in detail. The results confirm the importance of the precious sharing of technological requests with fundamental physical implications. Peculiar results are reported dealing with new resonances occurring on these Josephson junctions of annular configuration

  12. Large Eddy Simulation of ignition in an annular multi-injector combustor

    Science.gov (United States)

    Vicquelin, Ronan; Philip, Maxime; Boileau, Matthieu; Schmitt, Thomas; Bourgoin, Jean-François; Durox, Daniel; Candel, Sébastien

    2013-11-01

    The present work deals with validating the LES methodology for transient ignition simulations, and in particular elucidating the mechanisms that control the light round sequence in a laboratory annular combustor, representative of many practical industrial systems. The simulation benefits from the unique experimental database built at EM2C on a fully transparent annular chamber equipped with 16 premixed swirled injectors. The F-TACLES combustion model is used for its ability to properly represent the flame propagation.

  13. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers

    OpenAIRE

    Parmentier, Jean-François; Salas, Pablo; Wolf, Pierre; Staffelbach, Gabriel; Nicoud, Franck; Poinsot, Thierry

    2012-01-01

    This study describes a simple analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing experimental, acoustic and large eddy simulation (LES) data obtained in these combustion chambers. It is based on a one-dimensional zero Mach number formulation where N burners are connected to a single annular chamber. A manipulation of the corresponding acoustic equations in this configuration leads to a simple dispersion relation which can be solved by ...

  14. The numerical solution of flow field of short-annular combustion chamber

    Science.gov (United States)

    Xu, H.; Ning, H.

    1986-05-01

    The recirculating flow field of a short-annular combustion chamber has been studied. The body-fitting coordinate system and the 'simple' method combined with a constant viscosity model have been employed to solve the Navier-Stokes equations in a regime containing a complicated curved boundary. The result could provide the theoretical reference for the design and improvement of short-annular combustion chambers.

  15. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    Science.gov (United States)

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  16. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  17. A research on the mechanisms of transition from annular flow in two-phase pipeline flow

    International Nuclear Information System (INIS)

    Various kinds mechanisms of transitions from two-phase annular flow in tubes were studied and modelled, and the affection factors on the transitions were also discussed. Some mathematical equations and transition criteria for every mechanisms presented were derived, and an unified general criterion for the annular flow transitions in whole range of pipe inclinations was recommended. The boundaries predicted show good agreement with the air-water two-phase experimental data

  18. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    OpenAIRE

    Bhardwaj, N; Gupta, A. P.; Choong, K.K.

    2008-01-01

    In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thicknes...

  19. Modified Surgical Intervention for Extensive Mitral Valve Endocarditis and Posterior Mitral Annular Calcification

    Science.gov (United States)

    Kim, Gwan Sic; Beom, Min Sun; Kim, Sung Ryong; Kim, Na Rae; Jang, Ji Wook; Jang, Mi Hee; Ryu, Sang Wan

    2016-01-01

    The concomitant presence of posterior mitral annular calcification and infectious mitral valve lesions poses a technical challenge with considerable perioperative risk when using previously proposed techniques for mitral valve surgery. Herein, we report a case of the use of a modified surgical technique to successfully treat a patient with mitral infective endocarditis complicated by a subendocardial abscess and extensive posterior mitral annular calcification. PMID:26889447

  20. Investigating the effects of transport on the preservation of soft-bodied organisms using an annular flume tank.

    Science.gov (United States)

    Bath Enright, Orla; Minter, Nicholas; Sumner, Esther; Mángano, Gabriela; Buatois, Luis

    2016-04-01

    Annular flume tank experiments offer unique opportunities to be able to investigate the effect of transport on a range of organisms; being able to create slow to fast sediment-laden flows that can be laminar to fully turbulent, and lasting over durations of minutes to hours. Understanding the effects of transport on the preservation potential of different organisms is fundamental to the study of palaeoecology. Despite this, the sedimentological processes leading up to fossil entombment remain largely overlooked. This is especially significant for fossil lagerstätte such as the Burgess Shale, whose exquisite fossil preservation has enabled insights into the anatomy of early soft-bodied organisms and their evolution during the Cambrian explosion. However there is still a fundamental debate with regards to the transport these organisms have undergone. Namely, whether they were living within or close to the environment of deposition, or could they have been transported from one environment to another? As such, does the Burgess Shale biota represent a palaeocommunity or not? To explore the limits of the effect of transport, initial experiments have been designed using an annular flume tank in order to test the influence of fully turbulent sandy suspensions (75-250μm) on organism preservation. This is a three factorial design where the three independent variables are transport duration, sediment concentration and grain angularity. In all experiments, flow velocity was kept constant along with controls on pH and salinity. The dependent variable, an index of "increasing state of damage" has been devised to classify the amount of destruction each organism exhibits after the experimental procedure. Results are presented here. From observations such as these, we can begin to set constraints on the amount of transport, if any, that these fossil organisms could have endured.

  1. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  2. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  3. Measurement of LBE flow velocity profile by UDVP

    Science.gov (United States)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-09-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 °C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter.

  4. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  5. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  6. Suppression of space-charge effects in transport through an RFQ using an annular beam

    International Nuclear Information System (INIS)

    High intensity proton linacs (HIPLs) have severe space-charge issues that can lead to emittance blow-up and the production of beam halos, both of which lead to limitations in the operable beam current. Hollow or annular beams are known to have a small spacecharge force (for a given current). Here we present preliminary studies on the production of such annular beams in the Low Energy Beam Transport (LEBT) line, and the subsequent transport of such a beam through a Radio- Frequency Quadrupole (RFQ). We show, using three-dimensional particle-in-cell simulations, that such an annular beam experiences a smaller emittance blow-up as well as reduced beam halo. Starting with an nns normalized emittance of 0.2 πmn-mrad, after transport through the RFQ the emittance blows up to 0.39 πmm-mrad for a Gaussian beam, but only to 0.26 πmm-mrad for an annular beam. Similarly, the halo parameter for the annular beam is only 0.4 as compared to 1.4 for the Gaussian beam. Thus, annular beams suffer lesser deterioration due to space-charge forces in transport through the RFQ, and may therefore be a better choice for HIPLs. (author)

  7. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Directory of Open Access Journals (Sweden)

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  8. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  9. An optical system design that converts a Gaussian to a flattop annular beam

    Science.gov (United States)

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  10. Characterization of Novel Calorimeters in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Hehr Brian D.

    2016-01-01

    Full Text Available A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field – a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.

  11. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Science.gov (United States)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  12. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  13. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  14. Experimental investigation of the low NOx vortex airblast annular combustor

    Science.gov (United States)

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  15. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    International Nuclear Information System (INIS)

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  16. MCNP/MCNPX model of the annular core research reactor.

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr. (.,; .)

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  17. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  18. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    Science.gov (United States)

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  19. Flow Pressure Loss through Straight Annular Corrugated Pipes

    Science.gov (United States)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  20. Mathematical behavior and computation of transmission probabilities for annular regions

    International Nuclear Information System (INIS)

    One convenient way of treating neutron transport problems is to use the transmission probability method. For cylindrical geometry consisting of many annular subregions, this method can be formulated in terms of T/sub i//sup OO/, the transmission probability from the outer-to-outer surface of the i-th annulus, and T/sub i//sup OI/, the transmission probability from the inner-to-outer surface of the i-th annulus. The quantities T/sub i//sup OO/ and T/sub i//sup OI/ are extremely complex functions of r/sub i-1//r/sub i/, the ratio of the inner-to-outer radius, and the optical path length r/sub i/Σ/sub ti/ for region i. The latter quantity can have a wide range of values in the problems of practical interest. This paper describes new, improved methods for treating these transmission probabilities on the basis of their individual mathematical properties. These improved methods have three objectives: to provide a rigorous treatment of the asymptotic behavior of these functions, which is currently lacking in the MC2-2 code; to provide a separate treatment of T/sub i//sup OO/ and T/sub i//sup OI/ according to their distinct functional dependencies; to eliminate the two-dimensional tables currently in use to obtain these functions in the MC2-2 code. 2 figures

  1. Measurement of large aspheric surfaces by annular subaperture stitching interferometry

    Institute of Scientific and Technical Information of China (English)

    Xiaokun Wang; Lihui Wang; Longhai Yin; Binzhi Zhang; Di Fan; Xuejun Zhang

    2007-01-01

    A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced.It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433λ and 0.052λ (λis 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031λ and 0.005λ, respectively.This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.

  2. NB-UVB phototherapy for generalized granuloma annulare.

    Science.gov (United States)

    Pavlovsky, Mor; Samuelov, Liat; Sprecher, Eli; Matz, Hagit

    2016-05-01

    Granuloma annulare (GA) is a benign, usually self-limited, granulomatous skin disease of unknown etiology. The generalized form of the disease shows a more chronic, relapsing course, rare spontaneous resolution, and poorer response to therapy. Psoralen plus UVA phototherapy has been reported to be effective for GA. However, little is known regarding the efficacy of narrowband UVB phototherapy. Our goal was to determine the efficacy of NB-UVB phototherapy in generalized GA. We carried out a retrospective study of patients with generalized GA treated with NB-UVB phototherapy over a period of 3 years. On completion of treatment, outcome was assessed as complete response (complete clearance of the lesions), partial response (>50% clearance of the lesions), and poor response (<50% clinical response). Therapy was stopped if no improvement was seen after 20 treatments. Thirteen patients were included in the study. 54% of patients treated with NB-UVB had a complete/partial response by the end of the treatment period. NB-UVB phototherapy was well-tolerated, with no serious adverse effects. NB-UVB phototherapy is effective in a substantial portion of patients with generalized GA. To determine the true efficacy of this therapeutic modality, a prospective study comparing it to PUVA is warranted. PMID:26626163

  3. Annular flow entrainment rate experiment in a small vertical pipe

    International Nuclear Information System (INIS)

    Two-fluid model predictions of film dryout in annular flow, leading to nuclear reactor fuel failure, are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate-effects experimental data in the range of the operating conditions in nuclear power reactors. An air-water experiment has been performed to measure the entrainment rate in a small pipe. The current data extend the available database in the literature to higher gas and liquid flows and also to higher pressures. The measurements were made with the film extraction technique. A mechanistic model was obtained based on Kelvin-Helmholtz' instability theory. The dimensionless model includes the Weber number of the gas and the liquid film Reynolds number. Kataoka and Ishii's correlation (Kataoka, I., Ishii, M., (1982)) is modified based on this model and the new data. The new correlation collapses the present air-water data and Cousins and Hewitt's data (Cousins, L.B. (1968)) The effects of pressure and surface tension were considered in the derivation so it may be applied for boiling water reactor operating conditions. (orig.)

  4. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  5. Critical ionization velocity interaction

    International Nuclear Information System (INIS)

    Different problems of current interest regarding the critical ionization velocity (CIV) phenomenon are discussed. The article is divided into five sections corresponding to different aspects of the interaction: velocity, magnetic field strength, geometry, neutral gas density, and time duration. In each section, experiments and theories - microscopic and macroscopic - are discussed

  6. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  7. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    Science.gov (United States)

    Kim, Junsu; Reichler, Thomas

    2015-10-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  8. FAME Radial Velocity Survey

    Science.gov (United States)

    Salim, S.; Gould, A.

    2000-12-01

    Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.

  9. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  10. The critical ionization velocity

    International Nuclear Information System (INIS)

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  11. Investigation of Slipstream Velocity

    Science.gov (United States)

    Crowley, J W , Jr

    1925-01-01

    These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)

  12. Nerve conduction velocity

    Science.gov (United States)

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... surface electrodes are placed on the skin over nerves at different spots. Each patch gives off a ...

  13. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  14. The critical ionization velocity

    International Nuclear Information System (INIS)

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (Auth.)

  15. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  16. Theoretical and experimental study of inverted annular film boiling and regime transition during reflood transients

    Science.gov (United States)

    Mohanta, Lokanath

    from single tube experiments. The root mean square error in predicting the FLECHT-SEASET data is 20% whereas for single tube data it is 12%. In previous studies, the transition criterion from the IAFB to the ISFB regime is purely empirical. In this work, a theoretical stability analysis of a liquid jet co-flowing with its vapor in a tube is carried out to seek a better understanding of the underlying physics of the regime transition. The effect of heat and mass transfer at the interface is included in the stability analysis. Also, the effect of viscous force is included in the stability analysis, by employing the viscous potential flow method. The wavelength that is responsible for breakup of the liquid core in IAFB is predicted in the present analysis and is compared with the adiabatic experiments of IAFB from the literature. The effects of various controlling parameters including the relative Weber number, vapor Reynolds number, velocity ratio, density ratio and viscosity ratio of vapor and liquid are studied to understand the physics of transition. Finally a physics-based heat transfer model is proposed for heat transfer in the ISFB regime using the wavelength obtained from the stability analysis. Keywords: Inverted annular film boiling, Two-phase heat transfer, Subcooled flow film boiling, Inverted slug film boiling, Regime transition, Void fraction in post CHF regime, Rod bundle, Spacer grid, Stability, Two-phase flow, Kelvin-Helmholtz instability, Capillary instability, Co-axial jets, Viscous potential flow, Interfacial heat and mass transfer.

  17. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    International Nuclear Information System (INIS)

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1–3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure. (paper)

  18. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Seo, K. W.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly.

  19. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    International Nuclear Information System (INIS)

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly

  20. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb

    International Nuclear Information System (INIS)

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions

  1. The clinical application of “jetting suture” technique in annular repair under microendoscopic discectomy

    Science.gov (United States)

    Qi, Lei; Li, Mu; Si, Haipeng; Wang, Liang; Jiang, Yunpeng; Zhang, Shuai; Li, Le

    2016-01-01

    Abstract To introduce a new designed suture technique in annular repair under the microendoscopic discectomy (MED) surgery and to evaluate the clinical application of the technique in annular repair under MED with at least 2-year follow-up period. A new method of annular repair was designed and named “jetting suture” technique. Thirty consecutive patients with lumbar disc herniation were enrolled in the prospective single-cohort observational study. Patients were followed up at intervals of preoperative, postoperative 1 week, 3 months, 6 months, 1 year, and last follow-up. The clinical outcomes were evaluated by using Japanese Orthopaedic Association (JOA) score, Oswestry Disability Index, and modified Mcnab criteria. The procedure was successfully performed in all cases. No case required conversion to an open procedure. The mean age of patients was 36.6 years. Average blood loss was 45.8 ± 10.2 mL. The preoperative symptoms were alleviated significantly after surgery. All the standardized measures improved significantly at the last follow-up, including JOA score (10.1 to 26.6; P disc herniation was reported. The designed “jetting suture” technique in annular repair under MED can be performed safely and effectively. It could be a viable alternative to annular repair under lumbar discectomy. PMID:27495101

  2. Repeated mitral valve replacement in a patient with extensive annular calcification

    Directory of Open Access Journals (Sweden)

    Kitamura Tadashi

    2011-11-01

    Full Text Available Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular debridement. Postoperatively the patient developed paravalvular leak and hemolytic anemia, subsequently undergoing reoperation three days later. The mitral valve was replaced with an Edwards MIRA valve, with a bulkier sewing cuff, after more aggressive annular debridement. Although initially there was no paravalvular leak, it recurred five days later. The patient also developed a small cerebral hemorrhage. As the paravalvular leak and hemolytic anemia gradually worsened, the patient underwent reoperation 14 days later. A Carpentier-Edwards bioprosthetic valve with equine pericardial patches, one to cover the debrided calcified annulus, another as a collar around the prosthesis, was used to eliminate paravalvular leak. At 7 years postoperatively the patient is doing well without any evidence of paravalvular leak or structural valve deterioration. Conclusion Mitral valve replacement using a bioprosthesis with equine pericardial patches was useful to overcome recurrent paravalvular leak due to severe mitral annular calcification.

  3. Numerical modeling of a horizontal annular flow experiment using a droplet entrainment model

    International Nuclear Information System (INIS)

    Highlights: • A new droplet entrainment model within the AIAD framework is proposed. • The approach was validated against a horizontal annular flow experiment. • Important flow phenomena could be calculated and analyzed. - Abstract: One limitation in current simulating horizontal annular flows is the lack of treatment of droplet formation mechanisms. For self-generating annular flows in horizontal pipes, the interfacial momentum exchange and the turbulence parameters have to be modelled correctly. Furthermore the understanding of the mechanism of droplet entrainment in annular flow regimes for heat and mass transfer processes is of great importance in the chemical and nuclear industry. A new entrainment model is proposed. It assumes that due to liquid turbulence the interface gets rough and wavy and forms droplets. The new approach is validated with HZDR annular flow experiments. Important phenomena like the pressure drop, the wave pumping effect, the droplet entrainment, the liquid film formation and the transient flow behavior could be calculated, analyzed and some of the phenomena compared with the measurement

  4. Numerical investigation on the enhancement capability of annular chimney towards natural convective heat transfer in the interior zone of scaled down FBR core catcher

    International Nuclear Information System (INIS)

    Full text of publication follows: A numerical study has been carried out to determine the influence of annular cylindrical chimney on buoyancy-induced flow in the dished end cavity of scaled down Fast Breeder Reactor. Results are presented for (i) cylindrical chimney configuration and (ii) annular chimney configuration occupying the center of the circular plate. Two dimensional laminar simulations are obtained by solving the fully elliptical governing equations of flow and energy. The fluid is Newtonian and incompressible and satisfies the Boussinesq approximation. Results for the upward facing isothermal circular plate with chimney configurations in confined enclosure are analyzed. The velocity fields and isotherms are studied extensively to assess the impact of both geometries on the flow structure, dynamics and overall heat transfer characteristics in the cavity, towards enhancement of natural convective heat transfer. The predicted results for the cylindrical chimney are compared with known experimental results. The results are of interest to post accident heat removal in fast breeder reactors (FBR). (authors)

  5. Panoramic Imaging and Holographic Interferometry Using a Panoramic Annular Lens.

    Science.gov (United States)

    Puliparambil, Joseph Thomas

    1992-01-01

    Ideally, a device for making measurements of the inner surface of a cavity should be rugged, compact, and capable of obtaining an unobstructed, complete, and comprehensive image of the cavity space in every direction. The first attempt to patent a system for panoramic imaging was made by Mangin in 1878 and since that time several other devices have been patented. Most of these devices depend on a scanning system or on a complex set of lenses and mirrors and as such they are not very practical for use. However, in 1984 Dr. Pal Greguss invented a simple lens known as a Panoramic Annular Lens (PAL) capable of giving a full 360 degree surround image of the area around the lens. This lens can be utilized along with digital cameras and computer programs to inspect and measure the interior walls of cavities. If a cavity can be regarded as a cylindrical rather than a spherical volume, the image information can be transformed, using stretching methods, onto a flat surface creating a two-dimensional representation of a three-dimensional cylindrical surface. This phenomenon called Flat Cylindrical Perspective (FCP) forms the basis for the image produced by a PAL. To apply standard methods of analysis on an image and also for visual interpretation, image processing algorithms were developed to linearize a PAL image. These programs can be used for endoscopy which is a technique for imaging the inner part of a volume or cavity. Such techniques have applications in the fields of medicine, civil engineering and aerospace; indeed, anywhere tubes and pipes are involved. Holographic interferometry has become an important diagnostic tool in non-destructive testing, but due to lack of panoramic imaging systems this work could not be effectively used for the analysis of cavities. Now, the PAL can be used for panoramic holographic interferometry which can be used to measure submicron deformations of cavity walls caused by small perturbations in temperature, pressured and mechanical loads

  6. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  7. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  8. A Study on the Pressure Drop of a Subchannel Analysis Code for an Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Seo, K. W.; In, W. K.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. KAERI is pursuing the development for its reloading to operating PWR reactors of OPR-1000. Thermal hydraulic analysis is critical part of annular fuel design because it determines dimensions of the fuel within acceptable MNDBR margins. An annular fuel subchannel analysis code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow split and heat split in the internal and external subchannels has been developed. In this paper, the effects of the parameters related with a calculation of a single-phase and two-phase pressure drop have been estimated.

  9. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  10. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    International Nuclear Information System (INIS)

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Fast Photoacoustic Imaging of Blood Vessels Based on an Annular Transducer Array

    International Nuclear Information System (INIS)

    We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array. The annular transducer array consists of 256 elements arranged along a 300° arc with a 50-mm radius of curvature, using piezocomposite technology for high sensitivity and high signal-to-noise ratio. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and a limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. The experiments with phantom and blood vessels of a chicken are performed and clear photoacoustic images are obtained. The results demonstrate that the photoacoustic imaging system using the annular transducer array holds the potential application in monitoring neovascularization in tumor angiogenesis

  12. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    International Nuclear Information System (INIS)

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  13. Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path

    International Nuclear Information System (INIS)

    Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path are studied by using the numerical simulation method and some new results are obtained, which are explained in physical terms. It is found that, when the zenith angle is not large enough, the saturation phenomenon of the scintillation index never appears even if the propagation distance is large enough, which is quite different from the behavior for the horizontal propagation case. However, under the same condition (i.e. the zenith angle is not large enough), the on-axis scintillation index still approaches an asymptotical value, which increases as the zenith angle increases, and depends on the obscure ratio of annular beams. Furthermore, the relation of the on-axis scintillation index between annular beams and flat-topped beams is also examined in this paper. It is shown that their relation will change as the zenith angle changes. (paper)

  14. Diametric Tolerance Control of Dual Cooled Annular Fuel Pellet without Inner Surface Grinding

    International Nuclear Information System (INIS)

    A dual cooled fuel consists of internal and external cladding tubes in which annular pellets are stacked and cooling water flows in both internal and external coolant passages. It is recently being reconsidered as a promising option for a power up-rate of a pressurized water reactor fuel assembly because an annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to an increased heat transfer area and a thin pellet thickness. Many technical issues might cause a serious problem to adopt the dual cooled annular fuel to the commercial PWR reactors. One of the most important issues is a heat flux split toward an internal cladding and an external cladding due to the gap conductance asymmetry which results from a preferential expansion of a fuel pellet toward the outside during an irradiation. Gap conductance is directly related to the inner and outer gap thicknesses. Initial gap thicknesses can vary with a pellet's dimensions which are affected by a reactor operation condition. Recently, it is suggested that a fuel rod with a smaller inner gap and a larger outer gap can reduce this gap conductance asymmetry. This approach can be effective only after precise tolerance technology is achieved. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press. Thus, a sintered pellet usually undergoes a center-less grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a center-less grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications

  15. Anti-oxidative therapy with oral dapsone improved HCV antibody positive annular elastolytic giant cell granuloma.

    Science.gov (United States)

    Igawa, K; Maruyama, R; Katayama, I; Nishioka, K

    1997-05-01

    A 72-year-old fisherman who was positive for the HCV antibody developed an annular, erythematous, infiltrated lesions on sun-exposed areas. The lesions were diagnosed as annular elastolytic giant cell granuloma both clinically and histologically. Topical corticosteroid and cryotherapy with liquid nitrogen for several months failed to improve the lesions. We then started dapsone, a known anti-oxidant, at 50 mg/day. A month later, the margins of the erythematous lesions faded, and the infiltration gradually decreased. No recurrence has been observed for one year after the start of the therapy. Anti-oxidative therapy appears to be effective for annular elastolytic giant cell granuloma and could be an alternate therapy for refractory granulomatous disease. PMID:9198323

  16. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  17. Nonlinear saturation of thermoacoustic oscillations in annular combustion chambers

    Science.gov (United States)

    Ghirardo, Giulio; Juniper, Matthew

    2014-11-01

    Continuous combustion systems such as aeroplane engines can experience self-sustained pressure oscillations, called thermoacoustic oscillations. Quite often the combustion chamber is rotationally symmetric and confined between inner and outer walls, with a fixed number of burners equispaced along the annulus, at the chamber inlet. We focus on thermoacoustic oscillations in the azimuthal direction, and discuss the nonlinear saturation of the system towards 2 types of solutions: standing waves (with velocity and pressure nodes fixed in time and in space) and spinning waves (rotating waves, in clockwise or anti-clockwise direction). We neglect the effect of the transverse velocity oscillating in the azimuthal direction in the combustion chamber, and focus the model on the nonlinear effect that the longitudinal velocity, just upstream of each burner, has on the fluctuating heat-release response in the chamber. We present a low-order analytical framework to discuss the stability of the 2 types of solutions. We discuss how the stability and amplitudes of the 2 solutions depend on: 1) the acoustic damping in the system; 2) the number of injectors equispaced in the annulus; 3) the nonlinear response of the flames.

  18. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  19. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  20. MSE velocity survey

    Science.gov (United States)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  1. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfacto...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  2. Safety and Economics of High Power Density PWR with Novel Annular Fuel

    International Nuclear Information System (INIS)

    The internally and externally cooled annular fuel is a new type of fuel for PWRs that enables an increase in core power density by 50% within the same or better safety margins as the traditional solid fuel. Each assembly of traditional side dimensions has 160 annular fuel rods arranged in a 13x13 array. Even at the much higher power density, the fuel exhibits substantially lower temperatures and a MDNBR margin comparable to that of the traditional solid fuel at nominal (100%) power. Safety analyses indicate that the new annular fuel can accommodate 50% power up-rate in a PWR and still maintain adequate safety margins for a variety of transients and accidents including Loss of Flow Accident, Main Steam Line Break, Large Break Loss of Coolant Accident and Rod Ejection Accident. An economic study of 50% up-rate of an existing 1200 MW(e) PWR using the annular fuel shows that: (1) an Internal Rate of Return (IRR) on the order of 20% or more can be expected from such projects, even when accounting for uncertainties in the fuel price, electricity price inflation and cost of equipment; (2) Gradual replacement of the solid core by annular batches prior to up-rating can improve the IRR by 2.3% to 3.5% as it allows to full use of the energy in two already paid for batches of solid fuel rather than discarding them. Mixing of annular and solid fuel assemblies in one core appears feasible due to similar pressure drop characteristics of both assemblies. (authors)

  3. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  4. An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors

    OpenAIRE

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2010-01-01

    Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations, and metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fuelled cores, where it can enable a power uprate of ~20%; the magnitude ...

  5. Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube

    Institute of Scientific and Technical Information of China (English)

    Li Bin; He Anding; Wang Yueshe; Zhou Fangde

    2001-01-01

    Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.

  6. Ultrasonography of the trigger fingers: Emphasis on findings of annular pulley

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-06-15

    To analyze the sonographic findings of clinically diagnosed trigger fingers by comparing those of normal fingers with a special emphasis on findings of the annular pulleys that has not been demonstrated previously. Forty-four fingers of 38 patients with clinically diagnosed trigger fingers and 31 asymptomatic contralateral fingers from 29 patients as the normal control group were included in this study. The mean age of the subjects with trigger fingers was 39 years (age range, 7-74 years; female:male = 32:6) while that of the normal control group, 49 years (age range, 7-74 years; female:male = 24:5). Longitudinal and axial images of the flexor digitorum tendons (FDTs) and adjacent soft tissue were obtained with a careful examination of the annular pulleys including A1 pulley. Two radiologists conducted a retrospective analysis of sonographic findings with an emphasis on the visualization and thickness of annular pulleys, thickness and echo pattern of FDTs, distension of tendon sheath , and presence of ganglion. Statistical significances for the difference of thickness of the annular pulleys and FDTs between patients and normal control group were determined with independent sample t-test. The probability value less than .05 was considered statistically significant. Twenty-six of 44 fingers (59%) showed thickened annular pulleys (A1 in 20 and A3 in 6 cases). The thickness of annular pulleys of control and patient groups was 0.27 +- 0.40 mm and 0.77 +- 85 mm, respectively. The average thickness of FDTs of the control and patient groups were 3.35+- 0.77 mm and 3.6 +- 0.9 mm, respectively. The annular pulleys were thickened in the patient group with a statistical significance (p<0.05) whereas the thickness of FDTs did not. The echo pattern of FDTs was normal in 38 fingers of 44 patients (86%) while only six remaining fingers (14%) showed decreased echo and loss of the normal fibrillary pattern within the tendon. Three fingers showed distension of tendon sheath; one

  7. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  8. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  9. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    OpenAIRE

    Padma Lochannayak; suvendumohanty

    2015-01-01

    The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46...

  10. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang; Tao Huang

    2015-01-01

    The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD) simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the ro...

  11. Applicability of annular flow model to countercurrent flow in debris beds consisting of large particles

    International Nuclear Information System (INIS)

    Countercurrent flow limitation (CCFL) is the dominant dryout phenomenon in a debris bed that may be formed during a severe accident such as that observed at Three Mile Island unit 2. The actual CCFL situation in a debris bed is very complex, and it is difficult to treat. An annular flow model was developed to predict CCFL in a pipe. If a hypothetical flow channel were assumed, CCFL in a debris bed could be treated in the same manner as CCFL in a pipe. The purpose of this study is to investigate whether the annular flow model developed for CCFL in a pipe is applicable for CCFL in a debris bed

  12. Quasi-static transient thermal stresses in a thick annular disc

    Indian Academy of Sciences (India)

    V S Kulkarni; K C Deshmukh

    2007-10-01

    The present paper deals with the determination of transient thermal stresses in a thick annular disc. A thick annular disc is considered having zero initial temperature and subjected to arbitrary heat flux on the upper and lower surfaces where as the fixed circular edges are at zero temperature.The governing heat conduction equation have been solved by using integral transform technique. The results are obtained in series form in terms of Bessel’s functions. The results for displacement and stresses have been computed numerically and are illustrated graphically

  13. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  14. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  15. An Experimental Study on 3—D Flow in an Annular Cascade of High Turning Angle Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    WangWensheng; LiangXizhi; 等

    1994-01-01

    This paper presents an experimental study of the three-dimensional turbulent flow fields in a lowspeed annular cascade of high turning angle turbine blades.Detailed measurements were performed on the blade surfaces and mid-streamsurface in the passage and at three axial planes downstream of the cascade by using wall static pressure taps,a five-hole probe and a hot-wire anemometer,The test data include static pressure distribution on blade surfaces,total pressure loss cofeeicient,mean flow velocity components.radial flow angle,turbulence intensity and Reynolds shear stress.Analyses of the three-dimensional cascade flow characteristics were made on the noset location of high loss vortices.the variation of pressure gradient inside the cascade passage and the properties of endwall boundary layers total pressure loss distributions,secondary vortex turbulent dissipation and wake decay downtream of the cascade.These experimental results are valuable for revealing the details of the complex vortex flow structure in modern highly loaded axial turbomachines and validating the three-dimensional flow numerical computation codes.

  16. Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, M., E-mail: manisankarir@yahoo.co [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of); Department of Mathematics, East Point College of Engineering and Technology, Bangalore 560 049 (India); Venkatachalappa, M. [UGC Centre for Advanced Studies in Fluid Mechanics, Department of Mathematics, Bangalore University, Bangalore 560 001 (India); Do, Younghae [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of)

    2011-04-15

    The main objective of this article is to study the effect of magnetic field on the combined buoyancy and surface tension driven convection in a cylindrical annular enclosure. In this study, the top surface of the annulus is assumed to be free, and the bottom wall is insulated, whereas the inner and the outer cylindrical walls are kept at hot and cold temperatures respectively. The governing equations of the flow system are numerically solved using an implicit finite difference technique. The numerical results for various governing parameters of the problem are discussed in terms of the streamlines, isotherms, Nusselt number and velocity profiles in the annuli. Our results reveal that, in tall cavities, the axial magnetic field suppresses the surface tension flow more effectively than the radial magnetic field, whereas, the radial magnetic field is found to be better for suppressing the buoyancy driven flow compared to axial magnetic field. However, the axial magnetic field is found to be effective in suppressing both the flows in shallow cavities. From the results, we also found that the surface tension effect is predominant in shallow cavities compared to the square and tall annulus. Further, the heat transfer rate increases with radii ratio, but decreases with the Hartmann number.

  17. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    Energy Technology Data Exchange (ETDEWEB)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  18. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  19. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 1800 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  20. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be...

  1. Kriging Interpolating Cosmic Velocity Field

    OpenAIRE

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridged] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the...

  2. Stress Intensity Factor using Finite Element Analysis in Rectangular Orthotropic Composite Annular Disk

    Directory of Open Access Journals (Sweden)

    P. Ravinder Reddy

    1997-01-01

    Full Text Available The quadratic isoparametric elements which embody the inverse squareroot singularity were used to determine the stress intensity factor in an annular disk made of Boron-Epoxy composite material. The displacements and stresses were determined in a rectangular orthotropic composite annular disk using isoparametric finite elements. The singularity in the strain field was provided by means of 8-noded isoparametric elements (4-nodes at the four corners and four mid-side nodes each at l/4th distance from the edge. The results were obtained for various material properties and fibre orientation. The geometry of the annular disk was reported when subjected to a boundary radial and tangential. The r singularity was provided at the boundary of the circular hole and the rest of the annular disk was modelled with ordinary isoparametric elements. The apparent stress intensity factor (K/sub I/= was computed from the stress data near the circular hole, when it was subjected to uniform tension. A curve was drawn for apparent stress intensity factor versus the distance from the crack edge and was extrapolated to r = 0, the actual stress intensity factor was found on the y-axis.

  3. Application of Lubricant to Minimize Axial Deviation of Annular Pellet Diameter

    International Nuclear Information System (INIS)

    In the nuclear industry, the elevation of an economical efficiency for a nuclear fuel is one of the major issues. To increase the efficiency, a development of the nuclear fuel for a high burnup and extended cycle is necessary. In the development of a high performance fuel, in-reactor fuel behavior must be seriously considered. Also, a fuel fabrication and an enrichment process must be discussed. A modification and an improvement of a nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow for a substantial increase in the power density, an additional cooling is necessary. One of the best ways is the application of a new fuel geometry that is of an annular shape and has both an internal and external cooling. From this point of view, a double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process for a UO2 annular pellet is now in progress. In developing the fabrication technology for an annular pellet, there are various methods which can be applied to the fabrication of an annular pellet. But a die pressing method was dominantly chosen, because it is profitable for a production on a large scale

  4. Thermal hydraulic analysis of thorium fuel assemblies loaded with annular seed pins

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using MATRAA combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and MATRAA showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 qC. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that interchannel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels

  5. Stress Functions in a Thin Annular Disc Due To Partially Distributed Heat Supply

    Science.gov (United States)

    Bagde, Sunil D.; Khobragade, N. W.

    2012-09-01

    This paper concerned with stress functions in thin annular disc due to partially distributed heat supply to determine the temperature, displacement function and stress functions with the help of finite Fourier cosine transform, Marchi-Zgrablich transform and Laplace transform techniques.

  6. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    Science.gov (United States)

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  7. Development of Technology for Improving the Dual Cooling Annular Fuel Pellet Heat Transfer

    International Nuclear Information System (INIS)

    The purpose of this project is to conduct CHF experiments using nano fluid and to check the application possibility of nano fluid to annular fuel for developing high performance dual cooling annular fuel pellet. To achieve this purpose, We set the direction of research by literature survey and conducted experiments using various experimental apparatus. The main purposes of the experiments contained in the present study are understanding about effect of nano fluid on CHF and investigation of related phenomena. CHF enhancement by nano fluid can increase the the thermal margin of dual cooling annular fuel and thus increase the application possibility of annular fuel to nuclear power plant. The present study consist of two parts. First, we study about the effect of nano fluid on thermal conductivity, wettability, CHF in pool boiling condition. Second, we study about the effect of nano fluid on CHF in flow boiling condition. Part 1 : Thermal conductivity, wettability, CHF experiments using nano fluid in pool boiling condition Part 2 : CHF experiments using nano fluid in flow boiling condition

  8. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers. Comp......, the efficiency of the displacement is analysed for various flow situations....

  9. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  10. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator

    International Nuclear Information System (INIS)

    Highlights: • Exergy analysis in the annular thermoelectric generator (ATEG) system is proposed. • Analytical expressions for the power output, exergy efficiency of an ATEG is derived. • The effects of Sr, RL, and θ in Pout and exergy efficiency of an ATEG is studied. • The influence of Thomson effect in Pout and exergy efficiency of an ATEG is studied. - Abstract: The exoreversible thermodynamic model of an annular thermoelectric generator (ATEG) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum power output and maximum energy, exergy efficiency conditions, and dimensionless irreversibilities in the ATEG are derived. The modified expression for figure of merit of a thermoelectric generator considering the Thomson effect has also been obtained. The results show that the power output, energy and exergy efficiency of the ATEG is lower than the flat plate thermoelectric generator. The effects of annular shape parameter (Sr = r2/r1), load resistance (RL), dimensionless temperature ratio (θ = Th/Tc) and the thermal and electrical contact resistances in power output, energy/exergy efficiency of the ATEG have been studied. It has also been proved that because of the influence of Thomson effect, the power output and energy/exergy efficiency of the ATEG is reduced. This study will help in the designing of the actual annular thermoelectric generation systems

  11. Existence, uniqueness and multiplicity of rotating fluxon waves in annular Josephson junctions

    OpenAIRE

    Katriel, Guy

    2007-01-01

    We prove that the equation modelling an annular Josephson junction has a rotating fluxon wave solution for all values of the parameters. We also obtain results on uniqueness of the rotating fluxon wave in some parameter regimes, and on multiplicity of rotating fluxon waves in other parameter regimes.

  12. Surgical treatment of annular pancreas in adults: a report of two cases

    Institute of Scientific and Technical Information of China (English)

    ZHENG He-ming; CAI Xiu-jun; SHEN Lai-gen; Robert Finley

    2007-01-01

    @@ A nnular pancreas is a congenital anomaly which consists of a ring of pancreatic tissue partially or completely encircling the descending portion of theduodenum. It was first described by Tiedemann1 in 1818 and named "annular pancreas" by Ecker2,3 in 1862.

  13. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  14. Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions.

    Science.gov (United States)

    Jaroszewicz, Z; Sochacki, J; Kolodziejczyk, A; Staronski, L R

    1993-11-15

    We show that the apodized annular-aperture logarithmic axicon preserves excellent uniformity of the on-axis intensity, energy flow, and lateral resolution. Numerical evaluation of the Fresnel diffraction integral leads to results very close to geometrical-optics predictions. Once again the geometrical law of energy conservation turns out to be a useful tool in designing axicons. PMID:19829438

  15. The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump

    Directory of Open Access Journals (Sweden)

    Bergoug Nassima

    2012-01-01

    Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.

  16. The effects of annular flow on dynamics of AP1000 reactor coolant pump rotor

    International Nuclear Information System (INIS)

    The feature of AP1000 RCP rotor system is that the whole rotor system is immersed in the annular flow. The rotor in annular flow induces fluctuating fluid forces, thereby causes vibration and noise, even rotor instability. The effects of annular flow on AP1000 RCP rotor system are different from that in bearings and seals and should be considered in a new approach. Based on the turbulent bulk flow theory and perturbation analysis, the rotor-flow coupled linear dynamic model is developed to predict the dynamics of AP1000 RCP immersed rotor. During the analysis, the rotor eccentricity, stator and rotor wall friction effects are emphasized. The analytic results show the rotor eccentricity induces divergence instability and significant decrease of instability speed for system with moderate or large eccentricity; however, stator and rotor wall friction effects distinctly suppress divergence instability and increase instability speed for system with small or moderate eccentricity. Finally, we can have the conclusion that the flow-structure interaction induced by annular flow has great effects on the dynamics of AP1000 RCP immersed rotor, which should be considered in rotor dynamic analysis and design of AP1000 RCP. The method and results in the paper have theoretical significance and practical importance. (author)

  17. Fabrication of Mn-Al doped UO{sub 2} Annular Pellet with High Thermal Stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Rhee, Young Woo; Yang, Jae Ho; Oh, Jang Soo; Kim, Jong Hun; Nam, Ik Hui; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    For a higher burnup and extended cycle, one of the innovative nuclear fuel concepts being developed has a new fuel geometry design that is of an annular sintered pellet, inner and outer cladding, and a dual cooling system which is cooled by both an internal and external coolant (dual cooled fuel). The advantages of dual cooled fuel are considerably lower surface heat flux and lower fuel temperature than those of solid fuel. While the lower heat flux gives a higher DNB (Departure from Nucleate Boiling) margin for the same power rate, the lower temperature reduces the stored energy of the fuel and cladding peak temperature. The dual cooled fuel has promising potential to increase both the reactor economy and safety. In the development of a nuclear fuel pellet, the improvement of fuel performance to reduce the FGR (Fission Gas Release) and increase the resistance to the PCI (Pellet Cladding Interaction) is a technical challenge. As in the annular fuel pellet, the in-reactor performance of dual cooled fuel can be definitely enhanced by an improvement in PCI and FGR. In the development of the dual cooled fuel concept, a 'heat split' behavior of the fuel is one of the issues that must be significantly considered. The heat split is a phenomenon with an unbalanced distribution of heat flux between inner and outer coolant-direction. In the densification of the annular pellet, inner gap of fuel will be changed narrower than outer gap of fuel. And then, the thermal resistance of inner gap will decrease lower than that of outer gap. Finally, the heat flux of inner coolant-direction will rise higher, and the temperature of inner coolant and cladding will increase. Therefore, if an annular sintered pellet with a higher thermal stability can be fabricated, the dual cooled fuel performance in the reactor can be remarkably improved. That is to say, the annular pellet with a minimized dimensional change by densification needed. In this study, an annular sintered pellet

  18. Poverty Reduction

    OpenAIRE

    Ortiz, Isabel

    2007-01-01

    The paper reviews poverty trends and measurements, poverty reduction in historical perspective, the poverty-inequality-growth debate, national poverty reduction strategies, criticisms of the agenda and the need for redistribution, international policies for poverty reduction, and ultimately understanding poverty at a global scale. It belongs to a series of backgrounders developed at Joseph Stiglitz's Initiative for Policy Dialogue.

  19. Behaviour of steel pipe exposed to fouling by heavy oil during core-annular flow; Comportamento de tubo de aco exposto a sujeira de oleo pesado durante escoamento nucleo-anular

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Adriana; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2004-07-01

    The use of water-assisted technologies such as core-annular flow to the pipelines of viscous oils has been proposed as an attractive alternative for production and transportation of heavy crudes in both onshore and offshore scenarios. Usually, core-annular flow can be created by injecting a relatively small water flow rate laterally in the pipe, so as to form a thin water annulus surrounding the viscous oil, which is pumped through the center. The reduction in friction losses obtained thanks to lubrication by water is significant, since the pressure drop in a steady state core flow becomes comparable to water flow only. For a complete assessment of core flow technology, however, unwanted effects associated with possible oil adhesion onto the pipe wall should be investigated, since these may cause severe fouling of the wall and pressure drop increase. It has been observed that oil adhesion on metallic surfaces may occur for certain types of crude and oilphilic pipe materials. In this work we present results of pressure drop monitoring during 35 hour-operation of a heavy oil-water core annular flow in a 26.08 mm. i.d. horizontal steel pipe. The oil used is described in terms of its main components and the results of static wet ability tests are also presented for comparison (author)

  20. Determination of the velocity

    OpenAIRE

    Kopp, Robert William

    1989-01-01

    Hypervelocity flows for velocities is excess of 1.4 km/sec (Mach 5) require very high stagnation temperature to avoid liquefaction. The arc heater wind tunnel has been designed to provide such flows. The electric-are driven wind tunnel can develop stagnation temperatures up to 13,000 K which will produce hypervelocity flows up to 7 km/sec (earth orbital speed). The nature of the flow, however, is such that the high temperature source flow may cause severe gradients at the nozzle exit. In orde...

  1. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  2. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  3. Simulations of the thermo-hydro-mechanical behaviour of an annular reinforced concrete structure heated up to 200 C

    International Nuclear Information System (INIS)

    We analyze in this study the numerical thermo-hydro-mechanical response of an annular reinforced concrete structure called MAQBETH subjected to a thermal loading up to 200 degrees C during more than 250 h. This mock-up is typical of concrete structures in nuclear waste storage conditions under accidental situations. The simulations are performed with a simplified coupled model based on the mechanics of partially saturated porous media, which was previously developed. As a main contribution of this paper, we explicitly take into account the temperature effects in the water retention curves, via the introduction of the isosteric heat of sorption. These effects result in a significant reduction of the saturation degree at any given relative humidity for increasing temperatures. The numerical results of the MAQBETH simulation are then compared with experimental ones in terms of profiles of temperature, relative humidity, gas pressures and strains in the median plan at different times. This comparison shows a reasonable agreement. The effects of the temperature-dependent sorption curves are further analyzed through additional simulations carried out with a constant sorption curve. Large differences in the relative humidity and saturation degree profiles, and to a lesser extent in the gas pressure profiles, are observed between the two cases. (authors)

  4. 单、双环腔燃烧室燃烧性能的对比%Combustion Captibility Comparison of Single Annular Combustor and Dual Annular Combustor

    Institute of Scientific and Technical Information of China (English)

    李锋; 程明; 李龙贤; 彭浪青; 尚守堂

    2011-01-01

    In order to change a Single Annular Combustor(SAC) into a Dual Annular Combustor(DAC), the authors kept the diffuser,outer case and atomize of the SAC unchanged,redesigned the combustor from a single annular structure into a dual annular structure,and designed six different structure DAC. Taking the same physical models(including the turbulence, radiation, spray and emission models), simulations of three dimensional two-phase reacting turbulent flow in both the SAC and DAC were developed in the Fluent Code. The total-pressure recovery coefficient, temperature distribution and exhaust emission levels were given. Finally,by comparing the simulation results,the feasibility of displacing the SAC into DAC structure was certified.%保持单环腔主燃烧室的扩压器,外机匣最大直径尺寸以及喷口不变的前提下,将其火焰筒结构重新设计为并联式双环腔结构,设计了6种不同旋流器组合的双环腔结构燃烧室.采用相同的物理模型(包括湍流模型、辐射模型、喷雾模型及污染排放模型等),对单、双环腔主燃烧室分别进行全流程的三维计算.给出了燃烧室的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放指标等燃烧室性能参数.对比分析了单、双环腔燃烧室的计算结果.结果表明,双环腔燃烧室置换单环腔燃烧室是可行的,该研究可为大飞机低污染大法动机的设计提供技术支持.

  5. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    virtually impossible to compensate for the factor and obtain correct velocity estimates for either CFM or spectral velocity estimation. This talk will describe methods for finding the correct velocity by estimating both the axial and lateral component of the velocity vector. The transverse oscillation...... method introduces an ultrasound field that oscillation not only along the ultrasound beam both also transverse to it to estimate both the lateral and axial velocity for the full velocity vector. The correct velocity magnitude can be found from this as well as the instantaneous angle. This can be obtained...... over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...

  6. Recession velocities greater than light

    International Nuclear Information System (INIS)

    It is shown that, for the most commonly discussed models of general relativistic cosmology, distant objects whose velocity of recession exceeds the velocity of light can be observed. Since these are not kinematic velocities there is no violation of the light principle of relativity which can be taken to be:- (1) the velocity of light is a universal constant and (2) a beam of light cannot be overtaken by any material object nor by another light beam. (UK)

  7. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.;

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  8. Flow characteristics of sweepout and entrainment in the annular downcomer

    International Nuclear Information System (INIS)

    Sweepout from the water surface by gas (vapor or air) flow plays an important role in analyzing the mass and momentum transfer in the reactor downcomer of multidimensional geometry during a loss-of-coolant accident (LOCA) by decreasing the water level in the downcomer. The core water level will tend to decrease rapidly if a considerable amount of the entrained water stream and droplets bypasses through the break. The amount of entrained water is mostly determined by the interacting gas flow rate, the geometric condition, and the interfacial area between the gas and the water. The sweepout is observed to take place in three regions: the beginning of oscillation, the full wave and the wave peak (droplet separation). The beginning of oscillation normally occurs by the Helmholtz instability, which is defined in terms of the difference between the gas and the liquid velocities. The horizontal water surface is waved greatly before the gas flow reaches the critical point of droplet detachment. In the full-wave region, the droplets from the rough wave are swept into the gas flow and driven to the break. The water stream and droplets near the wave-peak region bypass through the break at extremely high velocities. In view of these observations we investigated the relation between the gas flow rate and the amount of bypass as a function of time. The test facility was constructed in a 1/10 linear scale-down model from the APR1400 (Advanced Power Reactor 1400MWe), which has four DVI (Direct Vessel Injection) lines, four cold legs, and two hot legs. The air was injected through the three intact cold legs and bypassed through the broken cold leg. The sweepout was visualized by using the acrylic test vessel. When the water level was located at the bottom of the break nozzle, the amount of bypass increased at the high Reynolds number of the gas. In the test the downcomer water level rapidly decreased for the initial one minute. Then, given the Reynolds number of the gas, the

  9. A study on evaluation of pebble flow velocity with modification of the kinematic model for pebble bed reactor

    International Nuclear Information System (INIS)

    Highlights: ► A modified kinematic method is proposed for analysis of pebble flow velocity. ► Experiments are performed to derive the coefficients and to verify the results. ► The method and result can be used for the advanced analysis of pebble bed reactor. - Abstract: A pebble bed reactor is filled by a large number of pebbles, which are randomly piled up in the core region. During the process of fuel loading and extraction, the pebbles flow downward through the core. The basic physics of the dense granular flow such as pebble flow is not fully understood; hence, the dynamic core of the pebble bed reactor has been a subject of concern among designers and regulators. The kinematic model is one of the representative models for the reconstruction of the granular flow velocity, however, it is noted that there are some limitations in the reconstruction ability. In this study, a modified kinematic model was proposed to enhance the reconstruction ability of the pebble velocity profile. Pebble flow experiments were performed to derive the coefficients needed for the modified kinematic model and to verify the reconstruction ability and the applicability of the proposed method in the annular core. The modified kinematic model can contribute to accurate velocity evaluation as well as large applicability for the specific core types such as an annular core. Also, the results can be used for reference data in the design of a pebble bed reactor

  10. Perforating Granuloma Annulare — An Unusual Subtype of a Common Disease

    Directory of Open Access Journals (Sweden)

    João Alves

    2014-09-01

    Full Text Available Perforating granuloma annulare (GA is a rare subset of GA with an unknown etiology and chronic course. Herein, we report the case of 72 year-old women with a 3-month history of a post-traumatic, persistent, erythematous and exudative plaque located on her left leg. Differential diagnosis included mycobacterial infection, subcutaneous mycosis, perforating dermatoses, pyoderma and squamous cell carcinoma. The histopathology was highly suggestive of a perforating GA. The patient was treated with betamethasone dipropionate cream applied once daily and a complete resolution of the lesion was observed in three weeks. Despite being a very rare subtype of a common disease, perforating granuloma annulare has clinical and histopathological characteristic features that facilitate the differential diagnosis, avoiding unnecessary procedures and inadequate and potentially more invasive treatments.

  11. The quantum spectral analysis of the two-dimensional annular billiard system

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Hui; Zhang Ji-Ouan; Xu Xue-You; Lin Sheng-Lu

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimeusional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.

  12. AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES

    Institute of Scientific and Technical Information of China (English)

    Guojun Nie; Zheng Zhong

    2007-01-01

    Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.

  13. Irradiation Test Plan of the Dual Cooled UO{sub 2} Annular Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Geon; Kim, Dae Ho; Chun, Tae Hyun; Kim, Keon Sik; Kim, Hyung Kyu; In, Wang Ki; Yang, Yong Sik; Song, Kun Woo; Chae, Hee Taek; Seo, Chul Gyo

    2008-09-15

    In order to study the behavior of the UO{sub 2} annular pellet developed by the high performance fuel technology development project, irradiation test will be carried out in HANARO research reactor for 5 cycles up to the burnup 12 MWD/kgU. After irradiation test in HANARO, the test fuel rod will be transferred to the hot cell and examined to verify the in-pile behavior. For the irradiation test, new irradiation test rig was designed and manufactured. The out-pile verification test and safety evaluation were performed and the results showed that the test rig and test rod will maintain the integrity and satisfy all the safety requirements during irradiation test. Therefore, it is expected that UO{sub 2} annular fuel can be irradiated safely in HANARO.

  14. Annular core for modular high temperature gas-cooled reactor (MHTGR)

    International Nuclear Information System (INIS)

    The active core of the 350 MW(t) MHTGR is annular in configuration, shaped to provide a large external surface-to-volume ratio for the transport of heat radially to the reactor vessel in case of a loss of coolant flow. For a given fuel temperature limit, the annular core provides approximately 40 % greater power output over a typical cylindrical configuration. The reactor core is made up of columns of hexagonal blocks, each 793-mm high and 360-mm wide. The active core is 3.5 m in o.d., 1.65 m in i.d., and 7.93 m tall. Fuel elements contain TRISO-coated microspheres of 19.8 % enriched uranium oxycarbide and of fertile thorium oxide. The core is controlled by 30 control rods which enter the inner and outer side reflectors from above. (author)

  15. Developments in fabrication of annular MOX fuel pellet for Indian fast reactor

    International Nuclear Information System (INIS)

    Mechanical rotary presses along with adoption of core rod feature were inducted for fabrication of intricate annular Mixed Oxide (MOX) pellets for Prototype Fast Breeder Reactor (PFBR). In the existing tooling, bottom plungers contain core rod whereas top plungers contain a central hole for the entry of core rod during compaction. Frequent manual clean up of top plungers after few operations were required due to settling of powder in the annular hole of top plungers during compaction. Delay in cleaning can also result in breakage of tooling apart from increase in the dose to extremities of personnel. New design of tooling has been introduced to clean up the top plungers online during the operation of rotary press. It leads to increase in the productivity, reduces the spillage of valuable nuclear material and also reduces man-rem to operators significantly. The present paper describes the modification in tooling design and compaction sequence established for online cleaning of top plungers. (author)

  16. Annular Pancreas in Adults: A Report of Two Cases and Review of Literature

    Directory of Open Access Journals (Sweden)

    Ajaz Ahmed Wani

    2013-05-01

    Full Text Available Context Annular pancreas is one of the rare congenital anomalies that can manifest itself in adulthood also. No specific guidelines and protocols exist about management of such cases. We hereby discuss our experience with two such cases along with a brief review of literature about the subject. Case reports The first patient was a male aged 27 years and presented with features of duodenal obstruction. He underwent duodenoduodenostomy . The second patient, a male aged 32 years, also presented with features of gastric outlet obstruction. He underwent Billroth type 2 reconstruction. Both patients had an uneventful recovery. Conclusion Annular pancreas in adults is a rare clinical scenario. Advancements in imaging modalities have brought to forefront an even larger number of such cases. In adults it is diagnosed mainly because of the complications that arise thereof. Gastroduodenal tuberculosis can be an important differential diagnosis in endemic areas. Treatment and operative protocols have to be individualized.

  17. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, P.M., E-mail: pmdighe@barc.gov.in; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10{sup 4} neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  18. Combined evaporating meniscus-driven convection and radiation in annular microchannels for electronics cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P.; Mahulikar, S.P. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Production Engineering

    2000-03-01

    Surface radiation interchange in an annular enclosure is numerically modeled together with evaporating meniscus-driven convection, for investigating the application of the concept for cooling in microelectronic devices. The geometry is axially discretised into ring elements, where the wall and fluid temperatures within each element are unknowns. The governing algebraic energy equations for convection and surface radiation for each element are formulated for steady-state operating conditions for heat generating cylinders. These equations are then solved simultaneously for all the elements, together with the integral form of the momentum equation, which equates the driving force due to the meniscus curvature to the weight of the coolant and the frictional resistance, and solely dictates the coolant rise length in the microchannel. The results reveal the coupling of fluid flow and heat transfer in the annular microchannel, and the relative importance of radiation. (author)

  19. Experimental research on dryout point of flow boiling in narrow annular channels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0~4.0 MPa and that of mass flux is 26.0~69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.

  20. A Numerical and an Experimental Study for Optimization of a Small Annular Combustor

    Science.gov (United States)

    Iki, Norihiko; Gruber, Andrea; Yoshida, Hiro

    The small annular combustor of a micro gas turbine fueled with methane is investigated experimentally and numerically in order to improve the overall efficiency of the small engine. The CFD analysis of the tiny combustor relies on a low Reynolds number turbulence model coupled to the Eddy Dissipation Concept (EDC) and provides important insight about the turbulent flow pattern, flame shape, position and optimal flame anchoring. For the experimental observation, a model combustor, representing 120 degrees of the original annular combustor, is fabricated, which enables us to visualize internal flow. The burning area in the combustion chamber moves to downstream with increase of air flow rate. At full-load, some fuel remains at the combustion chamber exit. Moreover, temperatures are measured and compared with the numerical simulations. The results shown here will form the basis for future optimization of the micro gas turbine with minimal or no increase in combustor pressure loss.

  1. Dual annular rotating open-quotes windowedclose quotes nuclear reflector reactor control system

    International Nuclear Information System (INIS)

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures

  2. Thermo economic life cycle cost optimization of an annular fin heat exchanger

    International Nuclear Information System (INIS)

    In this paper the design of annular fin heat exchanger based on economic optimization has been carried out. The optimization process targeted minimizing the life cycle cost of annular fin heat exchanger that has the same frontal area, effectiveness and heat load of available practical standard geometry exchangers. The life cycle cost includes both capital and operating costs. Beside the pumping cost, both the cost of energy destruction due to irreversibilities and 10% inflation rate are included in the operating cost. The optimization process is implemented using Evolutionary Algorithm (EA). Evolutionary Algorithm is a numerical technique which is initiated by randomly generating a set of possible solutions: The optimized design has shown a significant decrease in the life cycle cost as compared with that of standard geometry that has minimum life cycle cost. Based on the optimized design relations for Col burn and friction factors are developed. (author)

  3. Collective motion of symmetric camphor papers in an annular water channel

    Science.gov (United States)

    Ikura, Yumihiko S.; Heisler, Eric; Awazu, Akinori; Nishimori, Hiraku; Nakata, Satoshi

    2013-07-01

    We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects. The two modes are characterized by examining the local and global dynamics, and the collective motion mechanism is discussed in relation to the distribution of camphor concentration in the annular water channel. We conclude that the difference between these two modes originates from that of the driving mechanism that pushes a camphor paper away from a cluster, through which mechanism density waves are generated and maintained.

  4. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1989-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  5. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates

    Directory of Open Access Journals (Sweden)

    Hakimeh Zali

    2016-05-01

    Full Text Available The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced composites. Convergence of the Chebyshev–Ritz method was also checked. Numerical results are given and compared with the available literature and finite element method (FEM analysis. Results obtained from the other well-known theories (such as: Micro-Mechanical, Halpin, etc. are compared with the new form of the rule of mixtures results. Furthermore, the effects of CNT type, structures, diameter, shape factor, density, and volume fraction on the vibration behavior of the annular plates are graphically presented.

  6. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole;

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for...... minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz(-1....../2) cm(-1) are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is...

  7. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  8. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    Science.gov (United States)

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-12-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens-Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly.

  9. Charged annular disks and Reissner-Nordstroem type black holes from extremal dust

    International Nuclear Information System (INIS)

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  10. Charged Annular Disks and Reissner-Nordstro ?m Type Black Holes from Extremal Dust

    CERN Document Server

    Lora-Clavijo, F D; Pedraza, J F

    2010-01-01

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disk-like configurations of matter in confomastatic spacetimes by assuming a functional dependence between the metric function, the electric potential and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin Inversion Method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstr\\"om black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  11. The effect of inlet swirl on the dynamics of long annular seals in centrifugal pumps

    Science.gov (United States)

    Ismail, M.; Brown, R. D.; France, D.

    1994-01-01

    This paper describes additional results from a continuing research program which aims to identify the dynamics of long annular seals in centrifugal pumps. A seal test rig designed at Heriot-Watt University and commissioned at Weir Pumps Research Laboratory in Alloa permits the identification of mass, stiffness, and damping coefficients using a least-squares technique based on the singular value decomposition method. The analysis is carried out in the time domain using a multi-fiequency forcing function. The experimental method relies on the forced excitation of a flexibly supported stator by two hydraulic shakers. Running through the stator embodying two symmetrical balance drum seals is a rigid rotor supported in rolling element bearings. The only physical connection between shaft and stator is the pair of annular gaps filled with pressurized water discharged axially. The experimental coefficients obtained from the tests are compared with theoretical values.

  12. Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement

    Science.gov (United States)

    Florjancic, S.; Stuerchler, R.; Mccloskey, T.

    1991-01-01

    Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.

  13. Numerical simulation of the transient temperature field from an annular focused ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Li, Faqi; Feng, Ruo; Xu, Jianyi; Bai, Jin; Wang, Zhibiao; Wang, Yaojun

    2003-04-01

    Knowledge of the extent of the "heated necrosis element" from a single exposure in target tissue created by an ultrasonic beam is critical for the application of focal ultrasound (US) surgery (FUS). This study uses the O'Nell and Pennes formulas to simulate the heated necrosis element from an annular focused transducer and to examine its dependence on exposure dosage, as well as some design parameters of the transducer. Several conclusions may be drawn from our numerical results: 1. With increasing exposure, the heated necrosis element increases, but its contour becomes plumper and the influence of sound intensity I is found to be greater than that of the exposure time t. 2. To get a similar heated necrosis element, the exposure approximately satisfies a relation: It(0. 4 3)=constant. 3. Increasing the US frequency or the outer-radius of the annular transducer leads to a decrease in the heated necrosis volume. PMID:12749928

  14. The Springtime North Asia Cyclone Activity Index and the Southern Annular Mode

    Institute of Scientific and Technical Information of China (English)

    YUE Xu; WANG Huijun

    2008-01-01

    The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.

  15. Entrainment rate of droplets in the ripple-annular regime for small vertical tubes

    International Nuclear Information System (INIS)

    Two-fluid model predictions of film dryout in annular flow are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate effects experimental data in the range of the operating conditions in nuclear power reactors. Air/water and Freon-113 entrainment rate data have been obtained in 10 mm tubes using the film extraction technique. These experiments have been scaled to approach high pressure steam-water flow conditions. The effects of surface tension and density ratio, missing from most previous data sets, have been systematically tested. The entrainment rate mechanism is assumed to be a Kelvin-Helmholtz instability. Based on this analysis and two previous correlations, a new correlation is proposed that is valid for low viscosity fluids in small ducts in the ripple annular regime

  16. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    Science.gov (United States)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  17. An usual elastophagocytic granuloma with involvement of the back: a possible variant of an annular elastolytic giant cell granuloma

    OpenAIRE

    Valdeolivas-Casillas, Nuria; Pulgar, Fernando; Dolores Velez, Maria; Polo-Rodriguez, Isabel; Quesada-Cortes, Alicia; Guirado-Koch, Cristina

    2015-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a very infrequent granulomatous dermatitis characterized by elastolysis and elastophagocytosis. It usually appears in middle-aged Caucasian women and is normally located in sun-exposed areas. We present a case of a 73-year-old woman with hypertension and type II diabetes, who was admitted to the hospital for an ischemic cerebrovascular accident. She presented with annular and serpiginous skin lesions on her back and arms that had ap...

  18. An Annular Plate Model in Arbitrary-Lagrangian-Eulerian Description for the DLR FlexibleBodies Library

    OpenAIRE

    Heckmann, Andreas; Hartweg, Stefan; Kaiser, Ingo

    2011-01-01

    The bending deformation of rotating annular plates and the associated vibration behaviour is important in engineering applications which range from automotive or railway brake systems to discs that form essential components in turbomachinery. In order to extend the capabilities of the DLR FlexibleBodies library for such use cases, a new Modelica class has been implemented which is based on the analytical description of an annular Kirchhoff plate. In addition the so-called Arbitray Langra...

  19. Use of Annular Closure Device (Barricaid®) for Preventing Lumbar Disc Reherniation: One-Year Results of Three Cases

    OpenAIRE

    Hahn, Bang Sang; Ji, Gyu Yeul; Moon, Bongju; Shin, Dong Ah; Ha, Yoon; Kim, Keung Nyun; Yoon, Do Heum

    2014-01-01

    Although lumbar discectomy is an effective treatment for lumbar disc herniation, complications exist, including postoperative disc height loss, facet joint degeneration, and recurrent disc herniation. To solve these problems, annular closure devices have been utilized in other countries, producing satisfactory results, but there has been no report of annular closure device use in our country. Here, we demonstrate the preliminary reports of Barricaid® insertion in 3 patients who underwent surg...

  20. Slug-annular transition with particular reference to narrow rectangular ducts

    International Nuclear Information System (INIS)

    The transition from slug-flow to annular-flow in two-phase, gas-liquid mixtures is analyzed. A transition equation is derived which agrees well when compared with objective data determined from the disappearance of the low-void peak in the void fluctuation probability density in a rectangular duct. Application to other geometries is suggested and tabular recommendations given for determination of the drift flux coefficient, K, based on results in the literature

  1. Severe mitral annular calcification in rheumatic heart disease: A rare presentation

    OpenAIRE

    Vijayvergiya, Rajesh; Vaiphei, Kim; Rana, Sandeep S

    2012-01-01

    Severe mitral annular calcification (MAC) is frequently seen in patients with advanced age and chronic kidney disease, but it is rare in rheumatic heart disease (RHD). We hereby report a case of 45-year-old female with chronic RHD, who had severe MAC and mitral regurgitation. Fluoroscopy revealed a “crown”-like severe calcification of the mitral annulus. Autopsy of the heart revealed a calcified posterior mitral annulus, fused commissures, and calcified nodules at the atrial aspect of the mit...

  2. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    OpenAIRE

    Yan Teng; Jun Sun; Changhua Chen; Hao Shao

    2013-01-01

    This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inn...

  3. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    Science.gov (United States)

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers. PMID:25639937

  4. Liquid Encapsulation in Parylene Microstructures Using Integrated Annular-Plate Stiction Valves

    OpenAIRE

    Gutierrez, Christian A.; Ellis Meng

    2011-01-01

    We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume throug...

  5. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach

    International Nuclear Information System (INIS)

    Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate

  6. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin;

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systolic...... heart failure as a substudy of the REsyncronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) trial....

  7. Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

    OpenAIRE

    Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent Y.M.; Müller, Jens-Dominik; Poinsot, Thierry

    2012-01-01

    International audience The objectives of this paper are the description of azimuthal instability modes found in annular combus- tion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solv- ers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-excited oscillation at the frequency of the first azimuthal eigenmode. The...

  8. Stability of forced-convection subcooled boiling in steady-state and transient annular flow

    International Nuclear Information System (INIS)

    A semi-analytical model developed by Lee and Bankoff for OFI in round tubes is extended to annular or parallel-plate flows with unequal heat fluxes, and shown to compare well with data by Dougherty, et al. and by Whittle and Forgan. The model is a better fit in the high Peclet number range than the Saha-Zuber model, and is simple to use

  9. Modification of transparent materials by tightly focused annular, radially and azimuthally polarized ultrafast laser beams

    OpenAIRE

    Zhang, J.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Gecevičius, M.; Beresna, M.; Kazansky, P. G.

    2013-01-01

    Recently, strong longitudinal electric fields have raised great interest in the laser fabrication, microscopy and optical data storage [1]. Here we demonstrate high quality cylindrically polarized annular beam produced by ultrafast laser written spatially variant polarization converter. We observed that nanogratings cannot be formed by strong longitudinal electric fields, created by a ring-shaped radially polarized beam. In addition, the stronger transverse electric field of azimuthal polariz...

  10. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates

    OpenAIRE

    Hakimeh Zali; Fatemeh Yazdian; Meisam Omidi

    2016-01-01

    The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT) reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced compo...

  11. Passive control of annular jet instabilities studied by Proper Orthogonal Decomposition

    OpenAIRE

    Danlos, Amélie; Rouland, Eric; PARANTHOEN, Pierre; PATTE-ROULAND, Béatrice

    2009-01-01

    Shear flows are complex turbulent flows which are widely used in the industrial domain. An annular jet is an example of these particular flows (used in burners, cooling processes, inlet valve in a combustion chamber, processing glass fibers...): an obstacle for the flow, placed in the center of a round nozzle creates two axisymmetric shear layers at the jet exit. These shear layers are significant for the organization and the evolution of the flow. This study talks about coherent structures d...

  12. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

    OpenAIRE

    Bauerheim, Michaël; Nicoud, Franck; Poinsot, Thierry

    2016-01-01

    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10–20 burners mounted in the ...

  13. Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers

    OpenAIRE

    Wolf, Pierre; Balakrishnan, Ramesh; Staffelbach, Gabriel; Gicquel, Laurent Y.M.; Poinsot, Thierry

    2012-01-01

    Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently a...

  14. Duodenal diverticulum associated with annular pancreas: a rare cause of severe cholangitis.

    Science.gov (United States)

    Ben Ameur, H; Boujelbene, S; Affes, N; Ghorbel, A; Beyrouti, M I

    2011-06-01

    Duodenal diverticulum is a common occurrence but most are asymptomatic. However, in some cases, they can cause mechanical biliary compression. We report the case of a duodenal diverticulum in a 64-year-old woman revealed by severe cholangitis with septic shock and a liver abscess. Associated annular pancreas was found. We discuss the various investigations to diagnose these two entities as well as the therapeutic strategy in this unique combination of disease. PMID:21715238

  15. Annular bone growth in phalanges of five Neotropical Harlequin Frogs (Anura: Bufonidae: Atelopus)

    OpenAIRE

    Erik Lindquist; Michael Redmer; Emily Brantner

    2012-01-01

    Skeletochronological studies were conducted on museum specimensrepresenting five species of the highly threatened Neotropical genus Atelopus (Bufonidae). We detected annular bone growth (expressed as lines of arrested growth [LAGs]) patterns in each species, and this might provide insight to understand demographic constituency infuture studies. In four of the five species under consideration, LAG counts in fore and hind limb bone occurred in a 1:1 ratio, indicating that bone growth was consis...

  16. The thermophysical properties of gases determined using an annular acoustic resonator

    OpenAIRE

    Buxton, A. J.

    1997-01-01

    A novel annular acoustic resonator was constructed for measurements of the speed of sound in gases at pressures below 1 MPa. The resonator was designed to allow measurements of the speed and absorption of sound at low pressure in gases with large bulk viscosities. Measurements in propene, for which the speed of sound is known, served to characterise the geometry of the resonator and provide a test of the acoustic model for the system. A detailed description of the resonator whi...

  17. Heat transfer coefficient for flow boiling in an annular mini gap

    OpenAIRE

    Hożejowska Sylwia; Musiał Tomasz; Piasecka Magdalena

    2016-01-01

    The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the numbe...

  18. Effect of the Radial Pressure Gradient on the Secondary Flow Generated in an Annular Turbine Cascade

    OpenAIRE

    Hesham M. El-Batsh

    2012-01-01

    This paper introduces an investigation of the effect of radial pressure gradient on the secondary flow generated in turbine cascades. Laboratory measurements were performed using an annular sector cascade which allowed the investigation using relatively small number of blades. The flow was measured upstream and downstream of the cascade using a calibrated five-hole pressure probe. The three-dimensional Reynolds Averaged Navier Stokes equations were solved to understand flow physics. Turbulenc...

  19. Stability of forced-convection subcooled boiling in steady-state and transient annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, V.; Bankoff, S.G. [SGB Associates, Evanston, IL (United States)

    1993-06-01

    A semi-analytical model developed by Lee and Bankoff for OFI in round tubes is extended to annular or parallel-plate flows with unequal heat fluxes, and shown to compare well with data by Dougherty, et al. and by Whittle and Forgan. The model is a better fit in the high Peclet number range than the Saha-Zuber model, and is simple to use.

  20. Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases

    OpenAIRE

    Morgenstern, Olaf; ZENG Guang; Dean, Sam M.; Joshi, Manoj; Abraham, N. Luke; Osprey, Annette

    2014-01-01

    We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the dire...