WorldWideScience

Sample records for annular superposition integral

  1. On superpositional filtrations

    OpenAIRE

    Strati, Francesco

    2012-01-01

    In this present work I shall define the basic notions of superpositional filtrations. Given a superposition integral I shall find a general measure theory by means of cylinder sets and then I shall define the properties of the s-filtration for a general process X.

  2. Liquid Encapsulation in Parylene Microstructures Using Integrated Annular-Plate Stiction Valves

    OpenAIRE

    Gutierrez, Christian A.; Ellis Meng

    2011-01-01

    We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume throug...

  3. Quantifying Superposition

    OpenAIRE

    Aberg, Johan

    2006-01-01

    Measures are introduced to quantify the degree of superposition in mixed states with respect to orthogonal decompositions of the Hilbert space of a quantum system. These superposition measures can be regarded as analogues to entanglement measures, but can also be put in a more direct relation to the latter. By a second quantization of the system it is possible to induce superposition measures from entanglement measures. We consider the measures induced from relative entropy of entanglement an...

  4. Liquid Encapsulation in Parylene Microstructures Using Integrated Annular-Plate Stiction Valves

    Directory of Open Access Journals (Sweden)

    Christian A. Gutierrez

    2011-09-01

    Full Text Available We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume through the use of electrochemical impedance measurements is also presented.

  5. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  6. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    OpenAIRE

    A. R. Gowhari-Anaraki; Djavanroodi, F.; S. Shadlou

    2008-01-01

    The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. Th...

  7. Experimental Investigation on Heat Exchange and Separation Performance of an Annular Structured Internal Heat-integrated Distillation Column☆

    Institute of Scientific and Technical Information of China (English)

    Lianghua Xu; Dawei Chen; Binghai Yan; Xigang Yuan⁎

    2014-01-01

    In this paper heat exchange coefficient and separation efficiency of an annular structured internal heat-integrated distil ation column (HIDiC) were experimental y measured. About 50%heat of the inner column could be transferred to the outer column. The overall heat exchange coefficient decreased with an increase in pressure ratio of the inner column and the outer column, but was little affected by the F-factor. The increase of the pressure ratio decreased obviously the separation efficiency of the outer column but had little effect on that of the inner column.

  8. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    Science.gov (United States)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  9. Internal combustion engine with a central crankshaft and integral tandem annular pistons

    Science.gov (United States)

    Esparbes, Bernard

    1993-08-01

    An internal combustion engine with tandem annular pistons and a central crankshaft is disclosed, based on that found in British patent 11027 of 11 May 1914. The piston block formed by the two pistons presents, at each axial extremity, a double axial skirt fitted with an outer crown forming the head of the piston as such, and an inner crown forming an inlet pump with a holding chamber radially located at the inside of the corresponding annular cylinder, in which the piston head delimits a combustion chamber. Radial fingers, crossing axial openings of the crankcase and radial holes of the piston block, have their inner radial ends engaged within wavy sinusoidal peripheral slots arranged in a bulging central portion of the central crankshaft set into rotation by alternating axial movements of the piston block. The admission of fuel or combustion sustaining gas is ensured axially by the extremities, valves, and openings in the end plates closing the holding chambers in which the inner crowns slide, fitted with valves to act as an inlet pump. The invention is particularly applicable to aircraft engines in view of the ease in which the shaft rotation can be adapted to such a use.

  10. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    Directory of Open Access Journals (Sweden)

    A. R. Gowhari-Anaraki

    2008-01-01

    Full Text Available The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. These parameters are chosen to be representative of typical practical situations and have been determined from evidence presented in the open literature. The extensive range of Q* obtained from the analyses are then used to obtain equivalent prediction equations using a statistical multiple non-linear regression model. The predictive equations for Q*, can also be used easily to calculate the C*-Integral values for extensive range of geometric parameters. The C*-Integral values obtained from predictive equations were also compared with those obtained from reference stress method (RSM. Finally, creep zone growth behavior was studied in the component during transient time.

  11. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  12. Nonlinear dynamics by mode superposition

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1976-01-01

    A mode superposition technique for approximately solving nonlinear initial-boundary-value problems of structural dynamics is discussed, and results for examples involving large deformation are compared to those obtained with implicit direct integration methods such as the Newmark generalized acceleration and Houbolt backward-difference operators. The initial natural frequencies and mode shapes are found by inverse power iteration with the trial vectors for successively higher modes being swept by Gram-Schmidt orthonormalization at each iteration. The subsequent modal spectrum for nonlinear states is based upon the tangent stiffness of the structure and is calculated by a subspace iteration procedure that involves matrix multiplication only, using the most recently computed spectrum as an initial estimate. Then, a precise time integration algorithm that has no artificial damping or phase velocity error for linear problems is applied to the uncoupled modal equations of motion. Squared-frequency extrapolation is examined for nonlinear problems as a means by which these qualities of accuracy and precision can be maintained when the state of the system (and, thus, the modal spectrum) is changing rapidly. The results indicate that a number of important advantages accrue to nonlinear mode superposition: (a) there is no significant difference in total solution time between mode superposition and implicit direct integration analyses for problems having narrow matric half-bandwidth (in fact, as bandwidth increases, mode superposition becomes more economical), (b) solution accuracy is under better control since the analyst has ready access to modal participation factors and the ratios of time step size to modal period, and (c) physical understanding of nonlinear dynamic response is improved since the analyst is able to observe the changes in the modal spectrum as deformation proceeds.

  13. [Granuloma annulare].

    Science.gov (United States)

    Butsch, F; Weidenthaler-Barth, B; von Stebut, E

    2015-11-01

    Granuloma annulare is a benign, chronic inflammatory skin disease. Its pathogenesis is still unclear, but reports on infections as a trigger can be found. In addition, some authors reported an association with other systemic disease, e.g., cancer, trauma, and diabetes mellitus; however, these have not been verified. The clinical picture of granuloma annulare ranges from the localized form predominantly at the extremities to disseminated, subcutaneous, or perforating forms. Diagnosis is based on the typical clinical presentation which may be confirmed by a biopsy. Histologically, necrobiotic areas within granulomatous inflammation are typical. The prognosis of the disease is good with spontaneous resolution being frequently observed, especially in localized forms. Disseminated manifestations tend to persist longer, and recurrences are reported. When choosing between different therapeutic options, the benign disease character versus the individual degree of suffering and the potential therapy side effects must be considered. For local treatment, topical application of corticosteroids is most common. Disseminated forms can be treated systemically with corticosteroids for several weeks; alternatively, dapsone, hydroxychloroquine, retinoids, fumaric acid, cyclosporine, and anti-TNFα appear to be effective. PMID:26487494

  14. Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "DeepTrek"

    Energy Technology Data Exchange (ETDEWEB)

    CSI Technologies

    2007-08-31

    The purpose of this project is to formulate a 'Supercement' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scaleup activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Phase III focused on bringing the material(s) developed in previous Phases to commercialization, through Field Trials, Cost/Benefit Analysis, and Technology Transfer. Extensive development and testing work throughout the project led to Phase III commercialization of two very different materials: (1) Highly-expansive cement (Portland-based), patent pending as 'PRESTRESSED CEMENT'; and (2) Epoxy Resin (non-Portland-based), patent pending. Trade name is Ultra Seal-R. In Phase III, work concentrated on application of the Supercement materials in various increasingly-challenging wells. Previous testing revealed that PRESTRESSED CEMENT, when applied in weak or unconsolidated formations, tends to expand away from the central pipe, restricting the applicability of this material to competent formations. Tests were devised to quantify this effect so the material could be applied in appropriate wells. Additionally, the testing was needed because of industry resistance to expansive cements, due to previous marketing attempts with other materials that were less than successful. Field trials with the Epoxy Resin currently numbers in the hundreds of jobs at up to 295 deg F, with a large percentage being completely successful. Both the PRESTRESSED CEMENT as well

  15. Living in a Superposition

    CERN Document Server

    Hartle, James B

    2015-01-01

    This essay considers a model quantum universe consisting of a very large box containing a screen with two slits and an observer (us) that can pass though the slits. We apply the modern quantum mechanics of closed systems to calculate the probabilities for alternative histories of how we move through the universe and what we see. After passing through the screen with the slits, the quantum state of the universe is a superposition of classically distinguishable histories. We are then living in a superposition. Some frequently asked questions about such situations are answered using this model. The model's relationship to more realistic quantum cosmologies is briefly discussed.

  16. Measuring a coherent superposition

    CERN Document Server

    Vitanov, N V; Unanyan, R G; Bergmann, K

    1999-01-01

    We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

  17. Annular Flow Distribution test

    International Nuclear Information System (INIS)

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  18. Superposition as a logical glue

    Directory of Open Access Journals (Sweden)

    Andrea Asperti

    2011-03-01

    Full Text Available The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.

  19. Superposition as a logical glue

    CERN Document Server

    Asperti, Andrea; 10.4204/EPTCS.53.1

    2011-01-01

    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.

  20. SUPERPOSITION OF POLYTROPES IN THE INNER HELIOSHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Livadiotis, G., E-mail: glivadiotis@swri.edu [Southwest Research Institute, San Antonio, TX (United States)

    2016-03-15

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density–temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log–log scale is now generalized to a concave-downward parabola that is able to describe the observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ∼ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.

  1. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  2. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1994-01-01

    Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  3. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1993-01-01

    Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  4. Teleporting Superpositions of Chiral Amplitudes

    CERN Document Server

    Maierle, C S; Harris, R A; Maierle, Christopher S.; Lidar, Daniel A.; Harris, Robert A.

    1998-01-01

    Chiral molecules may exist in superpositions of left- and right-handed states. We show how the amplitudes of such superpositions may be teleported to the polarization degrees of freedom of a photon. Two experimental schemes are proposed, one leading to perfect, the other to state-dependent teleportation. Both methods yield complete information about the amplitudes. This is the first explicit example of "inter-species" teleportation, where the amplitudes of the quantum superposition of one species are transferred at the end of the process to a different species. The latter is then easily accessible for measurement.

  5. Network class superposition analyses.

    Science.gov (United States)

    Pearson, Carl A B; Zeng, Chen; Simha, Rahul

    2013-01-01

    Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30) for the yeast cell cycle process), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141

  6. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  7. Superposition, Entanglement and Quantum Computation

    OpenAIRE

    Forcer, T.M.; Hey, A. J. G.; Ross, D. A.; P.G.R.Smith

    2002-01-01

    The paper examines the roles played by superposition and entanglement in quantum computing. The analysis is illustrated by discussion of a 'classical' electronic implementation of Grover's quantum search algorithm. It is shown explicitly that the absence of multi-particle entanglement leads to exponentially rising resources for implementing such quantum algorithms.

  8. Generalized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  9. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  10. Superposition Attacks on Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Funder, Jakob Løvstad; Nielsen, Jesper Buus;

    2011-01-01

    Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy some constraint, there is some problem the adversary cannot solve, such as compute a certain piece...... string model. While our protocol is classical, it is sound against a cheating unbounded quantum prover and computational zero-knowledge even if the verifier is allowed a superposition attack. Finally, we consider multiparty computation and show that for the most general type of attack, simulation based...... of information. In this paper, we introduce a fundamentally new model of quantum attacks on classical cryptographic protocols, where the adversary is allowed to ask several classical queries in quantum superposition. This is a strictly stronger attack than the standard one, and we consider the security...

  11. The Paraconsistent Logic of Quantum Superpositions

    Science.gov (United States)

    da Costa, N.; de Ronde, C.

    2013-07-01

    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by `superposition' in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid `contradiction'. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, as a key element of the formal structure of the theory, "right from the start". In order to show the feasibility of our interpretational project we present an outline of a paraconsistent approach to quantum superpositions which attempts to account for the contradictory properties present in general within quantum superpositions. This approach must not be understood as a closed formal and conceptual scheme but rather as a first step towards a different type of understanding regarding quantum superpositions.

  12. Wave Superposition Based Sound Field Reconstruction

    Institute of Scientific and Technical Information of China (English)

    LI Jia-qing; CHEN Jin; YANG Chao

    2008-01-01

    In order to overcome the obstacle of singular integral in boundary element method (BEM), wepresented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Itsprinciple includes three steps: first, the sound pressure field of an arbitrary shaped radiator is measured witha microphone array; then, the exterior sound field of the radiator is computed backward and forward using theWSM; at last, the final results are visualized in terms of sound pressure contours or animations. With thesevisualized contours or animations, noise sources can be easily located and quantified; also noise transmissionpath can be found out. By numerical simulation and experimental results, we proved that the technique aresuitable and accurate for sound field reconstruction. In addition, we presented a sound field reconstruction sys-tem prototype on the basis of this technique. It makes a foundation for the application of wave superpositionin the sound field reconstruction in industry situations.

  13. [Disseminated granuloma annulare].

    Science.gov (United States)

    Kansky, A

    1975-09-01

    A case of generalized granuloma annulare in a 55 year old man is reported. The disease appeared five years before the first admission to the hospital. A large number of bluish-red or skin-colour papules were scattered mainly around the earlobes, buttocks and on the extremities. Some of the lesions were lined up in rings or plaques. Small depigmented and brownish scars were present. Two biopsies revealed characteristic foci of complete collagen degeneration accompanied by a palisading infiltrate in the upper dermis. Treatment with tuberculostatics and antimalarics was without improvement. The lesions cleared after a course of prednison, but reappeared when the drug was discontinued.

  14. Annular recuperator design

    Science.gov (United States)

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  15. Creating a Superposition of Unknown Quantum States.

    Science.gov (United States)

    Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni

    2016-03-18

    The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states. PMID:27035290

  16. Creating a Superposition of Unknown Quantum States

    Science.gov (United States)

    Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni

    2016-03-01

    The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.

  17. Linear superposition solutions to nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition,i.e.,the linear superposition of two or more known solutions is still a solution of the linear wave equation.We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic,triangle,and exponential functions,and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics.The linear superposition solutions to the generalized KdV equation K(2,2,1),the Oliver water wave equation,and the k(n,n) equation are given.The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed,and the reason why the solutions with the forms of hyperbolic,triangle,and exponential functions can form the linear superposition solutions is also discussed.

  18. Macroscopic superpositions as quantum ground states

    OpenAIRE

    Dakić, Borivoje; Radonjić, Milan

    2016-01-01

    We study the question of whether a macroscopic superposition can naturally exist as a ground state of some gapped many-body Hamiltonian. We derive an upper bound on the energy gap of an arbitrary physical Hamiltonian provided that its ground state is a superposition of two macroscopic "semi-classical" states. For a large class of such macroscopic superposition states we show that the gap vanishes in the macroscopic limit. Our main result shows an interesting quantitative relation between the ...

  19. The Paraconsistent Logic of Quantum Superpositions

    OpenAIRE

    Da Costa, Newton; de Ronde, Christian

    2013-01-01

    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by 'superposition' in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid 'contradiction'. We argue in this paper, in favor of the importance of developing a new interpretation of s...

  20. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  1. Engineering mesoscopic superpositions of superfluid flow

    CERN Document Server

    Hallwood, David W

    2011-01-01

    Modeling strongly correlated atoms demonstrates the possibility to prepare quantum superpositions that are robust against experimental imperfections and temperature. Such superpositions of vortex states are formed by adiabatic manipulation of interacting ultracold atoms confined to a one-dimensional ring trapping potential when stirred by a barrier. Here, we discuss the influence of non-ideal experimental procedures and finite temperature. Adiabaticity conditions for changing the stirring rate reveal that superpositions of many atoms are most easily accessed in the strongly-interacting, Tonks-Girardeau, regime, which is also the most robust at finite temperature. NOON-type superpositions of weakly interacting atoms are most easily created by adiabatically decreasing the interaction strength by means of a Feshbach resonance. The quantum dynamics of small numbers of particles is simulated and the size of the superpositions is calculated based on their ability to make precision measurements. Experimental creatio...

  2. Verifying quantum superpositions at metre scales

    CERN Document Server

    Stamper-Kurn, Dan M; Müller, Holger

    2016-01-01

    While the existence of quantum superpositions of massive particles over microscopic separations has been established since the birth of quantum mechanics, the maintenance of superposition states over macroscopic separations is a subject of modern experimental tests. In Ref. [1], T. Kovachy et al. report on applying optical pulses to place a freely falling Bose-Einstein condensate into a superposition of two trajectories that separate by an impressive distance of 54 cm before being redirected toward one another. When the trajectories overlap, a final optical pulse produces interference with high contrast, but with random phase, between the two wave packets. Contrary to claims made in Ref. [1], we argue that the observed interference is consistent with, but does not prove, that the spatially separated atomic ensembles were in a quantum superposition state. Therefore, the persistence of such superposition states remains experimentally unestablished.

  3. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    Science.gov (United States)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  4. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  5. Mixed superposition rules and the Riccati hierarchy

    Science.gov (United States)

    Grabowski, Janusz; de Lucas, Javier

    Mixed superposition rules, i.e., functions describing the general solution of a system of first-order differential equations in terms of a generic family of particular solutions of first-order systems and some constants, are studied. The main achievement is a generalization of the celebrated Lie-Scheffers Theorem, characterizing systems admitting a mixed superposition rule. This somehow unexpected result says that such systems are exactly Lie systems, i.e., they admit a standard superposition rule. This provides a new and powerful tool for finding Lie systems, which is applied here to studying the Riccati hierarchy and to retrieving some known results in a more efficient and simpler way.

  6. Mixed superposition rules and the Riccati hierarchy

    CERN Document Server

    Grabowski, Janusz

    2012-01-01

    Mixed superposition rules, i.e., functions describing the general solution of a system of first-order differential equations in terms of a generic family of particular solutions of first-order systems and some constants, are studied. The main achievement is a generalization of the celebrated Lie-Scheffers Theorem, characterizing systems admitting a mixed superposition rule. This somehow unexpected result says that such systems are exactly Lie systems, i.e., they admit a standard superposition rule. This provides a new and powerful tool for finding Lie systems, which is applied here to studying the Riccati hierarchy and to retrieving some known results in a more efficient and simpler way.

  7. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  8. Robust Mesoscopic Superposition of Ultracold Atoms

    CERN Document Server

    Hallwood, David W; Brand, Joachim

    2010-01-01

    Quantum superpositions of macroscopically distinct states, as in Schroedinger's example of a dead and alive cat, are important for our understanding of quantum mechanics and carry great promise for enhanced precision measurement techniques. Due to their inherent fragility, the maximally entangled "NOON" states engineered in optics and spin systems for ultra-precise spectroscopy have been limited to 10 particles. The related mesoscopic superpositions of flux states consisting of 10^9 Cooper pairs observed in superconducting rings have proven more robust but their microscopic nature is debated. Binary superpositions with multiple ultra-cold atoms have not yet been seen and existing proposals suffer severe limitations due to decoherence and the unfavorable scaling of precision and time scales needed to produce these states. In this paper we show how robust superpositions of mesoscopic flow in a ring trap can be made with strongly-correlated ultra-cold atoms under one-dimensional confinement. We present a microsc...

  9. Equal Superposition Transformations and Quantum Random Walks

    OpenAIRE

    Parashar, Preeti

    2007-01-01

    The largest ensemble of qubits which satisfy the general transformation of equal superposition is obtained by different methods, namely, linearity, no-superluminal signalling and non-increase of entanglement under LOCC. We also consider the associated quantum random walk and show that all unitary balanced coins give the same asymmetric spatial probability distribution. It is further illustrated that unbalanced coins, upon appropriate superposition, lead to new unbiased walks which have no cla...

  10. Experimental superposition of orders of quantum gates

    OpenAIRE

    Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip

    2015-01-01

    In a quantum computer, creating superpositions of quantum bits (qubits) in different states can lead to a speed-up over classical computers [1], but quantum mechanics also allows for the superposition of quantum circuits [2]. In fact, it has recently been theoretically predicted that superimposing quantum circuits, each with a different gate order, could provide quantum computers with an even further computational advantage [3-5]. Here, we experimentally demonstrate this enhancement by applyi...

  11. Spontaneous Breaking of the Quantum Superposition

    OpenAIRE

    Pankovic, Vladan; Predojevic, Milan

    2007-01-01

    In this work spontaneous (non-dynamical) breaking (effective hiding) of the unitary quantum mechanical dynamical symmetry (superposition) is considered. It represents an especial but very interesting case of the general formalism of the spontaneous symmetry breaking (effective hiding). Conceptual analogies with spontaneous breaking of the gauge symmetry in Weinberg-Sallam's electro-weak interaction are pointed out. Also, consequences of the spontaneous superposition breaking in the measuremen...

  12. A Superposition Calculus for Abductive Reasoning

    OpenAIRE

    Echenim, Mnacho; Peltier, Nicolas

    2014-01-01

    We present a modification of the superposition calculus that is meant to generate consequences of sets of first-order axioms. This approach is proven to be sound and deductive-complete in the presence of redundancy elimination rules, provided the considered consequences are built on a given finite set of ground terms, represented by constant symbols. In contrast to other approaches, most existing results about the termination of the superposition calculus can be carried over to our procedure....

  13. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    DEFF Research Database (Denmark)

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9...... MPa. It was found that the measured tube film flow rate per unit tube perimeter is always many times greater than the corresponding rod film flow rate. Possible explanations for this asymmetry are discussed....

  14. Annular lipoatrophy of the ankles.

    Science.gov (United States)

    Dimson, Otobia G; Esterly, Nancy B

    2006-02-01

    Lipoatrophic panniculitis likely represents a group of disorders characterized by an inflammatory panniculitis followed by lipoatrophy. It occurs locally in a variety of settings and has been reported in the literature under various terms, including annular atrophic connective tissue panniculitis of the ankles, annular and semicircular lipoatrophy, abdominal lipoatrophy, and connective tissue panniculitis. Herein, a case of annular lipoatrophy of the ankles is described in a 6-year-old girl with autoimmune thyroid disease. Histologically, a mixed lobular panniculitis with lipophages was present. This pattern resembles that seen in lipoatrophic panniculitis. After a single, acute episode of an inflammatory process with subsequent lipoatrophy, her skin lesions have stabilized for 2 years requiring no treatment.

  15. Quantum resource studied from the perspective of quantum state superposition

    OpenAIRE

    Wu, Chengjun; Li, Junhui; Luo, Bin; Guo, Hong

    2014-01-01

    Quantum resources,such as discord and entanglement, are crucial in quantum information processing. In this paper, quantum resources are studied from the aspect of quantum state superposition. We define the local superposition (LS) as the superposition between basis of single part, and nonlocal superposition (NLS) as the superposition between product basis of multiple parts. For quantum resource with nonzero LS, quantum operation must be introduced to prepare it, and for quantum resource with ...

  16. Phase flow rate measurements of annular flows

    OpenAIRE

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  17. Experimental superposition of orders of quantum gates.

    Science.gov (United States)

    Procopio, Lorenzo M; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G; Hamel, Deny R; Rozema, Lee A; Brukner, Časlav; Walther, Philip

    2015-01-01

    Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to 'superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task--determining if two gates commute or anti-commute--with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107

  18. Scan Quantum Mechanics: Quantum Inertia Stops Superposition

    CERN Document Server

    Gato-Rivera, Beatriz

    2015-01-01

    A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...

  19. Eosinophilic annular erythema in childhood - Case report.

    Science.gov (United States)

    Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio

    2016-01-01

    Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748

  20. Eosinophilic annular erythema in childhood - Case report*

    Science.gov (United States)

    Abarzúa, Alvaro; Giesen, Laura; Silva, Sergio; González, Sergio

    2016-01-01

    Eosinophilic annular erythema is a rare, benign, recurrent disease, clinically characterized by persistent, annular, erythematous lesions, revealing histopathologically perivascular infiltrates with abundant eosinophils. This report describes an unusual case of eosinophilic annular erythema in a 3-year-old female, requiring sustained doses of hydroxychloroquine to be adequately controlled. PMID:27579748

  1. Detonation Propagation Characteristics of Superposition Explosive Materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip-shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.

  2. Macroscopic Quantum Superposition in Cavity Optomechanics.

    Science.gov (United States)

    Liao, Jie-Qiao; Tian, Lin

    2016-04-22

    Quantum superposition in mechanical systems is not only key evidence for macroscopic quantum coherence, but can also be utilized in modern quantum technology. Here we propose an efficient approach for creating macroscopically distinct mechanical superposition states in a two-mode optomechanical system. Photon hopping between the two cavity modes is modulated sinusoidally. The modulated photon tunneling enables an ultrastrong radiation-pressure force acting on the mechanical resonator, and hence significantly increases the mechanical displacement induced by a single photon. We study systematically the generation of the Yurke-Stoler-like states in the presence of system dissipations. We also discuss the experimental implementation of this scheme. PMID:27152802

  3. Large energy superpositions via Rydberg dressing

    Science.gov (United States)

    Khazali, Mohammadsadegh; Lau, Hon Wai; Humeniuk, Adam; Simon, Christoph

    2016-08-01

    We propose to create superposition states of over 100 strontium atoms in a ground state or metastable optical clock state using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by an order of 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation, and diminishing Rydberg level separation for increasing principal number.

  4. Benign concentric annular macular dystrophy

    Directory of Open Access Journals (Sweden)

    Luísa Salles de Moura Mendonça

    2015-06-01

    Full Text Available The purpose of the authors is to show clinical findings of a patient with benign concentric annular macular dystrophy, which is an unusual condition, and part of the "bull’s eye" maculopathy differential diagnosis. An ophthalmologic examination with color perception, fluorescein angiography, and ocular electrophysiology was performed.

  5. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  6. Annular-Efficient Triangulations of 3-manifolds

    CERN Document Server

    Jaco, William

    2011-01-01

    A triangulation of a compact 3-manifold is annular-efficient if it is 0-efficient and the only normal, incompressible annuli are thin edge-linking. If a compact 3-manifold has an annular-efficient triangulation, then it is irreducible, boundary-irreducible, and an-annular. Conversely, it is shown that for a compact, irreducible, boundary-irreducible, and an-annular 3-manifold, any triangulation can be modified to an annular-efficient triangulation. It follows that for a manifold satisfying this hypothesis, there are only a finite number of boundary slopes for incompressible and boundary-incompressible surfaces of a bounded Euler characteristic.

  7. A possible explanation of the superposition principle

    OpenAIRE

    Peacock, Kent A.

    2002-01-01

    I tentatively suggest that the superposition principle of quantum mechanics is explicable in a mathematically natural way if it is possible to understand probability amplitudes as complex-valued logarithms. This notion is inspired by the fact that the quantum state may be interpreted as a measure of information.

  8. Macroscopicity of Mechanical Quantum Superposition States

    OpenAIRE

    Nimmrichter, Stefan; Hornberger, Klaus

    2012-01-01

    We propose an experimentally accessible, objective measure for the macroscopicity of superposition states in mechanical quantum systems. Based on the observable consequences of a minimal, macrorealist extension of quantum mechanics, it allows one to quantify the degree of macroscopicity achieved in different experiments.

  9. Hiding Quantum States in a Superposition

    OpenAIRE

    Younes, Ahmed

    2008-01-01

    A method to hide certain quantum states in a superposition will be proposed. Such method can be used to increase the security of a communication channel. States represent an encrypted message will disappear during data exchange. This makes the message 100% safe under direct measurement by an eavesdropper. No entanglement sharing is required among the communicating parties.

  10. Quantum computation with mesoscopic superposition states

    OpenAIRE

    Oliveira, M. C.; Munro, W. J.

    2000-01-01

    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.

  11. Towards Quantum Superposition of Living Organisms

    CERN Document Server

    Romero-Isart, Oriol; Quidant, Romain; Cirac, J Ignacio

    2009-01-01

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. Up to now, the existence of such states has been tested with small objects, like atoms, ions, electrons and photons, and even with molecules. Recently, it has been even possible to create superpositions of collections of photons, atoms, or Cooper pairs. Current progress in optomechanical systems may soon allow us to create superpositions of even larger objects, like micro-sized mirrors or cantilevers, and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high--finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low vacuum pressures, and optically behave as dielectric objects. This opens up the poss...

  12. The principle of superposition in human prehension.

    Science.gov (United States)

    Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun

    2004-03-01

    The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.

  13. The principle of superposition in human prehension

    Science.gov (United States)

    Zatsiorsky, Vladimir M.; Latash, Mark L.; Gao, Fan; Shim, Jae Kun

    2010-01-01

    SUMMARY The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: “Grasp the object stronger/weaker to prevent slipping” and “Maintain the rotational equilibrium of the object”. The effects of the two commands are summed up. PMID:20186284

  14. Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs

    OpenAIRE

    Ying, Mingsheng; Yu, Nengkun; Feng, Yuan

    2014-01-01

    We extract a novel quantum programming paradigm - superposition of programs - from the design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms. The generality of this paradigm is guaranteed by the universality of quantum walks as a computational model. A new quantum programming language QGCL is then proposed to support the paradigm of superposition of programs. This language can be seen as a quantum extension of Dijkstra's GCL (Guarded Command Language). Sur...

  15. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus. Two refractive arrangements have been presented in this study. Geometric optics, or ray optics, describes light propagation in terms of rays. However, it is a simplification of optics, and fails to account for many important optical effects such as diffraction and polarization. The diffractive behaviors of this optical trepanning system are stimulated and analyzed based on the Fresnel diffraction integral. Diffraction patterns of the resulting optical system are measured using a laser beam analyzer and compared with the theoretical results. Based on the theoretical and experimental results, the effects of experimental parameters are discussed. We have designed the annular beam shaping optical elements and the gas delivery system to construct an optical trepanning system. Laser drilling experiments are performed on the Stainless Steel-316 (SS 316) plate and the Inconel 718 (IN 718) plate. The geometry of the trepanning holes with different sizes is presented in this study.

  16. Superposition and Entanglement from Quantum Scope

    OpenAIRE

    Wang, Dong-sheng

    2011-01-01

    The abstract framework of quantum mechanics (QM) causes the well-known weirdness, which leads to the field of foundation of QM. We constructed the new concept, i.e., scope, to lay the foundation of quantum coherence and openness, also the principles of superposition and entanglement. We studied analytically and quantitatively the quantum correlations and information, also we discussed the physical essence of the existed entanglement measures. We compared with several other approaches to the f...

  17. Quantum superposition and entanglement of mesoscopic plasmons

    OpenAIRE

    Fasel, Sylvain; Halder, Matthaus; Gisin, Nicolas; Zbinden, Hugo

    2006-01-01

    Quantum superpositions and entanglement are at the heart of the quantum information science. There have been only a few investigations of these phenomena at the mesoscopic level, despite the fact that these systems are promising for quantum state storage and processing. Here, we present two novel experiments with surface plasmons propagating on cm-long metallic stripe waveguides. We demonstrate that two plasmons can be entangled at remote places. In addition, we create a single plasmon in a t...

  18. Typing quantum superpositions and projective measurements

    OpenAIRE

    Díaz-Caro, Alejandro; Dowek, Gilles

    2016-01-01

    We study a purely functional quantum extension of lambda calculus, that is, an extension of lambda calculus to express some quantum features, where the quantum memory is abstracted out. This calculus is a typed extension of the first-order linear-algebraic lambda-calculus. The type is linear on superpositions, so to forbid from cloning them, while allows to clone basis vectors. We provide examples of the Deutsch algorithm and the Teleportation, and prove the subject reduction of the calculus....

  19. CFD Simulation of Annular Centrifugal Extractors

    OpenAIRE

    Vedantam, S.; Wardle, K. E.; Tamhane, T. V.; Ranade, V. V.; Joshi, J. B.

    2012-01-01

    Annular centrifugal extractors (ACE), also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of cent...

  20. Psoriatic Arthritis with Annular Pustular Psoriasis.

    Science.gov (United States)

    Nagafuchi, Hiroko; Watanabe, Kyoko; Mikage, Hidenori; Ozaki, Shoichi

    2016-01-01

    We herein present the case of a 56-year-old woman who presented with symptoms of psoriatic arthritis (PsA) with erythema that progressed to annular pustular psoriasis. The patient had a 15-year history of polyarthritis. Annular pustular psoriasis is not typically observed in cases of arthritis. This is the first reported case of PsA with annular pustular psoriasis. PMID:26935375

  1. Toward quantum superposition of living organisms

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Isart, Oriol; Cirac, J Ignacio [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748, Garching (Germany); Juan, Mathieu L; Quidant, Romain [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona 08860 (Spain)], E-mail: oriol.romero-isart@mpq.mpg.de

    2010-03-15

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deleglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6; Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schroedinger's cat 'gedanken' paradigm (Schroedinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.

  2. Toward quantum superposition of living organisms

    Science.gov (United States)

    Romero-Isart, Oriol; Juan, Mathieu L.; Quidant, Romain; Cirac, J. Ignacio

    2010-03-01

    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deléglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6 Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schrödinger's cat 'gedanken' paradigm (Schrödinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.

  3. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts

    NARCIS (Netherlands)

    Mahajan, V.N.; Aftab, M.

    2010-01-01

    The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as t

  4. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  5. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  6. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  7. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine;

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC) in a...... periodically poled KTiOPO4 crystal while the single photons are probabilistically subtracted using a beamsplitter and a single photon detector. The resulting states are fully characterized with time-resolved homodyne quantum state tomography. Varying the pump power of the SPDC, we generated different states...

  8. Braided nodal lines in wave superpositions

    CERN Document Server

    Dennis, M R

    2003-01-01

    Nodal lines (phase singularities, optical vortices) are the generic interference fringes of complex scalar waves. Here, an exact complex solution of the time independent wave equation (Helmholtz equation) is considered, possessing nodal lines which are braided in the form of a borromean, or pig-tail braid. The braid field is a superposition of counterpropagating, counterrotating, non-coaxial order 3 Bessel beams, and a plane wave whose propagation is perpendicular to that of the beams. The construction is structurally stable, and can be generalized to a limited class of other braids.

  9. Bistability and hysteresis of annular impinging jets

    Science.gov (United States)

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  10. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter;

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  11. Optimum annular focusing by a phase plate

    CERN Document Server

    Arrizón, Victor; Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel

    2015-01-01

    Conventional light focusing, i. e. concentration of an extended optical field within a small area around a point, is a frequently used process in Optics. An important extension to conventional focusing is the generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves this kind of focusing employing a phase plate as unique optical component. We first establish the class of beams that being transmitted through the phase plate can be focused into an annular field with topological charge of arbitrary integer order q. Then, for each beam in this class we determine the plate transmittance that generates the focal field with the maximum possible peak intensity. In particular, we discuss and implement experimentally the optimum annular focusing of a Gaussian beam. The attributes of optimum annular focal fields, namely the high peak intensity, intensity gradient and narrow annular section, are advantageous for different applications of such structured fields.

  12. [Generalized granuloma annulare or diffuse dermal histiocytosis?].

    Science.gov (United States)

    Kretzschmar, L; Biel, K; Luger, T A; Goerdt, S

    1995-08-01

    Generalized granuloma annulare is a rare variant of granuloma annulare affecting the trunk and extremities with a multitude of lesions. In contrast to localized granuloma annulare, generalized granuloma annulare occurs in older patients, shows a stronger association with diabetes, and is characteristically chronic. Like our 55-year-old patient, most patients present with papules and annular plaques; less often, macular or non-annular lesions may be encountered. Histology often fails to show necrobiotic or necrotic connective tissue changes demarcated by a palisading granuloma. Instead, there are diffuse dermal, band-like or nodular aggregations of histiocytes intermingled with some multinucleated giant cells and a predominantly lymphocytic infiltrate in the periphery. Because of its special characteristics, it has been suggested that generalized granuloma annulare might constitute a separate disease entity and that it should be classed among the primary cutaneous histiocytoses as a diffuse dermal histiocytosis. Using immunohistochemistry to determine the macrophage phenotype of the lesional histiocytes, we have shown that generalized granuloma annulare is not a cutaneous histiocytosis. Neither MS-1 high-molecular-weight protein, a new specific marker for cutaneous non-Langerhans cell histiocytoses, nor CD1a, the well-known marker for Langerhans cells and Langerhans cell histiocytoses, is expressed by the lesional histiocytes of our patient. In contrast, the antigen expression pattern was diagnostic for non-infectious granulomas and was highly similar to that in localized granuloma annulare. In contrast to the successful treatment of localized granuloma annulare reported with intralesional interferon beta-1, systemic treatment with interferon alpha-2b (9 x 10(6) units three times a week) was ineffective.

  13. Quantum Superposition of a Mirror and Relative Decoherence (as Spontaneous Superposition Breaking)

    OpenAIRE

    Pankovic, V.; Predojevic, M.; Krmar, M.

    2003-01-01

    Marshall et al. gedanken experiment of the quantum superpposition of a mirror (oscilating part of a Michelson interferometer) interacting with single photon is consequently interpreted by relative decoherence.Such relative decoherence (based on the spontaneous superposition breaking (effective hiding)) on the photon (quantum object) caused by mirror (measurement device) is sufficient to model real measurement.

  14. Generation of Superposition Spin States in an Atomic Ensemble

    OpenAIRE

    Massar, S.; Polzik, E. S.

    2003-01-01

    A method for generating a mesoscopic superposition state of the collective spin variable of a gas of atoms is proposed. The state consists of a superposition of the atomic spins pointing in two slightly different directions. It is obtained by using off resonant light to carry out Quantum Non Demolition Measurements of the spins. The relevant experimental conditions, which require very dense atomic samples, can be realized with presently available techniques. Long-lived atomic superposition st...

  15. Nonclassical properties and quantum resources of hierarchical photonic superposition states

    OpenAIRE

    Volkoff, T. J.

    2015-01-01

    We motivate and introduce a class of "hierarchical" quantum superposition states of $N$ coupled quantum oscillators. Unlike other well-known multimode photonic Schr\\"{o}dinger cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schr\\"{o}dinger cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical st...

  16. Remnant quantum resources of collapsed macroscopic quantum superpositions

    OpenAIRE

    Volkoff, T. J.

    2015-01-01

    We consider the collapse of a macroscopic quantum superposition occurring due to the measurement which optimally distinguishes its branches. Given a macroscopic superposition of N spin-1/2 particles, we use such a Helstrom measurement to construct the local unitary operator which maximizes the usefulness of the superposition for Heisenberg-limited phase estimation (i.e., with quantum Cram\\'{e}r Rao bound proportional to 1/N). In contrast, the collapsed state is not useful as a probe for phase...

  17. Quantum Superposition States of Two Valleys in Graphene

    OpenAIRE

    Qiao, Jia-Bin; Chu, Zhao-Dong; Wu, Liang-Mei; He, Lin

    2014-01-01

    A system in a quantum superposition of distinct states usually exhibits many peculiar behaviors. Here we show that putting quasiparticles of graphene into superpositions of states in the two valleys can complete change the properties of the massless Dirac fermions. Due to the coexistence of both the quantum and relativistic characteristics, the superposition states exhibit many oddball behaviors in their chiral tunneling process. We further demonstrate that a recently observed line defect in ...

  18. Manifestation of a General Coherent State Superposition without Nonlinear Effects

    OpenAIRE

    Cordshooli, Ghasem; Mirzaee, Mehdi

    2015-01-01

    We report the formation of a general superposition of coherent states in exact analytical solution of the Schrodingers equatin for atom-photon interaction by taking into account the role of virtual photons. Despite some known superposition of quantum states, the general superposition state introduced in this letter constructed without any nonlinear effect. The Yurke- Stoler state and its special cases, the even and odd cat states, obtained as some simple examples of the method. A general expe...

  19. High efficiency Nondistortion Quantum Interrogation of atoms in quantum superpositions

    OpenAIRE

    Zhou, Xingxiang; Zhou, Zheng-Wei; Guo, Guang-Can; Feldman, Marc J.

    2001-01-01

    We consider the nondistortion quantum interrogation (NQI) of an atom prepared in a quantum superposition. By manipulating the polarization of the probe photon and making connections to interaction free measurements of opaque objects, we show that nondistortion interrogation of an atom in a quantum superposition can be done with efficiency approaching unity. However, if any component of the atom's superposition is completely transparent to the probe wave function, a nondistortion interrogation...

  20. Superposition rules and second-order Riccati equations

    CERN Document Server

    Cariñena, J F

    2010-01-01

    The concept of superposition rule for second-order differential equations is stated and conditions ensuring the existence of such superposition rules are analysed. In this way, second-order differential equations become formally included within the theory of Lie systems. The theory is illustrated by analysing the properties of a family of second-order differential equations with applications to Physics and we obtain a superposition rule common for all its members. Finally, time-dependent superposition rules for second-order differential equations are defined and we derive a particular instance for a family of second-order Riccati equations by means of the theory of quasi-Lie schemes.

  1. Nuclei as superposition of topological solitons

    International Nuclear Information System (INIS)

    The rational map approximation provides an opportunity to describe light nuclei as classical solitons with baryon number B > 1 in the framework of the Skyrme model. The rational map ansatz yields a possibility of factorization of S3 baryon charge into S1 and S2 parts, the phenomenology of the model being strongly affected by the chosen factorization. Moreover, in the fundamental representation superposition of two different soliton factorizations can be used as solution ansatz. The canonical quantization procedure applied to collective degrees of freedom of the classical soliton leads to anomalous breaking of the chiral symmetry and exponential falloff of the energy density of the soliton at large distance, without explicit symmetry breaking terms included. The evolution of the shape of electric form factor as a function of two different factorization soliton mix ratio is investigated. Numerical results are presented. (author)

  2. Etizolam-induced superficial erythema annulare centrifugum.

    Science.gov (United States)

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  3. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Directory of Open Access Journals (Sweden)

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  4. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In...

  5. A clinical study of annular cyclitis

    Directory of Open Access Journals (Sweden)

    Marilita Michael Moschos

    2009-02-01

    Full Text Available Marilita Michael Moschos1, Yan Guex-Crosier2, Ioannis Margetis1, Leonidas Zografos21Department of Ophthalmology, University of Athens, Greece; 2Jules Gonin Eye Hospital, University of Lausanne, SwitzerlandPurpose: To investigate six cases of annular cyclitis.Methods: All patients with impairment of visual acuity underwent complete ophthalmologic examination, color fundus photography, laboratory tests and fluorescein angiography. Indocyanine green (ICG angiography and B-scan ultrasonography were also performed in three cases in order to diagnose the disease.Results: All patients presented a unilateral or bilateral granulomatous uveitis, associated with inflammatory annular cyclitis. They had a shallow anterior chamber, a mildly elevated intraocular pressure (under 25 mm Hg and an annular serous retinal detachment. A resolution was observed after specific therapy associated with systemic prednisolone therapy and antiglaucomatous drops.Conclusion: This is the first description of an observational study of six patients with inflammatory annular cyclitis.Keywords: cyclitis, uveitis, malignant glaucoma

  6. Adaptive optics scanning ophthalmoscopy with annular pupils.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  7. Ultrafast optical signature of quantum superpositions in a nanostructure

    OpenAIRE

    Rodriguez, F. J.; Quiroga, L.; Johnson, N. F.

    2002-01-01

    We propose an unambiguous signature for detecting quantum superposition states in a nanostructure, based on current ultrafast spectroscopy techniques. The reliable generation of such superposition states via Hadamard-like quantum gates is crucial for implementing solid-state based quantum information schemes. The signature originates from a remarkably strong photon antibunching effect which is enhanced by non-Markovian dynamics.

  8. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er inter...

  9. Partial coherence and other optical delicacies of lepidopteran superposition eyes

    NARCIS (Netherlands)

    Stavenga, DG

    2006-01-01

    Superposition eyes are generally thought to function ideally when the eye is spherical and with rhabdom tips in the focal plane of the imaging optics of facet lenses and crystalline cones. Anatomical data as well as direct optical measurements demonstrate that the superposition eyes of moths and ski

  10. Teleportation of Unknown Superpositions of Collective Atomic Coherent States

    Institute of Scientific and Technical Information of China (English)

    ZHENG ShiBiao

    2001-01-01

    We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``

  11. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings.

    Science.gov (United States)

    Xiao, Qingsheng; Klitis, Charalambos; Li, Shimao; Chen, Yueyang; Cai, Xinlun; Sorel, Marc; Yu, Siyuan

    2016-02-22

    An integrated approach to produce photonic orbital angular momentum (OAM) superposition states with arbitrary OAM spectrum has been demonstrated. Superposition states between two vector OAM modes have been achieved by integrating a superimposed angular grating in one silicon micro-ring resonator, with each mode having near equal weight. The topological charge difference between the two compositional OAM modes is determined by the difference between the numbers of elements in the two original gratings being superimposed, while the absolute values of the topological charge can be changed synchronously by switching WGM resonant wavelengths. This novel approach provides a scalable and flexible source for the OAM-based quantum information and optical manipulation applications. PMID:26906981

  12. Accurate structural correlations from maximum likelihood superpositions.

    Directory of Open Access Journals (Sweden)

    Douglas L Theobald

    2008-02-01

    Full Text Available The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method ("PCA plots" for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology.

  13. Empirical Evaluation of Superposition Coded Multicasting for Scalable Video

    KAUST Repository

    Chun Pong Lau

    2013-03-01

    In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However, it has never been practically implemented using a commercial 4G system. This paper demonstrates our prototype in achieving the SCM using a standard 802.16 based testbed for scalable video transmissions. In particular, to implement the superposition coded (SPC) modulation, we take advantage a novel software approach, namely logical SPC (L-SPC), which aims to mimic the physical layer superposition coded modulation. The emulation results show improved throughput comparing with generic multicast method.

  14. Quantum superposition of multiple clones and the novel cloning machine

    OpenAIRE

    Pati, Arun Kumar

    1999-01-01

    we envisage a novel quantum cloning machine, which takes an input state and produces an output state whose success branch can exist in a linear superposition of multiple copies of the input state and the failure branch exist in a superposition of composite state independent of the input state. We prove that unknown non-orthogonal states chosen from a set $\\cal S$ can evolve into a linear superposition of multiple clones by a unitary process if and only if the states are linearly independent. ...

  15. CFD Simulation of Annular Centrifugal Extractors

    Directory of Open Access Journals (Sweden)

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  16. Many-Body Basis Set Superposition Effect.

    Science.gov (United States)

    Ouyang, John F; Bettens, Ryan P A

    2015-11-10

    The basis set superposition effect (BSSE) arises in electronic structure calculations of molecular clusters when questions relating to interactions between monomers within the larger cluster are asked. The binding energy, or total energy, of the cluster may be broken down into many smaller subcluster calculations and the energies of these subsystems linearly combined to, hopefully, produce the desired quantity of interest. Unfortunately, BSSE can plague these smaller fragment calculations. In this work, we carefully examine the major sources of error associated with reproducing the binding energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body expansion (MBE), where a "body" here refers to the monomers that make up the cluster. In our analysis, we found it necessary to introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably, the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-pVDZ level for the respective subclusters embedded within a larger cluster. PMID:26574311

  17. Annular bilayer magnetoelectric composites: theoretical analysis.

    Science.gov (United States)

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  18. On the Superposition and Elastic Recoil of Electromagnetic Waves

    CERN Document Server

    Schantz, Hans G

    2014-01-01

    Superposition demands that a linear combination of solutions to an electromagnetic problem also be a solution. This paper analyzes some very simple problems: the constructive and destructive interferences of short impulse voltage and current waves along an ideal free-space transmission line. When voltage waves constructively interfere, the superposition has twice the electrical energy of the individual waveforms because current goes to zero, converting magnetic to electrical energy. When voltage waves destructively interfere, the superposition has no electrical energy because it transforms to magnetic energy. Although the impedance of the individual waves is that of free space, a superposition of waves may exhibit arbitrary impedance. Further, interferences of identical waveforms allow no energy transfer between opposite ends of a transmission line. The waves appear to recoil elastically one from another. Although alternate interpretations are possible, these appear less likely. Similar phenomenology arises i...

  19. Linear Superposition of Minimal Surfaces: Generalized Helicoids and Minimal Cones

    OpenAIRE

    Hoppe, Jens

    2016-01-01

    Observing a linear superposition principle, a family of new minimal hypersurfaces in Euclidean space is found, as well as that linear combinations of generalized helicoids induce new algebraic minimal cones of arbitrarily high degree.

  20. Nonclassical properties and quantum resources of hierarchical photonic superposition states

    Energy Technology Data Exchange (ETDEWEB)

    Volkoff, T. J., E-mail: adidasty@gmail.com [University of California, Department of Chemistry (United States)

    2015-11-15

    We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.

  1. Has Macroscopic Superposition in Superconducting Qubits Really Been Demonstrated?

    Science.gov (United States)

    Kadin, Alan M.; Kaplan, Steven B.

    Quantum computing depends on many qubits coupled via quantum entanglement, where each qubit must be a simultaneous superposition of two quantum states of different energies, rather than one state or the other as in classical bits. It is widely believed that observations of energy quantization and Rabi oscillations in macroscopic superconducting circuits prove that these are proper qubits with quantum superposition. But is this really the only interpretration? We propose a novel paradigm for macroscopic quantum systems, in which energies are quantized (with photon-mediated transitions), but the quantized states are realistic objects without superposition. For example, a circuit could make a transition from one quantized value of flux to another, but would never have both at the same time. We further suggest a superconducting circuit that can put this proposal to a test. Without quantum superposition, most of the potential benefit of quantum computing would be lost.

  2. Creation of Coherent Superposition States in Multilevel Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A powerful approach to generate multilevel superposition state in ∧-type manifold of levels is proposed. In the analysis, we introduce a group of rotations to transform the coupled system to a simpler form, which involves one coupled and several decoupled, dark states in the ground state manifold. Then an arbitrary superposition state of initial and final states can be created. In particular, when the Rabi frequencies of the Stokes pulses have equal magnitudes, a superposition state (equal population of the (n - 2) superposition states) will be generated. A numerical simulation of coherence generation is given. It is shown that a small transient population in metastable state decreases as the intensity of Stokes pulses increases. Experimental implementation in Neon atom is given.

  3. Experimental creation of superposition of unknown photonic quantum states

    OpenAIRE

    Hu, Xiao-Min; Hu, Meng-Jun; Chen, Jiang-Shan; Liu, Bi-Heng; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Yong-sheng

    2016-01-01

    As one of the most intriguing intrinsic properties of quantum world, quantum superposition provokes great interests in its own generation. Oszmaniec [Phys. Rev. Lett. 116, 110403 (2016)] have proven that though a universal quantum machine that creates superposition of arbitrary two unknown states is physically impossible, a probabilistic protocol exists in the case of two input states have nonzero overlaps with the referential state. Here we report a heralded quantum machine realizing superpo...

  4. Testing the quantum superposition principle in the frequency domain

    OpenAIRE

    M Bahrami; Bassi, A.; Ulbricht, H.

    2014-01-01

    New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Here we propose a novel way to test the possible violation of the superposit...

  5. Quantum superposition of charge states on capacitively coupled superconducting islands

    OpenAIRE

    Heij, C. P.; Dixon, D C; van der Wal, C H; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuring the switching current of a Bloch transistor containing one of the islands. Calculations based on superpositions of charge states on both islands show good agreement with the experiments. The abi...

  6. Superposition States in Cavities Fed by Injected Atoms

    OpenAIRE

    Marian, Paulina; Marian, Tudor

    1997-01-01

    We study the possibility of producing disentangled states in the Jaynes-Cummings model when the input field is a superposition of two Fock states, |M〉 and |M+ 1〉, and the atom is initially in a superposition of its two stationary states. In the case of large M, we show that Jaynes-Cummings interaction provides quantum state swapping between the two qubits (atom and field).

  7. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  8. Stitching algorithm for annular subaperture interferometry

    Institute of Scientific and Technical Information of China (English)

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen

    2006-01-01

    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  9. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  10. Quasi-static transient thermal stresses in a thick annular disc

    Indian Academy of Sciences (India)

    V S Kulkarni; K C Deshmukh

    2007-10-01

    The present paper deals with the determination of transient thermal stresses in a thick annular disc. A thick annular disc is considered having zero initial temperature and subjected to arbitrary heat flux on the upper and lower surfaces where as the fixed circular edges are at zero temperature.The governing heat conduction equation have been solved by using integral transform technique. The results are obtained in series form in terms of Bessel’s functions. The results for displacement and stresses have been computed numerically and are illustrated graphically

  11. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  12. Azimuthally forced flames in an annular combustor

    Science.gov (United States)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  13. Fluxon Dynamics in Elliptic Annular Josephson Junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper

    2016-01-01

    We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tu...

  14. Quantum superposition at the half-metre scale.

    Science.gov (United States)

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity. PMID:26701053

  15. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    OpenAIRE

    Volkoff, T. J.; Whaley, K. B.

    2014-01-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the ef...

  16. Response to "Verifying quantum superpositions at metre scales"

    CERN Document Server

    Kovachy, T; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2016-01-01

    The preceding BCA (Stamper-Kurn et. al., arXiv:1607.01454) asserts that our observation of interference contrast in a half-metre-scale atom interferometer (Kovachy et. al., Nature 528, 530-3 (2015)) does not prove the existence of macroscopic quantum superpositions and hence does not test quantum mechanics at long length scales. Moreover, the BCA implies that intrinsic atomic interactions or technical imperfections could prevent the application of our work to future differential measurements. On the contrary, we argue the following: i) in standard quantum mechanics, there is no known mechanism in our system that prohibits its use in future differential measurement applications; ii) our experiment tests quantum mechanics in that it constrains any modifications that would reduce contrast in an interferometer with arms that propagate over widely separated trajectories; and iii) using a standard definition of superposition, our observation of interference results from quantum superposition at the half-metre scale...

  17. Quantum superposition counterintuitive consequences of coherence, entanglement, and interference

    CERN Document Server

    Silverman, M P

    2007-01-01

    Coherence, entanglement, and interference arise from quantum superposition, the most distinctive and puzzling feature of quantum physics. Silverman, whose extensive experimental and theoretical work has helped elucidate these processes, presents a clear and engaging discussion of the role of quantum superposition in diverse quantum phenomena such as the wavelike nature of particle propagation, indistinguishability of identical particles, nonlocal interactions of correlated particles, topological effects of magnetic fields, and chiral asymmetry in nature. He also examines how macroscopic quantum coherence may be able to extricate physics from its most challenging quandary, the collapse of a massive degenerate star to a singularity in space in which the laws of physics break down. Explained by a physicist with a concern for clarity and experimental achievability, the extraordinary nature of quantum superposition will fascinate the reader not only for its apparent strangeness, but also for its comprehensibility.

  18. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    Science.gov (United States)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  19. Pairwise Quantum Correlations for Superpositions of Dicke States

    Institute of Scientific and Technical Information of China (English)

    席政军; 熊恒娜; 李永明; 王晓光

    2012-01-01

    Pairwise correlation is really an important property for multi-qubit states.For the two-qubit X states extracted from Dicke states and their superposition states,we obtain a compact expression of the quantum discord by numerical check.We then apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions,and the results are compared with those obtained by entanglement of formation,which is a quantum entanglement measure.

  20. Superposition of nonlinear coherent states on a sphere

    Directory of Open Access Journals (Sweden)

    T Hosseinzadeh

    2013-09-01

    Full Text Available  In this paper, by using the nonlinear coherent states on a sphere, we introduce superposition of the aforementioned coherent states. Then, we consider quantum optical properties of these new superposed states and compare these properties with the corresponding properties of the nonlinear coherent states on the sphere. Specifically, we investigate their characteristics function, photon-number distribution, Mandel parameter, quadrature squeezing, anti-bunching effect and Wigner function, and obtain the curvature effect on the properties of the superposed states. Finally, by using the trapped atom system, we introduce a theoretical scheme to generate superposition of the coherent states on the sphere.

  1. Orbital angular momentum of superposition of identical shifted vortex beams.

    Science.gov (United States)

    Kovalev, A A; Kotlyar, V V

    2015-10-01

    We have formulated and proven the following theorem: the superposition of an arbitrary number of arbitrarily off-axis, identical nonparaxial optical vortex beams of arbitrary radially symmetric shape, integer topological charge n, and arbitrary real weight coefficients has the normalized orbital angular momentum (OAM) equal to that of individual constituent identical beams. This theorem enables generating vortex laser beams with different (not necessarily radially symmetric) intensity profiles but identical OAM. Superpositions of Bessel, Hankel-Bessel, Bessel-Gaussian, and Laguerre-Gaussian beams with the same OAM are discussed. PMID:26479934

  2. Analysis of a Fivefold Symmetric Superposition of Plane Waves

    CERN Document Server

    Schwarz, Michael H

    2012-01-01

    We show that a symmetric superposition of five standing plane waves can be expressed as an infinite series of terms of decreasing wavenumber, where each term is a product of five plane waves. We show that this series converges pointwise in R^2 and uniformly in any disk domain in R^2. Using this series, we provide a heuristic argument for why the locations of the local extrema of a symmetric superposition of five standing plane waves can be approximated by the vertices of a Penrose tiling.

  3. Linear Plasma Oscillation Described by Superposition of Normal Modes

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1974-01-01

    The existence of steady‐state solutions to the linearized ion and electron Vlasov equation is demonstrated for longitudinal waves in an initially stable plasma. The evolution of an arbitrary initial perturbation can be described by superposition of these solutions. Some common approximations to the...... full set of equations can be solved in the same way. In some special cases, relevant, for instance, for single‐ended Q machine experiments, a problem with given boundary conditions can be solved by superposition of normal modes....

  4. Seeing lens imaging as a superposition of multiple views

    Science.gov (United States)

    Grusche, Sascha

    2016-01-01

    In the conventional approach to lens imaging, rays are used to map object points to image points. However, many students want to think of the image as a whole. To answer this need, Kepler’s ray drawing is reinterpreted in terms of shifted camera obscura images. These images are uncovered by covering the lens with pinholes. Thus, lens imaging is seen as a superposition of sharp images from different viewpoints, so-called elemental images. This superposition is simulated with projectors, and with transparencies. Lens ray diagrams are constructed based on elemental images; the conventional construction method is included as a special case.

  5. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  6. Annular pancreas associated with duodenal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Enrico; Bronnimann; Silke; Potthast; Tatjana; Vlajnic; Daniel; Oertli; Oleg; Heizmann

    2010-01-01

    Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancre...

  7. Performance of annular high frequency thermoacoustic engines

    Science.gov (United States)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  8. Annular Alopecia Areata: Report of Two Cases

    OpenAIRE

    Bansal, Manish; Manchanda, Kajal; Pandey, SS

    2013-01-01

    Alopecia areata (AA) is an auto-immune disorder characterized by the appearance of non-scarring bald patches affecting the hair bearing areas of the body. Scalp is the most common site of involvement. AA can affect any age group. The usual pattern of the hair loss is oval or round. We hereby, report two cases of annular and circinate pattern of AA due to its unusual morphology.

  9. Vibration analysis of annular-like plates

    Science.gov (United States)

    Cheng, L.; Li, Y. Y.; Yam, L. H.

    2003-05-01

    The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of "recessive" modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for "dominant" modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.

  10. Study of spiral flow generated through an annular slit

    Science.gov (United States)

    Kim, Tae Hun; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy-Dong

    2005-06-01

    The effect of pressurized air inlets in the reservoir upstream of the annular slit on characteristics of the axial and tangential velocity components is investigated numerically, and the mechanism of occurrence of spiral nozzle flow is clarified. In simulations, Unified Platform for Aerospace Computational Simulation (UPACS) is used. The governing equations under consideration are the unsteady compressible Navier - Stokes. A second-order finite volume scheme with MUSCL (Roe scheme) is used to discretize the spatial derivatives, and a second order-central difference scheme for the viscous terms, and a MFGS (Matrix Free Gauss Seidel) is employed for time integration. Spalart-Allmaras model was used as a turbulence model. The results obtained are compared with velocity distributions in the experiment measured by the two-component fiber optic laser Doppler velocimeter system. The existence of discrete pressurized air inlets that leads to the occurrence of asymmetrical characteristics is a very important factor for the formation of spiral flow.

  11. Study of Spiral Flow Generated through an Annular Slit

    Institute of Scientific and Technical Information of China (English)

    Tae Hun KIM; Shigeru MATSUO; Toshiaki SETOGUCHI; Heuy-Dong KIM

    2005-01-01

    @@ The effect of pressurized air inlets in the reservoir upstream of the annular slit on characteristics of the axial and tangential velocity components is investigated numerically, and the mechanism of occurrence of spiral nozzle flow is clarified. In simulations, Unified Platform for Aerospace Computational Simulation (UPACS) is used. The governing equations under consideration are the unsteady compressible Navier - Stokes. A second-order finite volume scheme with MUSCL (Roe scheme) is used to discretize the spatial derivatives, and a second order-central difference scheme for the viscous terms, and a MFGS (Matrix Free Gauss Seidel) is employed for time integration. Spalart-Allmaras model was used as a turbulence model. The results obtained are compared with velocity distributions in the experiment measured by the two-component fiber optic laser Doppler velocimeter system. The existence of discrete pressurized air inlets that leads to the occurrence of asymmetrical characteristics is a very important factor for the formation of spiral flow.

  12. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  13. Superposition and Entanglement: Pillars of Quantum Information Processing

    OpenAIRE

    Prashant; Chakrabarty, Indranil

    2005-01-01

    This article discusses the important primitives of Superposition and Entanglement in Quantum Information Processing from physics point of view. System of spin-1/2 particles has been considered which presents itself as a logical and conceptual candidate to understand these concepts. The article is intended as a review of these important concepts and hopes to bring forth a conceptual framework in this regard.

  14. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio;

    2009-01-01

    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  15. Quantum superposition of charge states on capacitively coupled superconducting islands

    NARCIS (Netherlands)

    Heij, C.P.; Dixon, D.C.; Wal, C.H. van der; Hadley, P.; Mooij, J.E.

    2003-01-01

    We investigate the ground state properties of a system containing two superconducting islands coupled capacitively by a wire. The ground state is a macroscopic superposition of charge states, even though the islands cannot exchange charge carriers. The ground state of the system is probed by measuri

  16. Evolution of Colour Superposition in the Stochastic QCD Vacuum

    OpenAIRE

    Kuvshinov, V. I.; Bagashov, E. G.

    2013-01-01

    It is shown that confinement of spinless heavy quarks can be treated as decoherence of an arbitrary colour superposition into a mixture quantum state with equal probabilities for different colours with the use of stochastic QCD vacuum model. Decoherence rate is found to be proportional to the distance between colour charges. Purity, fidelity, and Von Neumann entropy of colour states are evaluated.

  17. Effect of Annular Slit Geometry on Characteristics of Spiral Jet

    Institute of Scientific and Technical Information of China (English)

    Shigeru Matsuo; Kwon-Hee Lee; Shinsuke Oda; Toshiaki Setoguchi; Heuy-Dong Kim

    2003-01-01

    A spiral flow using an annular slit connected to a conical cylinder does not need special device to generate a tangential velocity component of the flow and differs from swirling flows. Pressurized fluid is supplied to an annular chamber and injected into the convergent nozzle through the annular slit. The annular jet develops into the spiral flow. In the present study, a spiral jet discharged out of nozzle exit was obtained by using a convergent nozzle and an annular slit set in nozzle inlet, and the effect of annular slit geometry on characteristics of the spiral jet was investigated by using a Laser Doppler Velocimeter (LDV) experimentally. Furthermore, velocity distributions of the spiral jet were compared with those of a normal jet.

  18. Film cooling research on the endwall of a turbine nozzle guide vane in a short duration annular cascade. II - Analysis and correlation of results

    Science.gov (United States)

    Harasgama, S. P.; Burton, C. D.

    1991-06-01

    Measurements of the heat transfer characteristics of the film cooled endwall (platform) of a turbine nozzle guide vane in an annular cascade at engine representative conditions are analyzed. The experimental results are well represented by the superposition theory of film cooling. It is shown that high cooling effectiveness can be achieved when the data are corrected for axial pressure gradients. The data are correlated against both the slot-wall jet parameter and the discrete hole injection function for flat-plate, zero pressure gradient cases. The pressure gradient correction brings the data to within +/- 11 percent of the discrete hole correlation.

  19. Granuloma annulare localized to the shaft of the penis

    DEFF Research Database (Denmark)

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  20. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  1. Finite stretching of an annular plate.

    Science.gov (United States)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  2. Thread-annular flow in vertical pipes

    Science.gov (United States)

    Frei, Ch.; Lüscher, P.; Wintermantel, E.

    2000-05-01

    Thread injection is a promising method for different minimally invasive medical applications. This paper documents an experimental study dealing with an axially moving thread in annular pipe flow. Mass flow and axial force on the thread are measured for a 0.46 mm diameter thread in pipes with diameters between 0.55 and 1.35 mm. The experiments with thread velocities of up to 1.5 ms[minus sign]1 confirm the findings of theoretical studies that for clinical requirements the radius ratio between thread and pipe is crucial for the adjustments of mass ow and force on the thread.

  3. Deep variant of Erythema Annulare Centrifugum

    OpenAIRE

    Ahu Yorulmaz; Ferda Artuz; Devrim Tuba Unal

    2014-01-01

    A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1). It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1).

  4. Deep variant of Erythema Annulare Centrifugum

    Directory of Open Access Journals (Sweden)

    Ahu Yorulmaz

    2014-10-01

    Full Text Available A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1. It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1.

  5. Annular lupus vulgaris mimicking tinea cruris.

    Science.gov (United States)

    Heo, Young Soo; Shin, Won Woong; Kim, Yong Ju; Song, Hae Jun; Oh, Chil Hwan

    2010-05-01

    Cutaneous tuberculosis is an infrequent form of extrapulmonary tuberculosis. It is often clinically and histopathologically confused with various cutaneous disorders. A 36-year-old man attended our clinic with slowly progressive, asymptomatic, annular skin lesions on both the thighs and buttocks for 10 years. He consulted with many physicians and was improperly treated with an oral antifungal agent for several months under the diagnosis of tinea cruris, but no resolution of his condition was observed. A diagnosis of lupus vulgaris was made based on the histopathologic examination and the polymerase chain reaction assay. Anti-tuberculosis therapy was administered and the lesions started to regress.

  6. Mass transport in annular spherical system

    Science.gov (United States)

    Bauer, Helmut F.

    The mass transport between two concentric spheres with inlet and outlet at the poles was determined for ideal liquid flow (plug flow) and laminar flow for constant concentration at the spherical walls and constant concentration at the inlet. Velocity distribution and local concentration profiles were determined analytically for various widths of the annular spherical conduit and various diffusive flow parameters. It is found that with the increase of this parameter, the decay becomes quite rapid and that the same effect occurs for increasing diameter ratio of the spheres. This configuration may possibly be used as a basic element of an artificial kidney.

  7. The Bound of Entanglement of Superpositions with More Than Two Components

    OpenAIRE

    Xiang, Yang; Xiong, Shi-Jie; Hong, Fang-Yu

    2007-01-01

    A bipartite quantum state (for two systems in any dimensions) can be decomposed as a superposition of many components. For a superposition of more than two components we prove that there is a bound of the entanglement of the superposition state which can be expressed according to entanglements of its component states. Especially, if the component states are mutually bi-orthogonal, the entanglement of the superposition state can be exactly given in terms of the entanglements of the states bein...

  8. A measurement-based measure of the size of macroscopic quantum superpositions

    OpenAIRE

    Korsbakken, Jan Ivar; Whaley, K. Birgitta; DuBois, Jonathan; Cirac, J. Ignacio

    2006-01-01

    Recent experiments claiming formation of quantum superposition states in near macroscopic sys- tems raise the question of how the sizes of general quantum superposition states in an interacting system are to be quantified. We propose here a measure of size for such superposition states that is based on what measurements can be performed to probe and distinguish the different branches of the state. The measure allows comparison of the effective size for superposition states in very different p...

  9. Annular and semicircular lipoatrophies. Report of three cases and review of the literature.

    Science.gov (United States)

    Rongioletti, F; Rebora, A

    1989-03-01

    Two cases of semicircular lipoatrophy and one of annular lipoatrophy are presented. The reasons why semicircular lipoatrophy, annular lipoatrophy, and annular atrophy of the ankles seem to be different clinical entities are discussed.

  10. Transforming spatial point processes into Poisson processes using random superposition

    DEFF Research Database (Denmark)

    Møller, Jesper; Berthelsen, Kasper Klitgaaard

    with a complementary spatial point process Y  to obtain a Poisson process X∪Y  with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...

  11. Experiments testing macroscopic quantum superpositions must be slow

    CERN Document Server

    Mari, Andrea; Giovannetti, Vittorio

    2015-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations an...

  12. Superpositions of Lorentzians as the class of causal functions

    CERN Document Server

    Dirdal, Christopher A

    2013-01-01

    We prove that all functions obeying the Kramers-Kronig relations can be approximated as superpositions of Lorentzian functions, to any precision. As a result, the typical text-book analysis of dielectric dispersion response functions in terms of Lorentzians may be viewed as encompassing the whole class of causal functions under the conditions presented here. A further consequence is that Lorentzian resonances may be viewed as possible building blocks for engineering any desired metamaterial response. Two example functions, far from typical Lorentzian resonance behavior, are expressed in terms of Lorentzian superpositions: A steep dispersion medium that achieves large negative susceptibility with arbitrarily low loss/gain, and an optimal realization of a perfect lens over a bandwidth. Error bounds are derived for the approximation.

  13. Quantum Teleportation of Superposition State for Squeezed States

    OpenAIRE

    Cai, Xin-Hua; Kuang, Le-Man

    2002-01-01

    This paper proposes a scheme for teleporting an arbitrary coherent superposition state of two equal-amplitude and opposite-phase squeezed vacuum states (SVS) via a symmetric 50/50 beam splitter and photodetectors. It is shown that the quantum teleportation scheme has the successful probability 1/4. Maximally entangled SVS's are used as quantum channel for realizing the teleportation scheme. It is shown that if an initial quantum channel is in a pure but not maximally entangled SVS, the quantu...

  14. Realization of an Optimally Distinguishable Multi-photon Quantum Superposition

    OpenAIRE

    De Martini, Francesco; Sciarrino, Fabio

    2004-01-01

    We report the successful generation of an entangled multiparticle quantum superposition of pure photon states. They result from a multiple (universal} cloning of a single photon qubit by a high gain, quantum-injected parametric amplifier. The information preserving property of the process suggests for these states the name of ''multi-particle qubits''. They are ideal objects for investigating the emergence of the classical world in quantum systems with increasing complexity, the decoherence p...

  15. Sensing Super-position: Visual Instrument Sensor Replacement

    Science.gov (United States)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an

  16. Detonation diffraction from an annular channel

    Science.gov (United States)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  17. Adiabatic creation of coherent superposition states via multiple intermediate states

    CERN Document Server

    Karpati, A

    2003-01-01

    We consider an adiabatic population transfer process that resembles the well established stimulated Raman adiabatic passage (STIRAP). In our system, the states have nonzero angular momentums $J$, therefore, the coupling laser fields induce transitions among the magnetic sublevels of the states. In particular, we discuss the possibility of creating coherent superposition states in a system with coupling pattern $J=0\\Leftrightarrow J=1$ and $J=1\\Leftrightarrow J=2$. Initially, the system is in the J=0 state. We show that by two delayed, overlapping laser pulses it is possible to create any final superposition state of the magnetic sublevels $|2,-2>$, $|2,0>$, $|2,+2>$. Moreover, we find that the relative phases of the applied pulses influence not only the phases of the final superposition state but the probability amplitudes as well. We show that if we fix the shape and the time-delay between the pulses, the final state space can be entirely covered by varying the polarizations and relative phases of the two pu...

  18. Single-Atom Gating of Quantum State Superpositions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  19. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  20. Obtention of an empirical equation for annular channels

    International Nuclear Information System (INIS)

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  1. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    Science.gov (United States)

    2010-05-04

    ... Recommended Practice (RP) 90. As explained in API RP 90, Section 3, Annular Casing Pressure Management Program... Institute's Recommended Practice for managing annular casing pressure. New regulations are needed because... Continental Shelf lessees to follow best industry practices for wells with sustained casing pressure....

  2. The Design and Manufacturing Report of Non-Instrumented Rig for Dual-cooled Annular Fuel Irradiation Test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Bang, Je Geon; Lim, Ik Sung; Kim, Sun Ki; Yang, Yong Sik; Song, Kun Woo; Seo, Chul Gyo; Park, Chan Kook

    2008-09-15

    This project is preparing to irradiation test of the developed double cooled annular fuel pellet in HANARO for pursuit advanced performance in High Performance Fuel Technology Development as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented rig designed and manufactured for irradiation test in HANARO OR hole. This non- instrumented rig was confirmed the compatibility of HANARO and the integrity of rig structure, and satisfied the quality assurance requirements. This non- instrumented rig is adopt to the irradiation test for double cooled annular fuel pellet in HANARO.

  3. Effect of annular secondary conductor in a linear electromagnetic stirrer

    Indian Academy of Sciences (India)

    R Madhavan; V Ramanarayanan

    2008-10-01

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder. Experimental and numerical simulations are performed for a 2-pole in house built 15 kW linear electromagnetic stirrer (EMS). It is observed for a supply current of 200 A at 30 Hz the force densities in the hollow annular ring is 67% higher than the equivalent solid cylinder. The same values are 33% for annular ring with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are validated with experimental results.

  4. Dual-Band Annular-Ring Microstrip Patch Antenna for Satellite Applications

    Directory of Open Access Journals (Sweden)

    Tvs Divakar

    2014-08-01

    Full Text Available A dual-band circularly polarized antenna fed by four apertures that covers the bands of GPS, Galileo, is introduced. The ARSAs designed using FR4 substrates in the L and S bands have 3-dB axial-ratio bandwidths (ARBWs of as large as 37% and 52%, respectively, whereas the one using an RT5880 substrate in the L band, 61%. In these 3-dB axial-ratio bands, impedance matching with VSWR<=1.8 is also achieved. Three wideband planar baluns are used to achieve good axial ratio and VSWR. The results of the annular-ring microstrip antenna show good performance of a dual-band operation, which meets the requirement of Global Navigation Satellite System (GNSS applications.

  5. AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES

    Institute of Scientific and Technical Information of China (English)

    Guojun Nie; Zheng Zhong

    2007-01-01

    Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.

  6. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  7. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    Directory of Open Access Journals (Sweden)

    Shaohui Liu

    2013-10-01

    Full Text Available We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP. Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients.

  8. Characteristics of Electromagnetic Pulse Coupling into Annular Apertures

    Directory of Open Access Journals (Sweden)

    Yan-Peng Sun

    2013-11-01

    Full Text Available Electromagnetic pulse (EMP coupling into the annular apertures can disturb or damage much electronic equipment. To enhance electronic system’s  capability of anti-electromagnetic interference, the finite difference time domain method (FDTD was employed to study the characteristics of electromagnetic pulse coupling into the cavity enclosures with annular apertures. The coupling characteristics of annular apertures with different shapes (rectangle, square and circle were discussed. It shows that, in the case of the same aperture area, the coupling energy of electromagnetic pulse into the circular annular aperture is smaller than that into the rectangular and the square ones. To the rectangular annular aperture, while the polarization direction of the incident electromagnetic pulse is perpendicular to the long side of the rectangular annular aperture, the coupling energy is larger when the aspect ratio of the rectangular annular aperture is larger. The coupling effect of incident pulse with short pulse width is obviously better than the one with longer pulse width. The resonance phenomenon of the coupled waveform occurs in the cavity.

  9. Efficient Power Allocation for Video over Superposition Coding

    KAUST Repository

    Lau, Chun Pong

    2013-03-01

    In this paper we consider a wireless multimedia system by mapping scalable video coded (SVC) bit stream upon superposition coded (SPC) signals, referred to as (SVC-SPC) architecture. Empirical experiments using a software-defined radio(SDR) emulator are conducted to gain a better understanding of its efficiency, specifically, the impact of the received signal due to different power allocation ratios. Our experimental results show that to maintain high video quality, the power allocated to the base layer should be approximately four times higher than the power allocated to the enhancement layer.

  10. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  11. The entropic squeezing of superposition of two arbitrary coherent states

    Institute of Scientific and Technical Information of China (English)

    Lu Dao-Ming

    2008-01-01

    In this paper the superpusitious of two arbitrary coherent states |ψ>= α|β>+bei4 |mβei(o)> are constructed by using the superposition principle of quantum mechanics.The entropic squeezing effects of the quantum states are studied.The numerical results indicate that the amplitudes,the ratio between the amplitudes of two coherent states,the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.

  12. Three Party Quantum Authenticated Key Distribution Protocol Using Superposition States

    Directory of Open Access Journals (Sweden)

    K. Sathi Reddy

    2011-09-01

    Full Text Available This paper presents a Quantum authenticated key distribution protocol that can perform key distribution and also ensure that the participants of the communication are authentic, both implicitly and explicitly. This protocol provides new directions in Classical cryptography and Quantum cryptography.The Participants of the protocol trust the third party regarding the authentication part only. Thus the proposed protocol will be preferable for network systems which deal with highly sensitive information, such as military, hospitals, research facilities. Our protocol utilizes polarized photons in superposition states for authentication and key distribution which provides high security against many attacks.

  13. Scaling of macroscopic superpositions close to a quantum phase transition

    Science.gov (United States)

    Abad, Tahereh; Karimipour, Vahid

    2016-05-01

    It is well known that in a quantum phase transition (QPT), entanglement remains short ranged [Osterloh et al., Nature (London) 416, 608 (2005), 10.1038/416608a]. We ask if there is a quantum property entailing the whole system which diverges near this point. Using the recently proposed measures of quantum macroscopicity, we show that near a quantum critical point, it is the effective size of macroscopic superposition between the two symmetry breaking states which grows to the scale of system size, and its derivative with respect to the coupling shows both singular behavior and scaling properties.

  14. Capacity-Approaching Superposition Coding for Optical Fiber Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive......-SCM) is employed in the framework of bit-interleaved coded modulation with iterative decoding (BICM-ID) for forward error correction. The fiber transmission system is characterized in terms of signal-to-noise ratio for back-to-back case and correlated with simulated results for ideal transmission over additive...

  15. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  16. Coherent control of mesoscopic superpositions in a diatomic molecule

    CERN Document Server

    Ghosh, Suranjana

    2011-01-01

    A phase controlled wave packet, recently used in experiment of wave packet interferometry of a diatomic molecule, is investigated to obtain mesoscopic superposition structures, useful in quantum metrology. This analysis provides a new way of obtaining sub-Planck scale structures at smaller time scale of revival dynamics. We study a number of situations for delineating the smallest interference structures and their control by tailoring the relative phase between two subsidiary wave packets. We also find the most appropriate state, so far, for high precision parameter estimation in a system of diatomic molecule.

  17. Quantum teleportation of one- and two-photon superposition states

    Institute of Scientific and Technical Information of China (English)

    李英; 张天才; 张俊香; 谢常德

    2003-01-01

    Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.

  18. Seeing lens imaging as a superposition of multiple views

    CERN Document Server

    Grusche, Sascha

    2015-01-01

    In the conventional approach to lens imaging, rays are used to map object points to image points. However, many students have a need to think of the image as a whole. To answer this need, lens imaging is reinterpreted as a superposition of sharp images from different viewpoints. These so-called elemental images are uncovered by covering the lens with a pinhole array. Rays are introduced to connect elemental images. Lens ray diagrams are constructed based on bundles of elemental images. The conventional construction method is included as a special case. The proposed approach proceeds from concrete images to abstract rays.

  19. Detonation Initiation by Annular Jets and Shock Waves

    OpenAIRE

    Shepherd, Joseph E.

    2005-01-01

    The objective of this research is to experimentally determine the feasibility of initiating detonation in fuel-air mixtures using only the energy in hot, compressed air. The existing 6-inch shock tube at Caltech was used to create hot, high-pressure air behind a reflected shock wave. The hot air created an imploding annular shock wave when it jetted through an annular orifice into a 76-mm-diameter, 1-m-long tube attached to the end of the shock tube. A special test section with an annular ...

  20. Radiation and reflection acoustical fields of an annular phased array

    Institute of Scientific and Technical Information of China (English)

    LAI Puxiang; ZHANG Bixing; WANG Chenghao

    2007-01-01

    The characteristics of the radiation and reflection acoustical fields of an annular phased array are investigated. The effects of the element number, element radius, interelement spacing, centre frequency, focus position, and other parameters on the radiation acoustical field of the annular phased array is theoretically studied. In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experimental measurements are conducted. The radiation acoustical field and its reflection on a liquid-solid interface are theoretically and experimentally studied. The experimental result is in good agreement with the theoretical one.

  1. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons

    Science.gov (United States)

    Hibberd, K. E.; Dunning, C.; Links, J.

    2006-08-01

    We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrödinger operators. For the solution we derive here the potential of the Schrödinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.

  2. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, K.E. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia); Dunning, C. [Institute of Mathematics, Statistics and Actuarial Science, University of Kent (United Kingdom); Links, J. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia)]. E-mail: jrl@maths.uq.edu.au

    2006-08-07

    We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.

  3. A post-correction modal superposition method for nonlinear dynamic analysis

    International Nuclear Information System (INIS)

    A post-correction algorithm developed for the dynamic analysis of simple nonlinear and hysteretic structures is extended for the analysis of building structures under earthquake loadings. The nonlinearities in the system are moved to the right-hand-side of the equations of motion and treated as a generalized loading. At each time step, the equations of motion for the resulting linear system are solved either numerically using the constant acceleration method, or analytically using modal superposition. The effect of the nonlinear generalized forces is made equivalent to a series of impulse forces acting on the resulting linear system. The method does not require the re-factorization of the effective tangent stiffness matrix at each step of the integration. (author)

  4. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  5. Experiments testing macroscopic quantum superpositions must be slow

    Science.gov (United States)

    Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio

    2016-03-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  6. Outage probability analysis for superposition coded symmetric relaying

    Institute of Scientific and Technical Information of China (English)

    WU Yi; ZHENG Meng; FEI ZeSong; LARSSON Erik G.; KUANG JingMing

    2013-01-01

    Superposition coded symmetric relaying is a bandwidth-efficient cooperative scheme where each source node simultaneously transmits both its own "local" packet and "relay" packet that originated at its partner by adding the modulated local and relay signals in Euclidean space. This paper investigates the power allocation and outage probability of a superposition coded symmetric relaying system with finite-constellation signaling. We first derive the mutual information (MI) metrics for the system. The derived MI metrics consist of two parts: one represents the MI conveyed by the modulated signal corresponding to its own data, and the other represents the MI conveyed by the modulated signal corresponding to its partner's data. Using MI based effective signal-to-noise ratio mapping technique, we attain expressions for the outage probability. Furthermore, we discuss power allocation policies that minimize the outage probability. Simulation results are presented to verify the correctness of the outage probability analysis and the benefits of the power allocation.

  7. Superposition states for quantum nanoelectronic circuits and their nonclassical properties

    Science.gov (United States)

    Choi, Jeong Ryeol

    2016-09-01

    Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.

  8. Double-Fock superposition interferometry for differential diagnosis of decoherence

    International Nuclear Information System (INIS)

    Interferometric signals are degraded by decoherence, which encompasses dephasing, mixing and any distinguishing which-path information. These three paradigmatic processes are fundamentally different, but, for coherent, single-photon and N00N-states, they degrade interferometric visibility in the very same way, which impedes the diagnosis of the cause for reduced visibility in a single experiment. We introduce a versatile formalism for many-boson interferometry based on double-sided Feynman diagrams, which we apply to a protocol for differential decoherence diagnosis: twin-Fock states ∣N,N〉 with N⩾2 reveal to what extent decoherence is due to path distinguishability or to mixing, while double-Fock superpositions ∣N:M〉=(∣N,M〉+∣M,N〉)/√2 with N>M>0 additionally witness the degree of dephasing. Hence, double-Fock superposition interferometry permits the differential diagnosis of decoherence processes in a single experiment, indispensable for the assessment of interferometers. (paper)

  9. Experiments testing macroscopic quantum superpositions must be slow.

    Science.gov (United States)

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  10. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    CERN Document Server

    Halder, P; Roy, P Deb; Das, H S

    2014-01-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with...

  11. Effects study on the thermal stresses in a LEU metal foil annular target

    International Nuclear Information System (INIS)

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal–mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results. - Highlights: • Analyzed the thermal stresses in a low-enriched uranium foil based annular target. • Included fission gas, uranium swelling, and thermal contact conductance effects. • Worst case scenarios for temperature and stresses were found to be different. • Sensitivity studies on the foil heat generation rates were performed. • Temperature and stress were found to be within acceptable limits

  12. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    Energy Technology Data Exchange (ETDEWEB)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  13. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    Science.gov (United States)

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.

  14. Principle of radial transport in low temperature annular plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Bldg 60, Mills Road, Australian Capital Territory 2601 (Australia)

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  15. Annular bright and dark field imaging of soft materials

    International Nuclear Information System (INIS)

    Here polyethylene, as an example of an important soft material, was studied by STEM annular bright and dark field. The contrast as function of the probe size/shape and the detector collection angle are discussed. The results are compared to conventional bright field transmission electron microscopy, electron energy filtered imaging and energy dispersive spectroscopy mapping. Annular bright and dark field gave a higher contrast than conventional transmission and analytical mapping techniques

  16. Student ability to distinguish between superposition states and mixed states in quantum mechanics

    Science.gov (United States)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.

  17. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    Science.gov (United States)

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices. PMID:26903412

  18. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    Science.gov (United States)

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.

  19. Annular burnout data from rod bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests

  20. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine

    OpenAIRE

    Abe, Sumiyoshi; Okuyama, Shinji

    2012-01-01

    A role of the superposition principle is discussed for the quantum-mechanical Carnot engine introduced by Bender, Brody, and Meister [J. Phys. A 33, 4427 (2000)]. It is shown that the efficiency of the engine can be enhanced by superposition of quantum states. A finite-time process is also discussed, and the condition of the maximum power output is presented. Interestingly, the efficiency at the maximum power is lower than that without superposition.

  1. Connection between the N00N State and a superposition of SU(2) Coherent States

    OpenAIRE

    Sanders, Barry C.; Gerry, Christopher C.

    2014-01-01

    The N00N state, which was introduced as a resource for quantum-enhanced metrology, is in fact a special case of a superposition of two SU(2) coherent states. We show here explicitly the derivation of the N00N state from the superposition state. This derivation makes clear the connection between these seemingly disparate states as well as shows how the N00N state can be generalized to a superposition of SU(2) coherent states.

  2. Collapsing a Perfect Superposition to a Chosen Quantum State without Measurement

    OpenAIRE

    Ahmed Younes; Mahmoud Abdel-Aty

    2014-01-01

    Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator appl...

  3. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities

    OpenAIRE

    Thijssen, Arthur C. T.; Martin J. Cryan; Rarity, John G.; Oulton, Ruth

    2012-01-01

    We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in "L3" and "H1" photonic crystal cavities are able to transfer a spin superposition state to a confined photonic superposition state for use in quantum information transfer. Using an established dyadic Green...

  4. Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition

    OpenAIRE

    Liu, Shi-you; Huang, Jie-Hui; Hu, Li-Yun; Duan, Zheng-lu; Xu, Xue-xiang; JI, YING-HUA

    2014-01-01

    A new entangled quantum state is introduced by applying local coherent superposition (ra^+ +ta) of photon subtraction and addition to each mode of even entangled coherent state (EECS) and the properties of entanglement are investigated. It is found that the Shchukin-Vogel inseparability, the degree of entanglement and the average fidelity of quantum teleportation of the EECS can be improved due to the coherent superposition operation. The effects of improvement by coherent superposition opera...

  5. Superposition Coherent States and Their Properties%叠加相干态及其性质

    Institute of Scientific and Technical Information of China (English)

    董传华

    2000-01-01

    Special kinds of generalized superposition states, superposition coherent states, are studied in this paper. These states can be produced by superposing a pair of coherent states |α>and |α>.Their quantum statistical properties, the fluctuations of field and squeezing have been discussed in detail. These properties are dependent on superposition phase. We also describe the squeezing regions in phase space for these states.

  6. A Possible Resolution of the Tolman Paradox as a Quantum Superposition

    CERN Document Server

    Fayngold, Moses

    2011-01-01

    This is an attempt to find a hidden virtue in Tolman's paradox by showing that it can give rise to quantum superposition. We consider tachyon exchange between two particles and show that it can generate superposition of eigenstates characterizing each particle, as well as the entangled state of the particle pair. The new possible aspect of quantum superposition reveals an unexpected connection with cosmological expansion of the Universe.

  7. Disappearance of macroscopic superpositions in perfectly isolated systems by thermalization processes

    OpenAIRE

    Park, Chae-Yeun; Jeong, Hyunseok

    2016-01-01

    Schr\\"odinger's illustration of an imaginary cat in a box, neither alive nor dead, leads to a question of whether and how long a macroscopic quantum superposition can exist in various situations. It is well known that a macroscopic superposition is destroyed very quickly by environmental effects called decoherence. On the contrary, it is often believed that a macroscopic superposition continues to "survive" if it is ideally isolated from its environment. In this paper, using a well-establishe...

  8. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine.

    Science.gov (United States)

    Abe, Sumiyoshi; Okuyama, Shinji

    2012-01-01

    The role of the superposition principle is discussed for the quantum-mechanical Carnot engine introduced by Bender, Brody, and Meister [J. Phys. A 33, 4427 (2000)]. It is shown that the efficiency of the engine can be enhanced by the superposition of quantum states. A finite-time process is also discussed and the condition of the maximum power output is presented. Interestingly, the efficiency at the maximum power is lower than that without superposition.

  9. The number of terms in the superpositions upper bounds the amount of the coherence change

    Science.gov (United States)

    Liu, Feng; Li, Fei

    2016-10-01

    For the l1 norm of coherence, what is the relation between the coherence of a state and the individual terms that by superposition yield the state? We find upper bounds on the coherence change before and after the superposition. When every term comes from one Hilbert subspace, the upper bound is the number of terms in the superpositions minus one. However, when the terms have support on orthogonal subspaces, the coherence of the superposition cannot be more the double of the above upper bound than the average of the coherence of the all terms being superposed.

  10. On first-order theorem proving using generalized odd-superpositions

    Institute of Scientific and Technical Information of China (English)

    吴尽昭; 刘卓军

    1996-01-01

    It is shown that the proof system using odd-superpositions Ⅱ is not complete.The reason leading to this incompleteness is that the use of idempotency rule is neglected.By defining the superpositions of first-order polynomials and zero,the concept of odd-superpositions Ⅱ is extended,and a complete proof system using the extended odd-superpositions Ⅱ is developed.In addition,this proof system is an improvement on remainder method;its completeness demonstrates actually that the remainder method using semantic strategy is still complete.

  11. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    Science.gov (United States)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  12. Adiabatic rotation, quantum search, and preparation of superposition states

    Science.gov (United States)

    Siu, M. Stewart

    2007-06-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.

  13. Predicting jet radius in electrospinning by superpositioning exponential functions

    Science.gov (United States)

    Widartiningsih, P. M.; Iskandar, F.; Munir, M. M.; Viridi, S.

    2016-08-01

    This paper presents an analytical study of the correlation between viscosity and fiber diameter in electrospinning. Control over fiber diameter in electrospinning process was important since it will determine the performance of resulting nanofiber. Theoretically, fiber diameter was determined by surface tension, solution concentration, flow rate, and electric current. But experimentally it had been proven that significantly viscosity had an influence to fiber diameter. Jet radius equation in electrospinning process was divided into three areas: near the nozzle, far from the nozzle, and at jet terminal. There was no correlation between these equations. Superposition of exponential series model provides the equations combined into one, thus the entire of working parameters on electrospinning take a contribution to fiber diameter. This method yields the value of solution viscosity has a linear relation to jet radius. However, this method works only for low viscosity.

  14. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    Science.gov (United States)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The

  15. Mesoscopic Quantum Superposition of Generalized Cat State: A Diffraction limit

    CERN Document Server

    Ghosh, Suranjana; Panigrahi, Prasanta K

    2015-01-01

    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of large number of states. The mesoscopic superposition of the generalized cat state is correlated with the corresponding state overlap function, controlled by the sub-Planck structures arising from phase space interference. The asymptotic expression of this overlap function is evaluated and the validity of large phase space support and distinguishability of the constituent states, in which context the asymptotic limit is achieved, are discussed in detail. For large number of coherent states, uniformly located on a circle, the overlap function significantly matches with the diffraction pattern for a circular ring source with uniform angular strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function, matches with a diffraction pattern. The physical situation under consideration is delineated in ...

  16. Quantum Decoherence Timescales for Ionic Superposition States in Ion Channels

    CERN Document Server

    Salari, V; Fazileh, F; Shahbazi, F

    2014-01-01

    There are many controversial and challenging discussions about quantum effects in microscopic structures in neurons of the human brain. The challenge is mainly because of quick decoherence of quantum states due to hot, wet and noisy environment of the brain which forbids long life coherence for brain processing. Despite these critical discussions, there are only a few number of published papers about numerical aspects of decoherence in neurons. Perhaps the most important issue is offered by Max Tegmark who has calculated decoherence times for the systems of "ions" and "microtubules" in neurons of the brain. In fact, Tegmark did not consider ion channels which are responsible for ions displacement through the membrane and are the building blocks of electrical membrane signals in the nervous system. Here, we would like to re-investigate decoherence times for ionic superposition states by using the data obtained via molecular dynamics simulations. Our main approach is according to what Tegmark has used before. I...

  17. Vibration Superposition in Tunnel Blasting with Millisecond Delay

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-jie; LOU Xiao-ming; LUO De-pi

    2009-01-01

    According to explosion dynamics and elastic wave theory,the models of particle vibration velocity for simultaneous blasting and millisecond blasting are built.In the models,influential factors such as delay interval and charge quantity,are considered.The calculated vibration velocity is compared with the field test results,which shows that the theoretical values are close to the experimental ones.Meanwhile,the particle vibration velocity decreases quickly with time due to the damping of rock mass and has a harmonic motion,and the particle vibration velocity of millisecond blasting has short interval.The superposition of particle vibration velocities may reduce vibration because of wave interference,or magnify the surrounding rock response to the blasting-induced vibration.

  18. X-ray diffraction from bone employing annular and semi-annular beams

    International Nuclear Information System (INIS)

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  19. Sea Carousel—A benthic, annular flume

    Science.gov (United States)

    Amos, Carl L.; Grant, J.; Daborn, G. R.; Black, K.

    1992-06-01

    A benthic annular flume (Sea Carousel) has been developed and tested to measure in situ the erodibility of cohesive sediments. The flume is equipped with three optical backscatter sensors, a lid rotation switch, and an electromagnetic (EM) flow meter capable of detecting azimuthal and vertical components of flow. Data are logged at rates up to 10·66 Hz. Erodibility is inferred from the rate of change in suspended sediment concentration detected in the annulus. The energy-density/wave number spectrum of azimuthal flow showed peaks in the energy spectrum at paddle rotation wave numbers (k) of 14 and 7 m -1 (macroturbulent time scales) but were not significant. Friction velocity ( U*), measured (1) at 1 Hz using a flush-mounted hot-film sensor, and (2) derived from measured velocity profiles in the inner part of the logarithmic layer gave comparable results for Ū* 0·32 m s -1. Radial velocity gradients were proportional to ( Ū y - 0·32 m s -1). Maximum radial differences in U* were 10% for Ū y = 0·5 ms -1. Suspended sediment mass concentration ( S) in the annulus resulted in a significant decrease (10·5%) in Ū* derived by method (1) over the range 0calibration with changes in S. Subaerial deployments of Sea Carousel caused severe substrate disturbance, water losses, and aeration of the annulus. Submarine deployments produced stable results, though dispersion of turbid flume water took place. Results clearly demonstrated the existence of 'Type I' and 'Type II' erosion documented from laboratory studies.

  20. Superpositions in Prigogine's approach to irreversibility for physical and financial applications

    OpenAIRE

    Carfi', David

    2008-01-01

    In this paper we apply the theory of superpositions for Radon measures on compact subsets of the real Euclidean n-space Rn to Prigogine's approach in the study of irreversible processes, which emerge in physics and in economics, showing that the superposition is a natural rigorous tool feasible to face the problem.

  1. A note on superposition of two unknown states using Deutsch CTC model

    CERN Document Server

    Sami, Sasha

    2016-01-01

    In a recent work, authors prove a yet another no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. In this short note, we show that in the presence of closed time like curves, one can indeed create superposition of unknown quantum states and evade the no-go result.

  2. Generation of superpositions of coherent states for an atomic sample in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2009-01-01

    This paper proposes a scheme for generation of superpositions of coherent states of the effective bosonic mode in a collection of atoms. In the scheme an atomic sample interacts with a slightly detuned cavity mode and a resonant strong classical field. Under certain conditions the atomic system evolves from a coherent state to a superposition of coherent states.

  3. Mesoscopic Superposition of States with Sub-Planck Structures in Phase Space

    OpenAIRE

    Agarwal, G. S.; Pathak, P. K.

    2003-01-01

    We propose a method using the dispersive interaction between atoms and a high quality cavity to realize the mesoscopic superposition of coherent states which would exhibit sub-Planck structures in phase space. In particular we focus on a superposition involving four coherent states. We show interesting interferences in the conditional measurements involving two atoms.

  4. Generation of any superposition of Dicke state of excitons in coupled quantum dots

    OpenAIRE

    Zou, XuBo; Pahlke, K.; Mathis, W.

    2002-01-01

    We present a scheme to generate arbitrary superposition of the Dicke states of excitons in optically driven quantum dots. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on Dicke state. It is shown that N laser pulses are needed to generate arbitrary superposition of the Dicke states of N quantum dots.

  5. Testing quantum superpositions of the gravitational field with Bose-Einstein condensates

    OpenAIRE

    Lindner, Netanel H.; Peres, Asher

    2004-01-01

    We consider the gravity field of a Bose-Einstein condensate in a quantum superposition. The gravity field then is also in a quantum superposition which is in principle observable. Hence we have ``quantum gravity'' far away from the so-called Planck scale.

  6. Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

    OpenAIRE

    Franco, R. Lo; Compagno, G; Messina, A.; Napoli, A.

    2007-01-01

    We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.

  7. Superposition Principle and Young Type Double-Slit Experiment in Vacuum

    CERN Document Server

    Savas, A

    2002-01-01

    In this study, it is shown with reasons that superposition principle does not work in vacuum. This case can be observed by Young type double slit experiment to be carried out. Since field-field interaction is carried through charged particles, in the absence of charged particles linear superposition of two fields is not possible and interference will not be observed.

  8. Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics

    Science.gov (United States)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…

  9. Far-field Diffraction Properties of Annular Walsh Filters

    Directory of Open Access Journals (Sweden)

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  10. Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly Flow

    Directory of Open Access Journals (Sweden)

    Gérard PINEAU

    2011-09-01

    Full Text Available For some applications it must be considered that the flow in the annular seal contains a mixture of liquid and gas. The multiphase character of the flow is described by the volume fraction of gas (usually air contained in the liquid under the form of bubbles.The fluid is then a homogenous mixture of air and liquid all thru the annular seal. Its local gas volume fraction depends on the pressure field and is calculated by using a simplified form of the Rayleigh-Plesset equation.The influence of such of a multiphase (bubbly flow on the dynamic characteristics of a straight annular seal is minimal because the volume of the fluid is reduced.The situation is quite different for textured annular (damper seals provided with equally spaced deep cavities intended to increase the damping capabilities and to reduce the leakage flow rate.As a by-product, the volume of the fluid in the seal increases drastically and the compressibility effects stemming from the bubbly nature of the flow are largely increased even for a low gas volume fraction. The present work depicts the influence of the gas volume fraction on the dynamic characteristics of a textured annular seal. It is shown that variations of the gas volume fraction between 1% and 0.1% can lead to frequency dependent stiffness, damping and added mass coefficients.

  11. Generation of discrete superpositions of coherent states in the anharmonic oscillator model

    CERN Document Server

    Miranowicz, A; Kielich, S; 10.1088/0954-8998/2/3/006

    2011-01-01

    The problem of generating discrete superpositions of coherent states in the process of light propagation through a nonlinear Kerr medium, which is modelled by the anharmonic oscillator, is discussed. It is shown that under an appropriate choice of the length (time) of the medium the superpositions with both even and odd numbers of coherent states can appear. Analytical formulae for such superpositions with a few components are given explicitly. General rules governing the process of generating discrete superpositions of coherent states are also given. The maximum number of well distinguished states that can be obtained for a given number of initial photons is estimated. The quasiprobability distribution $Q(\\alpha,\\alpha^*,t)$ representing the superposition states is illustrated graphically, showing regular structures when the component states are well separated.

  12. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  13. Annular lupus vulgaris: an unusual case undiagnosed for five years.

    Science.gov (United States)

    Gönül, Müzeyyen; Kiliç, Arzu; Külcü Cakmak, Seray; Gül, Ulker; Koçak, Oğuzhan; Demiriz, Murat

    2007-01-01

    Tuberculosis is still a serious problem in both developing and developed countries. It is often confused with various cutaneous disorders both clinically and histopathologically.A 46-year-old woman attended our clinic with progressive, asymptomatic, annular skin lesions on her right upper extremity for 5 years. She had received many different therapies for these lesions at other institutions previously but these medications were not effective and the lesions deteriorated. On dermatological examination, well-demarcated, irregular bordered, violaceous colored, elevated and crusted annular lesions on her right hand dorsum and forearm were observed. She was diagnosed as having lupus vulgaris clinically and histopathologically. Antituberculosis therapy was administered and regression of the lesions started in the second week of medication.We report a case of long-standing, undiagnosed and uncommon, annular form of lupus vulgaris. We want to stress that clinical and histopathological findings are still important for the diagnosis of cutaneous tuberculosis.

  14. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  15. The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS) from quantum control to quantum computing

    CERN Document Server

    Zadoyan, R; Lidar, D A; Apkarian, V A

    2001-01-01

    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 1000 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. Beside the control and imaging of chemistry, the controlled manipulation of...

  16. Solar Supergranulation Revealed as a Superposition of Traveling Waves

    Science.gov (United States)

    Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)

    2002-01-01

    40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.

  17. Large quantum superpositions of a nanoparticle immersed in superfluid helium

    Science.gov (United States)

    Lychkovskiy, O.

    2016-06-01

    Preparing and detecting spatially extended quantum superpositions of a massive object comprises an important fundamental test of quantum theory. These quantum states are extremely fragile and tend to quickly decay into incoherent mixtures due to the environmental decoherence. Experimental setups considered up to date address this threat in a conceptually straightforward way—by eliminating the environment, i.e., by isolating an object in a sufficiently high vacuum. We show that another option exists: decoherence is suppressed in the presence of a strongly interacting environment if this environment is superfluid. Indeed, as long as an object immersed in a pure superfluid at zero temperature moves with a velocity below the critical one, it does not create, absorb, or scatter any excitations of the superfluid. Hence, in this idealized situation the decoherence is absent. In reality the decoherence will be present due to thermal excitations of the superfluid and impurities contaminating the superfluid. We examine various decoherence channels in the superfluid

  18. Mathematical Model of Combustion in Blunt Annular Ceramic Burner

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The computer simulation of the combustion process in blast furnace (BF) stove has been studied by using the k-ε-g turbulent diffusion flame model. The combustion process in blunt annular ceramic burner was calculated by using the software. The profiles of gas and air velocity, temperature of the combustion products, concentration of the components, and the shape and length of the flame during combustion have been researched . Compared with the original annular ceramic burner, the new design of the blunt one improves the mixing of the gas and the air significantly, and shortened the length of the flame.

  19. Mitral-aortic annular enlargement: modification of Manouguian's technique

    Directory of Open Access Journals (Sweden)

    Costa Mario Gesteira

    2002-01-01

    Full Text Available We hereby present a technical modification for mitral-aortic annular enlargement. The mitral valve is replaced through the retro-septal approach, avoiding patches for left atrial roof closure. We report a mitral-aortic valve replacement in a patient whose original annuli would preclude adequate prostheses. The simultaneous annular enlargement may be necessary for avoiding patient-prosthesis mismatch and for reconstructing destroyed mitral and aortic annuli. The technique may minimize the risk of bleeding and of paravalvular leakage, using an approach well known to cardiac surgeons.

  20. Portal annular pancreas: the pancreatic duct ring sign on MRCP.

    Science.gov (United States)

    Lath, Chinar O; Agrawal, Dilpesh S; Timins, Michael E; Wein, Melissa M

    2015-12-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  1. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    Directory of Open Access Journals (Sweden)

    Chinar O. Lath, MD

    2015-12-01

    Full Text Available Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature.

  2. Flow Visualisation of Annular Liquid Sheet Instability & Atomisation

    CERN Document Server

    Duke, Daniel; Soria, Julio

    2012-01-01

    Fluid dynamics videos of unstable thin annular liquid sheets are presented in this short paper. These videos are to be presented in the Gallery of Fluid Motion for the American Physical Society 65th Annual Meeting of the Division of Fluid Dynamics in San Diego, CA, 18-20 November 2012. An annular sheet of thickness h=1mm and mean radius R=18.9mm is subjected to aerodynamic axial shear from co-flowing air at various shear rates on both the inner and outer surface at a liquid sheet Reynolds Number of Re=500.

  3. Patch Type Granuloma Annulare Imitating Cutaneous T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Seval Doğruk Kaçar

    2015-03-01

    Full Text Available Granuloma annulare (GA is a benign inflammatory skin disease with distinct clinical and histopathological findings. Patch type GA is described with erythematous patches beyond the classical clinical appearance and an interstitial pattern is observed without histopathologically granulomas with disseminated histiocytes among collagen bundles and vessels. Here we report 46 year old woman diagnosed as patch type GA after a punch biopsy performed from the annular bordered patches in belly area, which is a classical area for mycosis fungoides (MF evolution, and lesions increasingly spreading out within a 2 year period.

  4. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    Energy Technology Data Exchange (ETDEWEB)

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  5. Generating superposition of up-to three photons for continuous variable quantum information processing.

    Science.gov (United States)

    Yukawa, Mitsuyoshi; Miyata, Kazunori; Mizuta, Takahiro; Yonezawa, Hidehiro; Marek, Petr; Filip, Radim; Furusawa, Akira

    2013-03-11

    We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states. PMID:23482124

  6. Superpositions of the orbital angular momentum for applications in quantum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vaziri, Alipasha; Weihs, Gregor; Zeilinger, Anton [Institut fuer Experimentalphysik, Universitaet Wien, Boltzmanngasse 5, 1090 Vienna (Austria)

    2002-04-01

    Two different experimental techniques for preparing and analysing superpositions of Gaussian and Laguerre-Gaussian modes are presented. These involve exploiting an interferometric method in one case and using computer-generated holograms in the other. It is shown that by shifting a hologram with respect to an incoming Gaussian beam, different superpositions of the Gaussian and the Laguerre-Gaussian beam can be produced. An analytical expression connecting the relative phase, the amplitudes of the modes and the displacement of the hologram is given. The application of such orbital angular momenta superpositions in quantum experiments such as quantum cryptography is discussed.

  7. A convolution-superposition dose calculation engine for GPUs

    International Nuclear Information System (INIS)

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  8. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  9. Design curves for circular and annular duct silencers

    Science.gov (United States)

    Watson, Willie R.; Ramakrishnan, R.

    1989-01-01

    Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.

  10. Improvement of image processing algorithms for annular flow

    International Nuclear Information System (INIS)

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  11. Flow of viscoplastic fluids in eccentric annular geometries

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1992-01-01

    A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used ...

  12. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius

    NARCIS (Netherlands)

    Belusic, Gregor; Pirih, Primoz; Stavenga, Doekele G.; Belušič, Gregor; Pirih, Primož

    2013-01-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microsco

  13. Design and Evaluation of a Research-Based Teaching Sequence: The Superposition of Electric Field.

    Science.gov (United States)

    Viennot, L.; Rainson, S.

    1999-01-01

    Illustrates an approach to research-based teaching strategies and their evaluation. Addresses a teaching sequence on the superposition of electric fields implemented at the college level in an institutional framework subject to severe constraints. Contains 28 references. (DDR)

  14. Collapsing a perfect superposition to a chosen quantum state without measurement.

    Directory of Open Access Journals (Sweden)

    Ahmed Younes

    Full Text Available Given a perfect superposition of [Formula: see text] states on a quantum system of [Formula: see text] qubits. We propose a fast quantum algorithm for collapsing the perfect superposition to a chosen quantum state [Formula: see text] without applying any measurements. The basic idea is to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary entanglement to mark [Formula: see text] in the superposition, and the second operator applies selective phase shifts on the states in the superposition according to their Hamming distance with [Formula: see text]. The generated state can be used as an excellent input state for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers no advantage, in principle, over the obvious measurement-based feedback protocol.

  15. Can the Hypothesis 'Photon Interferes only with Itself' be Reconciled with Superposition of Light from Multiple Beams or Sources?

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing

    2007-01-01

    Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.

  16. Mesoscopic superposition and sub-Planck-scale structure in molecular wave packets

    OpenAIRE

    Ghosh, Suranjana; Chiruvelli, Aravind; Banerji, J.; P. K. Panigrahi

    2005-01-01

    We demonstrate the possibility of realizing sub-Planck-scale structures in the mesoscopic superposition of molecular wave packets involving vibrational levels. The time evolution of the wave packet, taken here as the SU(2) coherent state of the Morse potential describing hydrogen iodide molecules, produces macroscopicquantum- superposition-like states, responsible for the above phenomenon. We investigate the phase-space dynamics of the coherent state through the Wigner function approach and i...

  17. Transition to sub-Planck structures through the superposition of q-oscillator stationary states

    OpenAIRE

    Jafarov, EI; Van der Jeugt, Joris

    2010-01-01

    We investigate the superposition of four different quantum states based on the $q$-oscillator. These quantum states are expressed by means of Rogers-Szeg\\"o polynomials. We show that such a superposition has the properties of the quantum harmonic oscillator when $q\\to 1$, and those of a compass state with the appearance of chessboard-type interference patterns when $q \\to 0$.

  18. Entanglement, EPR correlations and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification

    OpenAIRE

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Sciarrino, Fabio; Secondi, Veronica

    2006-01-01

    We investigate the multiparticle quantum superposition and the persistence of multipartite entanglement of the quantum superposition generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.

  19. Realization of a Decoherence-free, Optimally Distinguishable Mesoscopic Quantum Superposition

    OpenAIRE

    De Martini, Francesco; Sciarrino, Fabio; Secondi, Veronica

    2005-01-01

    We report the realization of an entangled quantum superposition of M=12 photons by a high gain, quantum-injected optical parametric amplification. The system is found so highly resilient against decoherence to exhibit directly accessible mesoscopic interference effects at normal temperature. By modern tomographic methods the non-separability and the quantum superposition are demonstrated for the overall mesoscopic output state of the dynamic ''closed system''. The device realizes the conditio...

  20. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction

    OpenAIRE

    Takahashi, Hiroki; Wakui, Kentaro; Suzuki, Shigenari; Takeoka, Masahiro; Hayasaka, Kazuhiro; Furusawa, Akira; Sasaki, Masahide

    2008-01-01

    We propose and demonstrate a novel method to generate a large-amplitude coherent-state superposition (CSS) via ancilla-assisted photon-subtraction. The ancillary mode induces quantum interference of indistinguishable processes, widening the controllability of quantum superposition at the conditional output. We demonstrate the concept in the time domain, by a simple time-separated two-photon subtraction from cw squeezed light. We observe the largest CSS ever reported without any corrections, w...

  1. Comment on Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    OpenAIRE

    Anand, Namit

    2015-01-01

    This is a comment to the paper, Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics by C Cisneros et al 1998 Eur. J. Phys. 19 237. doi:10.1088/0143-0807/19/3/005. The proof that the authors construct for the limitation on the superposition of state vectors corresponding to different sectors of the Hilbert space, partitioned by a superoperator has a flaw as outlined below.

  2. Quantum state engineering by a coherent superposition of photon subtraction and addition

    OpenAIRE

    Lee, Su-Yong; Nha, Hyunchul

    2010-01-01

    We study a coherent superposition of field annihilation and creation operator acting on continuous variable systems and propose its application for quantum state engineering. Specifically, it is investigated how the superposed operation transforms a classical state to a nonclassical one, together with emerging nonclassical effects. We also propose an experimental scheme to implement this elementary coherent operation and discuss its usefulness to produce an arbitrary superposition of number s...

  3. Nonlinear quantum mechanics, the superposition principle, and the quantum measurement problem

    Indian Academy of Sciences (India)

    Kinjalk Lochan; T P Singh

    2011-01-01

    There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr ¨odinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the finite superposition lifetime for mesoscopic objects in the near future.

  4. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  5. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  6. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Science.gov (United States)

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. PMID:25997390

  7. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  8. Wind generated rogue waves in an annular wave flume

    CERN Document Server

    Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2016-01-01

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  9. Unusual Presentation of Acute Annular Urticaria: A Case Report

    OpenAIRE

    Gilles Guerrier; Jean-Marc Daronat; Roger Deltour

    2011-01-01

    Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history...

  10. Ignition sequence of an annular multi-injector combustor

    OpenAIRE

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  11. Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers

    OpenAIRE

    Wolf, Pierre

    2011-01-01

    Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the...

  12. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    Science.gov (United States)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  13. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  14. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  15. Treatment of generalized granuloma annulare - a systematic review.

    Science.gov (United States)

    Lukács, J; Schliemann, S; Elsner, P

    2015-08-01

    Granuloma annulare (GA) is a benign inflammatory skin disease. Localized GA is likely to resolve spontaneously, while generalized GA (GGA) is rare and may persist for decades. GGA usually is resistant to a variety of therapeutic modalities and takes a chronic course. The objective of this study was to summarize all reported treatments of generalized granuloma annulare. This is a systematic review based on MEDLINE, Embase and Cochrane Central Register search of articles in English and German and a manual search, between 1980 and 2013, to summarize the treatment of generalized granuloma annulare. Most medical literature on treatment of GGA is limited to individual case reports and small series of patients treated without a control group. Randomized controlled clinical studies are missing. Multiple treatment modalities for GGA were reported including topical and systemic steroids, PUVA, isotretinoin, dapsone, pentoxifylline, hydroxychloroquine, cyclosporine, IFN-γ, potassium iodide, nicotinamide, niacinamide, salicylic acid, dipyridamole, PDT, fumaric acid ester, etanercept, infliximab, adalimumab. While there are numerous case reports of successful treatments in the literature including surgical, medical and phototherapy options, well-designed, randomized, controlled clinical trials are required for an evidence-based treatment of GGA. PMID:25651003

  16. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Huang; Guoxin, Hu [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Fengchao, Wang [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed. (author)

  17. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hao [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Hu Guoxin [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: hugx@sjtu.edu.cn; Wang Fengchao [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed.

  18. The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion

    Institute of Scientific and Technical Information of China (English)

    Liu Cheng-Shi

    2007-01-01

    Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group.Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.

  19. Attosecond probing of state-resolved ionization and superpositions of atoms and molecules

    Science.gov (United States)

    Leone, Stephen

    2016-05-01

    Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.

  20. Selective preparation of the maximum coherent superposition state in four-level atoms

    Institute of Scientific and Technical Information of China (English)

    Li Deng; Yueping Niu; Shangqing Gong

    2011-01-01

    We demonstrate that the maximum coherent superposition state can be selectively prepared using a sequence of pulse pairs in lambda-type atomic systems, with the final level as a doublet. In each pair, the Stocks pulse comes before the pump pulse, with their back edges overlapping. Numerical results indicate that by tuning the interval of the adjacent pulse pairs, the selective maximum coherent superposition state preparation between the initial and one of the final levels can be achieved. The phenomenon is caused by the accumulative property of the pulse sequence.%The coherent superposition state in atoms or molecules plays a crucial role in quantum physics.It has applications in many areas such as electromagnetically induced transparency[1-5],quantum information[6-8] and control of chemical reaction[9-11].Many schemes can prepare the coherent superposition state.For instance,the fractional stimulated Raman adiabatic passage(F-STIRAP) [12] and the coherent population trapping[13] can obtain the maximum coherent superposition state of the two lower levels in lambda-type atoms.Our group also proposed several schemes to achieve this goal,such as the methods based on the STIRAP[14,15] and the pulse train method[16].

  1. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  2. Soil-Structure Interaction Analysis of Tall Reinforced Concrete Chimney with Piled Raft and Annular Raft under Along-Wind Load

    Directory of Open Access Journals (Sweden)

    B. R. Jayalekshmi

    2013-01-01

    Full Text Available A three-dimensional (3D soil-structure interaction (SSI analysis of 300 m high reinforced concrete chimneys having piled annular raft and annular raft foundations subjected to along-wind load is carried out in the present study. To understand the significance of SSI, four types of soils were considered based on their flexibility. The effect of stiffness of the raft was evaluated using three different ratios of external diameter to thickness of the annular raft. The along-wind load was computed according to IS:4998 (Part 1-1992. The integrated chimney-foundation-soil system was analysed by commercial finite element (FE software ANSYS, based on direct method of SSI assuming linear elastic behaviour. FE analyses were carried out for two cases of SSI (I chimney with annular raft foundation and (II chimney with piled raft foundation. The responses in chimney such as tip deflection, bending moments, and base moment and responses in raft such as bending moments and settlements were evaluated for both cases and compared to that obtained from the conventional method of analysis. It is found that the responses in chimney and raft depend on the flexibility of the underlying soil and thickness of the raft.

  3. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    Science.gov (United States)

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  4. Creation of Coherent Superposition States in Inhomogeneously Broadened Media with Relaxation

    CERN Document Server

    Sandor, N; Sörlei, Zs; Djotyan, G P

    2011-01-01

    We propose and analyze a scheme for "on demand" creation of coherent superposition of meta-stable states in a tripod-structured atom using frequency-chirped laser pulses. Negligible excitation of the atoms during the creation of the superposition states is a priority in our consideration. The underlying physics of the scheme is explained using the formalism of adiabatic states. By numerically solving master equation for the density matrix operator, we analyze the influence of the spontaneous decay and transverse relaxation on the efficiency of the creation of superposition states. We show that the proposed scheme is robust against small-to-medium variations of the parameters of the laser pulses. We provide a detailed analysis of the effect of the inhomogeneous (Doppler-) broadening on the efficiency of the coherence creation and show that the proposed scheme may be equally efficient in both homogeneously and Doppler-broadened media.

  5. Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator

    CERN Document Server

    Li, Tongcang

    2016-01-01

    Schr\\"odinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straightforward method to create quantum superposition states of a living microorganism by putting a small bacterium on top of an electromechanical oscillator. Our proposal is based on recent developments that the center-of-mass oscillation of a 15-$\\mu$m-diameter aluminium membrane has been cooled to its quantum ground state [Nature 475, 359 (2011)], and entangled with a microwave field [Science, 342, 710 (2013)]. A microorganism with a mass much smaller than the mass of the electromechanical membrane will not significantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with the membrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. More importantly, the int...

  6. Mesoscopic Superposition States Generated by Synthetic Spin-Orbit Interaction in Fock-State Lattices

    Science.gov (United States)

    Wang, Da-Wei; Cai, Han; Liu, Ren-Bao; Scully, Marlan O.

    2016-06-01

    Mesoscopic superposition states of photons can be prepared in three cavities interacting with the same two-level atom. By periodically modulating the three cavity frequencies around the transition frequency of the atom with a 2 π /3 phase difference, the time reversal symmetry is broken and an optical circulator is generated with chiralities depending on the quantum state of the atom. A superposition of the atomic states can guide photons from one cavity to a mesoscopic superposition of the other two cavities. The physics can be understood in a finite spin-orbit-coupled Fock-state lattice where the atom and the cavities carry the spin and the orbit degrees of freedom, respectively. This scheme can be realized in circuit QED architectures and provides a new platform for exploring quantum information and topological physics in novel lattices.

  7. Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures

    CERN Document Server

    de Ronde, Christian

    2016-01-01

    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction of the orthodox project which attempts to "bridge the gap" between the quantum formalism and common sense "classical reality" --precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to restate the problem of interpretation of quantum mechanics in truly ontological terms we require a radical revision of the problems and definitions addressed within the orthodox literature. On the one hand, we will discuss the need of providing a formal redefinition of superpositions which captures their contextual character. On the other hand, we attempt to replace the focus on the measurement problem, which concentrates on the justification of measurement outcomes from "weird" superposed ...

  8. Neural networks learn highly selective representations in order to overcome the superposition catastrophe.

    Science.gov (United States)

    Bowers, Jeffrey S; Vankov, Ivan I; Damian, Markus F; Davis, Colin J

    2014-04-01

    A key insight from 50 years of neurophysiology is that some neurons in cortex respond to information in a highly selective manner. Why is this? We argue that selective representations support the coactivation of multiple "things" (e.g., words, objects, faces) in short-term memory, whereas nonselective codes are often unsuitable for this purpose. That is, the coactivation of nonselective codes often results in a blend pattern that is ambiguous; the so-called superposition catastrophe. We show that a recurrent parallel distributed processing network trained to code for multiple words at the same time over the same set of units learns localist letter and word codes, and the number of localist codes scales with the level of the superposition. Given that many cortical systems are required to coactivate multiple things in short-term memory, we suggest that the superposition constraint plays a role in explaining the existence of selective codes in cortex. PMID:24564411

  9. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case

    OpenAIRE

    Kawaida, Hiromichi; KONO, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-01-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving panc...

  10. Repeated mitral valve replacement in a patient with extensive annular calcification

    OpenAIRE

    Kitamura Tadashi; Fukuda Sachito; Sawada Takahiro; Miura Sumio; Kigawa Ikutaro; Miyairi Takeshi

    2011-01-01

    Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular...

  11. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  12. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case.

    Science.gov (United States)

    Kawaida, Hiromichi; Kono, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-08-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving pancreaticoduodenectomy was performed. Histopathology showed pancreatic carcinoma occurring in the complete annular pancreas.

  13. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  14. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  15. Electron beam diagnostic system using computed tomography and an annular sensor

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  16. Creation and detection of a mesoscopic gas in a non-local quantum superposition

    OpenAIRE

    Weiss, Christoph; Castin, Yvan

    2009-01-01

    4 pages, 1 figure International audience We investigate the scattering of a quantum matter wave soliton on a barrier in a one dimensional geometry and we show that it can lead to mesoscopic Schrödinger cat states, where the atomic gas is in a coherent superposition of being in the half-space to the left of the barrier and being in the half-space to the right of the barrier. We propose an interferometric method to reveal the coherent nature of this superposition and we discuss in details...

  17. Dense coding scheme using superpositions of Bell-states and its NMR implementation

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jingfu; XIE; Jingyi; DENG; Zhiwei; LU; Zhiheng

    2005-01-01

    Dense coding using superpositions of Bell-states is proposed. The generalized Grover's algorithm is used to prepare the initial entangled states, and the reverse process of the quantum algorithm is used to determine the entangled state in the decoding measurement. Compared with the previous schemes, the superpositions of two Bell-states are exploited. Our scheme is demonstrated using a nuclear magnetic resonance (NMR)quantum computer. The corresponding manipulations are obtained. Experimental results show a good agreement between theory and experiment. We also generalize the scheme to transmit eight messages by introducing an additional two-state system.

  18. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  19. Generation of squeezed-state superpositions via time-dependent Kerr nonlinearities

    CERN Document Server

    León-Montiel, R de J

    2015-01-01

    We put forward an experimental scheme for direct generation of optical squeezed coherent-state superpositions. The proposed setup makes use of an optical cavity, filled with a nonlinear Kerr medium, whose frequency is allowed to change during time evolution. By exactly solving the corresponding time-dependent anharmonic-oscillator Hamiltonian, we demonstrate that squeezed-state superpositions can be generated in an optical cavity. Furthermore, we show that the squeezing degree of the produced states can be tuned by properly controlling the frequency shift of the cavity, a feature that could be useful in many quantum information protocols, such as quantum teleportation and quantum computing.

  20. Gap instability of laminar flows in eccentric annular channels

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Estelle [Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2011-11-15

    Research highlights: Black-Right-Pointing-Triangle The critical Reynolds number for flow instability in the narrow gap of an eccentric annular channel with a diameter ratio of 0.28 was determined experimentally. Black-Right-Pointing-Triangle The critical Reynolds number increases with increasing eccentricity in the range 0.5 to 0.8. Black-Right-Pointing-Triangle The 'gap instability' is attributed to the instability of the two shear layers forming on either side of the gap, as the basic flow has an azimuthal variation that contains two inflection points, thus being potentially linearly unstable. - Abstract: Flow visualization has demonstrated that the critical Reynolds number for flow instability in the narrow gap of an annular channel with a diameter ratio of about 0.28 increases with increasing eccentricity e in the range 0.5 < e < 0.8. The critical Reynolds numbers in the wide gap at all eccentricities and in the narrow gap for 0 < e < 0.5 seem to be insensitive to eccentricity. These observations and comparison of the frequencies of transverse flow oscillations at different Reynolds numbers and different eccentricities demonstrate that at least two distinct instability mechanisms are present in annular flows. The one of particular interest in this work arises in narrow gaps and is attributed to the instability of the two shear layers forming on either side of the gap. Linear stability analysis demonstrated that the basic flow in concentric annuli is stable for the considered diameter ratio and range of Reynolds numbers. In contrast, the basic flow in eccentric annuli has an azimuthal variation that contains two inflection points, thus being potentially linearly unstable.

  1. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  2. Analysis of Cold Flowfield of Multi—Annular Opposed Jets

    Institute of Scientific and Technical Information of China (English)

    H.F.Zhao; G.C.Benelli

    1992-01-01

    The technique of the use of multi-annular opposed jets as different from using swirl and bluff body creates an excellent recirculation zone with desired size in a large space.The size of ecirculation,the magnitude of reverse velocity and turbulence intensity are much greater than those formed by bluff body.Factors affecting the flowfield include the velocity ration of the opposed jets to the primary air J.the diameter and construction of the opposed jet ring,secondary air velocity and configuration,and confined or unconfined flow condition and so on.This method is a promising way for flame stabilization in combustion technology.

  3. Unusual Presentation of Acute Annular Urticaria: A Case Report

    Directory of Open Access Journals (Sweden)

    Gilles Guerrier

    2011-01-01

    Full Text Available Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history and physical examination can reliably orientate necessary diagnostic testing and allow for appropriate treatment.

  4. Coexistence of disseminated granuloma annulare and asymptomatic multiple myeloma

    Directory of Open Access Journals (Sweden)

    Şebnem Aktan

    2013-09-01

    Full Text Available Granuloma annulare (GA is a benign inflammatory dermatosis of unknown cause, characterized by necrobiotic dermal papules. Several morphologic forms of GA including localized, disseminated, linear, nodular, perforating, subcutaneous, pustular and arcuate dermal erythema have been reported in the literature. Disseminated GA, a rarely seen form, has been reported in association with some hematopoietic and solid malignancies; however, it has been suggested that the exact causative relationship between malignancy and GA is unclear. We present here a 66-year-old female patient with disseminated GA associated with asymptomatic multipl myeloma.

  5. Exhaust emissions of a double annular combustor: Parametric study

    Science.gov (United States)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  6. Analytic vortex dynamics in an annular Bose-Einstein condensate

    Science.gov (United States)

    Toikka, L. A.; Suominen, K.-A.

    2016-05-01

    We consider analytically the dynamics of an arbitrary number and configuration of vortices in an annular Bose-Einstein condensate obtaining expressions for the free energy and vortex precession rates to logarithmic accuracy. We also obtain lower bounds for the lifetime of a single vortex in the annulus. Our results enable a closed-form analytic treatment of vortex-vortex interactions in the annulus that is exact in the incompressible limit. The incompressible hydrodynamics that is developed here paves the way for more general analytical treatments of vortex dynamics in non-simply-connected geometries.

  7. Transforming squeezed light into large-amplitude coherent-state superposition

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Mølmer, Klaus

    2007-01-01

    A quantum superposition of two coherent states of light with small amplitude can be obtained by subtracting a photon from a squeezed vacuum state. In experiments this preparation can be made conditioned on the detection of a photon in the field from a squeezed light source. We propose and analyze...

  8. Macroscopic Quantum Superposition States in a Model of Photon-Supersonic Phonon Interaction

    Institute of Scientific and Technical Information of China (English)

    CHAI Jin-Hua; WANG Yan-Bang; LU Yi-Qun

    2000-01-01

    A model of photon-hypersonic phonon interaction is proposed. The evolution of macroscopic quantum superpo sition states is analyzed, including the wave function and number distribution. It is shown that a superposition state of hypersonic phonon modes can be generated in the case of nondetuning and no losses.

  9. Suitability of the approximate superposition of squeezed coherent states for various quantum protocols

    OpenAIRE

    Marek, Petr; Kim, M.S.

    2008-01-01

    A state in a d-dimensional Hilbert space can be simulated by a state defined in a different dimension with high fidelity. We assess how faithfully such the approximated state can perform quantum protocols, using an example of the squeezed coherent superposition state which was recently experimentally generated.

  10. Generation of macroscopic quantum-superposition states by linear coupling to a bath

    OpenAIRE

    Rao, D. D. Bhaktavatsala; Bar-Gill, Nir; Kurizki, Gershon

    2010-01-01

    We demonstrate through an exactly solvable model that collective coupling to any thermal bath induces effectively nonlinear couplings in a quantum many-body (multi-spin) system. The resulting evolution can drive an uncorrelated large-spin system with high probability into a macroscopic quantum-superposition state. We discuss possible experimental realizations.

  11. Dialogue on the Quantum Mechanics Foundation Problem and its Solution by Spontaneous Superposition Breaking

    OpenAIRE

    Pankovic, Vladan

    2009-01-01

    In this work problem of the quantum mechanics, i.e. measurement process foundation is analyzed in the form of the Galileian dialogue. Also, a solution, by spontaneous (non-dynamical) unitary symmetry (superposition) breaking (as an especial case of the spontaneous (non-dynamical) symmetry breaking) is suggested.

  12. Scheme for entangling atom-photon pairs via an input light in superposition state

    Institute of Scientific and Technical Information of China (English)

    Qirun Dai; Jiqing Fu; Hui Jing

    2009-01-01

    We propose a feasible scheme to create macroscopically entangled atom-photon pairs by preparing an input optical superposition state.Several interesting non-classical quantum statistical effects like the atomic squeezed effects are clearly demonstrated.The making and manipulation of entangled atom-photon pairs are useful for,e.g.,high-precision interferometry and quantum information science.

  13. Superposition of Coherent States in a Mesoscopic Josephson Junction with Dissipation

    Institute of Scientific and Technical Information of China (English)

    ZOU Jian; SHAO Bin; SU Wen-Yong

    2001-01-01

    A mesoscopic Josephson junction with dissipation is considered. Usually the dissipation in the system is described as a consequence of its coupling to a reservoir. By solving the master equation we show that the state of the junction can evolve in a quantum superposition of two coherent states even when the dissipation is present.``

  14. Superposition of flux-qubit states and the law of angular momentum conservation

    OpenAIRE

    Nikulov, A. V.

    2009-01-01

    It is shown that the assumptions on macroscopic quantum tunneling and on superposition of two macroscopically distinct quantum states of superconducting loop, considered as flux qubit by many authors, contradict to the fundamental law of angular momentum conservation and the universally recognized quantum formalism.

  15. Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis

    Science.gov (United States)

    LoPresto, Michael C.

    2013-01-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  16. Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.

  17. Using musical intervals to demonstrate superposition of waves and Fourier analysis

    Science.gov (United States)

    LoPresto, Michael C.

    2013-09-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  18. Linear superposition method for (2+1)-dimensional nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Lin Ji; Wang Rui-Min; Ye Li-Jun

    2006-01-01

    New forms of different-periodic travelling wave solutions for the(2+1)-dimensional Zakharov-Kuznetsov(ZK) equation and the Davey-Stewartson(DS)equation are obtained by the linear superposition approach of Jacobi elliptic function.A sequence of cyclic identities plays an important role in these procedures.

  19. Application of time-temperature-stress superposition on creep of wood-plastic composites

    Science.gov (United States)

    Chang, Feng-Cheng; Lam, Frank; Kadla, John F.

    2013-08-01

    Time-temperature-stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature-stress hybrid shift factor and a modified Williams-Landel-Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood-plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time-temperature superposition, whereas vertical shifting would be needed for time-stress superposition. The shift factor was independent of the stress for horizontal shifts in time-temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.

  20. A digital interface for Gaussian relay and interference networks: Lifting codes from the discrete superposition model

    CERN Document Server

    Anand, M

    2010-01-01

    For every Gaussian network, there exists a corresponding deterministic network called the discrete superposition network. We show that this discrete superposition network provides a near-optimal digital interface for operating a class of Gaussian networks in the sense that any code for the discrete superposition network can be naturally lifted to a corresponding code for the Gaussian network, while achieving a rate that is at most a constant number of bits lesser than the rate it achieves for discrete superposition network. This constant depends only on the number of nodes in the network and not on the channel gains or SNR. Moreover the capacities of the two networks are within a constant of each other, again independent of channel gains and SNR. The class of Gaussian networks for which this property holds includes relay networks with a single source-destination pair, interference networks, multicast networks, and the MIMO counterparts of these networks. The capacity of the Gaussian relay network with a singl...

  1. Electrorheological damper with annular ducts for seismic protection applications

    Science.gov (United States)

    Makris, Nicos; Burton, Scott A.; Taylor, Douglas P.

    1996-10-01

    This paper presents the design, analysis, testing and modeling of an electrorheological (ER) fluid damper developed for vibration and seismic protection of civil structures. The damper consists of a main cylinder and a piston rod that pushes an ER fluid through a stationary annular duct. The behavior of the damper can be approximated with Hagen - Poiseuille flow theory. The basic equations that describe the fluid flow across an annular duct are derived. Experimental results on the damper response with and without the presence of electric field are presented. As the rate of deformation increases, viscous stresses prevail over field-induced yield stresses and a smaller fraction of the total damper force can be controlled. Simple physically motivated phenomenological models are considered to approximate the damper response with and without the presence of electric field. Subsequently, the performance of a multilayer neural network constructed and trained by an efficient algorithm known as the Dependence Identification Algorithm is examined to predict the response of the electrorheological damper. A combination of a simple phenomenological model and a neural network is then proposed as a practical tool to approximate the nonlinear and velocity-dependent damper response.

  2. A compact annular ring microstrip antenna for WSN applications.

    Science.gov (United States)

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  3. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  4. Annular bullous lesions with atypical erythema multiforme in leprosy.

    Science.gov (United States)

    Shah, Aishani; Mahajan, Rashmi; Ninama, Kishan; Bilimoria, Freny

    2014-09-01

    Erythema nodosum leprosum (ENL) is an immune complex-mediated reaction that may complicate the course of multibacillary leprosy. Bullous lesions in Type II reaction, though reported, are exceedingly rare. We report the case of a 32 year old female patient who presented initially at our OPD with erythema nodosum. Cutaneous examination revealed impaired sensation over dorsum of right foot and thickened right lateral popliteal nerve. Slit skin smear (SSS) from ear lobes revealed AFB with a bacteriological index of 2+. She was started on MDT, tablet ofloxacin 200 mg twice a day, and 30 mg oral prednisolone. Two months later, she presented with generalised pruritus, large target lesions over the back, and hemorrhagic bullae over lower extremities and annular pattern of bullae, over both arms. A SSS was repeated which was positive for AFB. Histopathology from bullous lesions was consistent with ENL. Direct Immunofluorescence (DIF) study was negative. Our patient improved rapidly after she was started on thalidomide 100 mg twice daily, with withdrawal of ofloxacin. Erythema Multiforme (EMF) and annular bullous lesions have been reported in patients on treatment with ofloxacin. This case is being presented due to the unusual and varied manifestation of Type II lepra reaction in a 34 year old female patient.

  5. Investigation of azimuthal staging concepts in annular gas turbines

    Science.gov (United States)

    Noiray, Nicolas; Bothien, Mirko; Schuermans, Bruno

    2011-10-01

    In this work, the influence of azimuthal staging concepts on the thermoacoustic behavior of annular combustion chambers is assessed theoretically and numerically. Staging is a well-known and effective method to abate thermoacoustic pulsations in combustion chambers. However, in the case of, for example, fuel staging the associated inhomogeneity of equivalence ratio may result in increased levels of NOx emissions. In order to minimize this unwanted effect a staging concept is required in which the transfer functions of the burners are changed while affecting the equivalence ratio as little as possible. In order to achieve this goal, a theoretical framework for predicting the influence of staging concepts on pulsations has been developed. Both linear and nonlinear analytical approaches are presented and it is shown that the dynamics of azimuthal modes can be described by coupled Van der Pol oscillators. A criterion based on the thermoacoustic coupling strength and on the asymmetry degree provides the modal behavior in the annular combustor, i.e. standing or traveling waves. The model predictions have been verified by numerical simulations of a heavy-duty gas turbine using an in-house thermoacoustic network-modeling tool. The interaction between the heat release of the flame and the acoustic field was modeled using measured transfer functions and source terms. These numerical simulations confirmed the original theoretical considerations.

  6. Portal annular pancreas: a systematic review of a clinical challenge.

    Science.gov (United States)

    Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H

    2014-10-01

    Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.

  7. The Growth of Instabilities in Annular Liquid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  8. Non-null annular subaperture stitching interferometry for aspheric test

    Science.gov (United States)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  9. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates

    Science.gov (United States)

    Halder, P.; Chakraborty, A.; Deb Roy, P.; Das, H. S.

    2014-09-01

    In this paper, we report the development of a java application for the Superposition T-matrix code, JaSTA (Java Superposition T-matrix App), to study the light scattering properties of aggregate structures. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precession superposition codes for multi-sphere clusters in random orientation developed by Mackowski and Mischenko (1996). It consists of a graphical user interface (GUI) in the front hand and a database of related data in the back hand. Both the interactive GUI and database package directly enable a user to model by self-monitoring respective input parameters (namely, wavelength, complex refractive indices, grain size, etc.) to study the related optical properties of cosmic dust (namely, extinction, polarization, etc.) instantly, i.e., with zero computational time. This increases the efficiency of the user. The database of JaSTA is now created for a few sets of input parameters with a plan to create a large database in future. This application also has an option where users can compile and run the scattering code directly for aggregates in GUI environment. The JaSTA aims to provide convenient and quicker data analysis of the optical properties which can be used in different fields like planetary science, atmospheric science, nano science, etc. The current version of this software is developed for the Linux and Windows platform to study the light scattering properties of small aggregates which will be extended for larger aggregates using parallel codes in future. Catalogue identifier: AETB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571570 No. of bytes in distributed program

  10. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  11. DC intrinsic Josephson effect in 1{mu}m-lateral-size annular Bi-2212 stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.J.; Yamashita, T. [Tohoku Univ., Sendai (Japan). Research Inst. of Electrical Comunication; Latyshev, Y.I.; Pavlenko, V.N. [Tohoku Univ., Sendai (Japan); Inst of Radio-Engineerig and Electronics Russian Academic of Sciences, Moscow (Russian Federation)

    1999-11-10

    Small annular junctions were the subjects of particular interest last decade because of possibility of flux trapping (see, e.g. [1]). Related magnetic field can contain radial component affecting Josephson critical current. Here we report on the first studies of intrinsic dc Josephson effect [2] in small annular type Bi-2212 mesas and its sensitivity to the trapped flux. (translated by NEDO)

  12. A magnetorheological valve with both annular and radial fluid flow resistance gaps

    International Nuclear Information System (INIS)

    In order to increase the efficiency of magnetorheological (MR) valves, Ai et al (2006) proposed an MR valve simultaneously possessing annular and radial fluid flow resistance channels with the assumption that the magnetic flux densities at the annular and radial fluid flow gaps are identical. In this paper, an MR valve simultaneously possessing annular and radial fluid flow resistance channels is designed, fabricated, modeled and tested. A model for the developed MR valve is produced and its performances are theoretically predicted based on the average magnetic flux densities in the annular and radial fluid flow gaps through finite element analysis. The theoretical results for the developed MR valve are compared with the experimental results. In addition, the performances of the developed MR valve are theoretically and experimentally compared with those of the MR valve with only annular fluid flow gaps. It has been shown that the theoretical results match well with the experimental results. Mainly attributed to the radial fluid flow gaps, the pressure drops across the MR valve with both annular and radial fluid flow gaps are larger than those across the MR valve with only annular fluid flow gaps for varying valve parameters. The radial fluid flow gaps in the MR valve can reach a higher efficiency and larger controllable range than those by annular fluid flow gaps to some extent

  13. Erythema annulare centrifugum as presenting sign of activation of breast cancer*

    Science.gov (United States)

    Topal, Ilteris Oguz; Topal, Yunus; Sargan, Aytul; Duman, Hatice; Gungor, Sule; Goncu, Ozgur Emek Kocaturk; Ozekinci, Selver

    2015-01-01

    Erythema annulare centrifugum is a figurate erythema of unknown etiology. It has been associated with many different entities, including infections, food allergy, drug reactions and malignant neoplasms. Herein, we report a case of erythema annulare centrifugum as presenting sign of activation of breastcancer. PMID:26734884

  14. Erythema annulare centrifugum as presenting sign of activation of breast cancer.

    Science.gov (United States)

    Topal, Ilteris Oguz; Topal, Yunus; Sargan, Aytul; Duman, Hatice; Gungor, Sule; Goncu, Ozgur Emek Kocaturk; Ozekinci, Selver

    2015-01-01

    Erythema annulare centrifugum is a figurate erythema of unknown etiology. It has been associated with many different entities, including infections, food allergy, drug reactions and malignant neoplasms. Herein, we report a case of erythema annulare centrifugum as presenting sign of activation of breastcancer.

  15. WAVE SUPERPOSITION METHOD BASED ON VIRTUAL SOURCE BOUNDARY WITH COMPLEX RADIUS VECTOR FOR SOLVING ACOUSTIC RADIATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    XiangYu; HuangYuying; MaXiaoqiang

    2004-01-01

    By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed.Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.

  16. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    Science.gov (United States)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  17. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  18. Method of superposition of dislocations for finding stress-strain state around fan-shaped structure in a brittle rock

    Science.gov (United States)

    Sadovskii, V. M.; Sadovskaya, O. V.

    2016-10-01

    The Tarasov fan-shaped mechanism, simulating the formation of shear ruptures in a brittle rock at stress conditions corresponding to seismogenic depths, is analyzed. For computation of the stress-strain state of a rock near the equilibrium fan-structure the original method is constructed. The fault is modeled as a narrow elongated layer, filled with the domino-blocks, between two elastic half-spaces. Displacements and stresses around the fan are represented in the integral form as a superposition of edge dislocations with an unknown function of distribution of the Burgers vector. To take into account the stresses of lateral thrust, the solution of plane problem of the elasticity is used for a tensile crack, on the surfaces of which the previously unknown normal stresses are distributed. The exact formulation of the problem leads to a system of two nonlinear singular integral equations, which is solved numerically by the method of successive approximations. The obtained solution is used, when setting the initial data in computations of the dynamics of the Tarasov fan-shaped mechanism. With the help of this solution the discontinuous nature of shear ruptures, observed in natural and laboratory experiments, is explained.

  19. Design of an Annular Disc Subject to Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2012-01-01

    Full Text Available Two solutions to design a thin annular disc of variable thickness subject to thermomechanical loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions proposed requires that the distribution of stresses is uniform over the entire disc. In this case there is a relation between optimal values of the loading parameters at the final stage. The specific shape of the disc corresponds to each pair of such parameters. The other solution is obtained under the additional requirement that the distribution of strains is uniform. This solution exists for the disc of constant thickness at specific values of the loading parameters.

  20. Liquid transfer and entrainment correlation for droplet-annular flow

    International Nuclear Information System (INIS)

    A correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasi-equilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, cand total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which has not been available previously

  1. Development of annular targets for {sup 99}MO production.

    Energy Technology Data Exchange (ETDEWEB)

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  2. An in-house developed annular bright field detection system

    International Nuclear Information System (INIS)

    Annular bright field (ABF) detectors have been developed in the last few years allowing the direct imaging of low-Z atoms from oxygen down to hydrogen. These types of detectors are now available as standard attachments for the latest generation of top-end electron microscopes. However these systems cannot always be installed in previous generation microscopes. In this paper we report the preliminary results of an in-house implementation of a ABF detection system on a CEOS aberration corrected JEOL 2200FS STEM. This has been obtained by exploiting the standard BF detector coupled with a high vacuum compatible, X-ray tight and retractable shadowing mechanism. This results in the acquisition of near zero-angle scattered electrons with inner collection semi-angle from 2.0 mrad to 23 mrad and outer semi-angle in the range from 3.0 mrad to 35 mrad. The characteristics and performances of this ABF detection system are discussed

  3. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  4. Mathematical model for multicomponent separations on the continuous annular chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  5. A Novel Design of Magnetorheological Damper with Annular Radial Channel

    Directory of Open Access Journals (Sweden)

    Shisha Zhu

    2016-01-01

    Full Text Available With the development of automotive vibration technology, the semiactive suspension system with adjustable damping force and high reliability is taken seriously. The magnetorheological damper (MRD that applies intelligent material (magnetorheological fluid is the key element of this system. It can achieve a continuous and adjustable damping and then reaches the purpose of comfort. In order to improve the damping effect of MRD, this paper presents a MRD, which has magnetorheological (MR effect along annular radial channel. The paper completely designs the structure and magnetic circuit of MRD. Based on the theory of electromagnetism and MR fluid dynamics, the paper analyzes and tests the external characteristics of the MRD by the MATLAB/Simulink and the vibration experiment. The results compared with ordinary MRD reveal that the damping force obviously increases and has wide adjustable range, thus verifying the reasonableness of the damper design.

  6. The Southern Annular Mode: a comparison of indices

    Directory of Open Access Journals (Sweden)

    M. Ho

    2011-08-01

    Full Text Available The Southern Annular Mode (SAM has been identified as a climate mechanism with potentially significant impacts on the Australian hydroclimate. However, despite the identification of some relationships between SAM and Australia's hydroclimate, the association has not been extensively explored or robustly quantified. Further complicating the situation is the existence of numerous indices (or methods by which SAM has been approximated. In this paper, the various SAM definitions and indices are reviewed and the similarities and discrepancies are discussed, along with the strengths and weaknesses of each index development approach. Further, the sensitivity of the relationship between SAM and Australian rainfall on choice of SAM index is quantified and recommendations are given as to the most appropriate index to use when assessing the impacts of the SAM on Australia's hydroclimate.

  7. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 104. In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  8. Fluxons in long and annular intrinsic Josephson junction stacks

    Science.gov (United States)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.

    2002-12-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  9. Aerodynamic performance of an annular classical airfoil cascade

    Science.gov (United States)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  10. Investigation of a low NOx full-scale annular combustor

    Science.gov (United States)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  11. Intermittent Flow of Granular Matter in an Annular Geometry

    Science.gov (United States)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  12. Mathematical model for multicomponent separations on the continuous annular chromatograph

    International Nuclear Information System (INIS)

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally

  13. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Directory of Open Access Journals (Sweden)

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  14. Periocular granuloma annulare: a case report and review of literature.

    Science.gov (United States)

    Chiang, Katherine; Bhalla, Rohan; Mesinkovska, Natasha A; Piliang, Melissa P; Tamburro, Joan E

    2014-01-01

    Granuloma annulare (GA) is a granulomatous dermatosis that rarely presents on the face and is extremely uncommon in the periocular region. We report our experience with the presentation and management of GA lesions on the eyelids of a 17-year-old girl. We performed a review of published literature and identified 13 cases of pediatric periocular GA. One additional case was identified upon review of all pediatric GA cases at the Cleveland Clinic Foundation. Review of these cases suggests that periocular GA is a benign condition that spontaneously regresses within a few months. GA nodules have a predilection for the upper eyelids. A greater incidence is noted in African American children. Awareness of the self-resolving nature of this condition can prevent unnecessary surgical excisions in affected children. PMID:23551387

  15. Performance of annular flow sterilizer irradiated by a germicidal lamp

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, T.; Yoneya, M.; Ohashi, H. (Akita Univ. (Japan))

    1981-10-01

    Theoretical and experimental studies were conducted on the UV-inactivation characteristics of Bacillus subtilis spores in an annular-flow sterilizer irradiated by a germicidal lamp located at the center of the inner tube. Experimental results for sterilizer performance in laminar spore-suspension flow were well simulated dynamically and statically by theoretical considerations which incorporated multi-targets with single-hit model for the UV-inactivation kinetic and the diffuse light model for the angle characteristic of lamp, along with due attention to the parabolic velocity distribution and the negligible diffusion of spores. Scale on the outside wall of the inner tube was checked by the use of a cylindrical chemical actinometer. Calculated examples elucidate the reason why careful inspection is needed of UV-inactivation kinetics, angle characteristics of lamp, and fluid mixing to evaluate performance of actual flow UV sterilizers at high extent of inactivation up to the order of 99.999%.

  16. Magnetically guided free surface annular NaK flow experiment

    International Nuclear Information System (INIS)

    In order to gain basic information on the magnetically guided liquid metal Li waterfall type blanket concept for ICF reactors and liquid metal Li free surface flow for FMIT type accelerator target, an experimental study was conducted by using LINAK (NaK: 50 l, Ar: 0-0.3 MPa) device. A 45 mm O.D. and 25 mm I.D. annular free jet of NaK, which flowed downwards coaxially through a superconducting magnet (2.7 Tmax, B=0.38 T at the nozzle exit), was formed in vacuum chamber and at the nozzle exit where magnetic flux density B was divergent. The experiment covered ranges of U=0.5-2.5 m/s and B=0-0.38 T at the nozzle exit. Photographic and VTR observations were made on the behavior of outer surface of annular flow. The results are summarized as follows. (1) When B=0 T, the downward flow was rather convergent due to the surface tension. (2) By applying B, the flow became divergent like a cone shell and more stable. The divergent half angle increased with intensifying B. (3) The experimental results on the flow divergence agreed fairly well with the numerical analysis which took into account the MHD force, the surface tension and the gravitational force. (4) No growth of outer surface disturbance occurred within an attained maximum divergent half angle of 8deg or less. The results are considered to be encouraging for applying to ICF blanket and FMIT type target. (author)

  17. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    CERN Document Server

    Kish, Laszlo B

    2008-01-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also nonexistent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinu...

  18. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    Science.gov (United States)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  19. On Multiple Users Scheduling Using Superposition Coding over Rayleigh Fading Channels

    KAUST Repository

    Zafar, Ammar

    2013-02-20

    In this letter, numerical results are provided to analyze the gains of multiple users scheduling via superposition coding with successive interference cancellation in comparison with the conventional single user scheduling in Rayleigh blockfading broadcast channels. The information-theoretic optimal power, rate and decoding order allocation for the superposition coding scheme are considered and the corresponding histogram for the optimal number of scheduled users is evaluated. Results show that at optimality there is a high probability that only two or three users are scheduled per channel transmission block. Numerical results for the gains of multiple users scheduling in terms of the long term throughput under hard and proportional fairness as well as for fixed merit weights for the users are also provided. These results show that the performance gain of multiple users scheduling over single user scheduling increases when the total number of users in the network increases, and it can exceed 10% for high number of users

  20. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  1. Complex numbers and symmetries in quantum mechanics, and a nonlinear superposition principle for Wigner functions

    CERN Document Server

    Bracken, A J

    2005-01-01

    Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.

  2. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification

    CERN Document Server

    De Martini, Francesco

    2012-01-01

    The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...

  3. Superposition-model analysis of rare-earth doped BaY2F8

    Science.gov (United States)

    Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.

    The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.

  4. A Defense of the Paraconsistent Approach to Quantum Superpositions (Answer to Arenhart and Krause)

    CERN Document Server

    de Ronde, Christian

    2014-01-01

    In (da Costa and de Ronde, 2014), Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause (2014) have raised several arguments against this approach. In the present paper we attempt to answer the main questions presented by Arenhart and Krause. We will argue, firstly, that the obstacles presented by them are based on a specific metaphysical stance, which we will characterize in terms of what we call the Orthodox Line of Research (OLR). Secondly, that this is not necessarily the only possible line, and that a different one, namely, a Constructive Metaphysical Line of Research (CMLR) provides a different perspective in which the Paraconsistent Approach to Quantum Superpositions...

  5. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions of...

  6. Numerical Simulation of the Laval Annular Mechanical Foam Breaker for Foam Drilling

    Directory of Open Access Journals (Sweden)

    Pin Lu Cao

    2013-12-01

    Full Text Available The Computational Fluid Dynamics (CFD code, Fluent, is employed to simulate the flow phenomena inside the annular foam breaker in order to improve its performance. The numerical simulation results show that the value and the distribution of the negative pressure are very important for the annular foam breaker. The design of the Laval nozzle not only can increase the fluid velocity, but also can reduce the pressure value from -30.2 to -50.3 kPa compared with the common annular nozzle foam breaker. In order to improve the range of the internal negative pressure, the two-stage Laval annular foam breaker is designed in this study. The analysis results show the distance between the two annular slit have greatly influence on its performance. There is a small overlap area between the two negative pressure zones generated by the two annular slits. The smaller the value distance is, the larger the overlap zone is. When the value of the distance decreases to 50 mm, the minimum negative pressure can be reduced to approximately -65.5 kPa. Meanwhile, the range of the internal negative pressure is larger than the single Laval annular foam breaker, which is benefit to break foam.

  7. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters

    Science.gov (United States)

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-01

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  8. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters

    International Nuclear Information System (INIS)

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity. (paper)

  9. The superposition method in seeking the solitary wave solutions to the KdV-Burgers equation

    Indian Academy of Sciences (India)

    Yuanxi Xie; Jilashi Tang

    2006-03-01

    In this paper, starting from the careful analysis on the characteristics of the Burgers equation and the KdV equation as well as the KdV-Burgers equation, the superposition method is put forward for constructing the solitary wave solutions of the KdV-Burgers equation from those of the Burgers equation and the KdV equation. The solitary wave solutions for the KdV-Burgers equation are presented successfully by means of this method.

  10. Superposition rule and entanglement in diagonal and probability representations of density states

    OpenAIRE

    Man'ko, Vladimir I.; Marmo, Giuseppe; Sudarshan, E C George

    2009-01-01

    The quasidistributions corresponding to the diagonal representation of quantum states are discussed within the framework of operator-symbol construction. The tomographic-probability distribution describing the quantum state in the probability representation of quantum mechanics is reviewed. The connection of the diagonal and probability representations is discussed. The superposition rule is considered in terms of the density-operator symbols. The separability and entanglement properties of m...

  11. Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    OpenAIRE

    De Martini, Francesco; Di Giuseppe, Giovanni

    2000-01-01

    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in th...

  12. Investigating the influence of visualization on student understanding of quantum superposition

    OpenAIRE

    Kohnle, Antje; Baily, Charles; Ruby, Scott

    2015-01-01

    Visualizations in interactive computer simulations are a powerful tool to help students develop productive mental models, particularly in the case of quantum phenomena that have no classical analogue. The QuVis Quantum Mechanics Visualization Project develops research-based interactive simulations for the learning and teaching of quantum mechanics. We describe efforts to refine the visual representation of a single-photon superposition state in the QuVis simulations. We developed various depi...

  13. QUANTUM THREE-PASS PROTOCOL: KEY DISTRIBUTION USING QUANTUM SUPERPOSITION STATES

    Directory of Open Access Journals (Sweden)

    Yoshito Kanamori

    2009-07-01

    Full Text Available This letter proposes a novel key distribution protocol with no key exchange in advance, which is secure as the BB84 quantum key distribution protocol. Our protocol utilizes a photon in superposition state for single-bit data transmission instead of a classical electrical/optical signal. The security of this protocol relies on the fact, that the arbitrary quantum state cannot be cloned, known as the no-cloning theorem. This protocol can be implemented with current technologies.

  14. Exponential communication complexity advantage from quantum superposition of the direction of communication

    OpenAIRE

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-01-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We p...

  15. Creating and verifying a quantum superposition in a micro-optomechanical system

    OpenAIRE

    Kleckner, D.; Pikovski, I.; Jeffrey, E.; Ament, L.; Eliel, E.; Brink, J. van den; Bouwmeester, D.

    2008-01-01

    Micro-optomechanical systems are central to a number of recent proposals for realizing quantum mechanical effects in relatively massive systems. Here we focus on a particular class of experiments which aim to demonstrate massive quantum superpositions, although the obtained results should be generalizable to similar experiments. We analyze in detail the effects of finite temperature on the interpretation of the experiment, and obtain a lower bound on the degree of non-classicality of the cant...

  16. Quantum Three-Pass protocol: Key distribution using quantum superposition states

    OpenAIRE

    Yoshito Kanamori; Seong-Moo Yoo

    2010-01-01

    This letter proposes a novel key distribution protocol with no key exchange in advance, which is secure as the BB84 quantum key distribution protocol. Our protocol utilizes a photon in superposition state for single-bit data transmission instead of a classical electrical/optical signal. The security of this protocol relies on the fact, that the arbitrary quantum state cannot be cloned, known as the no-cloning theorem. This protocol can be implemented with current technologies.

  17. Macroscopic quantum superposition of spin ensembles with ultra-long coherence times via superradiant masing

    OpenAIRE

    Jin, Liang; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2014-01-01

    Macroscopic quantum phenomena such as lasers, Bose-Einstein condensates, superfluids, and superconductors are of great importance in foundations and applications of quantum mechanics. In particular, quantum superposition of a large number of spins in solids is highly desirable for both quantum information processing and ultrasensitive magnetometry. Spin ensembles in solids, however, have rather short collective coherence time (typically less than microseconds). Here we demonstrate that under ...

  18. Note: An explicit solution of the optimal superposition and Eckart frame problems

    Science.gov (United States)

    Cioslowski, Jerzy

    2016-07-01

    Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed.

  19. Quantum Teleportation of One-Photon and Two-Photon Superposition States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ One-photon and two-photon superposition states are the fundamental quantum states, which have shown interesting features, such as squeezing and anti-bunching. In this paper we discuss the quantum teleportation of such quantum states with the continuous-wave EPR states. Fidelity as a function of EPR correlation is obtained. We also compared the results with Fock state and coherent state teleportation.

  20. Wigner Frequency Point Slice Analysis of Superposition Data for Phased-Array Ground Penetrating Radar

    Institute of Scientific and Technical Information of China (English)

    ZOU Lian; CHEN Shu-zhen; YANG Shen; WEI Dan; XIAO Box-xun

    2004-01-01

    According to the frequency property of Phased-array ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient.

  1. Measurement of the decoherence of a mesoscopic superposition of motional states of a trapped ion

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2004-01-01

    We propose a scheme to observe the decoherence of a mesoscopic superposition of two coherent states in the motion of a trapped ion. In the scheme the ion is excited by two perpendicular lasers tuned to the ion transition. The decoherence is revealed by the decrease of the correlation between two successive measurements of the internal state of the ion after relevant laser-ion interaction.

  2. Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws

    Science.gov (United States)

    Zeng, Huihui

    In this paper, we show the large time asymptotic nonlinear stability of a superposition of viscous shock waves with viscous contact waves for systems of viscous conservation laws with small initial perturbations, provided that the strengths of these viscous waves are small with the same order. The results are obtained by elementary weighted energy estimates based on the underlying wave structure and a new estimate on the heat equation.

  3. Phase-Matching Condition for Superpositions of Coherent States in a Mach-Zehnder Interferometer

    OpenAIRE

    Zhao, Xiang; Shen, Luyi; Jing, Xiaoxing; Jing LIU; Wang, Xiaoguang

    2014-01-01

    We discussed the phase-matching condition of the input states for a specific Mach-Zehnder interferometer to enhance the phase sensitivity. The input states are a coherent state and a superposition of coherent states. For both cases with and without photon losses, the phase-matching condition to enhance phase sensitivity is found to be unchanged no matter the input state has parity or not.

  4. Seismic analysis of structures of nuclear power plants by Lanczos mode superposition method

    International Nuclear Information System (INIS)

    The Lanczos Mode Superposition Method is applied in the seismic analysis of nuclear power plants. The coordinate transformation matrix is generated by the Lanczos algorithm. It is shown that, through a convenient choice of the starting vector of the algorithm, modes with participation factors are automatically selected. It is performed the Response Spectra analysis of a typical reactor building. The obtained results are compared with those determined by the classical aproach stressing the remarkable computer effectiveness of the proposed methodology. (Author)

  5. The Superposition Principle in Quantum Mechanics - did the rock enter the foundation surreptitiously?

    OpenAIRE

    Dass, N. D. Hari

    2013-01-01

    The superposition principle forms the very backbone of quantum theory. The resulting linear structure of quantum theory is structurally so rigid that tampering with it may have serious, seemingly unphysical, consequences. This principle has been succesful at even the highest available accelerator energies. Is this aspect of quantum theory forever then? The present work is an attempt to understand the attitude of the founding fathers, particularly of Bohr and Dirac, towards this principle. The...

  6. Note: An explicit solution of the optimal superposition and Eckart frame problems.

    Science.gov (United States)

    Cioslowski, Jerzy

    2016-07-14

    Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed. PMID:27421427

  7. Coherent superpositions of states in coupled Hilbert-space using step by step Morris-Shore transformation

    Science.gov (United States)

    Saadati-Niari, Maghsoud

    2016-09-01

    Creation of coherent superpositions in quantum systems with Na states in the lower set and Nb states in the upper set is presented. The solution is drived by using the Morris-Shore transformation, which step by step reduces the fully coupled system to a three-state Λ-like system and a set of decoupled states. It is shown that, for properly timed pulse, robust population transfer from an initial ground state (or superposition of M ground states) to an arbitrary coherent superposition of the ground states can be achieved by coincident pulses and/or STIRAP techniques.

  8. Quantum State Engineering by Superpositions of Coherent States along aStraight Line in Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    郑仕标

    2001-01-01

    A scheme is proposed for generating the superpositions of several coherent states in a cavity field with dispersive cavity quantum electrodynamics (QED). In the scheme, a sequence of atoms interacts dispersively with the cavity field, connected with a microwave source, and is manipulated by classical fields, followed by state-selective measurements. In this way, the cavity field is collapsed onto a superposition of several coherent states along a straight line with controllable coefficients. This scheme provides the possibility for quantum state engineering via coherent-state superpositions along a straight line in cavity QED for the first time.

  9. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates

    Science.gov (United States)

    Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim

    2016-05-01

    We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.

  10. Intensity improvement in the attosecond pulse generation with the coherent superposition initial state

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu, E-mail: tschu@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-03-26

    We investigate the coherent superposition initial state effect and found that when the initial active electron state is prepared in the coherent superposition of the 1s and 2s states of the He{sup +} ion and the chirp parameter of the fundamental field in the two-color scheme is chosen to be β=0.3, the harmonic cutoff energy is remarkably extended and the harmonic yield is enhanced by at least 6 orders of magnitude compared with the case of the single 1s ground state with chirp-free pulse. An ultrabroad supercontinuum with a 458 eV bandwidth is formed, directly producing an intense isolated 34 as pulse. -- Highlights: ► Simulating the HHG process irradiated from a model He{sup +} ion in a two-color field. ► Preparing the initial active electronic state in the 1s and 2s superposition state. ► Finding the optimized chirp parameter of β=0.3 for the fundamental field. ► Observing the intensity enhancement in HHG with more than 6 orders of magnitude improvement. ► Generating a 34 as isolated attosecond pulse with similar intensity enhancement.

  11. Nuclear grade cable thermal life model by time temperature superposition algorithm based on Matlab GUI

    International Nuclear Information System (INIS)

    Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)

  12. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    Science.gov (United States)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  13. Heat transfer through a horizontal annular layer of magnetic fluid during the cooling of cylindrical current conductors

    Energy Technology Data Exchange (ETDEWEB)

    Polevikov, V.K.; Fertman, V.E.

    1977-01-01

    The results of a numerical study are presented for stationary natural convection in an annular magnetic fluid layer which cools a horizontal cylindrical current conductor. The system of two-dimensional hydrodynamics equations was solved in a non-inductive approximation by the finite differences method. A monotonic conservative differential system of second order accuracy was used. The studies were made in the ranges: 10 < or = to Pr < or = to 10/sup 4/, 0 < or = to Ra < or = to 10/sup 6/, 0 < or = to Ra/sub m/ < or = to 10/sup 8/, 1.5 < or = to r/sub 2//r/sub 1/ < or = to 5 (Pr--Prandtl number; Ra--Rayleigh number; Ra/sub m/--parameter of magnetic convection mechanism; r/sub 2//r/sub 1/--radius ratio of coaxial cylinders). The developmental characteristics of thermoconvective structures, local and integral thermal currents in an annular layer during a change in specific parameters are discussed. Critical formulae are constructed which describe convective heat transfer when Ra/sub m/ much greater than Ra and Ra/sub m/ much less than Ra in which case a good agreement is obtained with known experimental data. The results of the study may be used in devising cooling systems for electrical cables. 5 illustrations, 11 references.

  14. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    Science.gov (United States)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  15. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  16. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  17. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    OpenAIRE

    Muralidhar K; Murthy Narayana; Raju Alluri; Sresty NVNM

    2009-01-01

    The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT), and Intensity Modulated Radiotherapy (IMRT) for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypoph...

  18. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2009-01-01

    Full Text Available The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT, and Intensity Modulated Radiotherapy (IMRT for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypopharynx were analyzed. Treatment plans were created using 6MV Photon beam quality using the CMS XiO (Computerized Medical System, St.Louis, MO treatment planning system. The maximum percentage of variation recorded between algorithms was 3.7% in case of Ca.Lung, for the IMRT Technique. Statistical analysis was performed by comparing the mean relative difference, Conformity Index, and Homogeneity Index for target structures. The fast superposition algorithm showed excellent results for lung and esophagus cases for all techniques. For the prostate, the superposition algorithm showed better results in all techniques. In the conventional case of the hypopharynx, the convolution algorithm was good. In case of Ca. Lung, Ca Prostate, Ca Esophagus, and Ca Hypopharynx, OARs got more doses with the superposition algorithm; this progressively decreased for fast superposition and convolution algorithms, respectively. According to this study the dosimetric results using different algorithms led to significant variation and therefore care had to be taken while evaluating treatment plans. The choice of a dose calculation algorithm may in certain cases even influence clinical results.

  19. Preparation of arbitrary n-particle d-dimensional superposition states using only single qubit operations and CNOT gates

    Institute of Scientific and Technical Information of China (English)

    Wang Yan-Hui; Fang Mao-Fa

    2004-01-01

    In this article, using only single qubit operation and a CNOT gate, we propose a scheme for creating arbitrary n-particle d-dimensional superposition states including entangled states and give the relevant circuits for realizing this scheme.

  20. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    Science.gov (United States)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  1. Entropy Analysis for Non-Newtonian Fluid Flow in Annular Pipe: Constant Viscosity Case

    Directory of Open Access Journals (Sweden)

    Mehmet Pakdemirli

    2004-06-01

    Full Text Available Abstract: In the present study, non-Newtonian flow in annular pipe is considered. The analytical solution for velocity and temperature fields is presented while entropy generation due to fluid friction and heat transfer is formulated. The third grade fluid with constant properties is accommodated in the analysis. It is found that reducing non-Newtonian parameter increases maximum velocity magnitude and maximum temperature in the annular pipe. Total entropy generation number attains high values in the region close to the inner wall of the annular pipe, which becomes significant for low non-Newtonian parameters. Increasing Brinkman number enhances entropy generation number, particularly in the region close to the annular pipe inner wall.

  2. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  3. Ultra-Wide-Band Microstrip Concentric Annular Ring Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Salima Azzaz-Rahmani

    2012-01-01

    Full Text Available In this paper, a new design technique for bandwidth enhancement of concentric microstrip annular ring slot antennas is presented. Using this technique, an Ultra-Wide-Band antenna is designed with simulated bandwidth of 111.29%.

  4. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area...... is less than that of a normal valve. It is suggested that the ability to implant Top Hat valves having greater size, relative to standard intra-annular valves, may currently be under-utilized. Further, there has been some concern that Top Hat implantation can cause obstruction of the coronary ostia....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...

  5. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  6. A research on the mechanisms of transition from annular flow in two-phase pipeline flow

    International Nuclear Information System (INIS)

    Various kinds mechanisms of transitions from two-phase annular flow in tubes were studied and modelled, and the affection factors on the transitions were also discussed. Some mathematical equations and transition criteria for every mechanisms presented were derived, and an unified general criterion for the annular flow transitions in whole range of pipe inclinations was recommended. The boundaries predicted show good agreement with the air-water two-phase experimental data

  7. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    OpenAIRE

    Bhardwaj, N; Gupta, A. P.; Choong, K.K.

    2008-01-01

    In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thicknes...

  8. Large Eddy Simulation of ignition in an annular multi-injector combustor

    Science.gov (United States)

    Vicquelin, Ronan; Philip, Maxime; Boileau, Matthieu; Schmitt, Thomas; Bourgoin, Jean-François; Durox, Daniel; Candel, Sébastien

    2013-11-01

    The present work deals with validating the LES methodology for transient ignition simulations, and in particular elucidating the mechanisms that control the light round sequence in a laboratory annular combustor, representative of many practical industrial systems. The simulation benefits from the unique experimental database built at EM2C on a fully transparent annular chamber equipped with 16 premixed swirled injectors. The F-TACLES combustion model is used for its ability to properly represent the flame propagation.

  9. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers

    OpenAIRE

    Parmentier, Jean-François; Salas, Pablo; Wolf, Pierre; Staffelbach, Gabriel; Nicoud, Franck; Poinsot, Thierry

    2012-01-01

    This study describes a simple analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing experimental, acoustic and large eddy simulation (LES) data obtained in these combustion chambers. It is based on a one-dimensional zero Mach number formulation where N burners are connected to a single annular chamber. A manipulation of the corresponding acoustic equations in this configuration leads to a simple dispersion relation which can be solved by ...

  10. The numerical solution of flow field of short-annular combustion chamber

    Science.gov (United States)

    Xu, H.; Ning, H.

    1986-05-01

    The recirculating flow field of a short-annular combustion chamber has been studied. The body-fitting coordinate system and the 'simple' method combined with a constant viscosity model have been employed to solve the Navier-Stokes equations in a regime containing a complicated curved boundary. The result could provide the theoretical reference for the design and improvement of short-annular combustion chambers.

  11. Non-approximate method for designing annular field of two-mirror concentric system

    Institute of Scientific and Technical Information of China (English)

    Yuanshen Huang; Dongyue Zhu; Baicheng Li; Dawei Zhang; Zhengji Ni; Songlin Zhuang

    2012-01-01

    Annular field aberrations of a three-reflection concentric system, which are composed of two spherical mirrors, are analyzed. An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane. Aberrations are determined by the object height and aperture angle. In this letter, the general expression of the system aberration is derived using the geometric method, and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles. The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is, the smaller the system aberration is. The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.%Annular field aberrations of a three-reflection concentric system,which are composed of two spherical mirrors,are analyzed.An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane.Aberrations are determined by the object height and aperture angle.In this letter,the general expression of the system aberration is derived using the geometric method,and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles.The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is,the smaller the system aberration is.The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.

  12. Fabrication of Annular Pellet for HANARO Irradiation Test of Dual Cooled Fuel

    International Nuclear Information System (INIS)

    One of the most important components in a Pressurized Water Reactor affecting its safety and economy is a nuclear fuel. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 8 mm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in the fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. An internally and externally cooled annular fuel has been considered seriously as a promising solution for an extended power uprate of a PWR fuel assembly. A dual cooled annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimensional changes of the annular fuel pellets during the early irradiation stage are very important, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In order to gain an insight to how the annular pellets deform, a HANARO irradiation test is planned for annular pellets with 5 different types. The detailed specification of the annular pellet was shown in Table 1. It is noted that Type C has the same pore structure as a commercial PWR pellet. The purpose of this paper is to report on the manufacturing process of an annular fuel pellet for a HANARO irradiation test

  13. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  14. Experimental verification of the flow characteristics of an active controlled microfluidic valve with annular boundary

    Science.gov (United States)

    Pan, Chun-Peng; Wang, Dai-Hua

    2014-03-01

    The principle and structural configuration of an active controlled microfluidic valve with annular boundary is presented in this paper. The active controlled flowrate model of the active controlled microfluidic valve with annular boundary is established. The prototypes of the active controlled microfluidic valves with annular boundaries with three different combinations of the inner and outer radii are fabricated and tested on the established experimental setup. The experimental results show that: (1) The active controlled microfluidic valve with annular boundary possesses the on/off switching and the continuous control capability of the fluid with simple structure and easy fabrication processing; (2) When the inner and outer diameters of the annular boundary are 1.5 mm and 3.5 mm, respectively, the maximum flowrate of the valve is 0.14 ml/s when the differential pressure of the inlet and outlet of the valve is 1000 Pa and the voltage applied to circular piezoelectric unimorph actuator is 100 V; (3) The established active controlled flowrate model can accurately predict the controlled flowrate of the active controlled microfluidic valves with the maximum relative error of 6.7%. The results presented in this paper lay the foundation for designing and developing the active controlled microfluidic valves with annular boundary driven by circular piezoelectric unimorph actuators.

  15. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  16. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  17. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  18. The Southern Annular Mode: a comparison of indices

    Directory of Open Access Journals (Sweden)

    M. Ho

    2012-03-01

    Full Text Available The Southern Annular Mode (SAM has been identified as a climate mechanism with potentially significant impacts on the Australian hydroclimate. However, despite the identification of relationships between SAM and Australia's hydroclimate using certain data sets, and focussed on certain time periods, the association has not been extensively explored and significant uncertainties remain. One reason for this is the existence of numerous indices, methods and data sets by which SAM has been approximated. In this paper, the various SAM definitions and indices are reviewed and the similarities and discrepancies are discussed, along with the strengths and weaknesses of each index development approach. Further, the sensitivity of the relationship between SAM and Australian rainfall to choice of SAM index is quantified and recommendations are given as to the most appropriate index to use when assessing the impacts of the SAM on Australia's hydroclimate. Importantly this study highlights the need to consider the impact that the choice of SAM index, and data set used to calculate the index, has on the outcomes of any SAM attribution study.

  19. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  20. Experimental investigation of the low NOx vortex airblast annular combustor

    Science.gov (United States)

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  1. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    International Nuclear Information System (INIS)

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  2. MCNP/MCNPX model of the annular core research reactor.

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr. (.,; .)

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  3. Flow Pressure Loss through Straight Annular Corrugated Pipes

    Science.gov (United States)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  4. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    Science.gov (United States)

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  5. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  6. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  7. Measurement of large aspheric surfaces by annular subaperture stitching interferometry

    Institute of Scientific and Technical Information of China (English)

    Xiaokun Wang; Lihui Wang; Longhai Yin; Binzhi Zhang; Di Fan; Xuejun Zhang

    2007-01-01

    A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced.It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433λ and 0.052λ (λis 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031λ and 0.005λ, respectively.This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.

  8. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Science.gov (United States)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  9. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  10. Prediction in cases with superposition of different hydrological phenomena, such as from weather "cold drops

    Science.gov (United States)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Sanchez, M. E.

    2012-04-01

    The authors have been involved in Model Codes for Construction prior to Eurocodes now Euronorms, and in a Drainage Instruction for Roads for Spain that adopted a prediction model from BPR (Bureau of Public Roads) of USA to take account of evident regional differences in Iberian Peninsula and Spanish Isles, and in some related studies. They used Extreme Value Type I (Gumbell law) models, with independent actions in superposition; this law was also adopted then to obtain maps of extreme rains by CEDEX. These methods could be extrapolated somehow with other extreme values distributions, but the first step was useful to set valid superposition schemas for actions in norms. As real case, in East of Spain rain comes usually extensively from normal weather perturbations, but in other cases from "cold drop" local high rains of about 400mm in a day occur, causing inundations and in cases local disasters. The city of Valencia in East of Spain was inundated at 1,5m high from a cold drop in 1957, and the river Turia formerly through that city was just later diverted some kilometers to South in a wider canal. With Gumbell law the expected intensity grows with time for occurrence, indicating a value for each given "return period", but the increasing speed grows with the "annual dispersion" of the Gumbell law, and some rare dangerous events may become really very possible in periods of many years. That can be proved with relatively simple models, e.g. with Extreme Law type I, and they could be made more precise or discussed. Such effects were used for superposition of actions on a structure for Model Codes, and may be combined with hydraulic effects, e.g. for bridges on rivers. These different Gumbell laws, or other extreme laws, with different dispersion may occur for marine actions of waves, earthquakes, tsunamis, and maybe for human perturbations, that could include industrial catastrophes, or civilization wars if considering historical periods.

  11. Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni

    KAUST Repository

    Shuttleworth, I.G.

    2015-11-01

    © 2015 Elsevier Ltd. All rights reserved. The effect of basis set superposition error (BSSE) and effective strategies for the minimisation have been investigated using the SIESTA-LCAO DFT package. Variation of the energy shift parameter ΔEPAO has been shown to reduce BSSE for bulk Au and Ni and across their oxygenated surfaces. Alternative strategies based on either the expansion or contraction of the basis set have been shown to be ineffective in reducing BSSE. Comparison of the binding energies for the surface systems obtained using LCAO were compared with BSSE-free plane wave energies.

  12. Teleportation of a Superposition of Three Orthogonal States of an Atom without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-Rong

    2008-01-01

    A scheme to teleport a superposition of three orthogonal states of an atom without Bell-state measurement in cavity QED is proposed. The scheme based on the resonant interaction of two A-type three-level atoms with a bimodal cavity. The detection of atom a collapses atom b to the initial state of atom a with cavity mode left in two-mode vacuum state.The probability of success and the fidelity of this scheme are 0.112 and 0.999,respectively.

  13. Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition

    Science.gov (United States)

    Cai, Jianjun; Shen, Xueju; Lin, Chao

    2016-01-01

    We propose a security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition by combining full phase encryption technique with our previous cryptosystem. In the encryption process, the original image is phase encoded rather than bonded with a RPM. In the decryption process, two phase-contrast filters (PCFs) are employed to obtain the plaintext. As a consequence, the new cryptosystem guarantees high-level security to the attack based on iterative Fourier transform and maintains the good performance of our previous cryptosystem, especially conveniences. Some numerical simulations are presented to verify the validity and the performance of the modified cryptosystem.

  14. Superposition of Solitons with Arbitrary Parameters for Higher-order Equations

    Science.gov (United States)

    Ankiewicz, A.; Chowdury, A.

    2016-07-01

    The way in which solitons propagate and collide is an important theme in various areas of physics. We present a systematic study of the superposition of solitons in systems governed by higher-order equations related to the nonlinear Schrödinger family. We allow for arbitrary amplitudes and relative velocities and include an infinite number of equations in our analysis of collisions and superposed solitons. The formulae we obtain can be useful in determining the influence of subtle effects like higher-order dispersion in optical fibres and small delays in the material responses to imposed impulses.

  15. Statistical Properties and Algebraic Characteristics of Quantum Superpositions of Negative Binomial States

    Institute of Scientific and Technical Information of China (English)

    WANG XiaoGuang; FU Hong-Chen

    2001-01-01

    We introduce new kinds of states of quantized radiation fields, which are the superpositions of negative binomial states. They exhibit remarkable nonclassical properties and reduce to Schrodinger cat states in a certain limit.The algebras involved in the even and odd negative binomial states turn out to be generally deformed oscillator algebras.It is found that the even and odd negative binomial states satisfy the same eigenvalue equation with the same eigenvalue and they can be viewed as two-photon nonlinear coherent states. Two methods of generating such the states are proposed.``

  16. The Superposition Principle of Waves Not Fulfilled under M. W. Evans' O(3) Hypothesis

    OpenAIRE

    Wielandt, Erhard

    2006-01-01

    In 1992 M.W. Evans proposed a so-called O(3) symmetry of electromagnetic fields by adding a constant longitudinal "ghost field" to the well-known transversal plane em waves. He considered this symmetry as a new law of electromagnetics. Later on, since 2002, this O(3) symmetry became the center of his Generally Covariant Unified Field Theory which he recently renamed as ECE Theory. One of the best-checked laws of electrodynamics is the principle of linear superposition of electromagnetic waves...

  17. Approximate eigensolutions of Dirac equation for the superposition Hellmann potential under spin and pseudospin symmetries

    Indian Academy of Sciences (India)

    M Hamzavi; S M Ikhdair

    2014-07-01

    The Hellmann potential is simply a superposition of an attractive Coulomb potential $−a/r$ plus a Yukawa potential e${}^{−δr} /r$. The generalized parametric Nikiforov–Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the Hellmann potential for arbitrary spin-orbit quantum number in the presence of exact spin and pseudospin (p-spin) symmetries. As a particular case, we obtain the energy eigenvalues of the pure Coulomb potential in the non-relativistic limit.

  18. Towards Quantum Superpositions of a Mirror: Stochastic Collapse Analysis - Calculational Details

    CERN Document Server

    Adler, S L; Ippoliti, E

    2005-01-01

    We give details of calculations analyzing the proposed mirror superposition experiment of Marshall, Simon, Penrose, and Bouwmeester within different stochastic models for state vector collapse. We give two methods for exactly calculating the fringe visibility in these models, one proceeding directly from the equation of motion for the expectation of the density matrix, and the other proceeding from solving a linear stochastic unravelling of this equation. We also give details of the calculation that identifies the stochasticity parameter implied by the small displacement Taylor expansion of the CSL model density matrix equation. The implications of the two results are briefly discussed. Two pedagogical appendices review mathematical apparatus needed for the calculations.

  19. Measurement of orbital angular momentum with an off-axis superposition of vector modes

    International Nuclear Information System (INIS)

    We propose an off-axis superposition of vector modes with orthogonal polarizations, constructed from a general scalar helical vortex mode with unknown topological charge m, as a method to measure its orbital angular momentum. We derived analytic expressions for sets of solutions to find lines of linear polarization (L lines) within the composite polarization field. We found that the solutions corresponding to the angular component of the composite field depend only on the displacement of the beams and the topological charge m, and they are invariant under propagation and changes in the relative amplitude and phase between the beams. (paper)

  20. The Superposition Principle in Quantum Mechanics - did the rock enter the foundation surreptitiously?

    CERN Document Server

    Dass, N D Hari

    2013-01-01

    The superposition principle forms the very backbone of quantum theory. The resulting linear structure of quantum theory is structurally so rigid that tampering with it may have serious, seemingly unphysical, consequences. This principle has been succesful at even the highest available accelerator energies. Is this aspect of quantum theory forever then? The present work is an attempt to understand the attitude of the founding fathers, particularly of Bohr and Dirac, towards this principle. The Heisenberg matrix mechanics on the one hand, and the Schrodinger wave mechanics on the other, are critically examined to shed light as to how this principle entered the very foundations of quantum theory.

  1. Three-Phase Multiple Harmonic Sequence Detection Based on Generalized Delayed Signal Superposition

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei;

    2016-01-01

    multiple harmonic sequence detection method is proposed for estimating both the fundamental and harmonic sequence components under adverse grid conditions. This detection method is denoted as MG DSS-PLL since it contains Multiple Generalized Delayed Signal Superposition operators and a Phase-Locked Loop......Grid synchronization has always been an important challenge for three-phase grid-connected converters under unbalanced and distorted grid conditions. Moreover, how to quickly and accurately extract multiple harmonic sequence information is essential for control systems. In this paper, a three-phase...

  2. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  3. A fillable micro-hollow sphere lesion detection phantom using superposition

    Energy Technology Data Exchange (ETDEWEB)

    DiFilippo, Frank P; Gallo, Sven L; Patel, Sagar [Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic, Cleveland, OH 44195 (United States); Klatte, Ryan S [Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2010-09-21

    The lesion detection performance of SPECT and PET scanners is most commonly evaluated with a phantom containing hollow spheres in a background chamber at a specified radionuclide contrast ratio. However, there are limitations associated with a miniature version of a hollow sphere phantom for small-animal SPECT and PET scanners. One issue is that the 'wall effect' associated with zero activity in the sphere wall and fill port causes significant errors for small diameter spheres. Another issue is that there are practical difficulties in fabricating and in filling very small spheres (<3 mm diameter). The need for lesion detection performance assessment of small-animal scanners has motivated our development of a micro-hollow sphere phantom that utilizes the principle of superposition. The phantom is fabricated by stereolithography and has interchangeable sectors containing hollow spheres with volumes ranging from 1 to 14 {mu}L (diameters ranging from 1.25 to 3.0 mm). A simple 60{sup 0} internal rotation switches the positions of three such sectors with their corresponding background regions. Raw data from scans of each rotated configuration are combined and reconstructed to yield superposition images. Since the sphere counts and background counts are acquired separately, the wall effect is eliminated. The raw data are subsampled randomly prior to summation and reconstruction to specify the desired sphere-to-background contrast ratio of the superposition image. A set of images with multiple contrast ratios is generated for visual assessment of lesion detection thresholds. To demonstrate the utility of the phantom, data were acquired with a multi-pinhole SPECT/CT scanner. Micro-liter syringes were successful in filling the small hollow spheres, and the accuracy of the dispensed volume was validated through repeated filling and weighing of the spheres. The phantom's internal rotation and the data analysis process were successful in producing the expected

  4. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer

    Science.gov (United States)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2016-07-01

    The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.

  5. Phase sensitivity in deformed-state superposition considering nonlinear phase shifts

    Science.gov (United States)

    Berrada, K.

    2016-07-01

    We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.

  6. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media

    Science.gov (United States)

    Tillikainen, L.; Helminen, H.; Torsti, T.; Siljamäki, S.; Alakuijala, J.; Pyyry, J.; Ulmer, W.

    2008-07-01

    In this work, a novel three-dimensional superposition algorithm for photon dose calculation is presented. The dose calculation is performed as a superposition of pencil beams, which are modified based on tissue electron densities. The pencil beams have been derived from Monte Carlo simulations, and are separated into lateral and depth-directed components. The lateral component is modeled using exponential functions, which allows accurate modeling of lateral scatter in heterogeneous tissues. The depth-directed component represents the total energy deposited on each plane, which is spread out using the lateral scatter functions. Finally, convolution in the depth direction is applied to account for tissue interface effects. The method can be used with the previously introduced multiple-source model for clinical settings. The method was compared against Monte Carlo simulations in several phantoms including lung- and bone-type heterogeneities. Comparisons were made for several field sizes for 6 and 18 MV energies. The deviations were generally within (2%, 2 mm) of the field central axis dmax. Significantly larger deviations (up to 8%) were found only for the smallest field in the lung slab phantom for 18 MV. The presented method was found to be accurate in a wide range of conditions making it suitable for clinical planning purposes.

  7. Teleportation of one ququat encoded in single mode superposition of coherent states

    CERN Document Server

    Prakash, Hari

    2012-01-01

    Superposition of optical coherent states (SCS) Ket(plus/minus alpha), possessing opposite phases, plays an important role as qubits in quantum information processing tasks like quantum computation, teleportation, cryptography etc. and are of fundamental importance in testing quantum mechanics. Recently, ququats and qutrits defined in four and three dimensional (D) Hilbert space, respectively, have attracted much more attention as they present advantage in secure quantum communication and also in researches on the foundation of quantum mechanics. Here, we show that superposition of four non-orthogonal coherent states Ket(plus/minus alpha) and Ket(plus/minus i alpha), that are 90 degrees out of phase, can be employed for encoding one ququat defined in a 4D Hilbert space spanned by four newly defined multi-photonic states, Ket(alpha subscript j) with 4n+j numbers of photons, where, j= 0, 1, 2, 3. We propose a scheme which generates states Ket(alpha subscript j). When these states fall on a 50-50 beam splitter, t...

  8. Risk evaluation of rock burst through theory of static and dynamic stresses superposition

    Institute of Scientific and Technical Information of China (English)

    李振雷; 蔡武; 窦林名; 何江; 王桂峰; 丁言露

    2015-01-01

    Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based (SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress (due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the “Satisfaction Degree” of static stress. Furthermore, the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97−131 m, and extremely strong (i.e. inevitable to occur) when advance extent exceeds 131 m (mining is prohibited in this case). The section of two gateways whose floor abuts 15−3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method’s feasibility.

  9. Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Zhang En-Tao; Ji Xiao-Ling; Lü Bai-Da

    2009-01-01

    The propagation properties of the off-axis superposition of partially coherent beams through atmospheric tur-bulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB)are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity/max and the PIB decrease and ω(z) increases as the refraction index structure constant C2n increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance Xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.

  10. The GMMBS Method for Time-temperature Superposition of Viscoelastic Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-li; LI Shi-qi; ZHU Wen-ge; WANG Nan; WANG Yue

    2011-01-01

    Using the time-temperature superposition principle, the dynamic properties of viscoelastic materials can be shifted to obtain a master curve. A shifting method based on the Generalized Maxwell Model ( GMMBS ) , is proposed for the time-temperature superposition process of thermo-rheological simple, linear viscoelastic materials. Experimental data points under different temperatures are all considered as a whole and expressed with one unified representation by the GMMBS, which utilizes the feature that the Generalized Maxwell Model can describe a large class of viscoelastic materials with needed accuracy. Compared with traditional overlapping window based shifting methods, the proposed constitutive model based method needn't judge the size or existence of the overlapping window first, and computes shift factors with useful information contained in all experimental data points. The effectiveness of the proposed method is verified by simulated data, generated from published test results, with various experimental noise levels, densities of data points and sizes of overlapping windows. It has been shown that the GMMBS is robust and accurate.

  11. Biases on initial mass function determinations. II. Real multiple systems and chance superpositions

    CERN Document Server

    Apellániz, J Maíz

    2008-01-01

    When calculating IMFs for young clusters, one has to take into account that (a) most massive stars are born in multiple systems (b) most IMFs are derived from data that cannot resolve such systems, and (c) multiple chance superpositions between members are expected to happen if the cluster is too distant. In this article I use numerical experiments to model the consequences of those phenomena on the observed color-magnitude diagrams and the IMFs derived from them. Real multiple systems affect the observed or apparent massive-star MF slope little but can create a significant population of apparently ultramassive stars. Chance superpositions produce only small biases when the number of superimposed stars is low but, once a certain number threshold is reached, they can affect both the observed slope and the apparent stellar upper mass limit. I apply those experiments to two well known massive young clusters in the Local Group, NGC 3603 and R136. In both cases I show that the observed population of stars with mas...

  12. Strain-Rate Frequency Superposition (SRFS) - A rheological probe of structural relaxation in soft materials

    Science.gov (United States)

    Wyss, Hans M.

    2007-03-01

    The rheological properties of soft materials such as concentrated suspensions, emulsions, or foams often exhibit surprisingly universal linear and nonlinear features. Here we show that their linear and nonlinear viscoelastic responses can be unified in a single picture by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new approach to oscillatory rheology, which keeps the strain rate amplitude fixed as the oscillation frequency is varied. This allows for a detailed study of the effects of strain rate on the structural relaxation of soft materials. Our data exhibits a characteristic scaling, which isolates the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques. Our approach is reminiscent of a technique called time-temperature superposition (TTS), where rheological curves measured at different temperatures are shifted onto a single master curve that reflects the viscoelastic behavior in a dramatically extended range of frequencies. By analogy, we call our approach strain-rate frequency superposition (SRFS). Our experimental results show that nonlinear viscoelastic measurements contain useful information on the slow relaxation dynamics of soft materials. The data indicates that the yielding behavior of soft materials directly probes the structural relaxation process itself, shifted towards higher frequencies by an applied strain rate. This suggests that SRFS will provide new insight into the physical mechanisms that govern the viscoelastic response of a wide range of soft materials.

  13. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    International Nuclear Information System (INIS)

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart

  14. Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts

    Directory of Open Access Journals (Sweden)

    M. Saphiannikova

    2012-06-01

    Full Text Available The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes.

  15. A digital interface for Gaussian relay networks: lifting codes from the discrete superposition model to Gaussian relay networks

    CERN Document Server

    Anand, M

    2010-01-01

    For every Gaussian relay network with a single source-destination pair, it is known that there exists a corresponding deterministic network called the discrete superposition network that approximates its capacity uniformly over all SNR's to within a bounded number of bits. The next step in this program of rigorous approximation is to determine whether coding schemes for discrete superposition models can be lifted to Gaussian relay networks with a bounded rate loss independent of SNR. We establish precisely this property and show that the superposition model can thus serve as a strong surrogate for designing codes for Gaussian relay networks. We show that a code for a Gaussian relay network, with a single source-destination pair and multiple relay nodes, can be designed from any code for the corresponding discrete superposition network simply by pruning it. In comparison to the rate of the discrete superposition network's code, the rate of the Gaussian network's code only reduces at most by a constant that is ...

  16. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-10-15

    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  17. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    International Nuclear Information System (INIS)

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1–3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure. (paper)

  18. Repeated mitral valve replacement in a patient with extensive annular calcification

    Directory of Open Access Journals (Sweden)

    Kitamura Tadashi

    2011-11-01

    Full Text Available Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular debridement. Postoperatively the patient developed paravalvular leak and hemolytic anemia, subsequently undergoing reoperation three days later. The mitral valve was replaced with an Edwards MIRA valve, with a bulkier sewing cuff, after more aggressive annular debridement. Although initially there was no paravalvular leak, it recurred five days later. The patient also developed a small cerebral hemorrhage. As the paravalvular leak and hemolytic anemia gradually worsened, the patient underwent reoperation 14 days later. A Carpentier-Edwards bioprosthetic valve with equine pericardial patches, one to cover the debrided calcified annulus, another as a collar around the prosthesis, was used to eliminate paravalvular leak. At 7 years postoperatively the patient is doing well without any evidence of paravalvular leak or structural valve deterioration. Conclusion Mitral valve replacement using a bioprosthesis with equine pericardial patches was useful to overcome recurrent paravalvular leak due to severe mitral annular calcification.

  19. The clinical application of “jetting suture” technique in annular repair under microendoscopic discectomy

    Science.gov (United States)

    Qi, Lei; Li, Mu; Si, Haipeng; Wang, Liang; Jiang, Yunpeng; Zhang, Shuai; Li, Le

    2016-01-01

    Abstract To introduce a new designed suture technique in annular repair under the microendoscopic discectomy (MED) surgery and to evaluate the clinical application of the technique in annular repair under MED with at least 2-year follow-up period. A new method of annular repair was designed and named “jetting suture” technique. Thirty consecutive patients with lumbar disc herniation were enrolled in the prospective single-cohort observational study. Patients were followed up at intervals of preoperative, postoperative 1 week, 3 months, 6 months, 1 year, and last follow-up. The clinical outcomes were evaluated by using Japanese Orthopaedic Association (JOA) score, Oswestry Disability Index, and modified Mcnab criteria. The procedure was successfully performed in all cases. No case required conversion to an open procedure. The mean age of patients was 36.6 years. Average blood loss was 45.8 ± 10.2 mL. The preoperative symptoms were alleviated significantly after surgery. All the standardized measures improved significantly at the last follow-up, including JOA score (10.1 to 26.6; P disc herniation was reported. The designed “jetting suture” technique in annular repair under MED can be performed safely and effectively. It could be a viable alternative to annular repair under lumbar discectomy. PMID:27495101

  20. Exploring flocculation of suspended burned sediment using an annular flume

    Science.gov (United States)

    Blake, W. H.; Clarke, P.; Manning, A. J.; Fitzsimons, M. F.

    2010-05-01

    The frequency and severity of wildfire events are predicted to increase in many fire-prone areas of the world with implications for erosion, sediment transport and sedimentation. While cohesive suspended sediment is known to be transported primarily as flocculated material in river channels, with important implications for catchment nutrient and contaminant fluxes, there has been little work to date to explore the effect of burning on suspended sediment flocculation processes. Since heating has profound effects on surface soil biogeochemistry, it can be hypothesised that in-channel flocculation processes may also be affected as burned eroded material is transported through the catchment system. Using an annular flume and LISST-ST (Laser in Situ Scatter and Transmissometry with Settling Tube) particle size analyser, short-term suspended sediment flocculation dynamics were examined in burned and unburned sediment collected from a wildfire-impacted catchment, Southern Peloponnese, Greece. Fine sediment (stresses (0.1, 0.3, 0.6 and 0.9 Pa). Experiments were undertaken for a range of suspended sediment concentrations (111, 222 and 333 mg l-1) of burned and unburned material. For each shear and sediment concentration scenario, the flume was operated for 30 minutes to induce a theoretical equilibrium between flocs and fluid shear stress after which 5 replicate subsamples were collected and analysed for effective particle size using the LISST-ST. Material was also analysed for absolute particle size following chemical and ultrasonic dispersion. At the two higher sediment concentrations, the effective particle size distribution of unburned material notably coarsened at shear stresses of 0.1-0.3 Pa in comparison to the absolute particle size distribution. This is reflected in a reduction of the percentage of 250 μm) e.g. from 14.4 ± 4.1 % to 5.9 ± 2.0 % at the highest sediment concentration. While similar increases in effective particle size were seen at the lower

  1. Transverse bed slope effects in an annular flume

    Science.gov (United States)

    Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim

    2016-04-01

    Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse

  2. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  3. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    Science.gov (United States)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  4. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  5. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  6. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    International Nuclear Information System (INIS)

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  7. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  8. Eosinophilic annular erythema: a subset of Wells' syndrome or a distinct entity?

    Science.gov (United States)

    Howes, Renae; Girgis, Laila; Kossard, Steven

    2008-08-01

    A 52-year-old woman with a 6-year history of a persistent non-pruritic cutaneous annular eruption, forming polycyclic and arcuate plaques that commenced as erythematous papules and nodules, is presented. Lethargy and arthralgia were associated symptoms. We have followed this patient for the last 3 years, and during this period she has continued to have a florid annular eruption of unknown cause. Laboratory tests, including an eosinophil count, examination of stool samples for parasites, and a computed tomography scan of the chest, abdomen and pelvis, failed to detect any abnormalities. Skin biopsies demonstrated a superficial to deep cellular infiltrate consisting of numerous eosinophils, with lymphocytes and isolated neutrophils. Eosinophilic dust, flame figures and granulomatous inflammation were not seen. In addition, strands of mucin were present through the dermis, and prominent basal vacuolar change was evident at the dermoepidermal junction; these features may represent new findings that help define a distinct form of eosinophilic annular erythema. PMID:18638225

  9. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    Science.gov (United States)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  10. Anti-oxidative therapy with oral dapsone improved HCV antibody positive annular elastolytic giant cell granuloma.

    Science.gov (United States)

    Igawa, K; Maruyama, R; Katayama, I; Nishioka, K

    1997-05-01

    A 72-year-old fisherman who was positive for the HCV antibody developed an annular, erythematous, infiltrated lesions on sun-exposed areas. The lesions were diagnosed as annular elastolytic giant cell granuloma both clinically and histologically. Topical corticosteroid and cryotherapy with liquid nitrogen for several months failed to improve the lesions. We then started dapsone, a known anti-oxidant, at 50 mg/day. A month later, the margins of the erythematous lesions faded, and the infiltration gradually decreased. No recurrence has been observed for one year after the start of the therapy. Anti-oxidative therapy appears to be effective for annular elastolytic giant cell granuloma and could be an alternate therapy for refractory granulomatous disease. PMID:9198323

  11. Diametric Tolerance Control of Dual Cooled Annular Fuel Pellet without Inner Surface Grinding

    International Nuclear Information System (INIS)

    A dual cooled fuel consists of internal and external cladding tubes in which annular pellets are stacked and cooling water flows in both internal and external coolant passages. It is recently being reconsidered as a promising option for a power up-rate of a pressurized water reactor fuel assembly because an annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to an increased heat transfer area and a thin pellet thickness. Many technical issues might cause a serious problem to adopt the dual cooled annular fuel to the commercial PWR reactors. One of the most important issues is a heat flux split toward an internal cladding and an external cladding due to the gap conductance asymmetry which results from a preferential expansion of a fuel pellet toward the outside during an irradiation. Gap conductance is directly related to the inner and outer gap thicknesses. Initial gap thicknesses can vary with a pellet's dimensions which are affected by a reactor operation condition. Recently, it is suggested that a fuel rod with a smaller inner gap and a larger outer gap can reduce this gap conductance asymmetry. This approach can be effective only after precise tolerance technology is achieved. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press. Thus, a sintered pellet usually undergoes a center-less grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a center-less grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications

  12. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    International Nuclear Information System (INIS)

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path

    International Nuclear Information System (INIS)

    Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path are studied by using the numerical simulation method and some new results are obtained, which are explained in physical terms. It is found that, when the zenith angle is not large enough, the saturation phenomenon of the scintillation index never appears even if the propagation distance is large enough, which is quite different from the behavior for the horizontal propagation case. However, under the same condition (i.e. the zenith angle is not large enough), the on-axis scintillation index still approaches an asymptotical value, which increases as the zenith angle increases, and depends on the obscure ratio of annular beams. Furthermore, the relation of the on-axis scintillation index between annular beams and flat-topped beams is also examined in this paper. It is shown that their relation will change as the zenith angle changes. (paper)

  14. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    Science.gov (United States)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  15. Investigating the Influence of Visualization on Student Understanding of Quantum Superposition

    CERN Document Server

    Kohnle, Antje; Ruby, Scott

    2014-01-01

    Visualizations in interactive computer simulations are a powerful tool to help students develop productive mental models, particularly in the case of quantum phenomena that have no classical analogue. The QuVis Quantum Mechanics Visualization Project develops research-based interactive simulations for the learning and teaching of quantum mechanics. We describe efforts to refine the visual representation of a single-photon superposition state in the QuVis simulations. We developed various depictions of a photon incident on a beam splitter, and investigated their influence on student thinking through individual interviews. Outcomes from this study led to the incorporation of a revised visualization in all QuVis single-photon simulations. In-class trials in 2013 and 2014 using the Interferometer Experiments simulation in an introductory quantum physics course were used for a comparative study of the initial and revised visualizations. The class that used the revised visualization showed a lower frequency of inco...

  16. Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    CERN Document Server

    Vasiliev, Eugene

    2015-01-01

    We present an implementation of the Schwarzschild orbit superposition method which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc--bulge--halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angula...

  17. Proportional fair scheduling with superposition coding in a cellular cooperative relay system

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar;

    2013-01-01

    Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...

  18. Mesoscopic quantum superposition of the generalized cat state: A diffraction limit

    Science.gov (United States)

    Ghosh, Suranjana; Sharma, Raman; Roy, Utpal; Panigrahi, Prasanta K.

    2015-11-01

    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of a large number of states. The mesoscopic superposition of the generalized cat state is correlated with the corresponding state overlap function, controlled by the sub-Planck structures arising from phase-space interference. The asymptotic expression of this overlap function is evaluated, and the validity of large phase-space support and distinguishability of the constituent states, in which context the asymptotic limit is achieved, are discussed in detail. For a large number of coherent states, uniformly located on a circle, the overlap function significantly matches the diffraction pattern for a circular ring source with uniform angular strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function, matches a diffraction pattern. The physical situation under consideration is delineated in phase space by utilizing the Husimi Q function.

  19. Accurate modeling of vector hysteresis using a superposition of Preisach-type models

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. [Cairo Univ., Giza (Egypt). Electrical Power and Machines Dept.; Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.

    1997-09-01

    Vector hysteresis models are basically regarded as helpful tools that can be utilized in simulating and/or predicting multi-dimensional field-media interactions. Simulations of energy loss in power devices having unoriented magnetic cores, read/write recording processes as well as tape and disk erasure approaches are examples of such interactions that are currently of considerable interest. Vector hysteresis models are generally regarded as helpful tools that can be utilized in simulating multi-dimensional field-media interactions. In this paper, simulation of vector hysteresis is proposed by using a superposition of isotropic Preisach-type models. This approach gives the opportunity to fully incorporate rotational experimental results in its identification procedure, thus leading to higher simulation accuracy. Detailed solution of the model identification problem and some experimental testing results are given in the paper.

  20. Limitations to the validity of single wake superposition in wind farm yield assessment

    Science.gov (United States)

    Gunn, K.; Stock-Williams, C.; Burke, M.; Willden, R.; Vogel, C.; Hunter, W.; Stallard, T.; Robinson, N.; Schmidt, S. R.

    2016-09-01

    Commercially available wind yield assessment models rely on superposition of wakes calculated for isolated single turbines. These methods of wake simulation fail to account for emergent flow physics that may affect the behaviour of multiple turbines and their wakes and therefore wind farm yield predictions. In this paper wake-wake interaction is modelled computationally (CFD) and physically (in a hydraulic flume) to investigate physical causes of discrepancies between analytical modelling and simulations or measurements. Three effects, currently neglected in commercial models, are identified as being of importance: 1) when turbines are directly aligned, the combined wake is shortened relative to the single turbine wake; 2) when wakes are adjacent, each will be lengthened due to reduced mixing; and 3) the pressure field of downstream turbines can move and modify wakes flowing close to them.