WorldWideScience

Sample records for annular dark-field stem

  1. Annular dark field transmission electron microscopy for protein structure determination.

    Science.gov (United States)

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; Dyck, D. Van; Tendeloo, G. Van

    2009-01-01

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  3. Counting Tm dopant atoms around GaN dots using high-angle annular dark field images

    International Nuclear Information System (INIS)

    Rouvière, J-L; Okuno, H; Jouneau, P H; Bayle-Guillemaud, P; Daudin, B

    2011-01-01

    High resolution Z-contrast STEM imaging is used to study the Tm doping of GaN quantum dots grown in AlN by molecular beam epitaxy (MBE). High-angle annular dark field (HAADF) imaging allows us to visualize directly individual Tm atoms in the AlN matrix and even to count the number of Tm atoms in a given AlN atomic column. A new visibility coefficient to determine quantitatively the number of Tm atoms in a given atomic column is introduced. It is based on locally integrated intensities rather than on peak intensities of HAADF images. STEM image simulations shows that this new visibility is less sensitive to the defocus-induced blurring or to the position of the Tm atom within the thin lamella. Most of the Tm atoms diffuse out of GaN dots. Tm atoms are found at different positions in the AlN matrix, (i) Above the wetting layer, Tm atoms are spread within a thickness of 14 AlN monolayers (MLs). (ii) Above the quantum dots all the Tm are located in the same plane situated at 2-3 MLs above the apex of the GaN dot, i.e. at a distance of 14 MLs from the wetting layer, (iii) In addition, Tm can diffuse very far from the GaN dot by following threading dislocations lines.

  4. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.

    Science.gov (United States)

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T; Nelayah, Jaysen; Srot, Vesna; van Aken, Peter A

    2009-08-01

    The advent of electron monochromators has opened new perspectives on electron energy-loss spectroscopy at low energy losses, including phenomena such as surface plasmon resonances or electron transitions from the valence to the conduction band. In this paper, we report first results making use of the combination of an energy filter and a post-filter annular dark-field detector. This instrumental design allows us to obtain energy-filtered (i.e. inelastic) annular dark-field images in scanning transmission electron microscopy of the 2-dimensional semiconductor band-gap distribution of a GaN/Al(45)Ga(55)N structure and of surface plasmon resonances of silver nanoprisms. In comparison to other approaches, the technique is less prone to inelastic delocalization and relativistic artefacts. The mixed contribution of elastic and inelastic contrast is discussed.

  5. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy.

    Science.gov (United States)

    Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S

    2014-02-01

    High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.

  6. Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, U., E-mail: Ursel.Bangert@ul.ie [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Stewart, A.; O’Connell, E.; Courtney, E. [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Ramasse, Q.; Kepaptsoglou, D. [SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD (United Kingdom); Hofsäss, H.; Amani, J. [II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-PLatz 1, 37077 Göttingen (Germany); Tu, J.-S.; Kardynal, B. [Peter Grünberg Institut 9, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2017-05-15

    Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS{sub 2} are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS{sub 2} can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds. - Highlights: • Ion implantation of 2-dimensional materials. • Targeted and controlled functionalisation of graphene and 2-D dichalcocenides. • Atomic resolution High Angle Dark Field scanning transmission electron microscopy. • Determination of atomic site and elemental nature of dopants in 2-D materials. • Quantitative information from Z-contrast images.

  7. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    Science.gov (United States)

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    Science.gov (United States)

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Vajargah, S. Hosseini; Couillard, M.; Cui, K.; Tavakoli, S. Ghanad; Robinson, B.; Kleiman, R. N.; Preston, J. S.; Botton, G. A.

    2011-01-01

    The interfacial misfit (IMF) dislocation array of an epitaxial GaSb film on a Si substrate has been imaged with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mismatch strain accommodation through dislocation formation has been investigated using geometric phase analysis (GPA) on HAADF-STEM images with atomic resolution to probe the defects' local strain distribution. These measurements indicate that the lattice parameter of the epitaxial film recovers its bulk value within three unit cells from the interface due to the relaxation through IMF dislocations. The atomic number contrast of the HAADF-STEM images and energy dispersive x-ray spectrometry illustrate the formation of islands of AlSb buffer layer along the interface. The role of the AlSb buffer layer in facilitating the GaSb film growth on Si is further elucidated by investigating the strain field of the islands with the GPA.

  10. Intergrowth structure of α-phase in β-type TmAlB{sub 4} compound studied by high-angle annular detector dark-field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yubuta, Kunio, E-mail: yubuta@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takao [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Leithe-Jasper, Andreas; Borrmann, Horst; Grin, Yuri [Max-Plank-Institut für Chemische Physik fester Stöffe, 01187 Dresden (Germany); Okada, Shigeru [Department of Science and Engineering, Kokushikan University, Tokyo 154-8515 (Japan); Shishido, Toetsu [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2014-11-15

    Nanostructure of a ThMoB{sub 4}-type (β-type) TmAlB{sub 4} compound, in which YCrB{sub 4}-type (α-type) domains are locally intergrown, is studied by high-angle annular detector dark-field scanning transmission electron microscopy (HAADF-STEM). Z-contrast images by HAADF-STEM directly represent the arrangements of Tm atoms located at centers of heptagonal atomic columns of B atoms as bright dots, and give us detailed information of intergrowth of type domains in the matrix of the β-type phase, which coherently occurs. Structural and bonding analyses for β-TmAlB{sub 4} point out the closeness in atomic interactions and energy of the α- and β-type structures which support the easy formation of such nanostructure intergrowths. From combination between HAADF-STEM and electronic structure calculation, a detailed local crystal structure with intrinsic building defects is effectively revealed. - Graphical abstract: Nanostructure of a ThMoB{sub 4}-type (β-type) TmAlB{sub 4} compound, in which YCrB{sub 4}-type (α-type) domains are locally intergrown, is studied by high-angle annular detector dark-field scanning transmission electron microscopy (HAADF-STEM). Z-contrast images by HAADF-STEM directly represent arrangements of Tm atoms located at centers of heptagonal atomic columns of B atoms as bright dots, and give us detailed information of the characteristic intergrowth structure of type domains in the matrix of the β-type phase. - Highlights: • HAADF-STEM images directly represent arrangements of Tm atoms as bright dots. • The α-type planar domains coherently intergrown in the β-type matrix. • Bright strips appear at overlapped regions of Tm hexagons along interfaces between α- and β-type domains.

  11. Neutron Dark-Field Imaging

    Science.gov (United States)

    Mullins, David

    2017-09-01

    Neutron imaging is typically used to image and reconstruct objects that are difficult to image using X-Ray imaging techniques. X-Ray absorption is primarily determined by the electron density of the material. This makes it difficult to image objects within materials that have high densities such as metal. However, the neutron scattering cross section primarily depends on the strong nuclear force, which varies somewhat randomly across the periodic table. In this project, an imaging technique known as dark field imaging using a far-field interferometer has been used to study a sample of granite. With this technique, interferometric phase images are generated. The dispersion of the microstructure of the sample dephases the beam, reducing the visibility. Collecting tomographic projections at different autocorrelation lengths (from 100 nanometers to 1.74 micrometers) essentially creates a 3D small angle scattering pattern, enabling mapping of how the microstructure is distributed throughout the sample.

  12. Dark Field Microscopy for Analytical Laboratory Courses

    Science.gov (United States)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  13. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging

    NARCIS (Netherlands)

    van Elteren, H. A.; Ince, C.; Tibboel, D.; Reiss, I. K. M.; de Jonge, R. C. J.

    2015-01-01

    Incident dark field imaging (IDF) is a new generation handheld microscope for bedside visualization and quantification of microcirculatory alterations. IDF is the technical successor of sidestream dark field imaging (SDF), currently the most used device for microcirculatory measurements. In

  14. Quantitative ADF STEM: acquisition, analysis and interpretation

    International Nuclear Information System (INIS)

    Jones, L

    2016-01-01

    Quantitative annular dark-field in the scanning transmission electron microscope (ADF STEM), where image intensities are used to provide composition and thickness measurements, has enjoyed a renaissance during the last decade. Now in a post aberration-correction era many aspects of the technique are being revisited. Here the recent progress and emerging best-practice for such aberration corrected quantitative ADF STEM is discussed including issues relating to proper acquisition of experimental data and its calibration, approaches for data analysis, the utility of such data, its interpretation and limitations. (paper)

  15. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  16. Mapping misoriented fibers using X-ray dark field tomography

    DEFF Research Database (Denmark)

    Lauridsen, Torsten; Lauridsen, Erik Mejdal; Feidenhans’l, Robert

    2014-01-01

    such tomograms on a highly nonisotropic sample, i.e. a five layer “sandwich” of oriented carbon fibers. The fibers are parallel within the individual sandwich layers, but perpendicular to the fibers in the adjacent layers. We show that by choosing a rotation axis parallel to the grating stepping direction (i.......e. a horizontal rotation axis in most setup configurations) it is possible to produce a darkfield tomogram where fibers parallel to the probed scattering direction appear to have no dark field signal. The method produces a tomogram in the form of a scalar field of dark field scattering values....

  17. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes

    NARCIS (Netherlands)

    E. Gilbert-Kawai; J. Coppel (Jonny); V. Bountziouka (Vassiliki); C. Ince (Can); D. Martin (Daniel)

    2016-01-01

    markdownabstract__Background__ The ‘Cytocam’ is a third generation video-microscope, which enables real time visualisation of the in vivo microcirculation. Based upon the principle of incident dark field (IDF) illumination, this hand held computer-controlled device was designed to address the

  18. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes

    NARCIS (Netherlands)

    Gilbert-Kawai, Edward; Coppel, Jonny; Bountziouka, Vassiliki; Ince, Can; Martin, Daniel; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Jonas, M.; van der Kaaij, J.; Khosravi, M.; Kolfschoten, N.; Levett, D.; Luery, H.; Luks, A.; Martin, D.; McMorrow, R.; Meale, P.; Mitchell, K.; Montgomery, H.; Morgan, G.; Morgan, J.; Murray, A.; Mythen, M.; Newman, S.; O'Dwyer, M.; Pate, J.; Plant, T.; Pun, M.; Richards, P.; Richardson, A.; Rodway, G.; Simpson, J.; Stroud, C.; Stroud, M.; Stygal, J.; Symons, B.; Szawarski, P.; van Tulleken, A.; van Tulleken, C.; Vercueil, A.; Wandrag, L.; Wilson, M.; Windsor, J.; Basnyat, B.; Clarke, C.; Hornbein, T.; Milledge, J.; West, J.; Abraham, S.; Adams, T.; Anseeuw, W.; Astin, R.; Burdall, O.; Carroll, J.; Cobb, A.; Coppel, J.; Couppis, O.; Court, J.; Cumptsey, A.; Davies, T.; Diamond, N.; Geliot, T.; Gilbert-Kawai, E.; Gilbert-Kawai, G.; Gnaiger, E.; Haldane, C.; Hennis, P.; Horscroft, J.; Jack, S.; Jarvis, B.; Jenner, W.; Jones, G.; Kenth, J.; Kotwica, A.; Kumar, R. B. C.; Lacey, J.; Laner, V.; Mahomed, Z.; Moonie, J.; Mythen, P.; O'Brien, K.; Ruggles-Brice, I.; Salmon, K.; Sheperdigian, A.; Smedley, T.; Tomlinson, C.; Ward, S.; Wight, A.; Wilkinson, C.; Wythe, S.; Feelisch, M.; Hanson, M.; Moon, R.; Peters, M.

    2016-01-01

    Background: The 'Cytocam' is a third generation video-microscope, which enables real time visualisation of the in vivo microcirculation. Based upon the principle of incident dark field (IDF) illumination, this hand held computer-controlled device was designed to address the technical limitations of

  19. Directional x-ray dark-field imaging.

    Science.gov (United States)

    Jensen, Torben H; Bech, Martin; Bunk, Oliver; Donath, Tilman; David, Christian; Feidenhans'l, Robert; Pfeiffer, Franz

    2010-06-21

    We introduce a novel x-ray imaging approach that yields information about the local texture of structures smaller than the image pixel resolution inside an object. The approach is based on a recently developed x-ray dark-field imaging technique, using scattering from sub-micron structures in the sample. We show that the method can be used to determine the local angle and degree of orientation of bone, and fibers in a leaf. As the method is based on the use of a conventional x-ray tube we believe that it can have a great impact on medical diagnostics and non-destructive testing applications.

  20. Dark field X-ray microscopy for studies of recrystallization

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    We present the recently developed technique of Dark Field X-Ray Microscopy that utilizes the diffraction of hard X-rays from individual grains or subgrains at the (sub)micrometre- scale embedded within mm-sized samples. By magnifying the diffracted signal, 3D mapping of orientations and strains...... inside the selected grain is performed with an angular resolution of 0:005o and a spatial resolution of 200 nm. Furthermore, the speed of the measurements at high- intensity synchrotron facilities allows for fast non-destructive in situ determination of structural changes induced by annealing or other...

  1. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes.

    Science.gov (United States)

    Gilbert-Kawai, Edward; Coppel, Jonny; Bountziouka, Vassiliki; Ince, Can; Martin, Daniel

    2016-01-21

    The 'Cytocam' is a third generation video-microscope, which enables real time visualisation of the in vivo microcirculation. Based upon the principle of incident dark field (IDF) illumination, this hand held computer-controlled device was designed to address the technical limitations of its predecessors, orthogonal polarization spectroscopy and sidestream dark field (SDF) imaging. In this manuscript, we aimed to compare the quality of sublingual microcirculatory image acquisition between the IDF and SDF devices. Using the microcirculatory image quality scoring (MIQS) system, (six categories scored as either 0 = optimal, 1 = acceptable, or 10 = unacceptable), two independent raters compared 30 films acquired using the Cytocam IDF video-microscope, to an equal number obtained with an SDF device. Blinded to the origin of the films, the raters were therefore able to score between 0 and 60 for each film analysed. The scores' distributions between the two techniques were compared. The median MIQS (95% CI) given to the SDF camera was 7 (1.5-12), as compared to 1 (0.5-1.0) for the IDF device (p microscope, as compared to the SDF video-microscope.

  2. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    Science.gov (United States)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  3. HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, W., E-mail: williams.lefebvre@univ-rouen.fr; Hernandez-Maldonado, D.; Moyon, F.; Cuvilly, F.; Vaudolon, C.; Shinde, D.; Vurpillot, F.

    2015-12-15

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. - Highlights: • Quantitative correlative microscopy by APT and STEM is considered. • The particular geometry of atom probe tomography (APT) specimens is considered. • HAADF–STEM image simulations were applied. • The possibility of atom counting is demonstrated for protuberant particles.

  4. Annular Flow Distribution test

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L. (ed.) (Westinghouse Savannah River Co., Aiken, SC (United States)); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. (Babcock and Wilcox Co., Alliance, OH (United States). Research Center)

    1990-12-01

    This report documents the Babcock and Wilcox (B W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.

  5. Annular Flow Distribution test

    International Nuclear Information System (INIS)

    Kielpinski, A.L.; Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J.

    1990-12-01

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  6. STEM tomography for thick biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Kazuhiro [FEI Company Japan Ltd., Application Laboratory, NSS-II Building, 2-13-34 Kohnan, Minato-ku, Tokyo 108-0075 (Japan)], E-mail: kazuhiro.aoyama@fei.com; Takagi, Tomoko [FEI Company Japan Ltd., Application Laboratory, NSS-II Building, 2-13-34 Kohnan, Minato-ku, Tokyo 108-0075 (Japan); Laboratory of Electron Microscopy, Japan Women' s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Hirase, Ai; Miyazawa, Atsuo [Bio-multisome Research Team, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); CREST, JST (Japan)

    2008-12-15

    Scanning transmission electron microscopy (STEM) tomography was applied to biological specimens such as yeast cells, HEK293 cells and primary culture neurons. These cells, which were embedded in a resin, were cut into 1-{mu}m-thick sections. STEM tomography offers several important advantages including: (1) it is effective even for thick specimens, (2) 'dynamic focusing', (3) ease of using an annular dark field (ADF) mode and (4) linear contrasts. It has become evident that STEM tomography offers significant advantages for the observation of thick specimens. By employing STEM tomography, even a 1-{mu}m-thick specimen (which is difficult to observe by conventional transmission electron microscopy (TEM)) was successfully analyzed in three dimensions. The specimen was tilted up to 73 deg. during data acquisition. At a large tilt angle, the specimen thicknesses increase dramatically. In order to observe such thick specimens, we introduced a special small condenser aperture that reduces the collection angle of the STEM probe. The specimen damage caused by the convergent electron beam was expected to be the most serious problem; however, the damage in STEM was actually smaller than that in TEM. In this study, the irradiation damage caused by TEM- and STEM-tomography in biological specimens was quantitatively compared.

  7. Dark field imaging system for size characterization of magnetic micromarkers

    Science.gov (United States)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  8. Familial Granuloma Annulare

    Directory of Open Access Journals (Sweden)

    Zennure Takci

    2015-09-01

    Full Text Available Granuloma annulare is a benign, asymptomatic, relatively common, often self-limited chronic granulomatos disorder of the skin that can affect both children and adults. The primary skin lesion usually is grouped papules in an enlarging annular shape, with color ranging from flesh-colored to erythematous. The two most common types of granuloma annulare are localized, which typically is found on the lateral or dorsal surfaces of the hands and feet; and disseminated, which is widespread. Rarely, familial cases of granuloma annulare has been reported. Herein, we report two sisters with annular papules and plaques diagnosed as granuloma annulare with the clinical and pathological findings. [J Contemp Med 2015; 5(3.000: 189-191

  9. Quantification of the sensitivity range in neutron dark-field imaging

    International Nuclear Information System (INIS)

    Betz, B.; Harti, R. P.; Hovind, J.; Kaestner, A.; Lehmann, E.; Grünzweig, C.; Strobl, M.; Van Swygenhoven, H.

    2015-01-01

    In neutron grating interferometry, the dark-field image visualizes the scattering properties of samples in the small-angle and ultra-small-angle scattering range. These angles correspond to correlation lengths from several hundred nanometers up to several tens of micrometers. In this article, we present an experimental study that demonstrates the potential of quantitative neutron dark-field imaging. The dark-field signal for scattering from different particle sizes and concentrations of mono-dispersive polystyrene particles in aqueous solution is compared to theoretical predictions and the good agreement between measurements and calculations underlines the quantitative nature of the measured values and reliability of the technique with neutrons

  10. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  11. Classification of the micromorphology of breast calcifications in x-ray dark-field mammography

    Science.gov (United States)

    Willer, Konstantin; Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Aniko; Hellerhof, Karin; Reiser, Maximilian; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    The distant goal of this investigation is to reduce the number of invasive procedures associated with breast micro calcification biopsies, by improving and refining conventional BIRADS micro calcification assessments with x-ray dark-field mammography. The study was institutional review board (IRB) approved. A dedicated grating-based radiography setup (Mo-target, 40 keV, 70 mA) was used to investigate one breast mastectomy and 31 biopsies with dark-field mammography. Comparing the absorption and scattering properties of micro calcifications clusters enables accessing information on the interior morphology on the micron-scale retrieved in a non-invasive manner. Insights underlying the micro morphological nature of breast calcifications were verified by comprehensive high-resolution micro-CT measurements. It was found that Dark-field mammography allows a micro-structural classification of breast micro calcification as ultra-fine, fine, pleomorphic and coarse textured using conventional detectors. Dark-field mammography is thereby highly sensitive to minor structural deviations. Finally, the determined micro-texture of the investigated micro calcifications was correlated with findings obtained from histopathological work up. The presented results demonstrate that dark-field mammography yields the potential to enhance diagnostic validity of current micro calcification analysis - which is yet limited to the exterior appearance of micro calcification clusters - and thereby reduce the number of invasive procedures.

  12. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  13. Dark-field electron holography for the measurement of geometric phase

    International Nuclear Information System (INIS)

    Hytch, M.J.; Houdellier, F.; Huee, F.; Snoeck, E.

    2011-01-01

    The genesis, theoretical basis and practical application of the new electron holographic dark-field technique for mapping strain in nanostructures are presented. The development places geometric phase within a unified theoretical framework for phase measurements by electron holography. The total phase of the transmitted and diffracted beams is described as a sum of four contributions: crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental conditions, phase reconstruction and analysis are detailed for off-axis electron holography using examples from the field of semiconductors. A method for correcting for thickness variations will be proposed and demonstrated using the phase from the corresponding bright-field electron hologram. -- Highlights: → Unified description of phase measurements in electron holography. → Detailed description of dark-field electron holography for geometric phase measurements. → Correction procedure for systematic errors due to thickness variations.

  14. X-ray dark-field interface radiography; Roentgen-Interface-Radiographie im Dunkelfeld

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Hentschel, Manfred P.; Lange, Axel; Mueller, Bernd R. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2013-07-01

    This article presents an X-ray imaging method for weakly absorbing objects which makes use of the contrast effects created by X-ray refraction at surfaces and interfaces. A slightly curved monocrystal in which the Bragg condition is met locally in a small zone of the irradiated cross-section is used to generate what is referred to as a dark field. Beam components deflected by refraction within this zone appear as brightly luminant structures. Biological and technical structures are used as examples in creating 2D high-resolution images from the synthesis of several dark-field stripes.

  15. Dark-field X-ray microscopy for multiscale structural characterization

    DEFF Research Database (Denmark)

    Simons, Hugh; King, A.; Ludwig, W.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three...... of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements...

  16. X-ray dark-field vector radiography-a novel technique for osteoporosis imaging.

    Science.gov (United States)

    Baum, Thomas; Eggl, Elena; Malecki, Andreas; Schaff, Florian; Potdevin, Guillaume; Gordijenko, Olga; Garcia, Eduardo Grande; Burgkart, Rainer; Rummeny, Ernst J; Noël, Peter B; Bauer, Jan S; Pfeiffer, Franz

    2015-01-01

    X-ray dark-field vector radiography (XVR) has emerged as an imaging technique which can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. The XVR yields direction-dependent information about the X-ray scattering of the trabecular bone microstructure without the requirement of resolving the micrometer size structures directly causing the scattering. In this pilot study, we demonstrated that XVR-based degree of anisotropy correlated with femoral bone strength in the context of osteoporosis.

  17. Detection of sub-pixel fractures in X-ray dark-field tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Torsten; Feidenhans' l, Robert [University of Copenhagen, Niels Bohr Institute, Copenhagen (Denmark); Willner, Marian; Pfeiffer, Franz [Technische Universitaet Muenchen, Department of Physics and Institute of Medical Engineering, Garching (Germany); Bech, Martin [Lund University, Medical Radiation Physics, Lund (Sweden)

    2015-11-15

    We present a new method for detecting fractures in solid materials below the resolution given by the detector pixel size by using grating-based X-ray interferometry. The technique is particularly useful for detecting sub-pixel cracks in large samples where the size of the sample is preventing high-resolution μCT studies of the entire sample. The X-ray grating interferometer produces three distinct modality signals: absorption, phase and dark field. The method utilizes the unique scattering features of the dark-field signal. We have used tomograms reconstructed from each of the three signals to detect cracks in a model sample consisting of stearin. (orig.)

  18. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.

    Science.gov (United States)

    Woehl, Taylor; Keller, Robert

    2016-12-01

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. Copyright © 2016. Published by Elsevier B.V.

  19. Rapid automatic assessment of microvascular density in sidestream dark field images

    NARCIS (Netherlands)

    R. Bezemer (Rick); J.G. Dobbe (Johannes); S.A. Bartels (Sebastiaan); E. Christiaan Boerma (E.); P.W.G. Elbers (Paul W.); M. Heger (Michal); C. Ince (Can)

    2011-01-01

    textabstractThe purpose of this study was to develop a rapid and fully automatic method for the assessment of microvascular density and perfusion in sidestream dark field (SDF) images. We modified algorithms previously developed by our group for microvascular density assessment and introduced a new

  20. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    Science.gov (United States)

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  1. Generalized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  2. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    Science.gov (United States)

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  3. Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy

    Directory of Open Access Journals (Sweden)

    Anthony D. Fouad

    2017-06-01

    Full Text Available The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development.

  4. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei

    2015-01-01

    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...... to enhance the subwavelength image contrast by more than two orders of magnitude. These findings are essential for optical imaging of weakly scattering subwavelength objects, such as real-time dynamic nanoscopy of label-free biological objects....

  5. Development of hard X-ray dark-field microscope using full-field optics

    International Nuclear Information System (INIS)

    Takano, Hidekazu; Azuma, Hiroaki; Shimomura, Sho; Tsuji, Takuya; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2016-01-01

    We develop a dark-field X-ray microscope using full-field optics based on a synchrotron beamline. Our setup consists of a condenser system and a microscope objective with an angular acceptance larger than that of the condenser. The condenser system is moved downstream from its regular position such that the focus of the condenser is behind the objective. The dark-field microscope optics are configured by excluding the converging beam from the condenser at the focal point. The image properties of the system are evaluated by observing and calculating a Siemens star test chart with 10 keV X-rays. Our setup allows easy switching to bright-field imaging. (author)

  6. Pulmonary emphysema diagnosis using a preclinical small-animal X-ray dark-field scanner

    Energy Technology Data Exchange (ETDEWEB)

    Yaroshenko, Andre; Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Pfeiffer, Franz [Department of Physics, Technische Universitaet Muenchen (Germany); Meinel, Felix; Nikolaou, Konstantin; Reiser, Maximilian [Institute of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Muenchen (Germany); Bohla, Alexander; Yildirim, Ali Oender; Eickelberg, Oliver [Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen (Germany)

    2013-07-01

    Pulmonary emphysema is one of the leading causes of morbidity and mortality worldwide that is difficult to detect using conventional x-ray radiographic methods. For emphysematous lungs with enlarged distal airspaces, x-ray scattering decreases and transmission increases, as has been demonstrated by the proof-of-principle experiments with brilliant x-rays from a synchrotron source. Therefore, combination of the transmission and dark-field signals leads to a novel diagnostic approach for pulmonary emphysema. In this study, images of excised murine lungs with pulmonary emphysema and control lungs were acquired using a compact phase- and dark-field scanner with a polychromatic source and a cone-beam geometry. The data analysis revealed a clear distinction between the two groups in the per-pixel scatter plot. The main difference was observed in the angle of the distribution to the vertical. The presented study reveals the high potential of the approach for the pulmonary emphysema diagnosis.

  7. X-ray dark-field imaging and its application. Laue case analyzer

    CERN Document Server

    Ando, M

    2003-01-01

    A system on X-ray dark-field imaging under development and its application is reported. That comprises an asymmetric monochromator and a Laue case analyzer that has a specified thickness for a given X-ray photon energy or wavelength and a sample locating inbetween these. This system uses Si 4,4,0 diffraction for both X-ray optics element in a parallel arrangement. In order to achieve the dark-field imaging condition the Si Laue analyzer should be 1.075 mm in thickness for the X-ray energy of 35 keV. Since this system is very simple one can expect a variety of applications including material science, biology, palaeontology and clinical medicine where a large view area with size of 100 mm x 100 mm is needed. (author)

  8. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Revol, V. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland); Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U. [Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Kottler, C.; Kaufmann, R.; Urban, C. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Straumann, U. [Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland)

    2011-08-15

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  9. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    International Nuclear Information System (INIS)

    Revol, V.; Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U.; Kottler, C.; Kaufmann, R.; Urban, C.; Straumann, U.

    2011-01-01

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  10. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    DEFF Research Database (Denmark)

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9 ...

  11. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K; Boyes, E D; Gai, P L [York JEOL Nanocentre (United Kingdom); Shiju, N R; Brown, D R, E-mail: pgb500@york.ac.u [Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 A = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  12. Noninvasive assessment of the iridial microcirculation in rats using sidestream dark field imaging.

    Science.gov (United States)

    Cerny, V; Zhou, J; Kelly, M; Alotibi, I; Turek, Z; Whynot, S; Saleh, I Abdo; Lehmann, C

    2013-02-01

    Sidestream dark field imaging represents a novel, noninvasive method to study the microcirculation in humans and animals. To-date, it has been used extensively in various peripheral tissues (e.g. sublingual area, intestinal mucosa), however no data for the ocular vasculature, including the iridial microcirculation, are currently available. Therefore, the aim of this study was to examine the reliability and reproducibility of sidestream dark field imaging within the iridial microcirculation in experimental animals. Male Lewis rats were anaesthetized and the iris microvasculature was observed using an sidestream dark field probe gently placed against a cover slip covering the right eye. All video sequences recorded were analysed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, The Netherlands). Results are expressed as mean (±SE) or median (interquartile range). Clear images were recorded from each animal and the total number of analysable video sequences was 50. All raw data for selected vessel density parameters passed normality test. The total all and small vessel density (in mm mm(-2) ) were 22,6 (±0,58) and 19,6 (±0,68), respectively. The perfused all and small vessel density were 20,9 (±0,61) and 19,1 (±0,65), respectively. The mean values of all iris vessel density parameters are shown in Figure 4. The DeBacker Score (n/mm) was 15,2 (±0,45), the proportion of perfused vessel was 94,5% (89,8-99,1%), and the MFI was 3 points (3-3). Taken together, these results indicate that SDF imaging provides a reliable and noninvasive method to examine the iridial microvascular bed in vivo and, thus, may provide unique opportunities for the study of the iridial vascular network in various experimental and clinical settings and disease models. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    Science.gov (United States)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  14. X-ray dark-field imaging for detection of foreign bodies in food

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou; Lauridsen, Torsten; Feidenhans'l, Robert Krarup

    2013-01-01

    Conventional X-ray transmission radiography has long been used for online detection of foreign bodies in food products relying on the absorption contrast between the foreign body and food product. In this paper, we present a novel approach for detection of organic foreign bodies such as paper...... and insects in two food products using X-ray dark-field imaging with a grating interferometer. The ability to detect the foreign bodies is quantified using a measure of the contrast-to-noise ratio....

  15. Hyperspectral-Enhanced Dark Field Microscopy for Single and Collective Nanoparticle Characterization in Biological Environments

    Directory of Open Access Journals (Sweden)

    Paula Zamora-Perez

    2018-02-01

    Full Text Available We review how the hyperspectral dark field analysis gives us quantitative insights into the manner that different nanoscale materials interact with their environment and how this relationship is directly expressed in an optical readout. We engage classification tools to identify dominant spectral signatures within a scene or to qualitatively characterize nanoparticles individually or in populations based on their composition and morphology. Moreover, we follow up the morphological evolution of nanoparticles over time and in different biological environments to better understand and establish a link between the observed nanoparticles’ changes and cellular behaviors.

  16. Icosahedral stereographic projections in three dimensions for use in dark field TEM.

    Science.gov (United States)

    Bourdillon, Antony J

    2013-08-01

    Thermodynamics require that rapidly cooled crystals and quasicrystals are relatively defective. Yet, without convenient 3-dimensional indexation both at crystal poles and in diffraction planes, or Kikuchi maps, it is difficult to identify the defects by dark field transmission electron microscopy. For two phase Al6Mn, these maps are derived. They relate i-Al6Mn to the standard face centered cubic, matrix crystals. An example of their usefulness in determining interfacial characteristics is described. Indices are integral powers on an irrational number. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  18. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    Directory of Open Access Journals (Sweden)

    A. Velroyen

    2015-10-01

    Full Text Available Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT. The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT, based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  19. A low cost mobile phone dark-field microscope for nanoparticle-based quantitative studies.

    Science.gov (United States)

    Sun, Dali; Hu, Tony Y

    2018-01-15

    Dark-field microscope (DFM) analysis of nanoparticle binding signal is highly useful for a variety of research and biomedical applications, but current applications for nanoparticle quantification rely on expensive DFM systems. The cost, size, limited robustness of these DFMs limits their utility for non-laboratory settings. Most nanoparticle analyses use high-magnification DFM images, which are labor intensive to acquire and subject to operator bias. Low-magnification DFM image capture is faster, but is subject to background from surface artifacts and debris, although image processing can partially compensate for background signal. We thus mated an LED light source, a dark-field condenser and a 20× objective lens with a mobile phone camera to create an inexpensive, portable and robust DFM system suitable for use in non-laboratory conditions. This proof-of-concept mobile DFM device weighs less than 400g and costs less than $2000, but analysis of images captured with this device reveal similar nanoparticle quantitation results to those acquired with a much larger and more expensive desktop DFMM system. Our results suggest that similar devices may be useful for quantification of stable, nanoparticle-based activity and quantitation assays in resource-limited areas where conventional assay approaches are not practical. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dynamic scattering theory for dark-field electron holography of 3D strain fields

    International Nuclear Information System (INIS)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques

  1. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography

    International Nuclear Information System (INIS)

    Michel, Thilo; Rieger, Jens; Anton, Gisela; Bayer, Florian; Durst, Jürgen; Pelzer, Georg; Ritter, André; Weber, Thomas; Zang, Andrea; Beckmann, Matthias W; Fasching, Peter A; Hartmann, Arndt; Rauh, Claudia; Haas, Wilhelm; Radicke, Marcus; Sievers, Peter; Schulz-Wendtland, Rüdiger; Uder, Michael; Wenkel, Evelyn; Wachter, David L

    2013-01-01

    We show that a distribution of micrometer-sized calcifications in the human breast which are not visible in clinical x-ray mammography at diagnostic dose levels can produce a significant dark-field signal in a grating-based x-ray phase-contrast imaging setup with a tungsten anode x-ray tube operated at 40 kVp. A breast specimen with invasive ductal carcinoma was investigated immediately after surgery by Talbot–Lau x-ray interferometry with a design energy of 25 keV. The sample contained two tumors which were visible in ultrasound and contrast-agent enhanced MRI but invisible in clinical x-ray mammography, in specimen radiography and in the attenuation images obtained with the Talbot–Lau interferometer. One of the tumors produced significant dark-field contrast with an exposure of 0.85 mGy air-kerma. Staining of histological slices revealed sparsely distributed grains of calcium phosphate with sizes varying between 1 and 40 μm in the region of this tumor. By combining the histological investigations with an x-ray wave-field simulation we demonstrate that a corresponding distribution of grains of calcium phosphate in the form of hydroxylapatite has the ability to produce a dark-field signal which would—to a substantial degree—explain the measured dark-field image. Thus we have found the appearance of new information (compared to attenuation and differential phase images) in the dark-field image. The second tumor in the same sample did not contain a significant fraction of these very fine calcification grains and was invisible in the dark-field image. We conclude that some tumors which are invisible in x-ray absorption mammography might be detected in the x-ray dark-field image at tolerable dose levels. (paper)

  2. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  3. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy

    Science.gov (United States)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    We report a method of boosting the imaging contrast of microsphere-assisted super-resolution visualization by utilizing dark-field illumination (DFI). We conducted experiments on both 10-µm-diameter silica (SiO2) microspheres with refractive index n ∼ 1.46 under no and partial immersion in ethyl alcohol (n ∼ 1.36) and 20-µm-diameter barium titanate glass (BTG, n ∼ 1.9) microspheres with full immersion to show the super-resolution capability. We experimentally demonstrated that the imaging contrast and uniformity were extraordinarily improved in the DFI mode. The intensity profiles in the visualization also numerically confirm the enhanced sharpness for a better imaging quality when applying DFI.

  4. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.

    Science.gov (United States)

    Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A

    2014-12-01

    In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Dark-field microspectroscopic analysis of gold nanorods in spiral Ganglion neurons

    Science.gov (United States)

    Yong, J.; Brown, W. G. A.; Needham, K.; Nayagam, B. A.; Yu, A.; McArthur, S. L.; Stoddart, P. R.

    2013-12-01

    Heterogeneous samples of spiral ganglion neuron primary cells were incubated with gold nanorods in order to investigate the photothermal processes induced by exposure to 780 nm laser light. Dark-field microspectroscopy was used to analyze the distribution and spectrum of nanorods in the neurons. The scattering data showed a typical gold nanorod spectrum, while a shift in the peak position suggested changes in the refractive index of the nanorod environment. The relationship between gold nanorods distribution and local temperature has also been examined with an open pipette microelectrode placed in the surrounding bath of the neurons. These temperature measurements confirm that the gold nanorods provide efficient localized heating under 780 nm laser exposure.

  6. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  7. Manipulation of Nanoparticles Using Dark-Field-Illumination Optical Tweezers with Compensating Spherical Aberration

    International Nuclear Information System (INIS)

    Jin-Hua, Zhou; Run-Zhe, Tao; Zhi-Bin, Hu; Min-Cheng, Zhong; Zi-Qiang, Wang; Yin-Mei, Li; Jun, Cai

    2009-01-01

    Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Lett. 25(2008)329], nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system. (cross-disciplinary physics and related areas of science and technology)

  8. Design of Acquisition Schemes and Setup Geometry for Anisotropic X-ray Dark-Field Tomography (AXDT).

    Science.gov (United States)

    Sharma, Y; Schaff, F; Wieczorek, M; Pfeiffer, F; Lasser, T

    2017-06-09

    Anisotropic X-ray Dark-field Tomography (AXDT) is a new imaging technique for reconstructing the three-dimensional scattering profile within a sample using the dark-field signal measured in an X-ray grating interferometry setup. As in any tomographic measurement, the acquisition geometry plays a key role in the accurate reconstruction of the scattering information. More- over, the anisotropic nature of the dark-field signal poses additional challenges for designing the acquisition protocols. In this work, we present an efficient approach to measure scattering orientations spread over the unit sphere and prove its efficacy using the knowledge from conventional tomography. In addition, we conclude (using analytical and experimental results) that placing the gratings such that the grating bars make an angle of 45 degrees with respect to the vertical direction is the optimal setup configuration for AXDT.

  9. Effect of particle-size selectivity on quantitative X-ray dark-field computed tomography using a grating interferometer

    Science.gov (United States)

    Bao, Yuan; Shao, Qigang; Hu, Renfang; Wang, Shengxiang; Gao, Kun; Wang, Yan; Tian, Yangchao; Zhu, Peiping

    2017-08-01

    According to the conclusion of Khelashvili et al. [Phys. Med. Biol. 51, 221 (2006)], the minus logarithm of the visibility ratio fulfills the line integral condition; consequently the scattering information can be reconstructed quantitatively by conventional computed tomography (CT) algorithms. Based on Fresnel diffraction theory, we analyzed the influence of particle-size selectivity on the performance of an X-ray grating interferometer (GI) applied for dark-field CT. The results state the signal-to-noise ratio (SNR) of dark-field imaging is sensitive to the particle size, which demonstrate that the X-ray dark-field CT using a GI can efficiently differentiate materials of identical X-ray absorption and help to choose optimal X-ray energy for known particle size, thus extending the application range of grating interferometer.

  10. Extraction of Dysprosium Ions with DTPA Functionalized Superparamagnetic Nanoparticles Probed by Energy Dispersive X-ray Fluorescence and TEM/High-Angle Annular Dark Field Imaging.

    Science.gov (United States)

    Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi

    2018-06-01

    The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.

  11. Insights into the physical chemistry of materials from advances in HAADF-STEM.

    Science.gov (United States)

    Sohlberg, Karl; Pennycook, Timothy J; Zhou, Wu; Pennycook, Stephen J

    2015-02-14

    The observation that, "New tools lead to new science"[P. S. Weiss, ACS Nano., 2012, 6(3), 1877-1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at sub-angstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.

  12. Structural characterization of Pt-Pd core-shell nanoparticles by Cs-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, R., E-mail: resparza@fata.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Garcia-Ruiz, Amado F. [UPIICSA-COFAA, Instituto Politecnico Nacional (Mexico); Velazquez Salazar, J. J. [University of Texas at San Antonio, Department of Physics and Astronomy (United States); Perez, R. [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Jose-Yacaman, M. [The University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2013-01-15

    Pt-Pd core-shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 Degree-Sign C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core-shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM-EDS and STEM-EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.

  13. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging.

    Science.gov (United States)

    Velroyen, A; Bech, M; Malecki, A; Tapfer, A; Yaroshenko, A; Ingrisch, M; Cyran, C C; Auweter, S D; Nikolaou, K; Reiser, M; Pfeiffer, F

    2013-02-21

    In clinically established-absorption-based-biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.

  14. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    Science.gov (United States)

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-04-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy.

  15. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation

    NARCIS (Netherlands)

    Goedhart, P. T.; Khalilzada, M.; Bezemer, R.; Merza, J.; Ince, C.

    2007-01-01

    Sidestream Dark Field (SDF) imaging, a stroboscopic LED ring-based imaging modality, is introduced for clinical observation of the microcirculation. SDF imaging is validated by comparison to Orthogonal Polarization Spectral imaging. Nailfold capillary diameters and red blood cell velocities were

  16. Using Dark Field X-Ray Microscopy To Study In-Operando Yttria Stabilized Zirconia Electrolyte Supported Solid Oxide Cell

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Dark Field X-Ray Microscopy is a promising technique to study the structure of materials in nanometer length scale. In combination with x-ray diffraction technique, the microstructure evolution of Yttria Stabilized Zirconia electrolyte based solid oxide cell was studied running at extreme operati...

  17. Three-dimensional characteristics of alveolar macrophages in vitro observed by dark field microscopy

    Science.gov (United States)

    Swarat, Dominic; Wiemann, Martin; Lipinski, Hans-Gerd

    2014-05-01

    Alveolar macrophages (AM) are cells from immune defense inside the lung. They engulf particles in vacuoles from the outer membrane. Volume and surface are important parameters to characterize the particle uptake. AM change their shape within a few seconds, therefore it is hard to obtain by confocal laser scanning microscopy, which is commonly used to generate 3D-images. So we used an intensified dark field microscopy (DFM) as an alternative method to generate contrast rich AM gray tone image slices used for 3D-reconstructions of AM cells by VTK software applications. From these 3D-reconstructions approximate volume and surface data of the AM were obtained and compared to values found in the literature. Finally, simple geometrical 3D-models of the AM were created and compared to real data. Averaged volume and surface data from the DFM images are close to values found in the literature. Furthermore, calculation of volume and surface data from DFM images could be done faster if simplified geometrical 3D-models of the cells were used.

  18. Dark-field study of rear-side density structure in laser-accelerated foils

    International Nuclear Information System (INIS)

    Stamper, J.A.; Gold, S.H.; Obenschain, S.P.; McLean, E.A.; Sica, L.

    1981-01-01

    A dark-field, laser-probing diagnostic has produced the first high-resolution photographs of density structure on the rear side of laser-accelerated foils. This diagnostic allows the preferential sampling of the steep-gradient region of an expanding plasma and permits two-dimensional, multiple-time recordings on a single photograph. The studies are aimed at understanding the early-time physics of target implosions for inertial-confinement fusion. Both long (500 psec) and short (150 psec) probe pulses were used to study the rear-side plasmas of thin foils accelerated by the rocket-like reaction to a hot plasma ablated from the front side by the laser radiation. The longer pulse results, both for angular scatter and the life-time of small, transverse structure, imply a relatively cold (1 eV) rear side plasma. The short pulses provide high resolution photographs of the complete structure. One of these was a vortex-like structure, suggestive of the remnants of a hydrodynamic instability. These observations are relevant to two of the basic requirements of inertial-confinement fusion: cold fuel isentrope and implosion symmetry

  19. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    Science.gov (United States)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  20. Investigation Biological And Medical Specimen Using X-Ray Dark Field Imagine

    International Nuclear Information System (INIS)

    Pattanasiriwisawa, Wanwisa; Sugiyama, Hiroshi; Maksimenko, Anton; Kazuyuki, Hyodo; Ando, Masami

    2005-10-01

    X-ray dark-field imaging (DFI) and bright-field imaging (BFI) in the Laue geometry has been successfully demonstrated. Using a Bragg-case asymmetric monochromator which produces an x-ray beam with a 0.3 μrad divergence incident onto an object and a Laue geometry analyzer that can simultaneously provide DFI and BFI. The imaging technique of DFI is quite novel one that we did not have before in that the central bright line satisfying the Bragg condition is removed by the analyzer crystal and the background radiation obscuring the image of the object does not come to record film. This is not the case in BFI and the strong background radiation obscures the real image of the object. X-ray optics comprising two Laue case diffraction wafers working at 35 keV has been successfully applied to some biological samples such as ivory, tusk, horn, tooth and a phantom of breast cancer. Images of ivory and others have shown very clear and informative inside structure. All pieces of the breast cancer phantom provide us with very fine images to simulate cancer

  1. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy.

    Science.gov (United States)

    Mercer, Robert R; Scabilloni, James F; Wang, Liying; Battelli, Lori A; Antonini, James M; Roberts, Jenny R; Qian, Yong; Sisler, Jennifer D; Castranova, Vincent; Porter, Dale W; Hubbs, Ann F

    2018-01-01

    Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.

  2. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    Science.gov (United States)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  3. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Murphey, M.D.; Temple, H.T.

    1998-01-01

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  4. Annular Flow Distribution test. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L. [ed.] [Westinghouse Savannah River Co., Aiken, SC (United States); Childerson, M.T.; Knoll, K.E.; Manolescu, M.I.; Reed, M.J. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center

    1990-12-01

    This report documents the Babcock and Wilcox (B&W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ``hydraulic similarity`` between an instrumented fuel assembly with the BFI removed and a ``reference`` fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions.

  5. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    Science.gov (United States)

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Strain mapping for the semiconductor industry by dark-field electron holography and nanobeam electron diffraction with nm resolution

    International Nuclear Information System (INIS)

    Cooper, David; Hartmann, Jean Michel; Carron, Veronique; Béché, Armand; Rouvière, Jean-Luc

    2010-01-01

    There is a requirement of the semiconductor industry to measure strain in semiconductor devices with nm-scale resolution. Here we show that dark-field electron holography and nanobeam electron diffraction (NBED) are both complementary techniques that can be used to determine the strain in these devices. We show two-dimensional strain maps acquired by dark holography and line profiles that have been acquired by NBED of recessed SiGe sources and drains with a variety of different gate lengths and Ge concentrations. We have also used dark-field electron holography to measure the evolution in strain during the silicidation process, showing that this can reduce the applied uniaxial compressive strain in the conduction channel by up to a factor of 3

  7. PREVALENCE OF HELICOBACTER PYLORI INFECTION IN PATIENTS WITH ATROPHIC GASTRITIS AND ROLE OF DARK FIELD MICROSCOPY IN DIAGNOSIS

    OpenAIRE

    Ananthamurugan; Saleem; Gopal; Sunil Shivekar; Kaviraj; Balamurugan

    2015-01-01

    BACKGROUND: Helicobacter pylori is the most common human pathogen which causes chronic gastritis, leading to serious complications. The aim was to study the incidence of H. pylori infection and the risk factors associated with chronic atrophic gastritis using simple diagnostic procedures. MATERIALS AND METHODS: Biopsy samples were collected from 146 chronic atrophic gastritis patients. Rapid Urease Test (RUT) and dark field microscopy were used to diagnose the presence of H. p...

  8. Hybrid statistics-simulations based method for atom-counting from ADF STEM images

    Energy Technology Data Exchange (ETDEWEB)

    De wael, Annelies, E-mail: annelies.dewael@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); De Backer, Annick [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Jones, Lewys; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Van Aert, Sandra, E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2017-06-15

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. - Highlights: • A hybrid method for atom-counting from ADF STEM images is introduced. • Image simulations are incorporated into a statistical framework in a reliable manner. • Limits of the existing methods for atom-counting are far exceeded. • Reliable counting results from an experimental low dose image are obtained. • Progress towards reliable quantitative analysis of beam-sensitive materials is made.

  9. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    International Nuclear Information System (INIS)

    Epicier, T.; Sato, K.; Tournus, F.; Konno, T.

    2012-01-01

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  10. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  11. Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer

    International Nuclear Information System (INIS)

    Balestra, Gianmarco M; Bezemer, Rick; Boerma, E Christiaan; Yong, Ze-Yie; Sjauw, Krishan D; Engstrom, Annemarie E; Koopmans, Matty; Ince, Can

    2010-01-01

    In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging. The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared. Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 ± 0.15 N without vs. 0.62 ± 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 ± 2 s without vs. 42 ± 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 ± 5 s without vs. 67 ± 14 s with the IAS, p = 0.006). The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS

  12. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.

    Science.gov (United States)

    Roose, Dimitri; Leroux, Frederic; De Vocht, Nathalie; Guglielmetti, Caroline; Pintelon, Isabel; Adriaensen, Dirk; Ponsaerts, Peter; Van der Linden, Annemie; Bals, Sara

    2014-01-01

    In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  14. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori......-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering....

  15. Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits?

    Science.gov (United States)

    den Dekker, A J; Gonnissen, J; De Backer, A; Sijbers, J; Van Aert, S

    2013-11-01

    Statistical parameter estimation theory is proposed as a quantitative method to measure unknown structure parameters from electron microscopy images. Images are then purely considered as data planes from which structure parameters have to be determined as accurately and precisely as possible using a parametric statistical model of the observations. For this purpose, an efficient algorithm is proposed for the estimation of atomic column positions and intensities from high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. Furthermore, the so-called Cramér-Rao lower bound (CRLB) is reviewed to determine the limits to the precision with which continuous parameters such as atomic column positions and intensities can be estimated. Since this lower bound can only be derived for continuous parameters, alternative measures using the principles of detection theory are introduced for problems concerning the estimation of discrete parameters such as atomic numbers. An experimental case study is presented to show the practical use of these measures for the optimization of the experiment design if the purpose is to decide between the presence of specific atom types using STEM images. © 2013 Elsevier B.V. All rights reserved.

  16. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    Science.gov (United States)

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.

  17. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...

  18. Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    Science.gov (United States)

    Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Herzen, Julia; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz

    2016-11-01

    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures.

  19. Real-time scattered light dark-field microscopic imaging of the dynamic degradation process of sodium dimethyldithiocarbamate.

    Science.gov (United States)

    Lei, Gang; Gao, Peng Fei; Liu, Hui; Huang, Cheng Zhi

    2015-12-28

    Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of NaDDC under neutral and alkaline conditions was proposed, and the inhibition effects of metal ions including Zn(II) and Cu(II) were investigated in order to understand the decomposition process in different environments. It was found that Cu(II) forms the most stable complex with NaDDC with a stoichiometric ratio of 1 : 2, which greatly reduces the toxicity.

  20. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study.

    Science.gov (United States)

    Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin

    2015-12-01

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.

  1. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  2. Structural characterization of Pt–Pd core–shell nanoparticles by Cs-corrected STEM

    International Nuclear Information System (INIS)

    Esparza, R.; García-Ruiz, Amado F.; Velázquez Salazar, J. J.; Pérez, R.; José-Yacamán, M.

    2013-01-01

    Pt–Pd core–shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 °C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core–shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM–EDS and STEM–EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.

  3. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM

    International Nuclear Information System (INIS)

    Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; Van Dyck, D.

    2014-01-01

    The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. - Highlights: • The full 3D approach to atomic resolution object retrieval has high memory load. • For incoherent imaging the projection process is a matrix–vector product. • Carrying out this product implicitly as Fourier transforms reduces memory load. • Reconstructions are demonstrated from HAADF STEM and depth sectioning simulations

  5. Correction of non-linear thickness effects in HAADF STEM electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Van den Broek, W., E-mail: wouter.vandenbroek@uni-ulm.de [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Rosenauer, A. [Institut fuer Festkoerperphysik (IFP), Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; Van Dyck, D. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-05-15

    In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction. -- Highlights: Black-Right-Pointing-Pointer In HAADF STEM, a thickness dependent, non-linear damping of the projected intensities occurs. Black-Right-Pointing-Pointer In tomography, this leads to underestimated intensities in the interior of homogeneous particles, the cupping artifact. Black-Right-Pointing-Pointer The non-linear damping is demonstrated in experimental images and reproduced with numerical simulations. Black-Right-Pointing-Pointer The non-linear damping can be undone if the imaging is done quantitatively. Black-Right-Pointing-Pointer Experimental proof is provided showing that cupping can be prevented.

  6. Non-Destructive Testing of Archaeological Findings by Grating-Based X-Ray Phase-Contrast and Dark-Field Imaging

    Directory of Open Access Journals (Sweden)

    Veronika Ludwig

    2018-04-01

    Full Text Available The analysis of archaeological findings reveals the remaining secrets of human history. However, it is a challenging task to investigate and simultaneously preserve the unique remains. Available non-destructive examination methods are limited and often insufficient. Thus, we considered X-ray grating interferometry as a non-destructive and advanced X-ray imaging method to retrieve more information about archaeological findings. In addition to the conventional attenuation image, the differential phase and the dark-field image are obtained. We studied the potential of the scattering-sensitive dark-field and the phase-shift sensitive differential phase image to analyse archaeological findings. Hereby, the focus lies on organic remnants. Usually, the organic materials have vanished due to decomposition processes, but the structures are often preserved by mineralisation and penetration of corrosion products. We proved that the combination of the attenuation and the dark-field image in particular, enables a separation of structural properties for fabric remnants. Furthermore, we achieved promising results for the reconstruction of sub-pixel sized fibre orientations of woven fabric remnants by employing the directional dark-field imaging method. We conclude from our results that a further application of X-ray dark-field imaging on wet organic findings and on the distinction of different types of organic remnants at archaeological findings is promising.

  7. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. STEM nanoanalysis of Au/Pt/Ti-Si3N4 interfacial defects and reactions during local stress of SiGe HBTs

    Directory of Open Access Journals (Sweden)

    Alaeddine Ali

    2011-01-01

    Full Text Available Abstract A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si3N4 interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer.

  9. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  10. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  11. Divergent Field Annular Ion Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  12. Annular Hybrid Rocket Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has been...

  13. Adaptive optics scanning ophthalmoscopy with annular pupils

    Science.gov (United States)

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  14. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  15. Development of annular coupled structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  16. Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An Aberration-Corrected STEM Study

    Directory of Open Access Journals (Sweden)

    Yubiao Niu

    2016-12-01

    Full Text Available Molybdenum disulphide (MoS2 is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source with a lateral time-of-flight mass selector. Most of the deposited MoS2 nanoclusters, analysed by an aberration-corrected scanning transmission electron microscope (STEM in high-angle annular dark field (HAADF mode, showed poorly ordered layer structures with an average diameter of 5.5 nm. By annealing and the addition of sulphur to the clusters (by sublimation in the cluster source, the clusters were transformed into larger, crystalline structures. Annealing alone did not lead to crystallization, only to a cluster size increase by decomposition and coalescence of the primary clusters. Sulphur addition alone led to a partially crystalline structure without a significant change in the size. Thus, both annealing and sulphur addition processes were needed to obtain highly crystalline MoS2 nanoclusters.

  17. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    Science.gov (United States)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  18. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Grandl, Susanne; Sztrokay-Gaul, Aniko; Auweter, Sigrid D.; Hellerhoff, Karin [Ludwig-Maximilians-University Hospital Munich, Institute of Clinical Radiology, Munich (Germany); Scherer, Kai; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Pfeiffer, Franz [Technische Universitaet Muenchen, Department of Physics and Institute of Medical Engineering, Garching (Germany); Mayr, Doris [Ludwig-Maximilians-Universitaet Muenchen, Institute of Pathology, Munich (Germany); Bamberg, Fabian [University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2015-12-15

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. (orig.)

  19. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    Science.gov (United States)

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  20. Noise Reduction Method for Quantifying Nanoparticle Light Scattering in Low Magnification Dark-Field Microscope Far-Field Images.

    Science.gov (United States)

    Sun, Dali; Fan, Jia; Liu, Chang; Liu, Yang; Bu, Yang; Lyon, Christopher J; Hu, Ye

    2016-12-20

    Nanoparticles have become a powerful tool for cell imaging and biomolecule, cell and protein interaction studies, but are difficult to rapidly and accurately measure in most assays. Dark-field microscope (DFM) image analysis approaches used to quantify nanoparticles require high-magnification near-field (HN) images that are labor intensive due to a requirement for manual image selection and focal adjustments needed when identifying and capturing new regions of interest. Low-magnification far-field (LF) DFM imagery is technically simpler to perform but cannot be used as an alternate to HN-DFM quantification, since it is highly sensitive to surface artifacts and debris that can easily mask nanoparticle signal. We now describe a new noise reduction approach that markedly reduces LF-DFM image artifacts to allow sensitive and accurate nanoparticle signal quantification from LF-DFM images. We have used this approach to develop a "Dark Scatter Master" (DSM) algorithm for the popular NIH image analysis program ImageJ, which can be readily adapted for use with automated high-throughput assay analyses. This method demonstrated robust performance quantifying nanoparticles in different assay formats, including a novel method that quantified extracellular vesicles in patient blood sample to detect pancreatic cancer cases. Based on these results, we believe our LF-DFM quantification method can markedly decrease the analysis time of most nanoparticle-based assays to impact both basic research and clinical analyses.

  1. State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field Imaging

    Directory of Open Access Journals (Sweden)

    Marie-Christine Zdora

    2018-04-01

    Full Text Available In the past few years, X-ray phase-contrast and dark-field imaging have evolved to be invaluable tools for non-destructive sample visualisation, delivering information inaccessible by conventional absorption imaging. X-ray phase-sensing techniques are furthermore increasingly used for at-wavelength metrology and optics characterisation. One of the latest additions to the group of differential phase-contrast methods is the X-ray speckle-based technique. It has drawn significant attention due to its simple and flexible experimental arrangement, cost-effectiveness and multimodal character, amongst others. Since its first demonstration at highly brilliant synchrotron sources, the method has seen rapid development, including the translation to polychromatic laboratory sources and extension to higher-energy X-rays. Recently, different advanced acquisition schemes have been proposed to tackle some of the main limitations of previous implementations. Current applications of the speckle-based method range from optics characterisation and wavefront measurement to biomedical imaging and materials science. This review provides an overview of the state of the art of the X-ray speckle-based technique. Its basic principles and different experimental implementations as well as the the latest advances and applications are illustrated. In the end, an outlook for anticipated future developments of this promising technique is given.

  2. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    Science.gov (United States)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  3. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  4. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    International Nuclear Information System (INIS)

    Sales, Morten; Strobl, Markus; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering. (paper)

  5. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  6. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  7. What causes Mars' annular polar vortices?

    Science.gov (United States)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  8. Aceclofenac-induced erythema annulare centrifugum

    Directory of Open Access Journals (Sweden)

    Dilip Meena

    2018-01-01

    Full Text Available Erythema annulare centrifugum (EAC is characterised by slowly enlarging annular erythematous lesions and is thought to represent a clinical reaction pattern to infections, medications, and rarely, underlying malignancy. Causative drugs include chloroquine, cimetidine, gold sodium thiomalate, amitriptyline, finasteride, etizolam etc. We present a case of 40-year-old woman who presented to us with a 10 days history of nonpruritic, peripherally growing annular erythematous eruption. She had a history of recent onset of joint pain, for which she was taking aceclofenac 90 mg once a day for 5 days prior to the onset of the rash. This was confirmed on biopsy as EAC. The rash promptly subsided after stopping the drug. We report this case as there was no previous report of aceclofenac induced EAC.

  9. Subaperture stitching tolerancing for annular ring geometry.

    Science.gov (United States)

    Smith, Greg A; Burge, James H

    2015-09-20

    Subaperture stitching is an economical way to extend small-region, high-resolution interferometric metrology to cover large-aperture optics. Starting from system geometry and measurement noise knowledge, this work derives an analytical expression for how noise in an annular ring of subapertures leads to large-scale errors in the computed stitched surface. These errors scale as sin(πp/M)(-2) where p is the number of sine periods around the annular full-aperture and M is the number of subaperture measurements. Understanding how low-spatial-frequency surface errors arise from subaperture noise is necessary for tolerancing systems which use subaperture stitching.

  10. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  11. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  12. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  13. Assessment of heavy metal contamination in sediment at Sukinda ultramafic complex using HAADF-STEM analysis.

    Science.gov (United States)

    Equeenuddin, Sk Md; Pattnaik, Binaya Kumar

    2017-10-01

    The Sukinda ultramafic complex in Odisha has the largest chromite reserve in India. Sediment derived from ultramafic rocks has been enriched with various metals. Further, mining activities enhance the influx of metals into sediment by dumping mine overburden and tailings in the open area. Metal concentration in sediment is found in order of Cr Total (Cr) > Mn > Ni > Co > Zn > Cu with average concentration 26,778 mg/kg, 3098 mg/kg, 1813 mg/kg, 184 mg/kg, 116 mg/kg and 44 mg/kg respectively. Concentration of Cr(VI) varies from 5.25 to 26.47 mg/L with an average of 12.27 mg/L. Based on various pollution indices, it is confirmed that the area is severely contaminated. Nano-scale goethite, kaolinite, clinochlore and chromite have been identified and have high concentration of Cr, Co and Ni. Goethite has shown maximum metal retention potential as deciphered by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The HAADF-STEM mapping and principal component analysis indicate that Cr and Co mostly derived from chromite whereas Ni and Zn are derived from serpentine. Later, these metals co-precipitate and/or adsorbed onto the goethite and clay minerals. Fractionation study of metals confirms that Cu is the most mobile element followed by Zn. However, at low pH condition Ni is mobilized and likely to be bioavailable. Though Cr mostly occurs in residual fraction but as its concentration is very high, a small proportion of exchangeable fraction contributes significantly in terms of its bioavailability. Thus bioavailable Cr can pose severe threat to the environment in the Sukinda ultramafic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of annular secondary conductor in a linear electromagnetic ...

    Indian Academy of Sciences (India)

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.

  15. Annular Pressure Seals and Hydrostatic Bearings

    National Research Council Canada - National Science Library

    San Andres, Luis

    2006-01-01

    ..., in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals are given with details on the performance of two water seals long and short, featuring the advantages of an anti-swirl brake to enhance the seal...

  16. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  17. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  18. Direct numerical simulation of supercritical annular electroconvection

    NARCIS (Netherlands)

    Tsai, Peichun Amy; Daya, Zahir A.; Deyirmenjian, Vatche B.; Morris, Stephen W.

    2007-01-01

    We use direct numerical simulation to study electrically driven convection in an annular thin film. The simulation models a laboratory experiment that consists of a weakly conducting, submicron thick liquid crystal film suspended between two concentric electrodes. The film is driven to convect by

  19. Granuloma annulare displaying pseudorosettes in Borelia infection.

    Science.gov (United States)

    Fernandez-Flores, A; Ruzic-Sabljic, E

    2008-12-01

    In 2003, pseudorosettes were described as highly suspicious of infection by Borrelia burgdorferi sensu lato in the appropriate clinical context. Nevertheless, such a pattern has been described in the literature in other non-infectious conditions. On the other hand, granuloma annulare (GA) has been recently closely associated with infection by Borrelia. We investigated how frequently pseudorosettes can be detected in common GA cases confirmed for Borrelia by PCR. We studied 13 biopsies of non-interstitial GA and 2 biopsies of interstitial GA from patients without clinical suspicion of borrelial infection. We also performed immunohistochemical studies in all the biopsies, using the CD-68 antibody. Molecular studies with PCR were performed with beta-globin PCR (human DNA). Borrelial DNA was confirmed by amplifying the OspA gene and intergenic rrf-rrl region. We found histiocytic pseudorosettes in 13 biopsies (86.66%). Human DNA was successfully amplified from 8 of 13 paraffin-embedded skin samples. From these we amplified borrelial DNA in 5 of 8 samples. Out of the 8 cases in which human DNA was amplified, a correlation between pseudorosettes and the molecular tests (Borrelia DNA) was confirmed in 5 instances. a) Pseudorosettes are not an unusual finding in common granuloma annulare; b) Borrelia is present in (most) cases of granuloma annulare; and c) Pseudorosettes seem to be a good morphological sign predictive of infection with Borrelia in granuloma annulare.

  20. Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography

    DEFF Research Database (Denmark)

    Cooper, David; Rouviere, Jean-Luc; Béché, Armand

    2011-01-01

    The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAs quantum dots grown in InP with a spatial resolution of 1 nm. A strain value of 5.4%60.1% has been determined which is consi......The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAs quantum dots grown in InP with a spatial resolution of 1 nm. A strain value of 5.4%60.1% has been determined which...

  1. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  2. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.

    Science.gov (United States)

    Mahajan, Virendra N; Aftab, Maham

    2010-11-20

    The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as the number of polynomials used in the expansion changes. Although the wavefront fit with a certain number of circle polynomials is identically the same as that with the corresponding annular polynomials, the piston circle coefficient does not represent the mean value of the aberration function, and the sum of the squares of the other coefficients does not yield its variance. The interferometer setting errors of tip, tilt, and defocus from a four-circle-polynomial expansion are the same as those from the annular-polynomial expansion. However, if these errors are obtained from, say, an 11-circle-polynomial expansion, and are removed from the aberration function, wrong polishing will result by zeroing out the residual aberration function. If the common practice of defining the center of an interferogram and drawing a circle around it is followed, then the circle coefficients of a noncircular interferogram do not yield a correct representation of the aberration function. Moreover, in this case, some of the higher-order coefficients of aberrations that are nonexistent in the aberration function are also nonzero. Finally, the circle coefficients, however obtained, do not represent coefficients of the balanced aberrations for an annular pupil. The various results are illustrated analytically and numerically by considering an annular Seidel aberration function.

  3. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  4. Non Newtonian annular alloy solidification in mould

    Science.gov (United States)

    Moraga, Nelson O.; Castillo, Ernesto F.; Garrido, Carlos P.

    2012-08-01

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic ( n = 0.2), Newtonian ( n = 1), and dilatant ( n = 1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic.

  5. Annular flow film characteristics in variable gravity.

    Science.gov (United States)

    MacGillivray, Ryan M; Gabriel, Kamiel S

    2002-10-01

    Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.

  6. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  7. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    International Nuclear Information System (INIS)

    Vittoria, Fabio A.; Diemoz, Paul C.; Olivo, Alessandro; Kallon, Gibril K. N.; Basta, Dario; Endrizzi, Marco; Robinson, Ian K.

    2015-01-01

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed

  8. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Olivo, Alessandro [Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot (United Kingdom); Kallon, Gibril K. N.; Basta, Dario; Endrizzi, Marco [Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot (United Kingdom); London Centre for Nanotechnology, WC1H 0AH London (United Kingdom)

    2015-06-01

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed.

  9. The role of side stream dark field microvasculature imaging in a rare case of vancomycin-resistant enterococcal endocarditis complicated by heparin-induced thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Janak Bechar

    2016-01-01

    Full Text Available Sidestream dark field (SDF imaging allows direct visualization of microvascular architecture and function. We examine the role of an SDF imaging device in visualizing the sub-lingual microvasculature as a surrogate for splanchnic microperfusion. We demonstrate good correlation between current monitoring techniques and the SDF imaging device in a rare case of vancomycin-resistant enterococcal (VRE sepsis along with heparin-induced thrombocytopenia (HIT. To the best of our knowledge, VRE endocarditis with concurrent HIT has not been described in literature. The role of SDF imaging may predict the earlier need for escalation of care, improving morbidity and mortality.

  10. Granuloma annulare localized to the shaft of the penis

    DEFF Research Database (Denmark)

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  11. Study on two phase flow characteristics in annular pulsed extraction column with different ratio of annular width to column diameter

    International Nuclear Information System (INIS)

    Qin Wei; Dai Youyuan; Wang Jiading

    1994-01-01

    Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column

  12. Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging.

    Science.gov (United States)

    Degertekin, F Levent; Guldiken, Rasim O; Karaman, Mustafa

    2006-02-01

    In this study, a 64-element, 1.15-mm diameter annular-ring capacitive micromachined ultrasonic transducer (CMUT) array was characterized and used for forward-looking intravascular ultrasound (IVUS) imaging tests. The array was manufactured using low-temperature processes suitable for CMOS electronics integration on a single chip. The measured radiation pattern of a 43 X 140-microm2 array element depicts a 40 degrees view angle for forward-looking imaging around a 15-MHz center frequency in agreement with theoretical models. Pulse-echo measurements show a -10-dB fractional bandwidth of 104% around 17 MHz for wire targets 2.5 mm away from the array in vegetable oil. For imaging and SNR measurements, RF A-scan data sets from various targets were collected using an interconnect scheme forming a 32-element array configuration. An experimental point spread function was obtained and compared with simulated and theoretical array responses, showing good agreement. Therefore, this study demonstrates that annular-ring CMUT arrays fabricated with CMOS-compatible processes are capable of forward-looking IVUS imaging, and the developed modeling tools can be used to design improved IVUS imaging arrays.

  13. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... is made of tungsten. All processes and materials comply with MIL-STD-11268. The mounted resonance frequency exceeds 40kHz. The sensitivity is 10mV/g ±5%. During the design process, the new design is evaluated and sufficiently optimized by using the Finite Element (FE) simulation before making actual...

  14. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  15. Binary breeder reactor with annular core

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Ishiguro, Y.

    1988-01-01

    Characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analyzed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in homogeneous fast reactors fueled with metallic fuel and with 1 m core height. The worths of available control is high and there is a large shutdown margin throughout the operational cycle. There are flexibility in blankets fueling in the two cycles, uranium and thorium, with doubling times of about 20 years. (author) [pt

  16. EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE

    Directory of Open Access Journals (Sweden)

    A. Levin Vladimir

    2017-01-01

    Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific

  17. Annular Lupus Vulgaris Mimicking Tinea Cruris

    Science.gov (United States)

    Heo, Young Soo; Shin, Won Woong; Kim, Yong Ju; Song, Hae Jun

    2010-01-01

    Cutaneous tuberculosis is an infrequent form of extrapulmonary tuberculosis. It is often clinically and histopathologically confused with various cutaneous disorders. A 36-year-old man attended our clinic with slowly progressive, asymptomatic, annular skin lesions on both the thighs and buttocks for 10 years. He consulted with many physicians and was improperly treated with an oral antifungal agent for several months under the diagnosis of tinea cruris, but no resolution of his condition was observed. A diagnosis of lupus vulgaris was made based on the histopathologic examination and the polymerase chain reaction assay. Anti-tuberculosis therapy was administered and the lesions started to regress. PMID:20548922

  18. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode.

    Science.gov (United States)

    Kuhlmann, Andreas V; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D; Warburton, Richard J

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10(7) and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  19. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    International Nuclear Information System (INIS)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.

    2013-01-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10 7 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance

  20. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Brunner, Daniel [Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain); Ludwig, Arne [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Reuter, Dirk [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Department Physik, Universität Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany); Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-07-15

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  1. Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens.

    Science.gov (United States)

    Ando, Masami; Sunaguchi, Naoki; Wu, Yanlin; Do, Synho; Sung, Yongjin; Louissaint, Abner; Yuasa, Tetsuya; Ichihara, Shu; Gupta, Rajiv

    2014-02-01

    We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan. In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer. X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer. • X-ray dark field imaging (XDFI) can dramatically increase sensitivity of phase detection. • XDFI can provide enhanced soft tissue discrimination. • With XDFI, abnormal anatomy can be visualised with high spatial/contrast resolution.

  2. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  3. The second annular pulley: a histologic examination.

    Science.gov (United States)

    Ellis, F D; Seiler, J G; Sewell, C W

    1995-07-01

    The second annular pulley and underlying flexor tendons from 15 fresh frozen fingers were prepared, sectioned transversely and longitudinally and then stained with hematoxylin-eosin, Verhoeff-Van Gieson (Elastin), Masson's trichrome and for the presence of hyaluronic acid. Three discrete layers of the second annular pulley were identified (1) an outer layer, continuous with the membranous sheath, that was richly vascularized; (2) a middle layer, characterized by radially oriented collagen fibrils and significant elastin fibrils; (3) an inner gliding surface, characterized by longitudinally oriented collagen fibrils and modified fibroblasts secreting hyaluronic acid. The three layers of the pulley seem specialized and have developed based on the functional requirements of the pulley apparatus. The outer layer serves as a source of vascular supply and nutrition, the middle layer maintains structural integrity and is organized to efficiently resist flexor tendon bowstringing, and the innermost layer facilitates efficient excursion of the underlying flexor tendons both by the orientation of the collagen fibers and by the secretion of substances that are thought to minimize friction.

  4. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  5. Linear sloshing frequencies in the annular region of a circular ...

    Indian Academy of Sciences (India)

    Sloshing in any type of container may invite instability to it. If some part of the free liquid surface in the annular region of a specially designed circular cylindrical container is covered with an annular baffle, the natural frequencies and the response of the liquid in the container undergo a drastic change. A partly covered free ...

  6. Obtention of an empirical equation for annular channels

    International Nuclear Information System (INIS)

    Diaz H, C.; Salinas R, G.A.

    1996-01-01

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  7. The Liquid Annular Reactor System (LARS) propulsion

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  8. Hydrodynamics of annular-dispersed flow

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  9. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1987-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)

  10. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  11. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  12. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: richardepalmerwork@yahoo.com [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-05-15

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  13. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification.

    Science.gov (United States)

    Wei, Ning; Flaschel, Erwin; Friehs, Karl; Nattkemper, Tim Wilhelm

    2008-10-21

    Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature selection plays a role of excluding redundant or misleading

  14. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  15. Phase-locking of annular-combination CO2 laser

    Science.gov (United States)

    Qi, Tingxiang; Chen, Mei; Zhang, Rongzhu; Xiao, Qianyi

    2015-07-01

    A new annular-combination resonator structure adopting the external-injection phase-locking technology is presented theoretically for that the beam quality of stable annular resonator is not satisfying. The phase-locking principle and feasibility are characterized by energy density of injection beam and coupling coefficient. Based on the diffraction theory, output mode of the resonator with phase-locking is deduced and simulated. Results also confirm that injection beam have a good control effect on output mode. The intensity distributions of output beam are studied briefly and indicate that this new resonator which is adaptable to annular gain media can produce high-power laser beam with high quality.

  16. Coexistence of morphea and granuloma annulare: a rare case report

    Directory of Open Access Journals (Sweden)

    Şenay Ağırgöl

    2017-11-01

    Full Text Available ABSTRACT CONTEXT: Localized scleroderma (morphea is characterized by fibrosis of skin and subcutaneous tissue. Granuloma annulare is a relatively common disease that is characterized by dermal papules and arciform plaques. CASE REPORT: Here, we present the case of a 42-year-old woman who developed granuloma annulare on the dorsum of her feet and abdominal region, and morphea on the anterior side of her lower limbs. We also discuss the etiological and pathogenetic processes that may cause the rare coexistence of these two diseases. CONCLUSION: Only a few cases in the literature have described coexistence of morphea and granuloma annulare.

  17. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    1980-01-01

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  18. Confocal retinal imaging using scanning laser opthalmoscopy with annular beams

    NARCIS (Netherlands)

    Vohnsen, Brian; Lochocki, Benjamin; Vela-Garcia, Carmen; Rativa, Diego

    2012-01-01

    The human retina has been imaged in-vivo using scanning laser ophthalmoscopy employing annular incident beams adapted for resolution optimization. The pros and cons of the approach are discussed and the importance of coherence is explored.

  19. Granuloma Annulare Skin Lesions in a Case of Sarcoidosis

    Science.gov (United States)

    Chopra, Ajay; Mitra, Debdeep; Sharma, Loknandini; Agarwal, Reetu

    2018-01-01

    We report the case of a 32-year- old man with a short 3-week history of erythematous, annular, non scaly plaques on palmar and dorsal aspect of his hands, who was concurrently diagnosed as a case of sarcoidosis on the basis of findings of generalized lymphadenopathy and radiological and histological features of pulmonary sarcoidosis. His skin biopsy was consistent with the diagnosis of granuloma annulare. Sarcoidosis and granuloma annulare are two separate diseases, which involve the skin and have a mononuclear histiocytic cellular reaction, although their aetiology is still unknown. Granuloma annulare has been associated with the concomitant diagnosis of sarcoidosis in only two more case reports and this association can be evaluated further to study a common link in the aetipathogenesis of these two granulomatous skin diseases.

  20. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  1. Sonographic evaluation of digital annular pulley tears

    International Nuclear Information System (INIS)

    Martinoli, C.; Derchi, L.E.; Bianchi, S.; Garcia, J.F.; Nebiolo, M.

    2000-01-01

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  2. Sonographic evaluation of digital annular pulley tears

    Energy Technology Data Exchange (ETDEWEB)

    Martinoli, C.; Derchi, L.E. [Istituto di Radiologia, Universita di Genova, Genoa (Italy); Bianchi, S.; Garcia, J.F. [Dept. de Radiologie, Hopital Cantonal Universitaire de Geneve (Switzerland); Nebiolo, M. [Reparto Pronto Soccorso Medico, Pietra Ligure (Italy)

    2000-07-01

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  3. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  4. Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging.

    Science.gov (United States)

    Saito, Genki; Yamaki, Fuuta; Kunisada, Yuji; Sakaguchi, Norihito; Akiyama, Tomohiro

    2017-04-01

    Three-dimensional (3D) distributional analysis of individual dopant atoms in materials is important to development of optical, electronic, and magnetic materials. In this study, we adopted through-focus high-angle annular dark-field (HAADF) imaging for 3D distributional analysis of Eu dopant atoms in Ca-α-SiAlON phosphors. In this context, the effects of convergence semi-angle and Eu z-position on the HAADF image contrast were investigated. Multi-slice image simulation revealed that the contrast of the dopant site was sensitive to change of the defocus level. When the defocus level matched the depth position of a Eu atom, the contrast intensity was significantly increased. The large convergence semi-angle greatly increased the depth resolution because the electron beam tends spread instead of channeling along the atomic columns. Through-focus HAADF-STEM imaging was used to analyze the Eu atom distribution surrounding 10nm cubes with defocus steps of 0.68nm each. The contrast depth profile recorded with a narrow step width clearly analyzed the possible depth positions of Eu atoms. The radial distribution function obtained for the Eu dopants was analyzed using an atomic distribution model that was based on the assumption of random distribution. The result suggested that the Ca concentration did not affect the Eu distribution. The decreased fraction of neighboring Eu atoms along z-direction might be caused by the enhanced short-range Coulomb-like repulsive forces along the z-direction. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens

    International Nuclear Information System (INIS)

    Ando, Masami; Sunaguchi, Naoki; Wu, Yanlin; Do, Synho; Sung, Yongjin; Gupta, Rajiv; Louissaint, Abner; Yuasa, Tetsuya; Ichihara, Shu

    2014-01-01

    We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan. In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer. X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer. (orig.)

  7. Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami [RIST, Tokyo University of Science, Noda, Chiba (Japan); Sunaguchi, Naoki [Gunma University, Graduate School of Engineering, Kiryu, Gunma (Japan); Wu, Yanlin [The Graduate University for Advanced Studies, Department of Materials Structure Science, School of High Energy Accelerator Science, Tsukuba, Ibaraki (Japan); Do, Synho; Sung, Yongjin; Gupta, Rajiv [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Louissaint, Abner [Massachusetts General Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Yuasa, Tetsuya [Yamagata University, Faculty of Engineering, Yonezawa, Yamagata (Japan); Ichihara, Shu [Nagoya Medical Center, Department of Pathology, Nagoya, Aichi (Japan)

    2014-02-15

    We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan. In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer. X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer. (orig.)

  8. Efficient decoding of 2D structured illumination with linear phase stepping in X-ray phase contrast and dark-field imaging.

    Directory of Open Access Journals (Sweden)

    Katherine J Harmon

    Full Text Available The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging.

  9. Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan

    International Nuclear Information System (INIS)

    Ando, M.; Hashimoto, E.; Hashizume, H.; Hyodo, K.; Inoue, H.; Kunisada, T.; Maksimenko, A.; Mori, K.; Rubenstein, E.; Roberson, J.; Shimao, D.; Sugiyama, H.; Takeda, K.; Toyofuku, F.; Ueno, E.; Umetani, K.; Wada, H.; Pattanasiriwisawa, W.

    2005-01-01

    This paper reports, the application of synchrotron radiation to basic medicine at SPring-8 involving instrumentation and medical application of imaging and scattering. Emphasis should be laid on X-ray dark-field imaging (DFI) whose goal is clinical diagnosis of organs that have been invisible by ordinary techniques. Development of this technique is under way both at SPring-8 and KEK. The X-ray optics of DFI comprises a Bragg asymmetric monochro-collimator and a Laue case analyzer with a diffraction index of 440 using the X-ray energy of 35keV (λ=0.0354nm) in a parallel position. This analyzer that can provide with 80mmx80mm view size has 2.15mm thickness. At present the spatial resolution is around 5-10μm. Visibility of some organs such as soft bone tissue at excised human femoral head and breast cancer tissue is under test. This preliminary test shows that the DFI seems feasible in clinical diagnosis. Furthermore, a perspective view of application of synchrotron radiation to clinical medicine in Japan will be given

  10. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    Science.gov (United States)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  11. Energy and exergy analysis of an annular thermoelectric cooler

    International Nuclear Information System (INIS)

    Manikandan, S.; Kaushik, S.C.

    2015-01-01

    Highlights: • Exergy analysis in the annular thermoelectric cooler (ATEC) system is proposed. • Analytical expressions for the cooling power, exergy efficiency of an ATEC is derived. • The effects of S r and θ in Q c and exergy efficiency of an ATEC is studied. - Abstract: In this paper the concept of annular thermoelectric cooler (ATEC) has been introduced. An exoreversible thermodynamic model of the annular thermoelectric cooler considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum energy/exergy efficiency, maximum cooling power conditions and dimensionless irreversibilities in the ATEC are derived. The modified expression for figure of merit of a thermoelectric cooler considering the Thomson effect has also been obtained. The results show that the cooling power, energy and exergy efficiency of the ATEC is lower than the flat plate thermoelectric cooler. The effects of annular shape parameter (S r = r 2 /r 1 ), dimensionless temperature ratio (θ = T h /T c ) and the electrical contact resistances on cooling power, energy/exergy efficiency of an ATEC have been studied. It has also been proved that because of the influence of Thomson effect, the cooling power and energy/exergy efficiency of the ATEC is increased. This study will help in the designing of the actual annular thermoelectric cooling systems.

  12. Experimental verification of focusability of coherent annular laser beams

    Science.gov (United States)

    Astadjov, Dimo N.; Prakash, Om

    2013-03-01

    Experiments of focusing coherent laser beams being diffracted on annular aperture are carried out in order to verify issues of a two-dimensional Fast Fourier Transform simulation of coherent pure (dark) annular flat beams done and published before. The beam pattern at focal plane (aka the far-field pattern) is a prominent central peak and faint concentrical rings around it. In the course of simulation we calculate the fraction of the central peak power to the whole power of beam that gives a notion of power spread within the focal spot. This fraction is a function of beam annularity i.e. `inside diameter /outside diameter' ratio. The experimentally-measured dependence of the central peak power to the whole power of beam versus the annularity of pure annular laser beams was the major target of the report. The purpose was to verify experimentally the issues of our earlier simulation. We found that from the five experimental points four of them are within 16% error as to the simulated dependence which is tolerable in such a measurement.

  13. Far-field Diffraction Properties of Annular Walsh Filters

    Directory of Open Access Journals (Sweden)

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  14. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  15. Experiments on soliton motion in annular Josephson junctions

    DEFF Research Database (Denmark)

    Davidson, A.; Dueholm, B.; Pedersen, Niels Falsig

    1986-01-01

    We report here the results of an extensive experimental investigation of soliton dynamics in Josephson junctions of different annular geometries. The annular geometry is unique in that it allows for the study of undisturbed soliton motion as well as soliton–antisoliton collisons, since...... there are no boundary effects. We have successfully trapped a single soliton in an annular junction and found good agreement with perturbation theory at low soliton velocity, and evidence of departure from perturbation theory at higher velocity. We also discuss the observation of fine structure on the I-V curve...... for a single trapped soliton, and evidence linking the stability of the soliton to surface damping. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  16. Supra-annular mitral valve replacement in children.

    Science.gov (United States)

    Kanter, Kirk R; Kogon, Brian E; Kirshbom, Paul M

    2011-12-01

    Despite improved mitral repair techniques, some children need mitral valve replacement (MVR). Due to small annulus size, supra-annular MVR is useful. From 2003 to 2010, 15 children had 23 supra-annular MVRs. At first supra-annular MVR, median age was 6.5 months (28 days to 47 months); median weight was 5.4 kg (3.3-11.8 kg). Twelve (80%) had prior operations, 8 (53%) had previous mitral repair. Eight had congenital mitral anomalies (4 with Shone's), 5 had atrioventricular septal defects, 1 had endocarditis, and 1 had a repaired anomalous left coronary artery. All primary MVRs used mechanical valves (≤ 17 mm in 9 patients). There was one early death (93% survival) in an 11-month-old with congenital pulmonary vein stenosis. One intraoperative conversion from annular to supra-annular MVR developed heart block. Three pacemakers were implanted for supraventricular rhythm disturbances. Three children had valve thrombosis early postoperatively treated medically. On follow-up of 4.3 ± 2.8 years, 8 had reoperation including redo MVR in 6 for pannus formation or thrombus (1 had three redo MVRs). At redo, a larger valve was used in 5 and a bioprosthetic valve in 4 patients. There was one late death after third redo MVR with pulmonary vein stenosis relief (overall survival 87%). Supra-annular MVR is useful for children with a small annulus. Operative survival is good with infrequent heart block. Complications are common, including redo MVR and need for left ventricular outflow tract obstruction relief. Pulmonary vein stenosis is a marker for poor outcome; all patients without pulmonary vein stenosis survive long term. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  18. Mitral-aortic annular enlargement: modification of Manouguian's technique

    Directory of Open Access Journals (Sweden)

    Costa Mario Gesteira

    2002-01-01

    Full Text Available We hereby present a technical modification for mitral-aortic annular enlargement. The mitral valve is replaced through the retro-septal approach, avoiding patches for left atrial roof closure. We report a mitral-aortic valve replacement in a patient whose original annuli would preclude adequate prostheses. The simultaneous annular enlargement may be necessary for avoiding patient-prosthesis mismatch and for reconstructing destroyed mitral and aortic annuli. The technique may minimize the risk of bleeding and of paravalvular leakage, using an approach well known to cardiac surgeons.

  19. AKARI/IRC source catalogues and source counts for the IRAC Dark Field, ELAIS North and the AKARI Deep Field South

    Science.gov (United States)

    Davidge, H.; Serjeant, S.; Pearson, C.; Matsuhara, H.; Wada, T.; Dryer, B.; Barrufet, L.

    2017-12-01

    We present the first detailed analysis of three extragalactic fields (IRAC Dark Field, ELAIS-N1, ADF-S) observed by the infrared satellite, AKARI, using an optimized data analysis toolkit specifically for the processing of extragalactic point sources. The InfaRed Camera (IRC) on AKARI complements the Spitzer Space Telescope via its comprehensive coverage between 8-24 μm filling the gap between the Spitzer/IRAC and MIPS instruments. Source counts in the AKARI bands at 3.2, 4.1, 7, 11, 15 and 18 μm are presented. At near-infrared wavelengths, our source counts are consistent with counts made in other AKARI fields and in general with Spitzer/IRAC (except at 3.2 μm where our counts lie above). In the mid-infrared (11 - 18 μm), we find our counts are consistent with both previous surveys by AKARI and the Spitzer peak-up imaging survey with the InfraRed Spectrograph (IRS). Using our counts to constrain contemporary evolutionary models, we find that although the models and counts are in agreement at mid-infrared wavelengths there are inconsistencies at wavelengths shortward of 7 μm, suggesting either a problem with stellar subtraction or indicating the need for refinement of the stellar population models. We have also investigated the AKARI/IRC filters, and find an active galactic nucleus selection criteria out to z < 2 on the basis of AKARI 4.1, 11, 15 and 18 μm colours.

  20. Annular fuel element for high-temperature reactors

    International Nuclear Information System (INIS)

    Bujas, R.

    1975-01-01

    A description is given of a compacted fuel element of annular shape which is enclosed in a graphite casing constituted by an inner tube and an outer tube. The inner tube is formed of graphite having a lower coefficient of shrinkage than the graphite of the outer tube under irradiation and is of smaller thickness than the outer tube

  1. Free asymmetric transverse vibration of polar orthotropic annular ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Houmat A 2001 A sector Fourier p-element applied to free vibration analysis of sectorial plates. J. Sound Vibr. 243: 269–282. Irie T, Yamada G, Ito F 1979 Free vibration of polar orthotropic sector plates. J. Sound Vibr 67: 89–100. Irie T, Tanaka K, Yamada G 1988 Free vibration of a cantilever annular sector plate with curved ...

  2. Magnetic fluid based squeeze film between porous annular curved ...

    Indian Academy of Sciences (India)

    lower plate, considering a magnetic fluid lubricant in the presence of an external magnetic field oblique to the plates. Expressions were obtained for ... Keywords. Magnetic fluid; lubrication; annular curved plates. PACS No. 81.40.Pq. 1. Introduction ... is backed by a solid wall. The film thickness h is taken as h =h0 exp(-Br2); ...

  3. Design and simulation of double annular illumination mode for microlithography

    Science.gov (United States)

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  4. Quench-induced trapping of magnetic flux in annular

    DEFF Research Database (Denmark)

    Aaroe, M.; Monaco, R.; Rivers, R.

    2008-01-01

    The aim of the project is to investigate spontaneous symmetry breaking in non-adiabatic phase transitions (Kibble-Zurek processes). A long and narrow annular Josephson tunnel junction is subjected to repeated thermal quenches through the normal-superconducting transition. The quench rate is varied...

  5. Localized granuloma annulare and autoimmune thyroiditis in a ...

    African Journals Online (AJOL)

    The association of granuloma annulare (GA) and autoimmune thyroiditis has been documented in the literature in 13 previous cases. However, the pathogenesis of GA remains obscure. Possible pathogenetic factors suggested include: humoral and delayed type hypersensitivity, vascular damage, metabolic disorder, or, ...

  6. Adjoint Optimisation of the Turbulent Flow in an Annular Diffuser

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Agular Knudsen, Christian; Kunoy, Jens Dahl

    2017-01-01

    In the present study, a numerical optimisation of guide vanes in an annular diffuser, is performed. The optimisation is preformed for the purpose of improving the following two parameters simultaneously; the first parameter is the uniformity perpen-dicular to the flow direction, a 1/3 diameter do...

  7. Effect of annular secondary conductor in a linear electromagnetic ...

    Indian Academy of Sciences (India)

    with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are ... Linear electromagnetic stirrer; finite element analysis; and annular ring. ... flows through the coil of the primary and generates an eddy current in the secondary conductor.

  8. Squeeze Film Behaviour in Rotating Porous Annular Discs ...

    African Journals Online (AJOL)

    The squeeze film behaviour between rotating annular discs, when the upper disc with a porous facing approached the parallel lower disc, was theoretically analysed. The lubricant was a magnetic fluid and the external magnetic field was oblique to the lower disc. Expressions were obtained for pressure, load capacity and ...

  9. Palmar annular ligament desmotomy in horses with the Arthrex ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-01-25

    Jan 25, 2018 ... Published: 07/02/2018. Palmar annular ligament desmotomy in horses with the Arthrex-Centerline™ ... Ten horse distal front limbs from horses free of PAL disease were prepared for tenoscopy of the digital flexor tendon sheath .... operative field, a better diagnosis and a reduction in both the surgical wound.

  10. A pre-clinical Talbot-Lau prototype for X-ray dark-field imaging of human-sized objects.

    Science.gov (United States)

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-03-26

    Talbot-Lau X-ray interferometry provides information about the scattering and refractive properties of an object { in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant X-ray energy ranges. In this work, we present a pre-clinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120X30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is therefore exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a pre-clinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau X-ray imaging has potential for clinical use and enhances the diagnostic power of medical X-ray imaging. This article is

  11. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  12. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  13. Hydrodynamics of adiabatic inverted annular flow: an experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1983-01-01

    For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting

  14. Annular gap solitons in Kerr media with circular gratings

    International Nuclear Information System (INIS)

    Scheuer, Jacob; Malomed, Boris

    2007-01-01

    We introduce standing-light patterns trapped in a Bragg grating written along the radial direction in a self-focusing (SF) or self-defocusing (SDF) optical medium. Unlike previously studied axisymmetric settings that deal with the axial propagation, we consider the propagation of light in the radial directions (outward and inward), which may give rise to annular gap solitons (AGSs), supported by the circular grating. An estimate for the threshold of the modulational instability of the AGS against azimuthal perturbations in the SF medium is obtained analytically, and verified by direct simulations. In the SDF model, stable annular and dipole solitons are found in a numerical form, while multipole patterns and vortex rings are unstable. Similar solitons are possible in the Bose-Einstein condensate

  15. Optical description and design method with annularly stitched aspheric surface.

    Science.gov (United States)

    Cheng, De-Wen; Chen, Xue-Jiao; Xu, Chen; Hu, Yuan; Wang, Yong-Tian

    2015-12-01

    The relentless pressure for designs with new optical functions, small volume, and light weight has greatly increased the importance of aspheric surfaces. In this paper, we propose an annularly stitched aspheric surface (ASAS) description method to increase the freedom and flexibility of imaging system design. The rotationally symmetric ASAS consists of a circular central zone and one or more annular zones. Two neighboring zones are constrained to have the same derivatives on their joint curve, and this means the ASAS is C1 continuous. This finding is proved and verified by the mathematical deduction of the surface formulas. Two optimization strategies and two design methods with the C1 continuous constraints are also discussed. This surface can greatly facilitate the design and even achieve some previously impossible designs without increasing the fabrication difficulty. Two different systems with the proposed ASAS are optimized and the results are presented. The design results verified the practicability of the ASAS.

  16. Annular ring zoom system using two positive axicons

    Science.gov (United States)

    Dickey, Fred M.; Conner, Jacob D.

    2011-10-01

    The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.

  17. The 2005 annular eclipse: a classroom activity at EPLA

    Science.gov (United States)

    Filgaira, H.

    2006-08-01

    In 2005, the 3rd of October, an annular solar eclipse was seen in part of Spain, including the city of Valencia and its surroundings. Last time something similar happened in Valencia was just a century ago. These unusual astronomical events are an excellent opportunity for students to learn astronomy, as they live it and feel part of it. In our school, "Colegio EPLA" at Godella, it was an incomparable opportunity as the annular eclipse happened during playtime. Therefore, for two weeks the school prepared several activities using the eclipse as a central theme (what is called in the Spanish educational model a "transverse subject"), explaining to the students about the eclipse (adapted to their levels), and preparing the pupils for secure eclipse observation: i.e., the children fabricated during class time their own eclipse glasses with black polymer; and for the little ones, the window of a classroom was covered with black polymer for secure observation of the phenomena.

  18. Flow of viscoplastic fluids in eccentric annular geometries

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1992-01-01

    A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....

  19. Numerical Study of Transition of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD) simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can elimin...

  20. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    Braga, C.V.M.

    1987-01-01

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt

  1. Detonation propagation in annular arcs of condensed phase explosives

    Science.gov (United States)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  2. Localized granuloma annulare and autoimmune thyroiditis in a ...

    African Journals Online (AJOL)

    This presentation is a further evidence that GA and autoimmune thyroiditis may be associated. Key Words: Granuloma annulare, Autoimmune thyroiditis. Résumé L'association d'un granulome annulaire (GA) et auto-immunité de la thyroidite a été documenté dans la litterature au cours des 13 cas précédents. Toutefois, la ...

  3. 3-D laser anemometer measurements in an annular seal

    Science.gov (United States)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The flow field inside an annular seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the entire length of the seal (0.0373 m). The seal was operated at a Reynolds number of 27,000 and a Taylor number of 6,600.

  4. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  5. Development of annular pellet production techniques for PFBR fuel

    International Nuclear Information System (INIS)

    Somayajulu, P.S.; Nehete, Y.G.; Shelke, B.K.; Kumar, Arun; Kamath, H.S.

    2000-01-01

    Advanced Fuel Fabrication Facility (AFFF) at Tarapur is an industrial scale plant for the fabrication of plutonium based ceramic nuclear fuels. Mixed Oxide (MOX) fuel for TAPS is being regularly manufactured in this facility. Efforts are now on to fabricate MOX fuel for the proposed Prototype Fast Breeder Reactors (PFBR). Experimental studies were carried out using natural UO 2 for the fabrication of PFBR fuel pellets. These trials were carried out in glove box condition of the existing fuel pelletisation line, The PFBR fuel pellets are of annular cylindrical shape of around 5.5 mm diameter having internal hole diameter of around 1.7 mm. Apart from meeting physical integrity criteria, the linear mass should be between 2.25 -2.41 gm/cm. Fabrication of annular pellet meeting these specifications require special techniques to be developed. Further, equipment used in the process especially final compaction press should be capable of giving high rate of production. This paper discusses the preliminary work done to fabricate the annular pellets using the existing facilities and the results obtained. (author)

  6. Entrainment in vertical annular two-phase flow

    International Nuclear Information System (INIS)

    Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu

    2009-01-01

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  7. The influence of annular seal clearance to the critical speed of the multistage pump

    International Nuclear Information System (INIS)

    Wang, J; Shen, H P; Ye, X Y; Hu, J N; Feng, Y N

    2013-01-01

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest

  8. Individual analysis of inter and intragrain defects in electrically characterized polycrystalline silicon nanowire TFTs by multicomponent dark-field imaging based on nanobeam electron diffraction two-dimensional mapping

    Science.gov (United States)

    Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki

    2018-04-01

    We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Cylindrical plasmas generated by an annular beam of ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D. M., E-mail: dmt107@imperial.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Allen, J. E., E-mail: John.Allen@maths.ox.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); University College, University of Oxford, Oxford OX1 4BH, United Kingdom and OCIAM, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  11. Study and optimization of an annular photocatalytic slurry reactor.

    Science.gov (United States)

    Camera-Roda, Giovanni; Santarelli, Francesco; Panico, Mauro

    2009-05-01

    The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.

  12. Replacement fuel scoping studies for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Hays, K.; Martin, L.; Parma, E.

    1995-01-01

    Sandia National Laboratories Annular Core Research Reactor (ACRR) is undertaking a new mission for the Department of Energy: production of the radioisotope 99 Mo used in nuclear medicine applications. Isotope production is significantly different from previous programs conducted at the ACRR that typically required high intensity, short duration pulses. The current UO 2 -BeO fuel will power the initial startup phase of the production program, and can perform exceptionally well for this mission. However, this type of fuel is no longer available, commercially or otherwise. This paper presents the results of some preliminary studies of commercially available fuels

  13. Final Technical Report for the MIT Annular Fuel Research Project

    International Nuclear Information System (INIS)

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-01

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research Energy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in power density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghouse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited

  14. Characterization of an innovative method for RuO2 deposition using Electron Microscopy

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    annular dark field (HAADF) imaging, energy-dispersive X-ray (EDX) spectroscopy, and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) to study the deposition of RuO2 on TiO2. The deposition process occurs in two steps, for each of which we are able...

  15. Linear and nonlinear stability of periodic orbits in annular billiards.

    Science.gov (United States)

    Dettmann, Carl P; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  16. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  17. Numerical Simulation of Barite Sag in Pipe and Annular Flow

    Directory of Open Access Journals (Sweden)

    Patrick Kabanda

    2017-01-01

    Full Text Available With the ever increasing global energy demand and diminishing petroleum reserves, current advances in drilling technology have resulted in numerous directional wells being drilled as operators strive to offset the ever-rising operating costs. In as much as deviated-well drilling allows drillers to exploit reservoir potential by penetrating the pay zone in a horizontal, rather than vertical, fashion, it also presents conditions under which the weighting agents can settle out of suspension. The present work is categorized into two parts. In the first part, governing equations were built inside a two-dimensional horizontal pipe geometry and the finite element method utilized to solve the equation-sets. In the second part, governing equations were built inside a three-dimensional horizontal annular geometry and the finite volume method utilized to solve the equation-sets. The results of the first part of the simulation are the solid concentration, mixture viscosity, and a prediction of the barite bed characteristics. For the second part, simulation results show that the highest occurrence of barite sag is at low annular velocities, nonrotating drill pipe, and eccentric drill pipe. The CFD approach in this study can be utilized as a research study tool in understanding and managing the barite sag problem.

  18. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    Science.gov (United States)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  19. CFD simulation of slurry flow in annular pipelines

    Science.gov (United States)

    Sultan, Rasel A.; Rahman, M. A.; Rushd, S.; Zendehboudi, S.

    2017-12-01

    Three-dimensional CFD modeling of two-phase slurry flows is demonstrated in this paper. The flow domain consists of a vertically oriented annular pipe with outer and inner diameter of 0.125 m and 0.025 m, respectively. A mixture velocity range of 0.0738-0.197 m/s and overall volumetric concentration range of 0.8%-1.8% with 0.23 mm grain size (dp) are used for the simulation. Eulerian model with Reynolds Stress Model (RSM) for turbulence closure is adopted to analyze the monodispersed sand particles of varying granular diameters. The objective of this work is to study the slurry flow using CFD simulation and validating the simulation with experimental studies available in the literature. The simulated pressure losses are found to be in good agreement with experimental results at different conditions. Pressure drop per meter or pressure gradient increases with flow velocity of mixture but after a peak point pressure gradient decreases with the increasing velocity. These phenomena in vertical annular flow and its reasons are described in this paper. Effects of efflux solid concentration of slurry on pressure gradient is also studied.

  20. Portal annular pancreas: a systematic review of a clinical challenge.

    Science.gov (United States)

    Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H

    2014-10-01

    Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.

  1. Annular array technology for nondestructive turbine inspection. Final report

    International Nuclear Information System (INIS)

    Light, G.M.

    1986-05-01

    The Electric Power Research Institute (EPRI) funded Southwest Research Institute (SwRI) to fabricate and functionally test phased array transducers and an electronic control system with the intent of evaluating the phased array technology for use in the inspection of turbine disks. During this program a 13-element annular array and associated phased array electronics were fabricated and tested and the results of the tests compared to those predicted by theory. The prototype system performed well within the expected limits, and EPRI funded further work to fabricate and test a production unit. The production system consisted of a 25-element annular array and a 25-channel electronics system that had both pulser and receiver delay circuitry. In addition, during the program it was determined that miniaturized hybrid pulser/preamps would be needed to allow the phased array to work over distances exceeding 9.1 meters (30 feet) from the electronics. A circuit developed by SwRI was utilized and found to produce good pulsing capability that did not suffer from impedance mismatch. EPRI also funded (under a separate contract) the fabrication of a small scale static turbine test bed and a full scale dynamic test bed that contained full scale turbine geometries. These test beds were fabricated to enable the production phased array system to be evaluated on turbine disk surfaces. 26 figs

  2. Multiple lesions of granuloma annulare on the hand in a patient with scabies

    Directory of Open Access Journals (Sweden)

    Al Aboud K

    2011-08-01

    Full Text Available Khalid Al Aboud1, Daifullah Al Aboud21Department of Dermatology, King Faisal Hospital, Makkah; 2Department of Dermatology, Taif University, Taif, Kingdom of Saudi ArabiaAbstract: Granuloma annulare induced by scabies infection has been described previously in three patients. In this report, we share our observation of a fourth case.Keywords: granuloma annulare, scabies, skin

  3. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area...

  4. Quasi-static transient thermal stresses in a thick annular disc

    Indian Academy of Sciences (India)

    in a thin annular disc. Also Deshmukh 2002 studied transient heat conduction problem in a thin hollow cylinder and determined thermal stresses. ... containers for hot gases or liquids, in the foundations for furnaces, etc. 2. Formulation of the problem. Consider a thick a annular disc of thickness 2h occupying space D defined ...

  5. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source

    International Nuclear Information System (INIS)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) δ (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) δ (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  6. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Andersen, Torben O.

    2018-01-01

    This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad op...

  7. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  8. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  9. Explicit relations between elastic and conductive properties of materials containing annular cracks.

    Science.gov (United States)

    Sevostianov, Igor

    2003-05-15

    The impact of annular cracks on the effective elastic and conductive properties of a material is analysed. The compliance contribution tensor of an annular crack - the quantity that determines the increase in compliance of a solid due to introduction of such a crack - is derived analytically. The resistivity contribution tensor of an annular crack is calculated numerically. It is shown that an effective circular crack, i.e. a crack which yields the same change in elastic/conductive properties of a material as the given annular crack, can be chosen to match both of these tensors. Using this result, the explicit relation between elastic and conductive properties of a material containing annular cracks is obtained. The relation is derived using a non-interaction approximation. Applicability of the derived formulae to real materials (to plasma-sprayed coatings, in particular) is discussed.

  10. Study of startup conditions of a pulsed annular reactor

    International Nuclear Information System (INIS)

    Silva, Mario Augusto Bezerra da

    2003-10-01

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  11. N7 dark field two-bar in 0.33NA EUVL: Mitigation of CD Bossung tilts caused by strong coupling between the feature's primary and 1st self-image

    Science.gov (United States)

    Last, T.; van Adrichem, P.; de Winter, L.; Hsu, S.; Finders, J.; Wittebrood, F.; van de Kerkhof, M.

    2017-03-01

    We report a study into intensity-driven mask 3D effects for N7 dark field two-bars in EUVL. For these features, traditional pupil optimization "rules" are advising to center a symmetric leaf shape illumination at the pupil plane location σY = (-0.64, 0.64). Experimentally determined critical dimension Bossungs for this exposure condition however yield an extreme best focus separation due to an additional Bossung tilt appearing at defocus values beyond 20 nm for the bottom trench. The Bossung tilts are caused by a strong coupling between the primary image of the two-bar and its first local pitch-induced self-image. The coupling to the self-image can be suppressed and, hence, the overlapping process window can be enhanced by the application of asymmetric sources, or by using standard dipole 90Y or leaf shape illuminations in combination with optimally placed sub-resolution assist features.

  12. Design for a One-Gigawatt, Annular-Beam Klystron

    Energy Technology Data Exchange (ETDEWEB)

    Arfin, Bernard

    2001-01-23

    A one-gigawatt, annular beam klystron (ABK) is being developed by Los Alamos National Laboratory in collaboration with the Stanford Linear Accelerator Center (SLAC). The pulse length is 1 {micro}s, the pulse repetition frequency is 5 Hz, and the operating frequency is 1.3 GHz. The beam voltage and current are 800 kV and 4 kA. Since the electron beam parameters are considerably beyond the state-of the-art, an aggressive cathode and electron gun design is required. The magnetron injection gun (MIG) configuration was chosen over the standard Pierce geometry that is typically used in klystrons. The tube design, design issues, and status are presented.

  13. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    Hobson, D.E.; Dolding, M.

    1989-01-01

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  14. Design of an Annular Disc Subject to Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2012-01-01

    Full Text Available Two solutions to design a thin annular disc of variable thickness subject to thermomechanical loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions proposed requires that the distribution of stresses is uniform over the entire disc. In this case there is a relation between optimal values of the loading parameters at the final stage. The specific shape of the disc corresponds to each pair of such parameters. The other solution is obtained under the additional requirement that the distribution of strains is uniform. This solution exists for the disc of constant thickness at specific values of the loading parameters.

  15. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  16. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  17. Annular suspension and pointing system with controlled DC electromagnets

    Science.gov (United States)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  18. Numerical simulation of random stresses on an annular turbulent flow

    International Nuclear Information System (INIS)

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  19. Mechanistic model of the inverted annular film boiling

    International Nuclear Information System (INIS)

    Seok, Ho; Chang, Soon Heung

    1989-01-01

    An analytical model is developed to predict the heat transfer coefficient and the friction factor in the inverted annular film boiling. The developed model is based on two-fluid mass, momentum and energy balance equations and a theoretical velocity profile. The predictions of the proposed model are compared with the experimental data and the well-established correlations. For the heat transfer coefficient, they agree with the experimental data and are more promising than those of Bromely and Berenson correlations. The present model also accounts the effects of the mass flux and subcooling on the heat transfer. The friction factor predictions agree qualitatively with the experimental measurements, while some cases show a similar behavior with those of the post-CHF dispersed flow obtained from Beattie's correlation

  20. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Directory of Open Access Journals (Sweden)

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  1. Development of annular targets for 99MO production-1999

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-01-01

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99 Mo

  2. Interfacial shear modeling in two-phase annular flow

    International Nuclear Information System (INIS)

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  3. Numerical investigation on the recirculation in annular jet pumps

    International Nuclear Information System (INIS)

    Xiao, Longzhou; Long, Xinping; Zeng, Qinglong; Yang, Xuelong; Li, Xiaohong

    2013-01-01

    The flow within the annular jet pump (AJP), in some degree, resembles the annular wall jet developing in a pipe with great axial pressure gradient. In some working conditions, there exists the backflow near the centerline. However this differs from the case in a center jet pump (CJP) that the recirculation emerges near the inner wall of the throat. The recirculation in AJP affects a lot to its performance, especially when AJP is utilized to convey something alive, such as fish. This paper aims to numerically study the impact of two parameters, the flow ratio M and the area ratio A, on the location, size and formation of the recirculation in AJP. After being validated by the experimental results, the RNG k-ε turbulent model was adopted. It is found that: (1) As M increases, the width and height of the recirculation in AJP decreases, and the separation point of the recirculation shifts gradually far away from the nozzle exit while the reattachment point slightly moves; (2) As A becomes larger, the width and height of the recirculation enlarged, with M keeping constant; (3) For AJP with constant A, the recirculation emerges when M declines to a critical value, and the value varies linearly with A; (4) The Craya-Curtet number C t and the momentum ratio J, which take A and M into whole consideration, are also feasible in describing the disappearance of the recirculation. However the critical value of C t and J are different from that discovered in CJP. The critical C t increases with decreasing A and the critical momentum ratio J c experiences a linear relationship with A.

  4. Sausage and kink oscillations in incompressible annular magnetic cylinders

    Science.gov (United States)

    Carter, B. K.; Erdélyi, R.

    2007-11-01

    Aims:The propagation of MHD waves in a structured magnetic flux tube embedded within a straight magnetic environment is studied analytically. The motivation for this analysis comes from the observations of damped loop oscillations indicating the possibility that only part of the loop is homogeneous in the radial direction and from the observation of two simultaneous waves with different speeds in the same magnetic loop in the solar atmosphere. Methods: The general dispersion relation of longitudinal wave propagation is derived for a flux tube configuration consisting of a core, annulus and external region each with straight distinct magnetic field. Modes of oscillation are examined from the general dispersion relation that is suitable for obtaining information not just on oscillations but also on some instability properties of this complex tube structure. Specific attention is given to the modification of the phase speeds and oscillation periods caused by the annulus structure, compared to a single monolithic tube. Results: It is shown that two purely surface modes arise. The relative change in periods due to the additional annulus layer is shown to be rather significant (up to 20% in some cases). In particular we found that in photospheric type annular tubes, periods are less than their counterparts in a monolithic loop while for a dense flux tube in the majority of cases the period was greater than the period of the counterpart monolithic flux tube. Both short and long wavelength approximations are considered for both the symmetrical (sausage) and kink modes. Conclusions: Annular structuring of a magnetic flux tube will reduce or increase periods of the allowed oscillations depending on the type of flux tube considered (either as a magnetic or as a density enhancement). The results are relevant to further our knowledge of solar magneto-seismology. In particular, the obtained results for the kink oscillations may be applicable from photosphere to corona, while the

  5. An Optimization and Comparative Study of Air-Coupled CMUT Cells With Circular and Annular Geometries.

    Science.gov (United States)

    Na, Shuai; Li, Zhenhao; Wong, Lawrence L P; Chen, Albert I-Hsiang; Macecek, Mirek; Yeow, John T W

    2017-11-01

    Air-coupled capacitive micromachined ultrasonic transducers (CMUTs) with annular cell geometry have recently been reported to have a promising transmit sensitivity. This paper reports three optimization schemes, which further improve the transmit sensitivity and also help achieve a reasonable comparison between the novel annular and conventional circular cells. Lumped element models of both cell types with laminate plate structures are presented. Based on these models, a design optimization flowchart was constructed to facilitate analytical optimization on the three schemes. Circular and annular CMUTs with a common 97-kHz natural resonance frequency were fabricated and characterized to verify the efficacy of the optimization principle. Using the optimization flowchart, annular and circular cells with frequencies ranging from 100 to 300 kHz were analytically optimized and then compared. The comparison results demonstrate that, given the same dc bias and ac excitation voltage, the output power density at the plate surface of the optimized annular cell is double that of the optimized circular cell. Additionally, when generating the same surface power density, an optimized annular cell requires either half the dc bias or half the ac excitation voltage of an optimized circular cell. This paper provides a practical optimization framework for CMUT cell design and demonstrates the superiority of annular cells for air-coupled applications.

  6. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  7. Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing

    Science.gov (United States)

    Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng

    2018-01-01

    Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow

  8. Cellular and Extracellular Matrix Basis for Heterogeneity in Mitral Annular Contraction

    Science.gov (United States)

    Stephens, Elizabeth H.; Fahrenholtz, Monica M.; Connell, Patrick S.; Timek, Tomasz A.; Daughters, George T.; Kuo, Joyce J.; Patton, Aaron M.; Ingels, Neil B.; Miller, D. Craig; Grande-Allen, K. Jane

    2015-01-01

    Purpose Regional heterogeneity in mitral annular contraction, which is generally ascribed to the fibrous vs. muscular annular composition, ensures proper leaflet motion and timing of coaptation. It is unknown whether the fibroblast-like cells in the annulus modulate this heterogeneity, even though valvular interstitial cells (VICs) can be mechanically “activated.” Methods Fourteen sheep underwent implantation of radiopaque markers around the mitral annulus defining four segments: septal (SEPT), lateral (LAT), and anterior (ANT-C) and posterior (POST-C) commissures. Segmental annular contraction was calculated using biplane videofluoroscopy. Immunohistochemistry of annular cross sections assessed regional matrix content, matrix turnover, and cell phenotype. Micropipette aspiration measured the Young's modulus of the leaflets adjacent to the myocardial border. Results Whereas SEPT contained more collagen I and III, LAT demonstrated more collagen and elastin turnover as shown by greater decorin, lysyl oxidase, and matrix metalloprotease (MMP)-13 and smooth muscle alpha-actin (SMaA). This greater matrix turnover paralleled greater annular contraction in LAT vs. SEPT (22.5% vs. 4.1%). Similarly, POST-C had more SMaA and MMP13 than ANT-C, consistent with greater annular contraction in POST-C (18.8% vs. 11.1%). Interestingly, POST-C had the greatest effective modulus, significantly higher than LAT. Conclusions These data suggest that matrix turnover by activated VICs relates to annular motion heterogeneity, maintains steady-state mechanical properties in the annulus, and could be a therapeutic target when annular motion is impaired. Conversely, alterations in this heterogeneous annular contraction, whether through disease or secondary to ring annuloplasty, could disrupt this normal pattern of cell-mediated matrix remodeling and further adversely impact mitral valve function. PMID:26195991

  9. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    Rubin, I.R.; Pul'kin, I.N.; Roizen, L.I.

    1986-01-01

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  10. Simple correlation equations for optimum design of annular fins with uniform thickness

    International Nuclear Information System (INIS)

    Arslanturk, Cihat

    2005-01-01

    Simple correlation equations for optimum design of annular fins with uniform cross section are obtained in the present work. The fin volume is fixed to obtain the dimensionless geometrical parameters of the fin with maximum heat transfer rates. The optimum radii ratio of an annular fin which maximizes the heat transfer rate has been found as a function of Biot number and the fin volume. The data from the present solutions is correlated for a suitable range of Biot number and the fin volume. The simple correlation equations presented in this work can assist for thermal design engineers for optimum design of annular fins of uniform thickness

  11. Fluid-structure coupling between a vibrating cylinder and a narrow annular flow

    International Nuclear Information System (INIS)

    Perotin, L.

    1994-01-01

    This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))

  12. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  13. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  14. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  15. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  16. Changes in Tricuspid Annular Geometry in Patients with Functional Tricuspid Regurgitation

    NARCIS (Netherlands)

    Hai, Ting; Amador, Yannis; Mahmood, Feroze; Jeganathan, Jelliffe; Khamooshian, Arash; Knio, Ziyad O.; Matyal, Robina; Nicoara, Alina; Liu, David C.; Senthilnathan, Venkatachalam; Khabbaz, Kamal R.

    2017-01-01

    Objective: To determine whether the indices of tricuspid annular dynamics that signify irreversible tricuspid valvular remodeling can improve surgical decision making by helping to better identify patients with functional tricuspid regurgitation who could benefit from annuloplasty. Design:

  17. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  18. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Science.gov (United States)

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis

    2018-01-23

    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  19. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  20. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  1. Annular Air Leaks in a liquid hydrogen storage tank

    Science.gov (United States)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  2. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  3. Critical heat flux experimentation in an annular test section

    International Nuclear Information System (INIS)

    White, J.D.; Levin, A.E.

    1978-01-01

    Steady-state critical heat flux experiments have been performed in the Forced Convection Test Facility (FCTF), an annular test section containing a single electrically heated rod, for the purpose of testing the applicability of existing critical heat flux correlations. Good accuracy has been obtained using the MacBeth-Barnett critical heat flux correlation for annuli, corrected for the ''stepped cosine'' power profile of the heater. The equivalent diameter of the test section, based on the wetted perimeter, is 2.1 cm (0.83 in.); the heated-to-wetted-perimeter ratio is 0.252. The heated length of the heater rod is 366 cm (144 in.). Nominal pressures for the tests have ranged from 7.2 to 15.5 MN/m 2 (1044 to 2250 psia); coolant flow rates have been 0.32 dm 3 /sec (5 gpm), 0.63 dm 3 /sec (10 gpm), and 1.26 dm 3 /sec (20 gpm); and heater powers of 72 kW, 122 kW, and 144 kW have been used. Maximum error in prediction of first observed critical heat flux is 21 percent; rms error is 11.7 percent. Attempts have also been made to predict the occurrence of critical heat flux during blowdowns (depressurization transients) of the FCTF. The results of these predictions are inconclusive at this time

  4. Annular tidal regenerator engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Hagen, K.G.; Ruggles, A.E.; Fam, S.S.; Torti, V.A.

    1975-01-01

    In order to simplify the configuration of the tidal regenerator engine nuclear-powered circulatory support system, thereby drastically reducing its size and improving the intrinsic reliability, the engine has been redesigned. This redesign focuses on allowing power to be extracted at the low temperature end of the engine utilizing a piston-cylinder arrangement wherein all of the necessary heat transfer processes occur in the annular gap between the piston and cylinder. In all other respects the engine retains its basic characteristics as a hybrid between a Stirling engine and a Rankine engine. A significant advantage of the new arrangement is the ability to raise the superheat temperature limit from 650 0 F to over 900 0 F. This has yielded an increase in engine efficiency from 10 percent to 14 percent, and further increases are anticipated by utilizing an expansion and/or a binary version of the engine. The implantable system volume has been reduced by a factor of three and orientation insensitivity with respect to gravity has been demonstrated. Many system components have already demonstrated endurances of several thousand hours

  5. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  6. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  7. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  8. Capacitive micromachined ultrasonic transducers based on annular cell geometry for air-coupled applications.

    Science.gov (United States)

    Na, Shuai; Chen, Albert I H; Wong, Lawrence L P; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2016-09-01

    A novel design of an air-coupled capacitive micromachined ultrasonic transducer (CMUT) with annular cell geometry (annular CMUT) is proposed. Finite element analysis shows that an annular cell has a ratio of average-to-maximum displacement (RAMD) of 0.52-0.58 which is 58-76% higher than that of a conventional circular cell. The increased RAMD leads to a larger volume displacement which results in a 48.4% improved transmit sensitivity and 127.3% improved power intensity. Single-cell annular CMUTs were fabricated with 20-μm silicon plates on 13.7-μm deep and 1.35-mm wide annular cavities using the wafer bonding technique. The measured RAMD of the fabricated CMUTs is 0.54. The resonance frequency was measured to be 94.5kHz at 170-V DC bias. The transmit sensitivity was measured to be 33.83Pa/V and 25.85Pa/V when the CMUT was excited by a continuous wave and a 20-cycle burst, respectively. The receive sensitivity at 170-V DC bias was measured to be 7.7mV/Pa for a 20-cycle burst, and 15.0mV/Pa for a continuous incident wave. The proposed annular CMUT design demonstrates a significant improvement in transmit efficiency, which is an important parameter for air-coupled ultrasonic transducers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An optical system design that converts a Gaussian to a flattop annular beam

    Science.gov (United States)

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  10. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  11. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Directory of Open Access Journals (Sweden)

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  12. Burnable Absorber-Filled Annular UO{sub 2} Fuels for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Chung, ChangKyu [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Its central annulus hole also provides an additional plenum for the fission gas release. In fact, annular UO{sub 2} fuels have successfully been used in commercial Russian's nuclear reactors for decades. It was upon this notion that a study was recently performed to re-investigate neutronic characteristics of the annular fuel in a rod-cell lattice. The said study also proposed an innovative integral burnable absorber (BA) concept by loading of a porous BA rod inside central hole of the annular fuel. This current work aims to extend the said investigation by characterizing neutronic performances of the BA-filled annular fuels in standard PWR 17x17 and 16x16 fuel assembly lattices. Preliminary results suggested promising potentials of the novel BA concept in managing the assembly lattice reactivity and power peaking. All calculations were performed using the Monte Carlo Serpent code with ENDF/B7.0 library. This paper demonstrates neutronic feasibilities of the BA-filled annular fuels in standard PWR 17x17 and 16x16 fuel assembly lattices. One notes that the BA-filled annular fuel-loaded lattice display comparable neutronic characteristics to the benchmarked commercial BA designs, especially in terms of reactivity and peaking factor management.

  13. Evaluation of tricuspid annular plane systolic excursion measured with cardiac MRI in children with tetralogy of Fallot.

    Science.gov (United States)

    Soslow, Jonathan H; Usoro, Emem; Wang, Li; Parra, David A

    2016-04-01

    Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesised that tricuspid annular plane systolic excursion measured by cardiac MRI approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion was measured retrospectively on cardiac MRIs in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was indexed to body surface area, converted into a fractional value, and converted into published paediatric Z-scores. Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Paediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Tricuspid annular plane systolic excursion measured by cardiac MRI correlates poorly with global and segmental right ventricular ejection fraction in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population.

  14. Effect of Granule Size on Diametric Tolerance of Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2008-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for an extended power uprate of a Pressurized Water Reactor fuel assembly. An annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. From the viewpoint of the fuel pellet fabrication, however, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance. A sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press has an hour-glass shape due to an inhomogeneous green density distribution in a powder compact. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure diametric tolerance specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. An inhomogeneous green density distribution in a powder compact is attributed to granule-granule frictions and granule to pressing mold wall frictions. Frictions result in an irregular pressing load distribution in a powder compact. In order to mitigate the frictions, a lot of process variables should be considered such as pre-compaction pressure, lubricant content, granule size and compaction pressure. The purpose of this study is to investigate the effect of a granule size on the amount of deformation after sintering, in other words, the amount of an hour-glassing. The granules with classified size ranges were made to green annular pellets with the same height and diameters. The hour-glassing amounts of the sintered annular pellets were measured and compared with that of the annular pellet made by unclassified granule

  15. Sidestream dark field images of the microcirculation

    DEFF Research Database (Denmark)

    Petersen, Sandra M; Greisen, Gorm; Hyttel-Sorensen, Simon

    2014-01-01

    by the same blinded observer using validated software. Vessels were detected, generating the parameter Total Vessel Density (TVD), and flow was determined by (i) classifying each vessel separately, generating the parameters Perfused Vessel Density (PVD) and Proportion of Perfused Vessels (PPV), and by (ii...... than for PVD (ICC = 0.89, p

  16. Determination of hydraulic resistance of rough annular channels by resistance of rough pipes

    Science.gov (United States)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    According to the current calculation recommendations for turbulent flow, coefficient of hydraulic resistance of a smooth annular channel with an equivalent hydraulic diameter dh is assumed to be equal to the coefficient of hydraulic resistance of a pipe with a diameter dh multiplied by a conversion factor. The value of this conversion factor, depending on the Reynolds number and the ratio of the inner diameter of the annular channel to the outer diameter, varies from 1 to 1.07. That is, a smooth annular channel and a smooth pipe with the same hydraulic diameters have practically the same hydraulic resistance coefficients. In this paper, experiments were conducted to test the feasibility of such an approach to channels with rough walls. According to measurements of water flow and pressure gradient, the coefficients of hydraulic resistance of a rough annular channel and a pipe with hydraulic diameters dh = 6 mm were calculated and compared. A trapezoidal artificial roughness was applied to the surfaces, which are flowing with a liquid. The experiments were carried out on a water circuit in the Reynolds number range from 103 to 105 in the regime of full roughness. The obtained experimental results were compared with calculations of coefficients of hydraulic resistance of pipes with artificial roughness according to the existing recommendations. Conclusions are drawn on the possibility of determining the hydraulic resistance of rough annular channels through the resistance of rough pipes.

  17. Numerical and experimental study of an annular pulse tube used in the pulse tube cooler

    Science.gov (United States)

    Pang, Xiaomin; Chen, Yanyan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2017-12-01

    Multi-stage pulse tube coolers normally use a U-type configuration. For compactness, it is attractive to build a completely co-axial multi-stage pulse tube cooler. In this way, an annular shape pulse tube is inevitable. Although there are a few reports about previous annular pulse tubes, a detailed study and comparison with a circular pulse tube is lacking. In this paper, a numeric model based on CFD software is carried out to compare the annular pulse tube and circular pulse tube used in a single stage in-line type pulse tube cooler with about 10 W of cooling power at 77 K. The length and cross sectional area of the two pulse tubes are kept the same. Simulation results show that the enthalpy flow in the annular pulse tube is lower by 1.6 W (about 11% of the enthalpy flow) compared to that in circular pulse tube. Flow and temperature distribution characteristics are also analyzed in detail. Experiments are then conducted for comparison with an in-line type pulse tube cooler. With the same acoustic power input, the pulse tube cooler with a circular pulse tube obtains 7.88 W of cooling power at 77 K, while using an annular pulse tube leads to a cooling power of 7.01 W, a decrease of 0.9 W (11.4%) on the cooling performance. The study sets the basis for building a completely co-axial two-stage pulse tube cooler.

  18. Slug to annular flow transition during boiloff in a rod bundle under high-pressure conditions

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Koizumi, Yasuo; Yonomoto, Taisuke; Kumamaru, Hiroshige; Tasaka, Kanji

    1986-01-01

    High-pressure boiloff experiments in a wide range of bundle powers by using the Two-Phase Flow Test Facility (TPTF) were conducted. Two kinds of boiloff patterns were observed in these experiments. One is the boiloff pattern in a low bundle power, in which the dryout points of rods locate at a certain elevation in the bundle because the mixture level controls the dryout points. The other is the boiloff pattern in a high bundle power, in which the clear mixture level can not be observed and the dryout points of rods locate in a wide range of vertical directions. The vertical scatter of the dryout points is considered to be due to the break of the thin water film on the heater rods under the annular flow pattern. A simple model to predict the slug to annular flow transition in the rod bundle is proposed. In the model, the slug to annular flow transition takes place when the interferences of the water films on the neighboring rods cease. The model appeares to give good predictions of the previous flow transition experiment conducted in a rod bundle. The slug-annular transition below the dryout points was predicted with the present model in the high power boiloff experiments of TPTF. No slug-annular transition below the dryout points is predicted with the present model in the low power boiloff experiments. (orig.)

  19. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    Science.gov (United States)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  20. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-10-15

    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  1. Enhancing VVER annular proliferation resistance fuel with minor actinides

    International Nuclear Information System (INIS)

    Chang, G. S.

    2007-01-01

    to the reactivity control of the systems into which they are incorporated. In the study, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems

  2. Potential use of microbubbles (MBs) as contrast material in x-ray dark field (DF) imaging: How does the DF signal change with the characteristic parameters of the MBs?

    Science.gov (United States)

    Zhang, Ran; Qin, Bin; Ge, Yongshuai; Whiting, Bruce; Li, Ke; Villanueva, Flordeliza; Chen, Guang-Hong

    2016-03-01

    One of the most exciting aspects of the grating based x-ray differential phase contrast (DPC) acquisition method is the concurrent generation of the so-called dark field (DF) signal, along with the classical absorption signal and the novel DPC signal. The DF signal is associated with local distribution of small angle scatterers in an image object, while the absorption signal and DPC signal are often used to characterize the relatively uniform structure of the image object. Besides the endogenous image contrast, exogenous contrast media are often used in x-ray imaging to locally enhance the image signal. This paper proposes a potential contrast medium for DF signal enhancement: microbubbles (MBs). MBs have already been developed for clinical use in ultrasound imaging, and recent experimental studies have shown that MBs may also enhance the DF signal, although it remained unclear how the physical characteristics of the MBs quantitatively impact the DF signal. In this paper, a systematic study was performed to investigate the quantitative relationships between the DF signal and the following properties of MBs: size, concentration, shell thickness, size uniformity, and whether gold nanoparticles were attached. The experimental results demonstrated that, an increased MB size (about 4 microns) may generate a stronger DF signal for our DPC imaging system; additionally, a moderately increased shell thickness and the use of gold nanoparticles on the shell surface also resulted in further enhancement of the DF signal. These findings may provide critical information needed for using MBs as the contrast agent of x-ray DF imaging.

  3. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-10-01

    Full Text Available The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length, number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the thickness of 4% chord length, the aspect ratio of 3.5~4.0, 32 blades, and the radius of inlet lip of 4.7% generate the maximum figure of merit of 0.733. The optimized configuration can be used for further studies of the annular lift fan aircraft.

  4. A rare cause of proximal intestinal obstruction in adults - annular pancreas: a case report.

    Science.gov (United States)

    Mahdi, Bouassida; Selim, Sassi; Hassen, Touinsi; Mongi, Mighri Mohamed; Fadhel, Chtourou Mohamed; Fathi, Chebbi; Sadok, Sassi

    2011-01-01

    Annular pancreas is a rare congenital anomaly characterized by the presence of ectopic pancreatic tissue surrounding the descending part of the duodenum. It is one of the few congenital anomalies of the gastrointestinal tract which can produce symptoms late in life. In adults, the factors initiating symptoms are recurrent pancreatitis, duodenal stenosis at the site of the annulus, or duodenal or gastric ulceration. We report a new case involving a 24-year-old woman hospitalised for epigastric pain, nausea and vomiting. Radiological examination was consisted with an annular pancreas. At operation a complete obstruction of the second part of the duodenum was found, caused by an annular pancreas, no other congenital anomaly of the intra-abdominal organs was noted. A gastroenterostomy was performed.

  5. A rare cause of proximal intestinal obstruction in adults: annular pancreas: a case report

    Directory of Open Access Journals (Sweden)

    Bouassida Mahdi

    2011-12-01

    Full Text Available Annular pancreas is a rare congenital anomaly characterized by the presence of ectopic pancreatic tissue surrounding the descending part of the duodenum. It is one of the few congenital anomalies of the gastrointestinal tract which can produce symptoms late in life. In adults, the factors initiating symptoms are recurrent pancreatitis, duodenal stenosis at the site of the annulus, or duodenal or gastric ulceration. We report a new case involving a 24-year-old woman hospitalised for epigastric pain, nausea and vomiting. Radiological examination was consisted with an annular pancreas. At operation a complete obstruction of the second part of the duodenum was found, caused by an annular pancreas, no other congenital anomaly of the intra-abdominal organs was noted. A gastroenterostomy was performed.

  6. Remodeling Mitral Annuloplasty Ring Concept with Preserved Dynamics of Annular Height

    DEFF Research Database (Denmark)

    Skov, Søren N; Røpcke, Diana M; Tjørnild, Marcell J

    2017-01-01

    BACKGROUND: The configuration of the native annulus changes from nearly flat in the diastolic phase to saddle-shaped in the systolic phase. The present study was conducted to test a novel remodeling annuloplasty ring with built-in septal-lateral fixation and commissural axial flexibility so...... as to maintain the change in annular saddle shape. The study aim was to evaluate the in-vivo biomechanical performance of the novel annuloplasty ring, compared with the native valve and a semi-rigid and rigid annuloplasty ring. METHODS: All measurements were performed in vivo using a porcine model. A total of 28....... The change and maximum value of the annular height were maintained for the novel ring but were significantly decreased for the rigid and semi-rigid rings compared with the 'no-ring' group. Mitral annular force measurements confirmed that the overall remodeling capacity of the novel ring was comparable...

  7. Hydrodynamic stability of inverted annular flow in an adiabatic simulation. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1983-01-01

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities.

  8. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  9. D-stem: a parallel electron diffraction technique applied to nanomaterials.

    Science.gov (United States)

    Ganesh, K J; Kawasaki, M; Zhou, J P; Ferreira, P J

    2010-10-01

    An electron diffraction technique called D-STEM has been developed in a transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) instrument to obtain spot electron diffraction patterns from nanostructures, as small as ∼3 nm. The electron ray path achieved by configuring the pre- and postspecimen illumination lenses enables the formation of a 1-2 nm near-parallel probe, which is used to obtain bright-field/dark-field STEM images. Under these conditions, the beam can be controlled and accurately positioned on the STEM image, at the nanostructure of interest, while sharp spot diffraction patterns can be simultaneously recorded on the charge-coupled device camera. When integrated with softwares such as GatanTM STEM diffraction imaging and Automated Crystallography for TEM or DigistarTM, NanoMEGAS, the D-STEM technique is very powerful for obtaining automated orientation and phase maps based on diffraction information acquired on a pixel by pixel basis. The versatility of the D-STEM technique is demonstrated by applying this technique to nanoparticles, nanowires, and nano interconnect structures.

  10. STEM Education

    OpenAIRE

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-01-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainmen...

  11. Complete annular and partial oblique pulley release for pediatric locked trigger thumb.

    Science.gov (United States)

    Kuo, Meiying; Rayan, Ghazi M

    2010-12-01

    To report the surgical treatment outcome of pediatric locked trigger thumb by sequential release of the annular pulley and partial release of the oblique pulley. A retrospective review was undertaken on 28 operative thumbs in 24 patients with an average follow-up of 79 months. Intraoperative observations focused on the pathology of the pulley system. Surgical technique involved complete release of the annular pulley, which alone was insufficient in relieving the deformity, along with release of the proximal 50% of the oblique pulley in all patients. Postoperative parameters of bowstringing, resolution of Notta's node, thumb interphalangeal motion, and patient/parent satisfaction were assessed. The oblique pulley appeared stenotic, whereas the annular pulley was observed to be membranous and nearly indistinguishable from the tendon sheath. No patients had recurrence of thumb locking or triggering. No bowstringing was detected, and Notta's node resolved fully in 19 of 20 thumbs. Five thumbs had an average of 12(o) less active IP joint motion without flexion contracture (i.e., less flexion). All patients or families expressed overall satisfaction with the procedure. The annular pulley was attenuated in the majority of cases and the proximal half of the oblique pulley was stenotic in all patients. Releasing 50% of the oblique pulley after complete annular pulley release was necessary in all thumbs to achieve full FPL excursion. Mistaking the constricted proximal oblique pulley for an annular pulley may encourage releasing the entire oblique pulley, leading to an adverse result. Satisfactory outcome was achieved after surgical treatment of pediatric locked trigger thumbs. Therapeutic IV.

  12. Optimization of gap sizes for the high performance of annular nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Doo; Kwon, Soon Bum; Cho, Hui Jeong; Kim, Seong Su [Kyungpook National University, Daegu (Korea, Republic of)

    2015-04-15

    Solid-type nuclear fuels have been used for nuclear reactors for a long time. Many countries are currently developing annular fuels to improve the efficiency of nuclear fuels. The thermoelastic-plastic-creep analyses of solid- and annular-type rods were conducted under the same conditions. The temperature and stress of the solid- and annular-type rods were compared on the basis of gap size. In this study, we examined the advantages and disadvantages of annular-type fuel regarding the temperature and stress of the pellet and cladding. The inner and outer gaps between the pellet and cladding play important roles in the temperature and stress distributions of fuel systems. Therefore, the optimization of gaps in fuel systems was conducted for a low temperature under certain stress conditions. hermoelasticplastic-creep analyses were conducted by using an in-house thermoelastic-plastic-creep finite element analysis program in Visual FORTRAN with the effective stress function algorithm. Nonlinear iterative stress analyses were conducted by nonlinear iterative temperature analyses; that is, a quasi-fully coupled algorithm was applied to this procedure. In this study, the thermoelastic-plastic-creep analysis of pressurized water reactor annular fuels was conducted to determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, as well as to optimize the gap sizes by using the commercial package PIAnO for efficient heat transfer at certain stress levels. Most analyses were conducted until the gaps disappeared. However, certain analyses lasted for 1582 days, after which the fuels were replaced.

  13. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length), number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the th...

  14. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers....... Comparison with a simple theory for drainage of thin films is performed. It is found that recirculations deform the fluid-fluidinterface significantly in situations dominated by buoyancy forces. Also, a deviation from the concentric annular geometry is shown to induce azimuthal transport of fluid. Finally......, the efficiency of the displacement is analysed for various flow situations....

  15. Studying laminar flows of power-law fluids in the annular channel with eccentricity

    Science.gov (United States)

    Zhigarev, V. A.; Neverov, A. L.; Guzei, D. V.; Pryazhnikov, M. I.

    2017-09-01

    The paper deals with numerical and experimental investigation of non-Newtonian flow of modeling drilling fluids in the annular channel. The Reynolds number was ranged from 100 to 1500. The parameters of the power-law model of drilling fluids were varied within the following ranges: n = 0.43-0.49, K = 0.22-0.89. The eccentricity was changed from 0 to 1. We have measured pressure drop in the annular channel and compared calculations with experimental data, achieving good agreement between calculations and experiment.

  16. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  17. Near-limit propagation of gaseous detonations in narrow annular channels

    Science.gov (United States)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  18. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  19. Quantitative experiments on thermal hydraulic characteristics of an annular tube with twisted fins

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato

    2003-11-01

    Thermal hydraulic experiments measuring critical heat flux (CHF) and pressure drop of an annular tube with twisted fins, ''annular swirl tube'', has been performed to examine its applicability to the ITER divertor cooling structure. The annular swirl tube consists of two concentric circular tubes, the outer and inner tubes. The outer tube with outer and inner diameters (OD and ID) of 21 mm and 15 mm is made of Cu-alloy that is CuCrZr and oe of candidate materials of the ITER divertor cooling tube. The inner tube with OD of 11 mm and ID of 9 mm is made of stainless steal. It has an external swirl fin with twist ratio (y) of three to enhance its heat transfer performance. In this tube, cooling water flows inside of the inner tube first, and then returns into an annulus between the outer and inner tubes with a swirl flow at an end-return of the cooling tube. The CHF experiments show that no degradation of CHF of the annular swirl tube in comparison with the conventional swirl tube whose dimensions are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required to remove the incident heat flux of 28MW/m 2 , the ITER design value. Applicability of the JAERI's correlation for the heat transfer to the annular swirl tube is also demonstrated by comparing the experimental results with those of the numerical analysis. The friction factor correlation for the annular flow with the twisted fins is also proposed for the hydrodynamic design of the ITER vertical target. The least pressure drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the same as that of ID of the outer cooling tube. These results show that thermal-hydraulic performance of the annular swirl tube is promising in application to the cooling structure for the ITER vertical target. (author)

  20. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y.

    2010-01-01

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  1. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    Science.gov (United States)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  2. STEM Education

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-01-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches. PMID:26778893

  3. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  4. Evaluation of Tricuspid Annular Plane Systolic Excursion Measured with Cardiac Magnetic Resonance Imaging in Pediatric Patients with Tetralogy of Fallot

    Science.gov (United States)

    Soslow, Jonathan H.; Usoro, Emem; Wang, Li; Parra, David A.

    2015-01-01

    Background Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesized that tricuspid annular plane systolic excursion measured by cardiac magnetic resonance imaging approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in pediatric patients with repaired tetralogy of Fallot. Methods Tricuspid annular plane systolic excursion was measured retrospectively on cardiac magnetic resonance images in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was: 1) indexed to body surface area, 2) converted into a fractional value, and 3) converted into published pediatric Z-scores. Results Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Pediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Conclusions Tricuspid annular plane systolic excursion measured on cardiac magnetic resonance imaging correlates poorly with global and segmental right ventricular ejection fraction in pediatric patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population. PMID:26279488

  5. Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets.

    Science.gov (United States)

    Vahidkhah, Koohyar; Azadani, Ali N

    2017-06-14

    Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and Valve-in-Valve (ViV) procedures has been increasingly recognized. This study aimed to investigate the effect of positioning of the transcatheter aortic valve (TAV) in ViV setting on the flow dynamics aspect of post-ViV thrombosis by quantifying the blood stasis in the intra-annular and supra-annular settings. To that end, two idealized computational models, representing ViV intra-annular and supra-annular positioning of a TAV were developed in a patient-specific geometry. Three-dimensional flow fields were then obtained via fluid-solid interaction modeling to study the difference in blood residence time (BRT) on the TAV leaflets in the two settings. At the end of diastole, a strip of high BRT (⩾1.2s) region was observed on the TAV leaflets in the ViV intra-annular positioning at the fixed boundary where the leaflets are attached to the frame. Such a high BRT region was absent on the TAV leaflets in the supra-annular positioning. The maximum value of BRT on the surface of non-, right, and left coronary leaflets of the TAV in the supra-annular positioning were 53%, 11%, and 27% smaller compared to the intra-annular positioning, respectively. It was concluded that the geometric confinement of TAV by the leaflets of the failed bioprosthetic valve in ViV intra-annular positioning increases the BRT on the leaflets and may act as a permissive factor in valvular thrombosis. The absence of such a geometric confinement in the ViV supra-annular positioning leads to smaller BRT and subsequently less likelihood of leaflet thrombosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  7. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systol...

  8. Spherical means in annular regions in the n-dimensional real ...

    Indian Academy of Sciences (India)

    Events · Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 121; Issue 3. Spherical Means in Annular Regions in the -Dimensional Real Hyperbolic Spaces.

  9. Analysis of the pressure fields in a swirling annular jet flow

    NARCIS (Netherlands)

    Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.

    2017-01-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional

  10. Experimental investigation of three-dimensional flow structures in annular swirling jets

    NARCIS (Netherlands)

    Percin, M.; Vanierschot, M.; Van Oudheusden, B.W.

    2015-01-01

    Annular jet flows are of practical interest in view of their occurrence in many industrial applications in the context of bluff-body combustors [1]. They feature different complex flow characteristics despite their simple geometry: a central recirculation zone (CRZ) as a result of flow separation

  11. Double helix vortex breakdown in a turbulent swirling annular jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2018-01-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is

  12. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    Science.gov (United States)

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  13. Axial annular flow of power-law fluids - applicability of the limiting cases

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  14. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  15. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized...

  16. Non-Newtonian fluid flow in annular pipes and entropy generation ...

    Indian Academy of Sciences (India)

    Non-Newtonian fluid; third-grade fluid; variable viscosity; entropy; entropy generation number. 1. Introduction. Flow through annular pipes finds application in the process industry. In some cases, the fluid may consist of two phases such as coal particles–water mixture (coal slurries) and the numerical modelling of such flow ...

  17. Response of an annular electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Johansson, Torben; MacAllister, I. W.

    2002-01-01

    The response of an annular electrostatic probe mounted in an electrode is examined with reference to a right cylindrical spacer. The study involves using the probe λ function to derive characteristic parameters. These parameters enable the response of the probe to different charge distributions...

  18. Pulsed irradiation of enriched UO2 in the Annular Core Pulse Reactor (ACPR)

    International Nuclear Information System (INIS)

    Schmidt, T.R.; Lucoff, D.M.; Reil, K.O.; Croucher, D.W.

    1974-01-01

    A series of experiments have been conducted in the Annular Core Pulse Reactor (ACPR) to determine the energy deposition and behavior of enriched UO 2 under pulse conditions. In the experiment single unirradiated pellets with enrichments up to 25 percent were pulse heated to melt temperatures. Temperature and fission product inventory measurements were made and compared with neutron transport calculations. (author)

  19. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines

    Directory of Open Access Journals (Sweden)

    Christian Nørgård

    2018-01-01

    Full Text Available This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad operating range. To achieve high machine efficiency, the valve flow losses and the required electrical power needed for valve switching should be low. The annular valve plunger geometry, of a valve prototype developed for digital displacement machines, is parametrized by three parameters: stroke length, seat radius and seat width. The steady-state flow characteristics are analyzed using static axi-symmetric computational fluid dynamics. The pressure drops and flow forces are mapped in the valve design space for several different flow rates. The simulated results are compared against measurements using a valve prototype. Using the simulated maps to estimate the flow power losses and a simple generic model to estimate the electric power losses, both during digital displacement operation, optimal designs of annular seat valves, with respect to valve power losses, are derived under several different operating conditions.

  20. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  1. Repigmentation of gray hair in lesions of annular elastolytic giant cell granuloma.

    Science.gov (United States)

    Fernandez-Flores, Angel; Manjon, Jose A

    2015-07-01

    Hair pigmentation is a complex phenomenon that involves many hormones, neurotransmitters, cytokines, growth factors, eicosanoids, cyclic nucleotides, nutrients, and a physicochemical milieu. We report a case of repigmentation of gray hairs in lesions of annular elastolytic giant cell granuloma (AEGCG) on the scalp of a 67-year-old man.

  2. Testing the kibble-zurek scenario with annular josephson tunnel junctions

    Science.gov (United States)

    Kavoussanaki; Monaco; Rivers

    2000-10-16

    In parallel with Kibble's description of the onset of phase transitions in the early Universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, supported by agreement with experiments in 3He and superconductors. We show how experiments with annular Josephson tunnel junctions can, and do, provide further support for this scenario.

  3. A parametric study on the growth of yield front in rotating annular disks

    African Journals Online (AJOL)

    user

    Linear strain hardening material behavior. Figure 2 Propagation of elastic-plastic interface with increasing angular speed in annular disks: (a) initiation at root (b) at intermediate location and (c) collapse at the outer radius. In arriving at these equations, the following strain-displacement and stress-strain relations have been ...

  4. Pressure loss of the annular air-liquid flow in vertical tufes

    International Nuclear Information System (INIS)

    Schmal, M.; Cantalino, A.

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants [pt

  5. Quench-induced trapping of magnetic flux in annular Josephson junctions

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Rivers, R.

    2008-01-01

    The aim of the project is to investigate spontaneous symmetry breaking in non-adiabatic phase transitions (Kibble-Zurek processes). A long and narrow annular Josephson tunnel junction is subjected to repeated thermal quenches through the normal-superconducting transition. The quench rate is varied...

  6. Orthonormal polynomials for annular pupil including a cross-shaped obstruction.

    Science.gov (United States)

    Dai, Fengzhao; Wang, Xiangzhao; Sasaki, Osami

    2015-04-01

    By nonrecursive matrix method using the Zernike circle polynomials as the basis functions, we derived a set of polynomials up to fourth order which is approximately orthonormal for optical systems with an annular pupil having a cross-shaped obstruction. The performance of the polynomials is compared with the strictly orthonormal polynomials with some numerical examples.

  7. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.

    Science.gov (United States)

    Díaz, José Antonio; Mahajan, Virendra N

    2013-02-20

    Using the Zernike circle polynomials as the basis functions, we obtain the orthonormal polynomials for optical systems with circular and annular sector pupils by the Gram-Schmidt orthogonalization process. These polynomials represent balanced aberrations yielding minimum variance of the classical aberrations of rotationally symmetric systems. Use of the polynomials obtained is illustrated with numerical examples.

  8. Left ventricular outflow tract obstruction following repair of pneumococcal mitral annular abscess.

    Science.gov (United States)

    Charney, R; Schwinger, M E; Brodman, R; Spindola-Franco, H; Levine, E; Moser, S

    1993-04-01

    An unusual case of a mitral annular abscess caused by Streptococcus pneumoniae was diagnosed by transesophageal echocardiography. The patient underwent surgical resection of the abscess and developed outflow tract obstruction. This is an unusual complication of the surgical procedure. The outflow tract obstruction may have been due to anterior displacement of the mitral valve by the abscess.

  9. [Comparison of aortic annular diameter defined by different measurement mordalities before transcatheter aortic valve implantation].

    Science.gov (United States)

    Qi, R X; You, X D; Pu, Z X; Yang, Q; Huang, Z X; Zhou, L M; Huang, P T

    2017-05-24

    Objective: To compare aortic annular diameter measured by transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), and multislice computed tomography (MSCT) in patients with severe aortic stenosis, and to evaluate the impact on selection of prosthetic valve type in transcatheter aortic valve implantation (TAVI). Methods: Clinical data of 138 patients with severe aortic stenosis referred for TAVI between January 2014 and June 2016 in our hospital were retrospectively analyzed.The difference of aortic annular diameter measured by TTE, TEE, and MSCT were compared.TTE was performed after TAVI to evaluate the accuracy of measurement before TAVI. Results: (1) Aortic annular diameter was (23.37±2.22) mm by TTE and (23.52±1.70) mm by TEE ( P =0.12). Pearson correlation analysis showed that aortic annular diameter measured by TTE was correlated to that measured by TEE ( r =0.87, P TTE and TTE (all P TTE and TEE measurements are smaller than that from MSCT.In the absence of a gold standard, selection of prosthetic valve type in TAVI procedure should rely on comprehensive considerations, which is of importance to get good clinical results for severe aortic stenosis patients underwent TAVI.

  10. A coaxial-output capacitor-loaded annular pulse forming line.

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  11. Experimental study of neutron streaming through steel-walled annular ducts in reactor shields

    International Nuclear Information System (INIS)

    Toshimas, M.; Nobuo, S.

    1983-01-01

    For the purpose of providing experimental data to assess neutron streaming calculations, neutron flux measurements were performed along the axes of the steel-walled annular ducts set up in a water shield of the pool-type reactor JRR-4. An annular duct simulated the air gap around the main coolant pipe. Another duct simulated the streaming path around the primary circulating pump of the integrated-type marine reactor. A 90-deg bend annular duct was also studied. In a set of measurements, the distance Z between the core center and the duct axis and the annular gap width delta were taken as parameters, that is, Z = 0, 80, and 160 cm and delta = 2.2, 4.7, and 10.1 cm. The reaction rates and the fluxes measured by the activation method are given in terms of absolute magnitude within an accuracy of + or - 30%. An empirical formula is derived based on those measured data, which describes the axial distribution of the neutron flux in the steel-walled annular duct in reactor shields. It is expressed by a simple function of the axial distance in units of the square root of the line-of-sight area, S /SUB l/ . The accuracy of the formula is examined by taking into account the duct location with respect to the reactor core, the neutron energy, the steel wall thickness, and the media outside of the steel wall. The accuracy of the formula is, in general, <30% in the axial distance between 3√S /SUB l/ and 30√S /SUB l/

  12. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  13. Augmented of turbulent heat transfer in an annular pipe with abrupt expansion

    Directory of Open Access Journals (Sweden)

    Togun Hussein

    2016-01-01

    Full Text Available This paper presents a study of heat transfer to turbulent air flow in the abrupt axisymmetric expansion of an annular pipe. The experimental investigations were performed in the Reynolds number range from 5000 to 30000, the heat flux varied from 1000 to 4000 W/m2, and the expansion ratio was maintained at D/d=1, 1.25, 1.67 and 2. The sudden expansion was created by changing the inner diameter of the entrance pipe to an annular passage. The outer diameter of the inner pipe and the inner diameter of the outer pipe are 2.5 and 10 cm, respectively, where both of the pipes are subjected to uniform heat flux. The distribution of the surface temperature of the test pipe and the local Nusselt number are presented in this investigation. Due to sudden expansion in the cross section of the annular pipe, a separation flow was created, which enhanced the heat transfer. The reduction of the surface temperature on the outer and inner pipes increased with the increase of the expansion ratio and the Reynolds number, and increased with the decrease of the heat flux to the annular pipe. The peak of the local Nusselt number was between 1.64 and 1.7 of the outer and inner pipes for Reynolds numbers varied from 5000 to 30000, and the increase of the local Nusselt number represented the augmentation of the heat transfer rate in the sudden expansion of the annular pipe. This research also showed a maximum heat transfer enhancement of 63-78% for the outer and inner pipes at an expansion ratio of D/d=2 at a Re=30000 and a heat flux of 4000W/m2.

  14. Role of the interosseous membrane and annular ligament in stabilizing the proximal radial head.

    Science.gov (United States)

    Anderson, Ashley; Werner, Frederick W; Tucci, Emily R; Harley, Brian J

    2015-12-01

    The purpose of our study was to determine the relative contributions of the annular ligament, proximal band, central band, and distal band of the interosseous membrane in preventing dislocation of the proximal radius. In part 1 of the study, 8 forearms were loaded transversely with the forearm intact, and the central band, proximal band, and annular ligament were sequentially sectioned to determine the percentage contribution of each structure in preventing transverse radial displacement. In part 2, 12 forearms were cyclically supinated and pronated while optical sensors measured radial and ulnar motion. Transverse radial head motion was computed as the distal band, central band, and proximal band (and annular ligament) were sequentially sectioned. In part 1, there was no significant difference in the percentage contribution of each structure in preventing radial transverse displacement. In part 2, only after sectioning of the central band did significant radial head displacement occur. Greater displacements occurred in supination than in pronation. Dislocation of the proximal radius occurred in 2 arms after sectioning of all 3 structures. Under pure transverse displacement, the central band, annular ligament, and proximal band equally contributed to stabilizing the radius. However, during forearm rotation, the central band contributed more to radial head stability than the annular ligament and proximal band. Our study contributes to our knowledge of forearm biomechanics, demonstrating the importance of the central band in providing proximal radial head stability. Forceful supination should be avoided after surgical procedures designed to stabilize the radial head. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Hydrodynamic model experiments for stabilized liquid liners with annular piston drive

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Cooper, A.L.

    1977-01-01

    The achievement of megagauss-level magnetic fields by flux compression using controlled liquid liner implosions will be studied in the LINUS-O experiments. This paper reports on experimental studies of the rotating liquid liner at lower energy density, using a one-third scale model with water as the liner material. Radial implosion of the free inside surface of the liquid is achieved by axial displacement of an annular piston, driven by helium. Azimuthally symmetric, repetitive implosion-reexpansion cycles have been demonstrated, with area compressions of over a hundred. The apparatus has also been used to investigate other problems inherent in the annular piston geometry, including piston guidance, seals, z-dependence of the imploding free surface trajectory, and Rayleigh-Taylor instability of the free surface. Methods for r-z plane tailoring of the free surface to provide three-dimensional payload compression are considered

  16. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  17. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1989-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  18. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Directory of Open Access Journals (Sweden)

    Ozkan Gokturk Memduh

    2017-01-01

    Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  19. Thermal performance of functionally graded parabolic annular fins having constant weight

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, Vivek Kumar; Tiwari, Anil Kumar; Bhowmick, Shubhankar [National Institute of Technology Raipur, Raipur (India)

    2014-10-15

    The proposed work reports the performance of parabolic annular fins of constant weight made of functionally graded materials. The work involves computation of temperature gradient, efficiency and effectiveness of such fins and compares the performances for different functionally graded parabolic fin profiles obtained by varying grading parameters and profile parameters respectively keeping the weight of the fins constant. The functional grading of thermal conductivity is based on a power function of radial co-ordinate which consists of parameters, namely grading parameters, varying which different grading combinations are studied. A general second order ordinary differential equation has been derived for all the profiles and material grading. The efficiency and effectiveness of the annular fins of different profile and grading combinations have been calculated and plotted and the results reveal the dependence of fin performance on profile and grading parameter.

  20. Creation and deposition of entrained droplets in swirling annular-mist two-phase flows

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadaski; Ishida, Toshihisa; Fujii, Terushige

    1976-01-01

    The liquid film flowrate, entrainment, torque, and flow angle along a tube (40mm ID, 5m in length) in a non-swirling flow and in swirling downward annular-mist air-water flows, which were induced by a different swirler into the inlet of the test tube in each run, were measured. Firstly, an empirical equation for the mass transfer coefficient of entrained droplets due to the eddy diffusion and creation rate of entrained droplets in a non-swirling flow was obtained. Secondly, the film flowrate along a tube in a swirling flow was studied by one-dimensional analysis in relation to the intensity of swirl, using the mass transfer coefficient and creation rate obtained above. This led to a method of estimating the distribution of film flowrate in a swirling annular-mist flow

  1. Effects study on the thermal stresses in a LEU metal foil annular target.

    Science.gov (United States)

    Govindarajan, Srisharan G; Solbrekken, Gary L

    2015-09-01

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hydrodynamics of adiabatic inverted annular flow: an experimental study. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    De Jarlais, G.; Ishii, M.

    1983-01-01

    For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting.

  3. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Science.gov (United States)

    Ozkan, Gokturk Memduh; Durhasan, Tahir; Pinar, Engin; Yenicun, Arda; Akilli, Huseyin; Sahin, Besir

    In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV) technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  4. Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics

    DEFF Research Database (Denmark)

    Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio

    2015-01-01

    or in the perpendicular direction. We report a detailed study of both short and long elliptic annular junctions having different eccentricities. For junctions having a normalized perimeter less than one the threshold curves are derived and computed even in the case with one trapped Josephson vortex. For longer junctions...... a numerical analysis is carried out after the derivation of the appropriate perturbed sine-Gordon equation. For a given applied field we find that a number of different phase profiles exist which differ according to the number of fluxon-antifluxon pairs. We demonstrate that in samples made by specularly...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...

  5. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-01-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  6. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ao

    2012-01-01

    Full Text Available A prototype cavity for the annular-ring coupled structure (ACS for use in the Japan Proton Accelerator Research Complex (J-PARC linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  7. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    Science.gov (United States)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  8. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  9. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    OpenAIRE

    Yan Teng; Jun Sun; Changhua Chen; Hao Shao

    2013-01-01

    This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inn...

  10. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    Science.gov (United States)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  11. Generalized Granuloma Annulare in Infancy Following Bacillus Calmette-Guerin Vaccination

    OpenAIRE

    Lee, Sang Woo; Cheong, Seung Hyun; Byun, Ji Yeon; Choi, You Won; Choi, Hae Young; Myung, Ki Bum

    2011-01-01

    Generalized granuloma annulare (GGA) is a rare benign granulomatous dermatosis characterized by disseminated necrobiotic dermal papules. Histologically, it presents as a lymphohistiocytic granuloma associated with varying degrees of connective tissue degeneration. It usually occurs in adults and rarely affects infants. Herein, we report an interesting case of GGA which occurred in a 3 month-old girl in association with Bacillus Calmette-Guerin vaccination.

  12. Cutoff wavenumbers and modes for annular-cross-section waveguide with eccentric inner conductor of small radius

    Science.gov (United States)

    Davidovitz, Marat; Lo, Yuen T.

    1987-01-01

    Analytical expressions are derived for the cutoff wavenumbers and the corresponding modes in annular-cross-section waveguides having inner conductors of small radius. Waveguides with circular and rectangular outer boundary are considered. In the case of the circular eccentric annular waveguide, comparison is made between the values of cutoff wavenumbers computed from the expressions derived in this paper and data obtained by a more rigorous numerical technique.

  13. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Long-term self-renewal Meiosis Mesenchymal stem cells Mesoderm Microenvironment Mitosis Multipotent Neural stem cell Neurons Oligodendrocyte ... layers. The three layers are the ectoderm , the mesoderm , and the endoderm . Hematopoietic stem cell - A stem ...

  14. Axicon-based annular laser trap for studies on sperm activity

    Science.gov (United States)

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  15. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  16. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  17. Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers

    Science.gov (United States)

    Ebrahimi, F.; Rastgoo, A.

    2008-02-01

    In this paper, a nonlinear free vibration analysis of a thin annular functionally graded (FG) plate integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the annular FG plate is presented based on Kirchhoff plate theory. The material properties of the functionally graded core plate are assumed to be graded in the thickness direction according to the power law distribution in terms of the volume fractions of the constituents and the distribution of the electric potential field along the thickness direction of piezoelectric layers is simulated by a sinusoidal function such that the Maxwell static electricity equation is satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. The analytical solutions are derived and validated by comparing the obtained resonant frequencies of the piezoelectric coupled FG annular plate with those of an isotropic core plate. In a numerical study the emphasis is placed on investigating the effect of varying the gradient index of the FG plate on the free vibration characteristics of the structure. Also the good agreement between the results of this paper and those of the finite element (FE) analyses validated the presented approach.

  18. Experimental Determination of Heat Transfer Coefficient in Two-phase Annular Flow

    Science.gov (United States)

    Dressler, Kristofer; Fehring, Brian; Morse, Roman; Livingston-Jha, Simon; Doherty, James; Chan, Jason; Brueggeman, Colby; Berson, Arganthael

    2017-11-01

    The goal of the presented work is to validate published mechanistic heat transfer models in two-phase annular flow under transient conditions. Annular flow occurs in many steam generation and refrigeration systems. Knowledge of the heat transfer coefficient (HTC) between the wall and the thin liquid film is critical to the design and safe operation of these systems. In heat exchangers with multiple parallel channels, thermal hydraulic instabilities often lead to unsteady flow conditions. The current study is performed in a facility capable of producing pulsed two-phase, single-species annular flow in a heated test section while simultaneously measuring local film thickness and wall temperature using non-intrusive optical techniques. Available correlations between the HTC and wall shear at steady state are compared to our measurements. The HTC can be derived from the known heating power and measured wall temperature, while wall shear is deduced from film thickness measurements. The validity of steady-state correlations under oscillating flow conditions is assessed by performing tests at a variety of pulse frequencies and amplitudes.

  19. Predictors of right ventricular function as measured by tricuspid annular plane systolic excursion in heart failure

    Directory of Open Access Journals (Sweden)

    Køber Lars V

    2009-11-01

    Full Text Available Abstract Introduction Tricuspid Annular Plane Systolic Excursion (TAPSE has independent prognostic value in heart failure patients but may be influenced by left ventricular (LV ejection fraction. The present study assessed the association of TAPSE and clinical factors, global and regional LV function in 634 patients admitted for symptomatic heart failure. Methods & Results TAPSE were correlated with global and regional measures of longitudinal LV function, segmental wall motion scores and measures of diastolic LV function as measured from transthoracic echocardiography. LV ejection fraction, wall motion index scores, atrio-ventricular annular plane systolic excursion of the mitral annulus were significantly related to TAPSE. Septal and posterior mitral annular plane systolic excursion (β = 0.56, p 2 = 0.28, p interaction = NS. Conclusion TAPSE is reduced with left ventricular dysfunction in heart failure patients, in particular with reduced septal longitudinal motion. TAPSE is decreased in patients with heart failure of ischemic etiology. However, the absolute reduction in TAPSE is small and seems to be of minor importance in the clinical utilization of TAPSE whether applied as a measure of right ventricular systolic function or as a prognostic factor.

  20. In-plane vibration analysis of annular plates with arbitrary boundary conditions.

    Science.gov (United States)

    Shi, Xianjie; Shi, Dongyan; Qin, Zhengrong; Wang, Qingshan

    2014-01-01

    In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.

  1. In-Plane Vibration Analysis of Annular Plates with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Xianjie Shi

    2014-01-01

    Full Text Available In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.

  2. Free Vibration Of Functionally Graded Carbon Nanotube Reinforced Composite Annular Sector Plate With General Boundary Supports

    Science.gov (United States)

    Pang, Fuzhen; Li, Haichao; Du, Yuan; Shan, Yanhe; Ji, Fang

    2018-03-01

    In this paper, an efficient and unified approach for free vibration analysis of the moderately thick functionally graded carbon nanotube reinforced composite annular sector plate with general boundary supports is presented by using the Ritz method and the first-order shear deformation theory. For the distribution of the carbon nanotubes in thickness direction, it may be uniform or functionally graded. Properties of the composite media are based on a refined rule of the mixture approach which contains the efficiency parameters. A modified Fourier series is chosen as the basic function of the admissible function to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. To establish the general boundary supports of the annular sector plate, the artificial spring boundary technique is implemented at all edges. The desired solutions are obtained through the Ritz-variational energy method. Some numerical examples are considered to check the accuracy, convergence and reliability of the present method. In addition, the parameter studies of the functionally graded carbon nanotube reinforced composite annular sector plate are carried out as well.

  3. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

    Science.gov (United States)

    Bauerheim, M.; Nicoud, F.; Poinsot, T.

    2016-02-01

    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.

  4. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  5. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    Directory of Open Access Journals (Sweden)

    Kozdera Michal

    2014-03-01

    Full Text Available The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That´s why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.

  6. Prevalence of annular tears and disc herniations on MR images of the cervical spine in symptom free volunteers

    International Nuclear Information System (INIS)

    Ernst, C.W.; Stadnik, T.W.; Peeters, E.; Breucq, C.; Osteaux, M.J.C.

    2005-01-01

    Study design: Prospective MR analysis of the cervical spine of 30 asymptomatic volunteers. Objectives: To evaluate the prevalence of annular tears, bulging discs, disc herniations and medullary compression on T2-weighted and gadolinium-enhanced T1-weighted magnetic resonance (MR) images of the cervical spine in symptom free volunteers. Summary of background data: Few studies have reported the prevalence of cervical disc herniations in asymptomatic people, none have reported the prevalence of cervical annular tears on MR images of symptom free volunteers. Materials and methods: Thirty symptom-free volunteers (no history or symptoms related to the cervical spine) were examined using sagittal T2-weighted fast spin-echo (SE), sagittal gadolinium-enhanced T1-weighted SE imaging and axial T2 * -weighted gradient echo (GRE). The prevalence of bulging discs, focal protrusions, extrusions, nonenhancing or enhancing annular tears and medullary compression were assessed. Results: The prevalence of bulging disk and focal disk protrusions was 73% (22 volunteers) and 50% (15 volunteers), respectively. There was one extrusion (3%). Eleven volunteers had annular tears at one or more levels (37%) and 94% of the annular tears enhanced after contrast injection. Asymptomatic medullary compression was found in four patients (13%). Conclusion: Annular tears and focal disk protrusions are frequently found on MR imaging of the cervical spine, with or without contrast enhancement, in asymptomatic population. The extruded disk herniation and medullary compression are unusual findings in a symptom-free population

  7. Prevalence of annular tears and disc herniations on MR images of the cervical spine in symptom free volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, C.W. [Department of Radiology and Medical Imaging, University Hospital V.U.B., Laarbeeklaan 101, 1090 Brussels (Belgium)]. E-mail: ernstcaroline@hotmail.com; Stadnik, T.W. [Department of Radiology and Medical Imaging, University Hospital V.U.B., Laarbeeklaan 101, 1090 Brussels (Belgium); Peeters, E. [Department of Radiology and Medical Imaging, University Hospital V.U.B., Laarbeeklaan 101, 1090 Brussels (Belgium); Breucq, C. [Department of Radiology and Medical Imaging, University Hospital V.U.B., Laarbeeklaan 101, 1090 Brussels (Belgium); Osteaux, M.J.C. [Department of Radiology and Medical Imaging, University Hospital V.U.B., Laarbeeklaan 101, 1090 Brussels (Belgium)

    2005-09-01

    Study design: Prospective MR analysis of the cervical spine of 30 asymptomatic volunteers. Objectives: To evaluate the prevalence of annular tears, bulging discs, disc herniations and medullary compression on T2-weighted and gadolinium-enhanced T1-weighted magnetic resonance (MR) images of the cervical spine in symptom free volunteers. Summary of background data: Few studies have reported the prevalence of cervical disc herniations in asymptomatic people, none have reported the prevalence of cervical annular tears on MR images of symptom free volunteers. Materials and methods: Thirty symptom-free volunteers (no history or symptoms related to the cervical spine) were examined using sagittal T2-weighted fast spin-echo (SE), sagittal gadolinium-enhanced T1-weighted SE imaging and axial T2{sup *}-weighted gradient echo (GRE). The prevalence of bulging discs, focal protrusions, extrusions, nonenhancing or enhancing annular tears and medullary compression were assessed. Results: The prevalence of bulging disk and focal disk protrusions was 73% (22 volunteers) and 50% (15 volunteers), respectively. There was one extrusion (3%). Eleven volunteers had annular tears at one or more levels (37%) and 94% of the annular tears enhanced after contrast injection. Asymptomatic medullary compression was found in four patients (13%). Conclusion: Annular tears and focal disk protrusions are frequently found on MR imaging of the cervical spine, with or without contrast enhancement, in asymptomatic population. The extruded disk herniation and medullary compression are unusual findings in a symptom-free population.

  8. Stem Cells

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  10. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    Directory of Open Access Journals (Sweden)

    Yan Teng

    2013-07-01

    Full Text Available This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  11. Changes in Mitral Annular Geometry after Aortic Valve Replacement: A Three-Dimensional Transesophageal Echocardiographic Study

    Science.gov (United States)

    Mahmood, Feroze; Warraich, Haider J.; Gorman, Joseph H.; Gorman, Robert C.; Chen, Tzong-Huei; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal

    2014-01-01

    Background and aim of the study Intraoperative real-time three-dimensional transesophageal echocardiography (RT-3D TEE) was used to examine the geometric changes that occur in the mitral annulus immediately after aortic valve replacement (AVR). Methods A total of 35 patients undergoing elective surgical AVR under cardiopulmonary bypass was enrolled in the study. Intraoperative RT-3D TEE was used prospectively to acquire volumetric echocardiographic datasets immediately before and after AVR. The 3D echocardiographic data were analyzed offline using TomTec® Mitral Valve Assessment software to assess changes in specific mitral annular geometric parameters. Results Datasets were successfully acquired and analyzed for all patients. A significant reduction was noted in the mitral annular area (-16.3%, p <0.001), circumference (-8.9% p <0.001) and the anteroposterior (-6.3%, p = 0.019) and anterolateral-posteromedial (-10.5%, p <0.001) diameters. A greater reduction was noted in the anterior annulus length compared to the posterior annulus length (10.5% versus 62%, p <0.05) after AVR. No significant change was seen in the non-planarity angle, coaptation depth, and closure line length. During the period of data acquisition before and after AVR, no significant change was noted in the central venous pressure or left ventricular end-diastolic diameter. Conclusion The mitral annulus undergoes significant geometric changes immediately after AVR Notably, a 16.3% reduction was observed in the mitral annular area. The anterior annulus underwent a greater reduction in length compared to the posterior annulus, which suggested the existence of a mechanical compression by the prosthetic valve. PMID:23409347

  12. High burnup irradiation performance of annular fuel pins irradiated in fast reactor PFR

    International Nuclear Information System (INIS)

    Naganuma, M.; Koyama, S.; Asaga, T.; Noirot, J.; Lespiaux, D.; Rouault, J.; Crittenden, G.; Brown, C.

    2000-01-01

    The UK Prototype Fast Reactor (PFR) has irradiated MOX annular pelleted fuel pins clad with PE16 up to burn-up of over 20% heavy atom (ha) without failure, these high burn-up fuel pins can provide the valuable data for the study of high burn-up capability. Thus, post irradiation examinations (PIE) have been performed on PFR high burn-up fuel pins, and the irradiation performance is evaluated focusing especially on the mechanical and thermal performance at high burn-up. The fuel pins from LVD and ANT assemblies were irradiated up to 23.2 and 18.9%ha (at peak burn-up). The results of LVD test pins have been evaluated, which demonstrate that these fuel pins have excellent mechanical and thermal performances at high burn-up because of the high swelling resistance of PE16, the maintenance of initial annular geometry up to high burn-up and the behavior of Fuel to Clad Joint (JOG) formation. In this paper, the newly obtained results of ANT test pins with different O/M ratio (ANT: 1.985, LVD: 1.965) are added, and compared with the LVD pins. The ANT results indicate that FCCI becomes larger and the fuel swelling behavior is different at high burn-up. However, the effects are evaluated not to be severe for the capability of high burn-up (-20%ha). Therefore, we conclude that MOX annular pelleted fuel pins clad with low swelling material have high burn-up capability in O/M ratios ranging from 1.965 to 1.985. (author)

  13. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  14. Film Thickness Prediction in an Annular Two-Phase Flow around C-shaped Bend

    Directory of Open Access Journals (Sweden)

    P.M. Tkaczyk

    2011-03-01

    Full Text Available A finite volume method-based CFD model has been developed in the commercial code Star CD to simulate the annular gas-liquid flow through pipes and bends. The liquid film is solved explicitly by means of a modified Volume of Fluid (VOF method. The droplets are traced using a Lagrangian technique. The film to droplets (entrainment and droplets to film (stick, bounce, spread and splash interactions are taken into account using sub-models to complement the VOF model. A good agreement is found between the computed film thickness value and those cited in the literature.

  15. Dynamics of an annular Josephson junction in a rotating magnetic field

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Malomed, Boris A.; Samuelsen, Mogens Rugholm

    1992-01-01

    the edges of the step. For the case where the fluxon is slowly dragged by a fast traveling wave, the drift velocity is found. The analytical results are in very good agreement with numerical experiments performed on the perturbed sine-Gordon system. Finally the system is analyzed analytically for moderate......We study analytically and numerically the dynamics of a solitary fluxon in a long annular damped Josephson junction placed into a rotating magnetic field, which is produced by superposition of two mutually perpendicular ac fields with a phase difference of π/2. We demonstrate that the rotating...

  16. Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

    CERN Document Server

    Knaster, J R; Chatelaine, A; Flakowski, D; Girard, C; Ivaldi, S; Laurent, Jean Michel; Monteiro, I; Rossi, A; Veness, R J M

    2003-01-01

    The LHC will be the world next generation accelerator to be operational in 2007 at CERN. The UHV requirements force the installation of ion pumps in the experimental areas of ATLAS. Due to the unacceptable particle background that standards ion pumps may generate, a reduction in the amount of material constitutive of the pump body is required. Hence, an stainless steel 0.8 mm thick body annular triode ion pump has been designed. A pumping speed of ~ 20 l/s at 10-9 mbar is provided by 15 pumping elements. Finite elements analysis and destructive tests have been performed in its design. Final vacuum tests results are shown.

  17. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    Science.gov (United States)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  18. Gas-liquid annular flow in vertical circular tubes with liquid penetrated in nucleus

    International Nuclear Information System (INIS)

    Nogueira, E.; Brum, N.C.L.; Cotta, R.M.

    1990-01-01

    A semi-analytical model is proposed for fully developed upward gas-liquid annular flow inside vertical circular tubes, by utilizing wall-known turbulence algebraic models for single-phase flows, within both streams, combined with empirical correlations for the gas-liquid interface friction factor. Direct integration of the associated momentum equations provide the velocity distribution for each phase, as well as overall quantities of practical interest such as liquid film thickness and pressure gradient. The effects of liquid droplets entrainment in the gas is specialized empirical correlations. Extensive comparisons with experimental results are made in order to demonstrate the consistency of the proposed model. (author)

  19. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-05-13

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations.

  20. Nontrivial influence of acoustic streaming on the efficiency of annular thermoacoustic prime movers

    International Nuclear Information System (INIS)

    Penelet, G.; Gusev, V.; Lotton, P.; Bruneau, M.

    2006-01-01

    The nonlinear processes controlling the time-dependent evolution of sound in annular thermoacoustic prime movers are studied. It is demonstrated that, under some heating conditions, the evolution of the temperature field induced by the excitation of acoustic streaming provides an additional amplification of sound which results in a complicated periodic onset and damping of thermoacoustic instability. The study of this particular example provides the opportunity to demonstrate that the excitation of acoustic streaming does not necessarily imply a decrease in the engine's efficiency

  1. Growth and Interaction of Sand Ripples Due to Steady Viscous Flow in an Annular Channel

    Science.gov (United States)

    Oshiro, Yuki; Sano, Osamu

    2007-12-01

    An experimental study is made on the pattern formation of a sand bed immersed in a viscous fluid between two concentric cylinders of finite depth; the channel width is sufficiently large as compared with the particle size. The upper boundary of the fluid is in contact with an annular ring made of transparent acrylic resin, which slides at a constant angular velocity, whereas other boundaries are at rest. New results on the onset and growth of sand ripples, the propagation and interaction of the ripples, and the long-term behavior for adjusting to a constant wavelength are presented.

  2. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    International Nuclear Information System (INIS)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  3. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    Science.gov (United States)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  4. Seasonal Variation in Trawl Codend Selectivity for Annular Sea Bream (Diplodus annularis L., 1758)

    OpenAIRE

    ÖZBİLGİN, Hüseyin; TOSUNOĞLU, Zafer; TOKAÇ, Adnan; METİN, Gülnur

    2014-01-01

    This study investigated the selectivity of a 40 mm mesh size polyethylene codend commonly used by Turkish demersal trawlers. Seasonal selectivity data were collected for annular sea bream (Diplodus annularis), which is the most abundant discard species in the catch composition in Gülbahçe Bay. Four sets of data were collected in spring (4-18 April 2002), summer (10-25 July 2002), autumn (26 September-2 October 2002) and winter (22-23 January 2003). The selectivity of the same codend was teste...

  5. Spontaneous fluxon production in annular Josephson tunnel junctions in the presence of a magnetic field

    DEFF Research Database (Denmark)

    Monaco, Roberto; Aarøe, Morten; Mygind, Jesper

    2008-01-01

    We report on the spontaneous production of fluxons in annular Josephson tunnel junctions during a thermal quench in the presence of a symmetry-breaking magnetic field. The dependence on field intensity B of the probability (f) over bar (1) to trap a single defect during the N-S phase transition...... depends drastically on the sample circumferences. We show that this can be understood in the framework of the same picture of spontaneous defect formation that leads to the experimentally well attested scaling behavior of (f) over bar (1) with quench rate in the absence of an external field....

  6. Static Thrust of an Annular Nozzle with a Concave Central Base

    Science.gov (United States)

    Corson, Blake W., Jr.; Mercer, Charles E.

    1960-01-01

    A static test of an annular nozzle with a concave central base, producing a jet in which tangents to the jet streamlines at the exit converged toward a region on the axis of symmetry downstream of the exit, has indicated good thrust performance. A value of nozzle-flow coefficient only slightly less than unity indicates the internal loss to be small. Pressures on the concave central base are relatively large and positive, and a predictable portion of the total thrust of the jet is exerted on the central base.

  7. Computerized representation of experimental data on burnout in tubes, annular channels and fuel bundles

    International Nuclear Information System (INIS)

    Katan, I.B.; Sal'nikova, O.V.; Vinogradov, V.N.

    1983-01-01

    Realization of TEFOR formate for presentation in data bases of bibliographic information obtained when studying heat exchange crisis in channels of the most widely spread types (tubes, annular channels, fuel bundles) has been described. The use of the unified formate, providing a possibility to completely describe the information from the initial source, results in standardization of data base formation in different sections of thermal physics and hydrodynamics of NPPs, permits to develop the general apparatus of bank control in the form of packet of applied programs and to use unified techniques, algorithms and programs during calculations with the use of data of the banks

  8. Comparison of velocity and temperature fields for two types of spacers in an annular channel

    Directory of Open Access Journals (Sweden)

    Lávička David

    2012-04-01

    Full Text Available The paper deals with measurement of flow field using a modern laser method (PIV in an annular channel of very small dimension - a fuel cell model. The velocity field was measured in several positions and plains around the spacer. The measurement was extended also to record temperatures by thermocouples soldered into stainless-steel tube wall. The measurement was focused on cooling process of the preheated fuel cell tube model, where the tube was very slowly flooded with water. Main result of the paper is comparison of two spacer's designs with respect to measured velocity and temperature fields.

  9. Study of the equivalent diameter concept for heat transfer by forced convection in annular channels

    International Nuclear Information System (INIS)

    Mendez T, D.

    1994-01-01

    This work describes a comparative analysis between experimental values of heat transfer coefficients in fully developed turbulent flow for a concentric annular channel, and those calculated with the empirical correlations obtained for tubes by Dittus-Boelter, Sieder and Tate, a modified Colburn equation, and that proposed by Gnielinski which applies the analogy between friction and heat transfer. The coefficients were calculated by means of two different equivalent diameters: 1) The hydraulic equivalent diameter; and 2) The heated equivalent diameter. It was concluded that the hydraulic equivalent diameter gives much better results than the heated equivalent diameter. (Author)

  10. Quick estimate of the heat transfer characteristics of annular fins of hyperbolic profile with the power series method

    International Nuclear Information System (INIS)

    Arauzo, Inmaculada; Campo, Antonio; Cortes, Cristobal

    2005-01-01

    This technical paper addresses an elementary analytic procedure for the approximate solution of the quasi-one-dimensional heat conduction equation (a generalized Bessel equation) that governs the temperature variation in annular fins of hyperbolic profile. This fin shape is of remarkable importance because its heat transfer performance is close to that of the annular fin of convex parabolic profile, the so-called optimal annular fin that is capable of delivering maximum heat transfer for a given volume of material [Zeitschrift des Vereines Deutscher Ingenieure 70 (1926) 885]. The salient feature of the analytic procedure developed here is that for realistic combinations of the two parameters: the enlarged Biot number and the normalized radii ratio, the truncated power series solutions embracing a moderate number of terms yields unprecedented results of excellent quality. The analytic results are conveniently presented in terms of the two primary quantities of interest in thermal design applications, namely the heat transfer rates and the tip temperature

  11. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2007-08-01

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 μm. This test was performed at the FIVPET facility

  12. A novel dinucleotide mutation in keratin 10 in the annular epidermolytic ichthyosis variant of bullous congenital ichthyosiform erythroderma.

    Science.gov (United States)

    Joh, G Y; Traupe, H; Metze, D; Nashan, D; Huber, M; Hohl, D; Longley, M A; Rothnagel, J A; Roop, D R

    1997-03-01

    Annular epidermolytic ichthyosis has recently been delineated as a distinct clinical phenotype within the spectrum of epidermolytic keratinization disorders. The pattern of inheritance of the disorder is consistent with an autosomal dominant mode of transmission. Here we report a second incidence of this disorder in a family with two affected generations. The proband suffered from bullous ichthyosis and had bouts of disease activity associated with the development of numerous annular and polycyclic erythematous, hyperkeratotic plaques on the trunk and the proximal extremities. Histologic examination showed the typical pathology of epidermolytic hyperkeratosis, and ultrastructural analysis revealed abnormal keratin filament networks and tonofilament clumping with a perinuclear distribution. Molecular analysis revealed a novel tandem CG to GA 2-bp mutation in the same allele of keratin 10 in affected individuals, resulting in an arginine to glutamate substitution at residue 83 (R83E) of the 2B helical segment. We conclude that annular epidermolytic ichthyosis should be considered a variant of bullous congenital ichthyosiform erythroderma.

  13. A novel helix termination mutation in keratin 10 in annular epidermolytic ichthyosis, a variant of bullous congenital ichthyosiform erythroderma.

    Science.gov (United States)

    Suga, Y; Duncan, K O; Heald, P W; Roop, D R

    1998-12-01

    Annular epidermolytic ichthyosis is a distinct phenotypic variant of bullous congenital ichthyosiform erythroderma that has recently been described in two separate kindreds. Individuals with this variant present with bullous ichthyosis in early childhood and hyperkeratotic lichenified plaques in the flexural areas and extensor surfaces at later ages. Characteristically, they also develop intermittent bouts of annular and polycyclic, erythematous, scaly plaques on the trunk and proximal extremities. We now describe a third kindred with annular epidermolytic ichthyosis. Molecular analysis of this family revealed a novel mutation resulting in an isoleucine to threonine substitution at residue 107 (codon 446) within the highly conserved helix termination motif at the end of the rod domain of keratin 10.

  14. Numerical Analysis of General Trends in Single-Phase Natural Circulation in a 2D-Annular Loop

    Directory of Open Access Journals (Sweden)

    Gilles Desrayaud

    2008-01-01

    Full Text Available The aim of this paper is to address fluid flow behavior of natural circulation in a 2D-annular loop filled with water. A two-dimensional, numerical analysis of natural convection in a 2D-annular closed-loop thermosyphon has been performed for various radius ratios from 1.2 to 2.0, the loop being heated at a constant flux over the bottom half and cooled at a constant temperature over the top half. It has been numerically shown that natural convection in a 2D-annular closed-loop thermosyphon is capable of showing pseudoconductive regime at pitchfork bifurcation, stationary convective regimes without and with recirculating regions occurring at the entrance of the exchangers, oscillatory convection at Hopf bifurcation and Lorenz-like chaotic flow. The complexity of the dynamic properties experimentally encountered in toroidal or rectangular loops is thus also found here.

  15. On the nonlinear interfacial instability of rotating core-annular flow

    Science.gov (United States)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  16. Design, construction and testing of annular diffusers for high speed civil transportation combustor applications

    Science.gov (United States)

    Okhio, Cyril B.

    1995-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers is being carried out in order to establish the most pertinent design parameters for such devices and the implications of their application in the design of engine components in the aerospace industries. This investigation consists of solving numerically the full Navier Stokes and Continuity equations for the time-mean flow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuser geometry and the subsequent downloading of such data to a CNC machine at Central State University. The results of the investigations are expected to indicate that more cost effective component design of such devices as effective component design of such devices as diffusers which normally contain complex flows can still be achieved. In this regard a review paper was accepted and presented at the First International Conference on High Speed Civil Transportation Research held at North Carolina A&T in December of 1994.

  17. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  18. Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe

    Science.gov (United States)

    Kalkhoran, Mohammad Azizian; Vray, Didier

    2018-02-01

    Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.

  19. Changes in Mitral Annular Ascent with Worsening Echocardiographic Parameters of Left Ventricular Diastolic Function

    Directory of Open Access Journals (Sweden)

    Paula M. Hernández Burgos

    2016-01-01

    Full Text Available Background. While the mitral annular plane systolic excursion (MAPSE has been suggested as a surrogate measurement of left ventricular ejection fraction, less is known about the relative value of mitral annular ascent (MAa. Methods. Our database was queried for complete transthoracic echocardiograms performed for any clinical indication. Baseline echocardiographic measurements were compared to determine any correlation between MAa and traditional Echo-Doppler echocardiographic measures to characterize left ventricular diastolic dysfunction (LVDD. Results. Patients with normal LV diastolic function were younger (41±13 years than patients with LVDD (stage 1: 61±13 years; stage 2: 57±14 years; and stage 3: 66±17 years; p=0.156. LV ejection fraction decreased in patients with stage 2 LVDD (63±17% and was further reduced in patients with stage 3 LVDD (28±21; p=0.003. Discussion. While a vigorous MAa excursion was seen in patients with stage 1 LVDD, MAa significantly decreased in stage 2 and stage 3 LVDD patients. Our results highlight the importance of atrioventricular coupling, as MAa motion seems to reflect changes in left atrial pressure. Additional studies are now required to better examine atrioventricular interactions and electromechanical coupling that might improve our assessment of LV diastolic function.

  20. Negative ion sources equipped with continuous annular and spherical geometry surface ionizers

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1985-01-01

    Axial geometry negative ion sources have been designed, developed, and evaluated for use in conjunction with tandem accelerator applications. These sources utilize continuous surface solid tungsten ionizers in either annular or spherical geometries to effect ionization of cesium vapor, which in turn is used to sputter a negatively biased probe containing the material of interest. The annular ionizer geometry source has been incorporated as an ''on-line'' source for routine operation of the Holifield Heavy Ion Research Facility (HHIRF) tandem accelerator. Both test stand and tandem accelerator operational experience indicate that such sources are reliable, long lived, stably operating and prolific producers of a wide spectrum of negative ions. To date these sources have been used to produce more than 18 negative ion species including Ag - , Au - , B - , CaH 3 - , Cl - , CrH 2 - , Cu - , Lu - , MgH 3 - , Mo - , Ni - , O - , S - , Si - , Sn - , TiH 3 - , Tm - , and Yb - . Details of the mechanical design features and computational techniques utilized in arriving at the final electrode configuration are presented in the text. Examples of data pertinent to source operation, the dependence of negative ion yields on certain source operational parameters and of intensities typical of a particular negative ion source are also given. 12 refs., 10 figs

  1. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  2. Azimuthally spinning wave modes and heat release in an annular combustor

    Science.gov (United States)

    Nygard, Hakon; Mazur, Marek; Dawson, James R.; Worth, Nicholas A.

    2017-11-01

    In order to reduce NOx emissions from aeroengines and stationary gas turbines the fuel-air mixture can be made leaner, at the risk of introducing potentially damaging thermo-acoustic instabilities. At present this phenomenon is not understood well enough to eliminate these instabilities at the design stage. Recently, the presence of different azimuthal modes in annular combustors has been demonstrated both experimentally and numerically. These naturally occurring instabilities in annular geometry have been observed to constantly switch between spinning and standing modes, making it more difficult to analyse the flame structure and dynamics. Very recently this issue was partially addressed using novel acoustic forcing to generate a standing mode. In the present study this concept has been developed further by creating an azimuthal array of loud speakers, which for the first time permits predominantly spinning modes to be set up inside the combustion chamber. The use of pressure and high speed OH* measurements enables the study of the flame dynamics and heat release rate oscillations of the combustor, which will be reported in the current paper. The ability to precisely control the azimuthal mode of oscillation greatly enhances our further understanding of the phenomenon. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 677931 TAIAC).

  3. Scope for a small circumsolar annular gravitational contribution to the Pioneer anomaly without affecting planetary orbits

    Science.gov (United States)

    Moore, Guy S. M.; Moore, Richard E. M.

    2013-10-01

    All proposed gravitational explanations of the Pioneer anomaly must crucially face the Equivalence Principle. Thus, if Pioneers 10 and 11 were influenced by anomalous gravitational effects in regions containing other Solar System bodies, then those bodies should likewise be influenced, irrespective of their shape, composition or mass. Although the lack of any observed influence upon planetary orbits severely constrains such explanations, here we aim to construct by computer modeling, hypothetical gravitating annuli having no gravitational impact on planetary orbits from Mercury to Neptune. One model has a central zone, free of radial gravitation in the annular plane, and an ‘onset’ beyond Saturn’s orbit, where sunward annular gravitation increases to match the Pioneer anomaly data. Sharp nulls are included so that Uranus and Neptune escape this influence. Such models can be proportionately reduced in mass: a 1 % contribution to the anomaly requires an annulus of approximately 1 Earth mass. It is thus possible to comply with the JPL assessment of newly recovered data attributing 80 %, or more, of the anomaly to spacecraft heat, which appears to allow small contributions from other causes. Following the possibility of an increasing Kuiper belt density at great ranges, another model makes an outward small anomalous gravitation in the TNO region, tallying with an observed slight indication of such an effect, suggesting that New Horizons may slightly accelerate in this region.

  4. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  5. Dilute suspensions in annular shear flow under gravity: simulation and experiment

    Directory of Open Access Journals (Sweden)

    Schröer Kevin

    2017-01-01

    Full Text Available A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.

  6. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  7. Feasibility Study on Dual-Cooled Annular Fuel for OPR-1000 Power Uprate

    International Nuclear Information System (INIS)

    Chun, Tae Hyun; In, Wang Kee; Oh, Dong Suck

    2010-04-01

    A dual-cooled annular fuel (DCAF) is a highly promising concept as a high power density fuel for PWR power-uprate. The purpose of this study is to assess a feasibility of 120% core power for OPR-1000 with the DCAF. So the feasibility study were done through the code establishments for annular fuel analysis, evaluations of core physics, thermal-hydraulics and safety analyses at a 120% power with OPR-1000 and the preliminary economic benefits of 20% power-uprate. As results of the analyses, DCAF at 120% power showed sufficient margins available on DNB, PCT and fuel pellet temperature relative to the solid fuel at 100% power. However, judging from an anticipated wide range of the gap conductance variation in inner and outer clearances as fuel burn-up in the reactor core, irradiation behavior of DCAF has to be observed through research reactor test. On the other hand, the nuclear physics parameters like moderator temperature coefficient, power coefficient and so on comply with the technical specifications. An impact of 20% power-uprate on NSSS and BOP was also investigated, and accordingly some components and parts need to be changed were identified. Moreover, the economical benefits from the power-uprate was roughly estimated. It turned out that the power-uprating with DCAF could give an enormous profit even considering the expenses of components and parts to be replaced, additional fuel cycle cost and extended overhaul period

  8. Characterization of Interfacial Waves and Pressure Drop in Horizontal Oil-Water Core-Annular Flows

    Science.gov (United States)

    Bhattacharya, Amitabh; Tripathi, Sumit; Singh, Ramesh; Tabor, Rico; Vinay, K. S.

    2017-11-01

    Core-Annular Flows (CAF) consist of a highly viscous fluid (e.g. oils, emulsions) being pumped through pipelines while being lubricated by a fluid of a much lower viscosity (e.g. water). In a series of experiments, we study CAF with the core fluid as oil. We find a clear scaling for the energy spectra of the interfacial waves with respect to the shear Reynolds number Rec of the fluid flow in the annulus. Specifically, we find that, at low values of Rec , the low wavenumber modes of the interface appear to dominate, while, at high values of Rec , the high wavenumber modes of the interface appear to dominate. Linear stability analysis of viscosity stratified flows appears to confirm this trend. The effective friction factor does not appear to change strongly with Rec , suggesting that the interfacial waves do not significantly change the effective shear stress felt by the core fluid. This weak dependence of the friction factor on Rec , along with a model for the holdup ratio, allows us to propose a very straightforward relationship between the pressure gradient and the flow rates of the core and annular fluids, which agrees with the experimental data. We thank Orica Limited (Australia) for funding the experiment via the IITB-Monash Research Academy.

  9. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  10. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  11. Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows

    Science.gov (United States)

    Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh

    2017-08-01

    We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive

  12. Potency of Stem Cells

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Potency of Stem Cells. Totipotent Stem Cells (Zygote + first 2 divisions). -Can form placenta, embryo, and any cell of the body. Pluripotent (Embryonic Stem Cells). -Can form any cell of the body but can not form placenta, hence no embryo. Multipotent (Adult stem cells).

  13. The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment

    Science.gov (United States)

    Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola

    2018-03-01

    The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.

  14. On-site Identification of Dynamic Annular Seal Forces in Turbo Machinery Using Active Magnetic Bearings - An Experimental Investigation

    DEFF Research Database (Denmark)

    Lauridsen, Jonas S.; Santos, Ilmar F.

    2017-01-01

    Significant dynamic forces can be generated by annular seals in rotordynamics and can under certain conditions destabilize the system leading to machine failure. Mathematical modelling of dynamic seal forces are still challenging, especially for multiphase fluids and for seals with complex geomet...

  15. CFD Applied for the Identification of Stiffness and Damping Properties for Smooth Annular Turbomachinery Seals in Multiphase Flow

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Ludiciani, Piero; Nielsen, Kenny Krogh

    2016-01-01

    This paper presents a first venture into quantifying stiffness and damping coefficients for turbomachinery seals in multiphase flow using Computational Fluid Dynamics (CFD). The study focusses on the simplest seal type: the smooth annular seal. The investigation is conducted for both wet-gas and ...

  16. Atmospheric circulation response to anthropogenic forcings: from annular modes to storm tracks

    International Nuclear Information System (INIS)

    Oudar, Thomas

    2016-01-01

    Climate variability in mid and high latitudes is very complex due to numerous physical mechanisms implied. This climate variability can be decomposed into 2 components: the internal variability associated with internal processes and the forced variability linked to the external forcings which can be natural (volcanism, natural aerosols) or anthropogenic (greenhouse gases, anthropogenic aerosols). These external forcings play a crucial role on the climate and its variability. The challenge in the climate research is to understand their effects on the climate and their roles relatively with the internal variability. The objective of this thesis is a better understanding of the respective roles of internal variability and forced variability on the past and future atmospheric circulation in both hemispheres characterized by the annular mode and the synoptic activity associated using atmospheric reanalysis and experiments performed with the coupled climate model CNRM-CM5. First, we focus on the annular mode changes in both hemispheres, named the NAM (Northern Annular Mode) and the SAM (Southern Annular Mode). We show that the observed positive trend of the SAM in the 1960's in austral summer is well reproduced by the climate model. However, contrarily to other studies which suggest that this positive trend can be explained by only stratospheric ozone depletion, it is reproduced in the CNRM-CM5 model when the ozone depletion and greenhouse gases (GHG) increase are both prescribed. Then, we investigate the changes in the Northern Hemisphere atmospheric circulation. These are more complex than in the Southern Hemisphere. Indeed, the increase of GHG in the atmosphere causes a general global warming maximum in the tropical high troposphere and over the pole at the surface which is mainly explained by Arctic sea ice loss. So the understanding of the changes is very complex due to several physical processes and retroactions. Thus, we have conducted a protocol with the

  17. Numerical and experimental research on annular crossed cable-truss structure under cable rupture

    Science.gov (United States)

    Liu, Renjie; Li, Xiongyan; Xue, Suduo; Mollaert, Marijke; Ye, Jihong

    2017-07-01

    The Annular Crossed Cable-Truss Structure (ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA (explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.

  18. Experimental study of horizontal annular channels under non-developed conditions

    International Nuclear Information System (INIS)

    Delgadino, G.; Balino, J.; Carrica, P.

    1995-01-01

    In this work an experimental study of the two-phase air-water flow in a horizontal annular channel under non-developed conditions is presented. A conductive local probe was placed at the end of the channel to measure the local phase indication function under a wide range of gas and water flow rates. The signal was processed to obtain the void fraction and statistical distributions of liquid and gas residence times. From these data the topology of the flow could be inferred. A laser intermittence detector was also located close to the channel exit, in order to measure statistical parameters for intermittent flows by means of a two-probe method

  19. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.

    Science.gov (United States)

    Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T

    2014-04-15

    In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...... connected to a fluid pressure chamber. The search for optimal design points is conducted using a brute force strategy with subsequent selection of the dominating design points....

  1. Nutrient variability in Subantarctic Mode Waters forced by the Southern Annular Mode and ENSO

    Science.gov (United States)

    Ayers, Jennifer M.; Strutton, Peter G.

    2013-07-01

    As the primary source of nutrients to the global thermocline, Subantarctic Mode Waters (SAMWs) play a key role in primary production and climate. Here we use repeat hydrographic World Ocean Circulation Experiment/Climate Variability and Predictability data to quantify interannual SAMW nutrient variability and its forcing. Pacific sector SAMW nutrients were significantly correlated with the Southern Annular Mode (SAM) and wind stress curl anomalies associated with a faster meridional overturning circulation (MOC). A stronger MOC results in greater upwelling of nutrients at high latitudes, increased Ekman transport of nutrients equatorward, and subduction of higher preformed nutrient loads in SAMWs. Australian sector SAMWs were significantly correlated with El Niño-Southern Oscillation (ENSO), likely due to its modulation of transport in the East Australian Current extension. Interannual variability in SAMW nutrients impacts downstream tropical export production by as much as 5-12% of the annual mean.

  2. Oil Stiction in Fast Switching Annular Seat Valves for Digital Displacement Fluid Power Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.

    2014-01-01

    Digital Displacement (DD) fluid power machines utilizes electronically controlled seat valves connected to pressure chambers to obtain variable displacement with high operational efficiency and high bandwidth. To achieve high efficiency, fast valve switching is essential and all aspects related...... to the dynamic behaviour of the seat valves must be considered to optimize the machine efficiency. A significant effect influencing the valves switching performance is the presence of oil stiction when separating the contact surfaces in valve opening movement. This oil stiction force is limited by cavitation...... for low pressure levels, e.g. valves connected to the low pressure manifold, however for valves operated at higher pressure levels, the oil stiction force is dominating when the separating surfaces are close to contact. This paper presents an analytic solution to the oil stiction force for annular seat...

  3. Experimental study of horizontal annular channels under non-developed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delgadino, G. [Rensselaer Polytechnic Institute, Troy, NY (United States); Balino, J.; Carrica, P. [Centro Atomico Bariloche e Instituto Balseriro (Argentina)

    1995-09-01

    In this work an experimental study of the two-phase air-water flow in a horizontal annular channel under non-developed conditions is presented. A conductive local probe was placed at the end of the channel to measure the local phase indication function under a wide range of gas and water flow rates. The signal was processed to obtain the void fraction and statistical distributions of liquid and gas residence times. From these data the topology of the flow could be inferred. A laser intermittence detector was also located close to the channel exit, in order to measure statistical parameters for intermittent flows by means of a two-probe method.

  4. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  5. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates

    Science.gov (United States)

    Efraim, E.; Eisenberger, M.

    2007-02-01

    Annular plates are used in many engineering structures. In many cases variable thickness is used in order to save weight and improve structural characteristics. In recent years functionally graded materials (FGM) are used in many engineering applications. A FGM plate is an inhomogeneous composite made of two constituents (usually ceramic and metal), with both the composition and the material properties varying smoothly through the thickness of the plate. An optimal distribution of material properties may be obtained. The plate vibrations will have a strong bending-stretching coupling effect. The equations of motion including the effect of shear deformations using the first-order shear deformation theory are derived and solved exactly for various combinations of boundary conditions. The solution is obtained by using the exact element method. Exact vibration frequencies and modes are given for several examples for the first time.

  6. Numerical study of double-diffusive convection in a vertical annular enclosure with a baffle

    Science.gov (United States)

    Pushpa, B. V.; Prasanna, B. M. R.; Younghae, Do; Sankar, M.

    2017-10-01

    This paper numerically examines the influence of a circular thin baffle on thermosolutal convection in a vertical annular enclosure. The inner and outer cylindrical walls, and the baffle are retained with different temperatures and concentrations, while the upper and lower boundaries are kept at adiabatic and impermeable. The model equations are solved using an implicit finite difference scheme consisting of ADI and SLOR methods. Numerical simulations are performed to understand the size and position effects of the baffle on the thermosolutal convection and are successfully captured through our results. It has been observed that the baffle size and location has very important role in controlling the thermosolutal convective flow and the corresponding heat and mass transport characteristics. Further, our results are in good agreement with the available benchmark results for limiting cases.

  7. Medical isotope production: A new research initiative for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Coats, R.L.; Parma, E.J.

    1993-01-01

    An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of 99 Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater 99 Mo production ensuring adequate capacity for future years

  8. Influence of Parameters of Core Bingham Material on Critical Behaviour of Three-Layered Annular Plate

    Science.gov (United States)

    Pawlus, Dorota

    2017-12-01

    The paper presents the dynamic response of annular three-layered plate subjected to loads variable in time. The plate is loaded in the plane of outer layers. The plate core has the electrorheological properties expressed by the Bingham body model. The dynamic stability loss of plate with elastic core is determined by the critical state parameters, particularly by the critical stresses. Numerous numerical observations show the influence of the values of viscosity constant and critical shear stresses, being the Bingham body parameters, on the supercritical viscous fluid plate behaviour. The problem has been solved analytically and numerically using the orthogonalization method and finite difference method. The solution includes both axisymmetric and asymmetric plate dynamic modes.

  9. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiahao Guo

    2016-01-01

    Full Text Available An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°. This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  10. Localized Bioconvection Patterns and Their Initial State Dependency in Euglena gracilis Suspensions in an Annular Container

    Science.gov (United States)

    Shoji, Erika; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-04-01

    Localized patterns of bioconvection in Euglena gracilis suspensions were experimentally analyzed in an annular container. Near the critical mean density of convection, we succeeded in isolating two basic types of localized convection patterns. One was an almost stationary pattern consisting of two convection cells centered by an isolated high-density region of the microorganism where a downflow was generated, which we call a "bioconvection unit". The other was a traveling wave pattern consisting of an array of moving high-density waves bounded in a certain area. The effect of the mean density of E. gracilis on the emergence of the localized convection pattern was also examined. Near the critical mean density, we found that the emergence probability of the localized convection pattern depends on the initial state, i.e., whether E. gracilis has a uniform or localized distribution, which suggests that the system is bistable. Such bistability is often accompanied by localized structures in spatially extended dissipative systems.

  11. Numerical investigation of flow structures with an oblique detonation wave in a hypersonic annular cylindrical chamber

    Science.gov (United States)

    Trotsyuk, Anatoliy V.

    2017-09-01

    A new supersonic flow-type annular detonation combustor is designed in which steady oblique detonation waves in the channel are generated using a compression body in the form of a solid single-wound spiral with a constant pitch angle. A two-dimensional unsteady mathematical model of the reacting flow in this device is formulated. The flow dynamics at the start of the chamber operation and steady supersonic flow structures for a stoichiometric hydrogen-air flow with an inlet Mach number M0=5 are numerically investigated. Two-dimensional numerical simulation is carried out for different spiral angles and geometrical dimensions of the chamber. A bifurcation of steady flow structures with respect to the initial condition of the problem is observed.

  12. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    Science.gov (United States)

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ± 40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  13. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  14. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  15. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  16. An annular ionization detector for quasi-elastic and transfer reaction studies

    CERN Document Server

    Dinesh, B V; Nayak, B K; Biswas, D C; Saxena, A; Pant, L M; Sahu, P K; Choudhury, R K

    2000-01-01

    An annular ionization chamber detector has been developed to study quasi-elastic and transfer reactions in heavy-ion collisions at near-barrier and sub-barrier energies. The important feature of the detector is that it has a near 2 pi coverage in the azimuthal angle phi for the particles entering in the detector at a given theta direction. This feature makes the detector very useful for measurement of the differential cross-sections at backward angles with respect to the beam direction, involving low cross-section reaction channels. The split anode configuration of the detector makes it capable of both particle identification and energy measurement for heavy ions and fission fragments. The detector has been tested using heavy-ion beams from the 14 MV-pelletron accelerator at Mumbai. Results on quasi-elastic excitation function measurements and barrier distribution studies in many heavy-ion reactions using this detector setup are discussed.

  17. Jenkins Model Based Ferrofluid Lubrication of a Curved Rough Annular Squeeze Film with Slip Velocity

    Directory of Open Access Journals (Sweden)

    J.R. Patel

    2015-06-01

    Full Text Available This paper deals with the combined effect of roughness and slip velocity on the performance of a Jenkins model based ferrofluid squeeze film in curved annular plates. Beavers and Joseph’s slip model has been adopted to incorporate the effect of slip velocity. The stochastic model of Christensen and Tonder has been deployed to evaluate the effect of surface roughness. The associated stochastically averaged Reynolds type equation is solved to derive the pressure distribution, leading to the calculation of load carrying capacity. The graphical representation makes it clear that although, the effect of transverse surface roughness is adverse in general, Jenkins model based ferrofluid lubrication provides some measures in mitigating the adverse effect and this becomes more manifest when the slip parameter is reduced and negatively skewed roughness occurs. Of course, a judicious choice of curvature parameters and variance (-ve add to this positive effect.

  18. Annular flow in rod-bundle: Effect of spacer on disturbance waves

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son H.; Kunugi, Tomoaki

    2016-08-01

    A high-speed camera technique is used to study the effect of spacers on the disturbance waves present in annular two-phase flow within a rod-bundle geometry. Images obtained using a backlight configuration to visualize the spacer-wave interactions at the micro-scale resolution (in time and space) are discussed. This paper also presents additional images obtained using a reflected light configuration which provides new observations of the disturbance waves. These images show the separation effect caused by the spacer on the liquid film in which the size of generated liquid droplets can be controlled by the gas superficial velocity. Furthermore, the data confirm that the spacer breaks the circumferential coherent structures of the waves.

  19. High-power, high-frequency, annular-beam free-electron maser

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.

    1998-01-01

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 micros, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM 02 mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability

  20. Predictors of right ventricular function as measured by tricuspid annular plane systolic excursion in heart failure

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Iversen, Kasper K; Akkan, Dilek

    2009-01-01

    INTRODUCTION: Tricuspid Annular Plane Systolic Excursion (TAPSE) has independent prognostic value in heart failure patients but may be influenced by left ventricular (LV) ejection fraction. The present study assessed the association of TAPSE and clinical factors, global and regional LV function...... in 634 patients admitted for symptomatic heart failure. METHODS & RESULTS: TAPSE were correlated with global and regional measures of longitudinal LV function, segmental wall motion scores and measures of diastolic LV function as measured from transthoracic echocardiography.LV ejection fraction, wall...... failure (beta = 1.3, p = 0.002) were independent predictors of TAPSE, R(2) = 0.28, p heart failure etiology or any of the other clinical factors analyzed, P(interaction) = NS. CONCLUSION: TAPSE is reduced with left ventricular dysfunction...

  1. Annular flow induced vibration associated with on-load refuelling of advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Fox, M.J.H.; Hodson, D.E.; Parkin, M.W.

    1987-01-01

    On-load refuelling of Advanced Gas Cooled Reactors results in a long, slender, articulated fuel assembly being suspended within a fuel channel, up which flows the high density gaseous coolant. The gas flow in the fuel assembly-channel annulus can cause vibration of the fuel assembly. This paper reports on continuing studies of this phenomenon. In particular it outlines the latest findings on the excitation mechanism, flow instabilities in an annular diffuser; successful developments in finite element modelling of the fuel assembly vibration which now include flow effects and non linearities caused by fuel assembly-channel impact; and finally experimental demonstration of the beneficial effect of introducing friction dampers into the fuel assembly. (author)

  2. Subcutaneous granuloma annulare following influenza vaccination in a patient with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Takahiro Suzuki

    2014-03-01

    Full Text Available An influenza vaccination often causes local reactions, such as induration and erythema at the injection site, and occasionally systemic reactions. The association between these reactions and influenza vaccinations has not been fully recognized. By contrast, granuloma annulare (GA is an idiopathic, palisaded, granulomatous condition, and has some clinical variants, including localized, generalized, perforating, and subcutaneous types. We report a 76-year-old woman, who was suffering from a tender subcutaneous nodule on her left upper arm. One month before, she had just received influenza vaccination on the same area. Histological analysis demonstrated that subcutaneous tissue contained numerous large areas of necrosis, surrounded by palisaded epithelioid histiocytes. We diagnosed our case as a subcutaneous type of GA following influenza vaccination. To our knowledge, this is the first report of GA associated with influenza vaccination.

  3. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    International Nuclear Information System (INIS)

    Schwarzhuber, Felix; Melzl, Peter; Zweck, Josef

    2017-01-01

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  4. Experimental study of interfacial wave on a liquid film in vertical annular flow

    International Nuclear Information System (INIS)

    Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.

    2003-01-01

    In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation

  5. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzhuber, Felix, E-mail: felix.schwarzhuber@ur.de; Melzl, Peter; Zweck, Josef

    2017-06-15

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  6. Changes in Mitral Valve Annular Geometry After Repair: Saddle-Shaped Versus Flat Annuloplasty Rings

    Science.gov (United States)

    Mahmood, Feroze; Gorman, Joseph H.; Subramaniam, Balachundhar; Gorman, Robert C.; Panzica, Peter J.; Hagberg, Robert C.; Lerner, Adam B.; Hess, Philip E.; Maslow, Andrew; Khabbaz, Kamal R.

    2011-01-01

    Background Saddle-shaped annuloplasty rings are being increasingly used during mitral valve (MV) repair to conform the mitral annulus to a more nonplanar shape and possibly reduce leaflet stress. In this study utilizing three-dimensional transesophageal echocardiography we compared the effects of rigid flat rings with those of the saddle rings on the mitral annular geometry. Specifically we measured the changes in nonplanarity angle (NPA) before and after MV repair. Methods Geometric analysis on 38 patients undergoing MV repair for myxomatous and ischemic mitral regurgitation with full flat rings (n = 18) and saddle rings (n = 18) were performed. The acquired three-dimensional volumetric data were analyzed utilizing the “Image Arena” software (TomTec GmBH, Munich, Germany). Specifically, the degree of change in the NPA was calculated and compared before and after repair for both types of rings. Results Both types of annuloplasty rings resulted in significant changes in the geometric structure of the MV after repair. However, saddle rings lead to a decrease in the NPA (7% for ischemic and 8% for myxomatous MV repairs) (ie, made the annulus more nonplanar), whereas flat rings increased the NPA (7.9% for ischemic and 11.8% for myxomatous MV repairs) (ie, made the annulus less nonplanar); p value 0.001 or less. Conclusions Implantation of saddle-shaped rings during MV repair surgery is associated with augmentation of the nonplanar shape of the mitral annulus (ie, decreases NPA). This favorable change in the mitral annular geometry could possibly confer a structural advantage to MV repairs with the saddle rings. PMID:20868816

  7. Mechanical deformation and glycosaminoglycan content changes in a rabbit annular puncture disc degeneration model.

    Science.gov (United States)

    Chan, Deva D; Khan, Safdar N; Ye, Xiaojing; Curtiss, Shane B; Gupta, Munish C; Klineberg, Eric O; Neu, Corey P

    2011-08-15

    Evaluation of degenerated intervertebral discs from a rabbit annular puncture model by using specialized magnetic resonance imaging (MRI) techniques, including displacement encoding with stimulated echoes and a fast-spin echo (DENSE-FSE) acquisition and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). To evaluate a rabbit disc degeneration model by using various MRI techniques. To determine the displacements and strains, spin-lattice relaxation time (T1), and glycosaminoglycan (GAG) distribution of degenerated discs as compared to normal and adjacent level discs. Annular puncture of the intervertebral disc produces disc degeneration in rabbits. DENSE-FSE has been previously demonstrated in articular cartilage for the measurement of soft tissue displacements and strains. MRI also can measure the T1 of tissue, and dGEMRIC can quantify GAG concentration in cartilage. METHODS.: In eight New Zealand white rabbits, the annulus fibrosis of a lumbar disc was punctured. After 4 weeks, the punctured and cranially adjacent motion segments were isolated for MRI and histology. MRI was used to estimate the disc volume and map T1. DENSE-FSE was used to determine displacements for the estimation of strains. dGEMRIC was then used to determine GAG distributions. Histology and standard MRI indicated degeneration in punctured discs. Disc volume increased significantly at 4 weeks after the puncture. Displacement of the nucleus pulposus was distinct from that of the annulus fibrosis in most untreated discs but not in punctured discs. T1 was significantly higher and GAG concentration significantly lower in punctured discs compared with untreated adjacent level discs. Noninvasive and quantitative MRI techniques can be used to evaluate the mechanical and biochemical changes that occur with animal models of disc degeneration. DENSE-FSE, dGEMRIC, and similar techniques have potential for evaluating the progression of disc degeneration and the efficacy of treatments.

  8. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  9. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming

    Science.gov (United States)

    Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang

    2015-10-01

    Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;

  10. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve.

    Science.gov (United States)

    Liu, Xianbao; He, Yuxin; Zhu, Qifeng; Gao, Feng; He, Wei; Yu, Lei; Zhou, Qijing; Kong, Minjian; Wang, Jian'an

    2018-04-01

    To explore assessment of supra-annular structure for self-expanding transcatheter heart valve (THV) size selection in patients with bicuspid aortic stenosis (AS). Annulus-based device selection from CT measurement is the standard sizing strategy for tricuspid aortic valve before transcatheter aortic valve replacement (TAVR). Because of supra-annular deformity, device selection for bicuspid AS has not been systemically studied. Twelve patients with bicuspid AS who underwent TAVR with self-expanding THVs were included in this study. To assess supra-annular structure, sequential balloon aortic valvuloplasty was performed in every 2 mm increments until waist sign occurred with less than mild regurgitation. Procedural results and 30 day follow-up outcomes were analyzed. Seven patients (58.3%) with 18 mm; three patients (25%) with sequential 18 mm, 20 mm; and only two patients (16.7%) with sequential 18 mm, 20 mm, and 22 mm balloon sizing were performed, respectively. According to the results of supra-annular assessment, a smaller device size (91.7%) was selected in all but one patient compared with annulus based sizing strategy, and the outcomes were satisfactory with 100% procedural success. No mortality and 1 minor stroke were observed at 30 d follow-up. The percentage of NYHA III/IV decreased from 83.3% (9/12) to 16.7% (2/12). No new permanent pacemaker implantation and no moderate or severe paravalvular leakage were found. A supra-annular structure based sizing strategy is feasible for TAVR in patients with bicuspid AS. © 2018 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.

  11. Ultra-small rhenium clusters supported on graphene

    Science.gov (United States)

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  12. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  13. Stem Cell Basics

    Science.gov (United States)

    ... healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of ... as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates ...

  14. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  15. STEM Club Participation and STEM Schooling Outcomes

    Science.gov (United States)

    Gottfried, Michael A.; Williams, Darryl N.

    2013-01-01

    To develop a more robust understanding of the relationship between non-formal, school-based STEM activities and students' success and persistence in STEM fields, this study evaluates how math club participation influences math GPA and how science club participation influences science GPA. Additionally, this study evaluates how math or science club…

  16. Annular erythema in primary Sjogren's syndrome: description of 43 non-Asian cases.

    Science.gov (United States)

    Brito-Zerón, P; Retamozo, S; Akasbi, M; Gandía, M; Perez-De-Lis, M; Soto-Cardenas, M-J; Diaz-Lagares, C; Kostov, B; Bove, A; Bosch, X; Perez-Alvarez, R; Siso, A; Ramos-Casals, M

    2014-02-01

    The objective of this paper is to evaluate the prevalence and characterize the main epidemiological, clinical and immunological features of annular erythema (AE) in non-Asian patients with primary Sjögren's syndrome (SS). We carried out a retrospective study searching for AE in 377 Spanish patients with primary SS fulfilling the 2002 American-European criteria. In addition, we searched PubMed (1994-2012) using the MeSH terms "annular erythema" and "primary Sjögren's syndrome" for additional cases. All cases with AE reported in patients with SS associated with systemic lupus erythematosus were excluded. In our Spanish cohort, we found 35 (9%) patients diagnosed with AE. All were white females, with a mean age of 47 years at diagnosis of AE. AE preceded diagnosis of SS in 27 (77%) patients. Cutaneous AE lesions involved principally the face and upper extremities. All patients reported photosensitivity, with cutaneous flares being reported during the warmest months in 93% of patients. Immunological markers consisted of anti-Ro/La antibodies in 31 (89%) patients. In the literature search, we identified eight additional non-Asian patients with primary SS diagnosed with AE. In comparison with 52 Asian patients, the 43 non-Asian patients with AE related to primary SS were more frequently women (100% vs 78%, p=0.008), and cutaneous lesions were less frequently reported in the face (55% vs 81%, p=0.045) and more frequently in the neck (40% vs 14%, p=0.041). Immunologically, non-Asian patients had a lower frequency of anti-Ro antibodies and a higher frequency of negative Ro/La antibodies, although the differences were not statistically significant. AE is not an exclusive cutaneous feature of Asian patients with primary SS. In addition to the characteristic cutaneous expression, AE has a very specific clinical and immunological profile: often presenting before the fulfillment of SS criteria, overwhelmingly associated with anti-Ro antibodies but weakly associated with other

  17. A novel system for the treatment of aortic annular dilation: an ex vivo investigation.

    Science.gov (United States)

    Shah, Pallav; Romagnoni, Claudia; Jaworek, Michal; Lucherini, Federico; Contino, Monica; Menkis, Alan; Gelpi, Guido; Fiore, Gianfranco B; Antona, Carlo; Vismara, Riccardo

    2017-12-01

    The main reason for aortic repair failures is recurrent annular dilatation. The fibrous portion of left ventricular outflow tract dilates. A novel device was designed to tackle this problem. The device consists of an internal ring applied at the aortic annulus plus an external flexible band at the level of the aortic root. The internal ring has a semi-rigid portion (40%, placed at ventriculo-arterial junction) and a flexible portion to allow it to conform along the curves of the non-coronary/right coronary leaflet and right coronary/left coronary leaflet commissures. The external band acts as a reinforcement to the internal ring. A pulsatile mock loop capable of housing porcine aortic valve was used. Working conditions were 60 bpm of heart rate, 75 of stroke volumes and 120-80 mmHg of simulated pressure. Mean gradient, effective orifice area, annular diameter, coaptation height and length were recorded on 11 aortic root units (ARUs). High-speed video and standard echocardiographic images were also recorded. All data were acquired in the following conditions: (i) basal (untreated ARU); (ii) pathological condition (left coronary/non-coronary triangle was dilated by suturing an aortic patch); and (iii) ARU treated with the device. Gradients and effective orifice area were respectively 0.9 ± 0.64 mmHg and 3.1 ± 0.7cm2 (pathological) and 3.7 ± 1.1 mmHg and 1.5 ± 0.2cm2 (treated, P < 0.05). Left coronary/non-coronary diameter decreased from 2.4 ± 0.2 cm (pathological) to 2.0 ± 0.2 (treated, P < 0.05). Coaptation length and height were fully restored to basal values following treatment. Visual inspection showed proper dynamics of the leaflet, confirmed by high-speed video and echocardiography. The device allowed for restoring physiologic-like coaptation in the experimental model, without inducing clinically relevant worsening of the haemodynamics of the treated ARU. © The Author 2017. Published by Oxford University Press on

  18. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling...... and tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile....... Tuning of the field then also follows by formulating a least-squares design for the transducer surface pressure with respect to a given desired field in space and time. Simulated and experimental results for both field computation and tuning are presented in the context of a 10-ring annular array...

  19. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  20. Comparison of the Characteristics of Solid Type and Annular Type Nuclear Fuels Using Thermoelastic-Plastic-Creep FEM

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2016-01-01

    Full Text Available The purpose of this study is to compare the characteristics of two types of nuclear fuel using the finite element program of thermoelastic-plastic-creep analysis. The analyzed fuel rods are of two types, solid and annular ones, and their thermomechanical characteristics are compared. Thermoelastic-plastic-creep analyses were made using an in-house finite element analysis program that adopts the “effective-stress-function” algorithm. The temperature-dependent material properties, which were obtained from the experiments for actual nuclear reactors, are adopted. The effects of type of fuel systems are revealed in both stresses and temperature distributions. The maximum tensile and compressive hoop stress of pellet and cladding are monitored to evaluate the mechanical behavior, and the maximum temperature is used to evaluate the thermal behavior. Although the annular type of fuel has certain disadvantage, it would be used very effectively or safely in future nuclear power plants.

  1. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  2. Creative Teaching in STEM

    Science.gov (United States)

    Pollard, Vikki; Hains-Wesson, Rachael; Young, Karen

    2018-01-01

    If Science, Technology, Engineering and Mathematics (STEM) disciplines in higher education are to retain students, there needs to be a shift towards teaching in more enriching and interesting ways. Creative teaching needs to become more prominent in STEM. This article presents a study that defines creative teaching in the STEM context and…

  3. Annular diffusion denuder for simultaneous removal of gaseous organic compounds and air oxidants during sampling of carbonaceous aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk; Bartošíková, Anna; Maenhaut, W.

    2012-01-01

    Roč. 714, - (2012), 68-75 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP503/11/2315; GA MŽP SP/1B7/189/07; GA MŽP SP/1A3/148/08 Institutional research plan: CEZ:AV0Z40310501 Keywords : annular diffusion denuder * organic compounds * oxidants Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.387, year: 2012

  4. Parameter study for manufacturing an inner and outer cladding tube used in dual-cooled annular fuel

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Kim, Il-Hyun; Choi, Byung-Kwon; Park, Jeong-Yong; Kim, Man-Su

    2012-01-01

    Highlights: ► Dual-cooled annular fuel demands two claddings for inner and outer sides. ► Cladding performance has to similar between inner and outer cladding. ► Detailed manufacturing parameter to control the performance in both claddings was suggested. - Abstract: The design concept of dual-cooled annular fuel is focused on an advanced cooling geometry by applying inner and outer coolant channels in the fuel rod to increase power plant economy. Since dual-cooled annular fuel is contacted with the coolant in both inner and outer sides, two cladding tubes are needed for the inner and outer sides in the fuel, compared to a solid fuel. Thus, the properties in both the inner and outer claddings will be considered to meet the criteria of a dual-cooled annular fuel design. Regarding the design factor affecting fuel integrity and safety, the balance of creep deformation and irradiation growth between inner and outer claddings is a very important design factor. The microstructural factors such as recrystallization fraction and texture development must be coordinated to control the creep deformation and irradiation growth of zirconium alloy as a fuel cladding by controlling the manufacturing parameters. In order to setup the manufacturing parameters of the inner and outer claddings used for dual-cooled fuel, various samples are manufactured and tested. The manufacturing parameters contain the Q-value and annealing conditions, and the test items consist of a mechanical test, texture analysis, and corrosion test to evaluate the performance of the manufacturing processes. From this, the essential element factors to separately control the performance of the inner and outer claddings can be suggested.

  5. Medial arterial calcification, calcific aortic stenosis and mitral annular calcification in a diabetic patient with severe autonomic neuropathy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Medial arterial calcification (Monckeberg\\'s arteriosclerosis) is well described in diabetic patients with autonomic neuropathy. There is also a high prevalence of diabetes mellitus among subjects with calcific aortic stenosis and mitral annular calcification. We describe a diabetic patient with autonomic neuropathy and extensive medial arterial calcification who also had calcification of the aortic valve and of the mitral valve annulus. We propose that autonomic neuropathy may play a role in calcification of these structures at the base of the heart.

  6. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    Science.gov (United States)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  7. Effect of wall thermal conductivity on the heat transfer process in annular turbulent gas flow for constant wall temperature

    International Nuclear Information System (INIS)

    Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.

    1987-01-01

    The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section

  8. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    Science.gov (United States)

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  9. A Unique Facility for the Study of Transient Single-Species Annular Flow Near Total Film Evaporation

    Science.gov (United States)

    Morse, Roman; Kris Dressler Team; Brian Fehring Team; James Doherty Team; Simon Livingston-Jha Team; Arganthal Berson Team

    2017-11-01

    A new facility was built for the study of transient effects in two-phase vertical annular flow near dry out. The facility uses two water/glycol loops and two 10 kW heat pumps to vaporize and condense the working fluid in the annular flow experiment, R-245fa. The annular flow is created by mixing a steady flow of slightly superheated vapor refrigerant with a steady flow of subcooled liquid refrigerant in a junction specifically designed to minimize droplet entrainment. In a separate tank, saturated refrigerant is heated to generate additional vapor to add to the steady state vapor to create transient conditions. Trains of vapor pulses can be created with controlled amplitude and frequency. The effects of the transient flow on dry out are characterized in a test section 110 diameters downstream of the vapor-liquid mixing junction. The test section consists of 14 transparent windows, which are coated with conductive fluorine-doped tin oxide. Current is passed through each of the windows, providing up to 1.4 kW of additional heating power to create film evaporation, or dry out conditions. The transparent windows also allow for simultaneous laser-based film-thickness and wall-temperature measurements.

  10. Association of tricuspid annular plane systolic excursion with survival time in Boxer dogs with ventricular arrhythmias.

    Science.gov (United States)

    Kaye, B M; Borgeat, K; Mõtsküla, P F; Luis Fuentes, V; Connolly, D J

    2015-01-01

    Tricuspid annular plane systolic excursion (TAPSE) is a useful estimate of right ventricular function in humans. Reference intervals for dogs have been generated, but the value of measuring TAPSE in other diseases, or investigating the association between TAPSE and outcome, is unknown. TAPSE is lower in Boxer dogs with ≥50 VPCs/24 h on Holter than in dogs with fewer ventricular ectopics, and lower TAPSE is associated with a shorter survival time. Fifty Boxer dogs that presented for investigation of syncope or suspected arrhythmogenic right ventricular cardiomyopathy (ARVC) at a veterinary teaching hospital (2004-2011). Retrospective study. Clinical records, Holter, and echocardiographic data were reviewed. TAPSE was measured in a blinded manner on stored echocardiographic cine-loops using anatomic M-mode. Outcome information was obtained and death was classified as cardiac or noncardiac. Survival analysis was performed using Kaplan-Meier curves and Cox proportional hazards models. TAPSE was lower in Boxers with ≥50 VPCs/24 h (13.9 ± 4.04 mm) than Boxers with 4.09, 95%CI 1.15-16.9, P Boxer dogs, including those with apparently normal systolic function and ≥50 VPCs/24 h on Holter analysis. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. Double helix vortex breakdown in a turbulent swirling annular jet flow

    Science.gov (United States)

    Vanierschot, M.; Percin, M.; van Oudheusden, B. W.

    2018-03-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is investigated experimentally by means of time-resolved tomographic particle image velocimetry. Notwithstanding the axisymmetric nature of the time-averaged flow, analysis of the instantaneous three-dimensional (3D) vortical structures shows the existence of a vortex core along the central axis which breaks up into a double helix downstream. The winding sense of this double helix is opposite to the swirl direction (m =-2 ) and it is wrapped around a central vortex breakdown bubble. This structure is quite different from double helix breakdown found in laminar flows where the helix is formed in the wake of the bubble and not upstream. The double helix precesses around the central axis of the jet with a precessing frequency corresponding to a Strouhal number of 0.27.

  12. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay

    Science.gov (United States)

    Zheng, Fei; Li, Jianping; Ding, Ruiqiang

    2017-11-01

    There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.

  13. CFD Study of a New Annular Lift Fan Configuration with High Lift Efficiency

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2017-03-01

    Full Text Available A new annular lift fan configuration that has very high lift efficiency is explored by using a numerical scheme. The inlet lip radius and diffuser angle are maximized by semicircle duct walls and the location of the lift fan is moved from the throat to the diffuser area to maximize the diffusion effect of the ducted fan. The improved lift fan achieves the figure of merit of 0.772 and the power loading of 9.03 lbs/hp without ground effect, very close to the theoretical limit. Under the ground effect, the figure of merit reaches 0.822 with the power loading of 9.62 lbs/hp. The improved lift efficiency deteriorates the transition characteristics with higher momentum drag and pitching moment. However, with the aid of jet thrusts directly providing part of the lift during transition, the peak of momentum drag and pitching moment can be lowered. A total thrust to weight ratio of 0.7 is enough for all of the requirements in transition and in hover and for the maximum speed of 0.75 Mach in cruise flight.

  14. Al/ oil nanofluids inside annular tube: an experimental study on convective heat transfer and pressure drop

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza

    2017-10-01

    In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire (E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.

  15. A new ion-ion plasma thruster with an annular geometry★

    Science.gov (United States)

    Mazouffre, Stéphane; Renaud, Denis

    2017-11-01

    The concept of ion-ion plasma thruster relies on a magnetic filter to create an electron-free plasma in the ion current extraction region. However, experiments and computer simulations show that a transverse magnetic field makes the discharge asymmetrical due to electron drift and instabilities in the region of strong magnetic field. The drift drives a large electron flux to the walls, therefore increasing losses, and reduces the electron confinement by creating an escape path throughout the magnetic filter, which is detrimental for the thruster performances. We present a new architecture for an ion-ion plasma thruster that allows to cancel the asymmetry of the plasma by closing in the electron drift on itself. The concept is termed AIPE, an acronym for Annular Ion-ion Plasma Engine. A prototype was developed and tested with noble gases and SF6. Outcomes of experiments dedicated to the examination of the AIPE discharge and beam by means of Langmuir probe, E×B probe and laser photodetachment are given and discussed. It is shown that the discharge is symmetrical and homogeneous. In addition, positive and negative ions can be extracted and accelerated through the grid assembly. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  16. UNSTEADY HEAT TRANSFER IN AN ANNULAR PIPE. PART II: SWIRLING LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    Kelvin Ho Choon Seng

    2012-02-01

    Full Text Available The   heat  transfer   problem  in   magnetocaloric regenerators  during  magnetization  has  been  described  and investigated for convective heat transfer by means of axial flow in part I of this series.   This work will focus on enhancing the unsteady heat  transfer using swirling laminar flow generated using axial vanes.   The governing parameters for this  studyare,  the  D*  ratio  (Inner  diameter/Outer  diameter  and  the swirl number, S.   The study is conducted  using  dimensional analysis and commercial CFD codes provided by ANSYS CFX. The  hydrodynamics and the  heat transfer of the  model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords-  Annular ducts; unsteady heat transfer;  magnetic refrigeration/cooling;   swirling   laminar    flow;    dimensional analysis.

  17. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    International Nuclear Information System (INIS)

    Paulsen, K.D.; Strohbehn, J.W.; Lynch, D.R.

    1984-01-01

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  18. On the control and prediction of the heating patterns of the annular phased array hyperthermia system

    International Nuclear Information System (INIS)

    Iskander, M.F.; Turner, P.F.; Knight, G.

    1984-01-01

    In previous publications the authors examined the electromagnetic (EM) power deposition and heating of the Annular Phased Array (APA) system developed by BSD Medical Corporation, using numerical EM and thermodynamics modeling. In this paper the results of recent efforts to vary and control the heating patterns produced by this system are described. in particular, data from several numerical simulations and experimental measurements are presented which illustrate the effect on the heating patterns achieved by varying the phase difference between the different ports of the APA system. Other heating patterns, produced by inactivating some of the APA ports, are also discussed. The remainder of the paper focuses on the feasibility of predicting the EM power depositions patterns of the APA solely through monitoring the E-field in the water bolus around the patient's body. In particular, it is shown that this E-field distribution depends primarily upon the outer geometry of the human body and is largely insensitive to the detailed distribution of inner tissues. Specific suggestions regarding the types, number, and location of E-field probes that can be used for such measurements are also given

  19. Study of development of disturbance waves in annular gas-liquid flow

    Science.gov (United States)

    Cherdantsev, Andrey V.; Cherdantsev, Mikhail V.; Isaenkov, Sergey V.; Markovich, Dmitriy M.

    2017-09-01

    Downstream development of disturbance waves properties in annular regime of gas - liquid flow was conducted in adiabatic air-water downwards flow in a vertical pipe with inner diameter of 11.7 mm. The measurements were conducted using brightness-based laser-induced fluorescence technique. Instantaneous distributions of local thickness of liquid film along one longitudinal section of the duct over the first 45 cm from the inlet were obtained with sampling frequency of 10 kHz. Based on these spatiotemporal plots, dependence of local average velocity of disturbance waves on downstream distance was obtained for a wide range of gas and liquid flow rates. Three main stages of flow development were identified: a stage prior to formation of disturbance waves, a stage of constant acceleration of disturbance waves and a stage of deceleration nearly compensating the initial acceleration. Transitions to both second and third stages occur closer to the inlet at higher gas velocities and lower liquid flow rates. The initial acceleration is defined by the effect of the gas shear; it grows in parabolic manner with superficial gas velocity and shows weak dependence on liquid flow rate. The deceleration is supposed to occur due to entrainment of liquid from disturbance waves.

  20. Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.