WorldWideScience

Sample records for annular core pulse

  1. Reactivity initiated accident (RIA) type tests and annular core pulse reactor (ACPR) operational experience

    International Nuclear Information System (INIS)

    This paper describes the test conducted to investigate the failure threshold of the fuel when subject to RIA, accomplished in the TRIGA ACPR Nuclear Research Institute, Pitesti. The reactor facility, the capsule used in experiments and the experimental results are presented. The failure threshold was determined at 200 cal/g for an atmospheric gap pressure comparable with similar tests. The failure threshold decreases with increasing gap pressure. The tests proved useful for a better understanding of the fuel behavior in the transient conditions. As it is known RIA is not a common accident for the CANDU reactors, but the fuel failure mechanism can be similar to other type of accidents as LOCA and PCM. The program will be continued, with better instrumentation for the fuel sample and also independent instrumentation to measure pulse characteristics with better statistics. A new project for the experimental fuel elements must be considered to eliminate fuel-endcap interactions. (author)

  2. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  3. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source

    International Nuclear Information System (INIS)

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) δ (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) δ (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  4. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  5. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  6. Characterization of Novel Calorimeters in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Hehr Brian D.

    2016-01-01

    Full Text Available A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field – a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.

  7. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Science.gov (United States)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  8. Critical heat flux prediction for the annular core research reactor

    International Nuclear Information System (INIS)

    This paper reports on best estimate predictions of Critical Heat Flux Ratio (CHFR) obtained to support the upgrade of the Annular Core Research Reactor (ACRR) at Sandia National Laboratories for 2 to 4 MWt. The CHF productions are based on the University of New Mexico's (UNM)-CHF correlations in conjunction with the Global Conditions Hypothesis (GCH). Results indicate that for the range of inlet water temperature of 293 to 333 K, CHFR predictions range from 3.9 to 2.1, which is more than sufficient to support the proposed ACRR upgrade

  9. Safety analysis for operating the Annular Core Research Reactor with the central cavity liner removed

    International Nuclear Information System (INIS)

    Isotope production in the Annular Core Research Reactor requires highly enriched uranium targets to be irradiated in the high flux central region of the core. In order to accomplish this goal, the central cavity liner has been removed to allow for the eventual placement of targets in that region. This safety evaluation presents the analysis associated with operating the reactor in the steady state mode with the central cavity liner removed and the central region of the core filled with water and aluminum void targets. The reactor operation with enriched, uranium loaded targets will be analyzed in a future analysis document. This analysis describes only the operation of the reactor in the steady state mode; consideration of pulse mode operations with the liner removed is not presented

  10. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  11. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  12. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    International Nuclear Information System (INIS)

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  13. MCNP/MCNPX model of the annular core research reactor.

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell; Cooper, Philip J.; Parma, Edward J., Jr. (.,; .)

    2006-10-01

    Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.

  14. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  15. Study of startup conditions of a pulsed annular reactor; Estudo das reacoes de partida de um reator anelar pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mario Augusto Bezerra da

    2003-10-15

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  16. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  17. Annular core for modular high temperature gas-cooled reactor (MHTGR)

    International Nuclear Information System (INIS)

    The active core of the 350 MW(t) MHTGR is annular in configuration, shaped to provide a large external surface-to-volume ratio for the transport of heat radially to the reactor vessel in case of a loss of coolant flow. For a given fuel temperature limit, the annular core provides approximately 40 % greater power output over a typical cylindrical configuration. The reactor core is made up of columns of hexagonal blocks, each 793-mm high and 360-mm wide. The active core is 3.5 m in o.d., 1.65 m in i.d., and 7.93 m tall. Fuel elements contain TRISO-coated microspheres of 19.8 % enriched uranium oxycarbide and of fertile thorium oxide. The core is controlled by 30 control rods which enter the inner and outer side reflectors from above. (author)

  18. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole;

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for...... minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz(-1....../2) cm(-1) are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is...

  19. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dighe, P.M., E-mail: pmdighe@barc.gov.in; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10{sup 4} neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  20. Experimental study on large diameter drilling in hard rock annular coring

    Institute of Scientific and Technical Information of China (English)

    Yinzhu WU; Guochun YANG; Wenchen WANG

    2008-01-01

    Based on analyzing method of large diameter hard rock drilling at home and abroad, the authors proposed a set of drilling of large diameter hard rock annular coring in low energy consumption, low cost and high efficiency. The prototype of drilling tools was designed and was made. The experimental result of the prototype indicates that this plan and technology are feasible and reach the anticipated object of design. A set of drilling tools has been offered for the constructs of large diameter hard rock coring.

  1. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    International Nuclear Information System (INIS)

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz-1/2 cm-1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  2. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  3. A Preliminary Calculation of Annular Core Design for a High-flux Advanced Research Reactor

    International Nuclear Information System (INIS)

    Many of research reactors in operation over the world become old and the number of research reactors is expected to be reduced around 1/3 within a next decade. So it may be necessary to prepare in advance for the future demands of research reactors with a high performance. Therefore, based on the HANARO experiences through design to operation, a concept development of an improved research reactor is under doing. In this paper, 10 MW conceptual annular core is proposed and its basic characteristics were analyzed as a preliminary step

  4. Design and fabrication of the instrumented fuel elements for the Annular Core Research Reactor (ACRR)

    International Nuclear Information System (INIS)

    This report describes the design and fabrication techniques for the instrumented fuel elements of the Annular Core Research Reactor (ACRR). The thermocouple assemblies were designed and fabricated at Sandia Laboratories while the instrumented elements were assembled at Los Alamos Scientific Laboratory. In order to satisfy the ACRR's Technical Specifications, the thermocouples are required to measure temperature in excess of 18000C under rapid heating conditions. Because of the potentially high failure rates for thermocouples in such environments, the instrumented fuel elements are designed so that the thermocouples can be replaced easily

  5. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    OpenAIRE

    Kaiser Krista; Chantel Nowlen K.; Russell DePriest K.

    2016-01-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were char...

  6. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  7. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    Science.gov (United States)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  8. Dynamic Response Control of Three-Layered Annular Plate Due to Various Parametres of Electrorheological Core

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2016-03-01

    Full Text Available The paper presents dynamic responses of annular plate composed of three layers. The middle layer of the plate has electrorheological properties expressed by the Bingham body model. The plate is loaded in the plane of facings with time-dependent forces. The electrorheological effect is observed in the area of supercritical plate behaviour. The influence of both material properties and geometrical dimensions of the core on plate behaviour is examined. The problem is solved analytically and numerically using the orthogonalization method and the finite difference method. Comparison of the results obtained using the finite difference and the finite element methods for a plate in critical state is shown. The numerical calculations are carried out for axisymmetric and asymmetric plate modes. The presented diagrams show the plate reaction to the changes in values of plate parameters and indicate that the supercritical control of plate work is possible.

  9. KNK II third core: design report for the annular fuel elements on the central position to accommodate material test inserts NZ 402 and NZ 403

    International Nuclear Information System (INIS)

    Since August 1984 irradiation experiments with temperature controlled pressure tube probes are being performed in the central position of KNK II. This is part of a long-term experimental program for the development of irradiation resistant reactor materials, which shall also be continued in the third core. The necessary irradiation channel is provided by a special annular fuel element. The present report describes the annular fuel elements for the third core. Aspects of the subassembly design are considered on the basis of the annular element design for the second core and the standard elements of the third core. Two annular elements NZ 402 and NZ 403 (as reserve) are available. It is demonstrated that the expected loadings will allow an unperturbed operation of the annular elements on the central position of the third core

  10. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    International Nuclear Information System (INIS)

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  11. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    International Nuclear Information System (INIS)

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public

  12. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    Energy Technology Data Exchange (ETDEWEB)

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  13. ACRR [Annular Core Research Reactor] fission product release tests: ST-1 and ST-2

    International Nuclear Information System (INIS)

    Two experiments (ST-1 and ST-2) have been performed in the Annular Core Research Reactor (ACER) at Sandia National Laboratories (SNLA) to obtain time-resolved data on the release of fission products from irradiated fuels under light water reactor (LWR) severe accident conditions. Both experiments were conducted in a highly reducing environment at maximum fuel temperatures of greater than 2400 K. These experiments were designed specifically to investigate the effect of increased total pressure on fission product release; ST-1 was performed at approximately 0.16 MPa and ST-2 was run at 1.9 MPa, whereas other parameters were matched as closely as possible. Release rate data were measured for Cs, I, Ba, Sr, Eu, Te, and U. The release rates were higher than predicted by existing codes for Ba, Sr, Eu, and U. Te release was very low, but Te did not appear to be sequestered by the zircaloy cladding; it was evenly distributed in the fuel. In addition, in posttest analysis a unique fuel morphology (fuel swelling) was observed which may have enhanced fission product release, especially in the high pressure test (ST-2). These data are compared with analytical results from the CORSOR correlation and the VICTORIA computer model. 8 refs., 8 figs., 2 tabs

  14. Conceptual design study of Pebble Bed Type High Temperature Gas-cooled Reactor with annular core structure

    International Nuclear Information System (INIS)

    This report presents the Conceptual Design Study of Pebble Bed Type High Temperature Gas-cooled Reactor with Annular Core Structure. From this study, it is made clear that the thermal power of the Pebble Bed Type Reactor can be increased to 500MW through introducing the annular core structure without losing the inherent safe characteristics (in the coolant depressurization accident, the fuel temperature does not exceed the temperature where the fuel defect begins.) This thermal power is two times higher than the inherent safe Pebble Bed Type High temperature Gas-cooled Reactor (MHTGR) designed in West Germany. From this result, it is foreseen that the ratio of the plant cost to the reactor power is reduced and the economy of the plant operation is improved. The reactor performances e.g. fuel burnup and fuel temperature are maintained in same level of the MHTGR. (author)

  15. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Parma Edward J.

    2016-01-01

    Full Text Available Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity “bucket” environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.

  16. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor

    Science.gov (United States)

    Parma, Edward J.; Naranjo, Gerald E.; Lippert, Lance L.; Vehar, David W.

    2016-02-01

    Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  17. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and...... tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile...

  18. Near-field anomalous spectral behavior in diffraction of a Gaussian pulsed beam from an annular aperture.

    Science.gov (United States)

    Yang, Yuanjie; Zou, Qihui; Li, Yude

    2007-07-20

    Based on the Fresnel diffraction integral and by introducing a hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expression for the near-field spectral intensity distribution of a space-time-dependent Gaussian pulsed beam passing through an annular aperture is derived, which permits us to study the on- and off-axis spectral anomalies that are near phase singularities of the diffracted Gaussian pulsed beam in the near-field. The expressions for a circular black screen and a circular aperture are given as special cases of the general results. The relative spectral shift of a space-time-dependent Gaussian pulsed beam versus the different values of the truncation parameters and the position parameters of observation points are also studied and illustrated with numerical calculations. It is shown that the spectral switch appears near phase singularities in the near-field, and the near-field spectral behavior depends on the truncation parameters, the pulse duration tau, and the position parameter. The results of this work have potential applications in free-space information encoding and transmission. PMID:17609713

  19. Laser anemometer measurements in an annular cascade of core turbine vanes and comparison with theory

    Science.gov (United States)

    Goldman, L. J.; Seashultz, R. G.

    1982-01-01

    Laser measurements were made in an annular cascade of stator vanes operating at an exit critical velocity ratio of 0.78. Velocity and flow angles in the blade to blade plane were obtained at every 10 percent of axial chord within the passage and at 1/2 axial chord downstream of the vanes for radial positions near the hub, mean and tip. Results are presented in both plot and tabulated form and are compared with calculations from an inviscid, quasi three dimensional computer program. The experimental measurements generally agreed well with these theoretical calculations, an indication of the usefulness of this analytic approach.

  20. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    Science.gov (United States)

    Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.

    1994-01-01

    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.

  1. Stability of core-annular flow of power-law fluids in the presence of interfacial surfactant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is

  2. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian;

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow...

  3. Physics and behaviour during a ULOF of an innovative heterogeneous annular FBR core

    International Nuclear Information System (INIS)

    The major conclusions: • The reduction of the Na void worth is a way allowing a strong improvement of the dynamic behavior in very severe ULOF transient (10 s halving time), possibly allowing to avoid Na boiling; • 1st order effects: Na density ( 0); • 2nd order effects: - Mass flow gaggling scheme (as a function of the core neutronics); - Other feed-back effects: diagrid, driveline feed-back. → Very strong impact of uncertainties: Thermalhydraulic models & codes, drive-line feed-back modeling; • Methodology for feed-back coefficient calculation (example: in this calculation the Na density effect is linearized from nominal to 100% void, anticonservative in case of no Na boiling); • Core neutronics: nuclear data, models. → Even in case of no Na boiling, the critical events will be: • Fuel cladding and S/A wrapper behavior at very high temperature; • Upper core structures behavior

  4. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  5. The axisymmetric long-wave interfacial stability of core-annular flow of power-law fluid with surfactant

    Science.gov (United States)

    Sun, Xue-Wei; Peng, Jie; Zhu, Ke-Qin

    2012-02-01

    The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.

  6. Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

    International Nuclear Information System (INIS)

    The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation

  7. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  8. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  9. Design of air-core transformer for pulsed current system

    International Nuclear Information System (INIS)

    In this paper, a strip air-core pulse transformer is designed to convert the current. And, how it works and the process of making is elaborated in detail. The transformer contains leads, insulator, copper strip and supporting core. Under the conditions of the charging voltage 2500 V, 5.52 kA and 1.48 kA peak current of primary and secondary windings are obtained, and correspondingly, the current rising rate is 37 A/μs and 138 A/μs. It is supported by analysis and experiment that the transformer can reduce the requirement of the rising rate of the switching current effectively. So, the thyristor can be used in the pulse current system which has a high current rising rate and improve its performance on repetition and stability. (authors)

  10. Effect of moderator density distribution of annular flow on fuel assembly neutronic characteristics in boiling water reactor cores

    International Nuclear Information System (INIS)

    The effect of the moderator density distribution of annular flow on the fuel assembly neutronic characteristics in a boiling water nuclear reactor was investigated using the SRAC95 code system. For the investigation, a model of annular flow for fuel assembly calculation was utilized. The results of the assembly calculation with the model (Method 1) and those of the fuel assembly calculation with the uniform void fraction distribution (Method 2) were compared. It was found that Method 2 underestimates the infinite multiplication factor in the fuel assembly including the gadolinia rod (type 1 assembly). This phenomenon is explained by the fact that the capture rate in the thermal energy region in gadolinia fuel is estimated to be smaller when the liquid film of annular flow at the fuel rod surface is considered. A burnup calculation was performed under the condition of a void fraction of 65% and a volumetric fraction of the liquid film in liquid phase of 1. It is found that Method 2 underestimates the infinite multiplication factor in comparison to Method 1 in the early stage of burnup, and that Method 2 becomes to overestimate the factor after a certain degree of burnup. This is because Method 2 overestimates the depletion rate of the gadolinia. (author)

  11. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  12. Behavior of an heterogeneous annular FBR core during an unprotected loss of flow accident: Analysis of the primary phase with SAS-SFR

    International Nuclear Information System (INIS)

    In the framework of a substantial improvement on FBR core safety connected to the development of a new Gen IV reactor type, heterogeneous core with innovative features are being carefully analyzed in France since 2009. At EDF R and D, the main goal is to understand whether a strong reduction of the Na-void worth - possibly attempting a negative value - allows a significant improvement of the core behavior during an unprotected loss of flow accident. Also, the physical behavior of such a core is of interest, before and beyond the (possible) onset of Na boiling. Hence, a cutting-edge heterogeneous design, featuring an annular shape, a Na-plena with a B4C plate and a stepwise modulation of fissile core heights, was developed at EDF by means of the SDDS methodology, with a total Na-void worth of -1 $. The behavior of such a core during the primary phase of a severe accident, initiated by an unprotected loss of flow, is analyzed by means of the SAS-SFR code. This study is carried-out at KIT and EDF, in the framework of a scientific collaboration on innovative FBR severe accident analyses. The results show that the reduction of the Na-void worth is very effective, but is not sufficient alone to avoid Na-boiling and, hence, to prevent the core from entering into the primary phase of a severe accident. Nevertheless, the grace time up to boiling onset is greatly enhanced in comparison to a more traditional homogeneous core design, and only an extremely low fraction of the fuel (<0.1%) enters into melting at the end of this phase. A sensitivity analysis shows that, due to the inherent neutronic characteristics of such a core, the gagging scheme plays a major role on the core behavior: indeed, an improved 4-zones gagging scheme, associated with an enhanced control rod drive line expansion feed-back effect, finally prevents the core from entering into sodium boiling. This major conclusion highlights both the progress already accomplished and the need for more detailed future

  13. Granuloma annulare.

    Science.gov (United States)

    Gupta, Diptesh; Hess, Brian; Bachegowda, Lohith

    2010-01-01

    We present a case of a 77-year-old, diabetic male with a 20-year history of a migratory erythematous, asymptomatic, generalized, nonscaly, and nonitchy rash that started over the dorsum of his left hand. On examination, there were multiple annular erythematous plaques, distributed symmetrically and diffusely over his torso and arms, with central clearing and no scales. A punch biopsy of the skin helped us to arrive at the diagnosis of a generalized granuloma annulare (GA). GA is a benign, self-limiting skin condition of unknown etiology that is often asymptomatic. The cause of this condition is unknown, but it has been associated with diabetes mellitus, infections such as HIV, and malignancies such as lymphoma. These lesions typically start as a ring of flesh-colored papules that slowly progress with central clearing. Lack of symptoms, scaling, or associated vesicles helps to differentiate GA from other skin conditions such as tinea corporis, pityriasis rosea, psoriasis, or erythema annulare centrifugum. Treatment is often not needed as the majority of these lesions are self-resolving within 2 years. Treatment may be pursued for cosmetic reasons. Available options include high-dose steroid creams, PUVA, cryotherapy, or drugs such as niacinamide, infliximab, Dapsone, and topical calcineurin inhibitors. PMID:20209383

  14. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian;

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  15. Study of Homogeneous Core Assemblies Using Pulsed Neutron Sources

    International Nuclear Information System (INIS)

    The pulsed neutron technique was there applied to the study of light-water-moderated homogeneous core assemblies, using fissile materials in solution form it is easy to achieve large variations in geometrical buckling and moderation ratio. In the initial series of experiments, the fuel consisted of U235 or U238 in the form of uranyl nitrate. The solution concentrations used varied from 44 to 326 g of uranium per litre. Adoption of a coherent series of cross-sections made it possible to deduce, from the variations in the prompt neutron decay constant as a function of geometrical buckling, data on the non-leakage probability and the slowing-down area. We adopted effective cross-sections calculated on the basis of assimilating light water to a secondary differential thermalizer. Interesting comparisons are made possible by the use of two fissile materials with markedly different η and resonance capture values. In a second series of experiments, devoted mainly to safety measures, we were able to deduce the maximum permissible concentrations in various containers at processing plants by measuring the prompt neutron decay constants in weak plutonium nitrate solutions. (author)

  16. Study of magnetic particles pulse-injected into an annular SPLITT-like channel inside a quadrupole magnetic field.

    Science.gov (United States)

    Hoyos, M; Moore, L R; McCloskey, K E; Margel, S; Zuberi, M; Chalmers, J J; Zborowski, M

    2000-12-01

    Advantages of the continuous magnetic flow sorting for biomedical applications over current, batch-wise magnetic separations include high throughput and a potential for scale-up operations. A continuous magnetic sorting process has been developed based on the quadrupole magnetic field centered on an annular flow channel. The performance of the sorter has been described using the conceptual framework of split-flow thin (SPLITT) fractionation, a derivative of field-flow fractionation (FFF). To eliminate the variability inherent in working with a heterogenous cell population, we developed a set of monodisperse magnetic microspheres of a characteristic magnetization, and a magnetophoretic mobility, similar to those of the cells labeled with a magnetic colloid. The theory of the magnetic sorting process has been tested by injecting a suspension of the magnetic beads into the carrier fluid flowing through the sorter and by comparing the theoretical and experimental recovery versus total flow-rate profiles. The position of the recovery maxima along the total flow-rate axis was a function of the average bead magnetophoretic mobility and the magnetic field intensity. The theory has correctly predicted the position of the peak maxima on the total flow-rate axis and the dependence on the bead mobility and the field intensity, but has not correctly predicted the peak heights. The differences between the calculated and the measured peak heights were a function of the total flow-rate through the system, indicating a fluid-mechanical origin of the deviations from the theory (such as expected of the lift force effects in the system). The well-controlled elution studies using the monodisperse magnetic beads, and the SPLITT theory, provided us with a firm basis for the future sorter evaluation using cell mixtures. PMID:11153960

  17. Behaviour of steel pipe exposed to fouling by heavy oil during core-annular flow; Comportamento de tubo de aco exposto a sujeira de oleo pesado durante escoamento nucleo-anular

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Adriana; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2004-07-01

    The use of water-assisted technologies such as core-annular flow to the pipelines of viscous oils has been proposed as an attractive alternative for production and transportation of heavy crudes in both onshore and offshore scenarios. Usually, core-annular flow can be created by injecting a relatively small water flow rate laterally in the pipe, so as to form a thin water annulus surrounding the viscous oil, which is pumped through the center. The reduction in friction losses obtained thanks to lubrication by water is significant, since the pressure drop in a steady state core flow becomes comparable to water flow only. For a complete assessment of core flow technology, however, unwanted effects associated with possible oil adhesion onto the pipe wall should be investigated, since these may cause severe fouling of the wall and pressure drop increase. It has been observed that oil adhesion on metallic surfaces may occur for certain types of crude and oilphilic pipe materials. In this work we present results of pressure drop monitoring during 35 hour-operation of a heavy oil-water core annular flow in a 26.08 mm. i.d. horizontal steel pipe. The oil used is described in terms of its main components and the results of static wet ability tests are also presented for comparison (author)

  18. Compression of realistic laser pulses in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...... power, duration, and bandwidth. The same conclusion is found for the peak power and energy of solitons formed beyond the point of maximal compression. Long-pass filtering of these solitons is shown to be a promising route to clean solitonlike output pulses with peak powers of several MW....

  19. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  20. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    Science.gov (United States)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  1. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber.

    Science.gov (United States)

    Shirakawa, Akira; Tanisho, Motoyuki; Ueda, Ken-Ichi

    2006-12-11

    Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification as a compressor. The group birefringence of as high as 6.9x10(-4) and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications. PMID:19529631

  2. High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor.

    Science.gov (United States)

    Verhoef, A J; Jespersen, K; Andersen, T V; Grüner-Nielsen, L; Flöry, T; Zhu, L; Baltuška, A; Fernández, A

    2014-07-14

    We demonstrate a monolithic Yb-fiber chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor. For an output energy of 77 nJ, 220 fs pulses with 92% of the energy contained in the main pulse, can be obtained with minimal nonlinearities in the system. 135 nJ pulses are obtained with 226 fs duration and 82 percent of the energy in the main pulse. Due to the good dispersion match of the stretcher to the hollow core photonic bandgap fiber compressor, the duration of the output pulses is within 10% of the Fourier limited duration. PMID:25090494

  3. Annular Flow Distribution test

    International Nuclear Information System (INIS)

    This report documents the Babcock and Wilcox (B ampersand W) Annular Flow Distribution testing for the Savannah River Laboratory (SRL). The objective of the Annular Flow Distribution Test Program is to characterize the flow distribution between annular coolant channels for the Mark-22 fuel assembly with the bottom fitting insert (BFI) in place. Flow rate measurements for each annular channel were obtained by establishing ''hydraulic similarity'' between an instrumented fuel assembly with the BFI removed and a ''reference'' fuel assembly with the BFI installed. Empirical correlations of annular flow rates were generated for a range of boundary conditions

  4. Micro-joule sub-10-fs VUV pulse generation by MW pump pulse using highly efficient chirped-four-wave mixing in hollow-core photonic crystal fibers

    OpenAIRE

    Im, Song-Jin

    2013-01-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10-fs VUV pulses with energy of up to hundreds of microjoule by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate-laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30%. This...

  5. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    Science.gov (United States)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  6. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Young-Sang; Lee, Ki-Suk; Jung, Hyunsung; Choi, Youn-Seok; Yoo, Myoung-Woo; Han, Dong-Soo; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-05-01

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency ωD for a given vortex-state disk of polarization p, such that σ=1/ωD and Δt=π/2p/ωD. The estimated optimal pulse parameters are in good agreement with the experimental results. Finally, this work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  7. LOCA power pulse analysis for CANDU-6 CANFLEX-RU core

    International Nuclear Information System (INIS)

    The power pulses following a large LOCA are analyzed for CANDU-6 reactor core fuelled with CANFLEX-RU fuel. The coupled simulations for reactor physics and channel thermal-hydraulic phenomena are done using RFSP and CATHENA codes. The 55% pump suction, 35% reactor inlet header and 100% reactor outlet header breaks are selected. The highest power pulse is predicted for 100% reactor outlet header break and it is higher than that for the standard 37-element natural fuel. However, the summation of initial stored energy and transient pulse energy of hottest pin has the minimum 17% margin to the fuel break up. Therefore, it is expected that there is no fuel breakup during the LOCA for CANFLEX-RU core

  8. Micro-joule sub-10-fs VUV pulse generation by MW pump pulse using highly efficient chirped-four-wave mixing in hollow-core photonic crystal fibers

    CERN Document Server

    Im, Song-Jin

    2013-01-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10-fs VUV pulses with energy of up to hundreds of microjoule by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate-laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30%. This generation can be realized in kagome-lattice hollow-core PCF filled with noble gas of high pressure with core-diameter less than 40 micrometers which would enable technically simple or highly efficient coupling to fundamental mode of the fiber.

  9. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    OpenAIRE

    Andreas Hoffmann; Michael Zürch; Christian Spielmann

    2015-01-01

    In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6) for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV) spectrum, where total yie...

  10. Numerical investigation on the enhancement capability of annular chimney towards natural convective heat transfer in the interior zone of scaled down FBR core catcher

    International Nuclear Information System (INIS)

    Full text of publication follows: A numerical study has been carried out to determine the influence of annular cylindrical chimney on buoyancy-induced flow in the dished end cavity of scaled down Fast Breeder Reactor. Results are presented for (i) cylindrical chimney configuration and (ii) annular chimney configuration occupying the center of the circular plate. Two dimensional laminar simulations are obtained by solving the fully elliptical governing equations of flow and energy. The fluid is Newtonian and incompressible and satisfies the Boussinesq approximation. Results for the upward facing isothermal circular plate with chimney configurations in confined enclosure are analyzed. The velocity fields and isotherms are studied extensively to assess the impact of both geometries on the flow structure, dynamics and overall heat transfer characteristics in the cavity, towards enhancement of natural convective heat transfer. The predicted results for the cylindrical chimney are compared with known experimental results. The results are of interest to post accident heat removal in fast breeder reactors (FBR). (authors)

  11. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  12. Dependence of core heating properties on heating pulse duration and intensity

    Science.gov (United States)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  13. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian;

    2016-01-01

    setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage......We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...... threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius...

  14. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  15. Stationary light pulses and narrowband light storage in a laser-cooled ensemble loaded into a hollow-core fiber

    CERN Document Server

    Blatt, Frank; Halfmann, Thomas; Peters, Thorsten

    2016-01-01

    We report on the first observation of stationary light pulses and narrowband light storage inside a hollow-core photonic crystal fiber. Laser-cooled atoms were first loaded into the fiber core providing strong light-matter coupling. Light pulses were then stored in a collective atomic excitation using a single control laser beam. By applying a second counterpropagating control beam, a light pulse could be brought to a standstill. Our work paves the way towards the creation of strongly-correlated many-body systems with photons and applications in the field of quantum information processing.

  16. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2015-11-01

    Full Text Available In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6 for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV spectrum, where total yield and spectral selectivity in the XUV are the targets of the optimization approach. The effect of using sulfur hexafluoride for pulse-shaping the XUV yield can be doubled compared to pulse compression and pulse-shaping using argon and the spectral range for selective optimization of a single harmonic can be extended. The obtained results are of interest for extending the range of ultrafast science applications drawing on tailored XUV fields.

  17. Generation of few-cycle laser pulses:Comparison between atomic and molecular gases in a hollow-core fiber

    Institute of Scientific and Technical Information of China (English)

    黄志远; 戴晔; 赵睿睿; 王丁; 冷雨欣

    2016-01-01

    We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM infl uence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advan-tages and drawbacks to obtain the few-cycle pulses with micro-or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.

  18. Criterion of Magnetic Saturation and Simulation of Nonlinear Magnetization for a Linear Multi-core Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    曾正中; 蒯斌; 孙凤举; 丛培天; 邱爱慈

    2002-01-01

    The linear multi-core pulse transformer is an important primary driving source usedin pulsed power apparatus for the production of dense plasma owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data.

  19. Criterion of magnetic saturation and simulation of nonlinear magnetization for a linear multi-core pulse transformer

    International Nuclear Information System (INIS)

    The linear multi-core pulse transformer is an important primary driving source used in pulsed power apparatus for the production of dense plasm owing to its compact, relatively low-cost and easy-to-handle characteristics. The evaluation of the magnetic saturation of the transformer cores is essential to the transformer design, because the energy transfer efficiency of the transformer will degrade significantly after magnetic saturation. This work proposes analytical formulas of the criterion of magnetic saturation for the cores when the transformer drives practical loads. Furthermore, an electric circuit model based on a dependent source treatment for simulating the electric behavior of the cores related to their nonlinear magnetization is developed using the initial magnetization curve of the cores. The numerical simulation with the model is used to evaluate the validity of the criterion. Both the criterion and the model are found to be in agreement with the experimental data

  20. Vibration model of a pressurized water reactor which takes into account the fluid influence in the annular gap between core barrel and pressure vessel

    International Nuclear Information System (INIS)

    A theoretical vibration model of a pressurized water reactor is established and studied which takes into account the fluid-structure interaction of the coupled three-dimensional system reactor pressure vessel-core barrel (reactor cavity). Vibration differential equations are derived only for the two-dimensional movement; the eigenfrequencies and amplitude ratios of the undamped system as well as a dimensionless damping factor of cavity vibrations are calculated with the data of the WWER-440, and discussed. (orig.)

  1. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.

    Science.gov (United States)

    Shephard, Jonathan D; Couny, Francois; Russell, Phillip St J; Jones, Julian D C; Knight, Jonathan C; Hand, Duncan P

    2005-07-20

    We report the delivery of high-energy nanosecond pulses (approximately 65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber, providing the pulse energy and high beam quality required for micromachining of metals. Practical micromachining of a metal sheet by fiber delivery has been demonstrated. PMID:16047910

  2. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser through 200 m core diameter optical fibre

    Indian Academy of Sciences (India)

    Ravindra Singh; Ambar Choubey; R K Jain; S C Vishwakarma; D K Agrawal; Sabir Ali; B N Upadhyaya; S M Oak

    2014-02-01

    Most of today’s industrial Nd:YAG lasers use fibre-optic beam delivery. In such lasers, fibre core diameter is an important consideration in deploying a beam delivery system. Using a smaller core diameter fibre allows higher irradiances at focus position, less degradation of beam quality, and a larger stand-off distance. In this work, we have put efforts to efficiently deliver the laser output of ‘ceramic reflector’-based long pulse Nd:YAG laser through a 200 m core diameter optical fibre and successfully delivered up to 60 J of pulse energy with 90% transmission efficiency, using a GRADIUM (axial gradient) plano-convex lens to sharply focus down the beam on the end face of the optical fibre and fibre end faces have been cleaved to achieve higher surface damage thresholds.

  3. Generalized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Khatri M

    1995-01-01

    Full Text Available A 35-years-old female patient had generalized pruritic papular lesions, distributed like dermatitis herpetiformis for last 4 years. Histopathologic changes were typical of granuloma annulare with negative results of direct immunofluorescence. The patient did not have association of diabetes mellitus or any other systemic disease. She failed to respond to dapsone therapy and 13-cis-retinoic acid.

  4. Oscillating annular liquid membranes

    International Nuclear Information System (INIS)

    The response of annular liquid membranes (e.g. used as protection systems in laser fusion reactors) to sinusoidal mass flow rate fluctuations at the nozzle exit is analyzed as a function of the amplitude and frequency of the axial velocity fluctuations at the nozzle exit and thermodynamic compression of the gas enclosed by the membrane. The pressure of the gases enclosed by the annular membrane and the axial distance at which the annular membrane merges on the symmetry axis are periodic functions of time which have the same period as that of the mass flow rate fluctuations at the nozzle exit. They are also nearly sinusoidal functions of time for small amplitudes of the mass flow rate fluctuations at the nozzle exit, and exhibit delay and lag times with respect to the sinusoidal axial velocity fluctuations at the nozzle exit. The delay and the lag times are functions of the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit and the polytropic exponent. The amplitudes of both the pressure of the gases enclosed by the annular liquid membrane and the convergence length increase and decrease, resp., as the amplitude and frequency of the mass flow rate fluctuations at the nozzle exit, resp., are increased. They also increase as the polytropic exponent is increased. (orig.)

  5. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  6. Determination of the magnetic losses in laminated cores under pulse width modulation voltage supply

    Science.gov (United States)

    Vidal, N.; Gandarias, K.; Almandoz, G.; Poza, J.

    2015-08-01

    In the laminated ferromagnetic cores employed in transformers and electrical machines energy losses occur resulting in a warming effect and efficiency decrease. Normally, manufacturers only provide iron losses data when a sinusoidal voltage supply is applied, but the actual operating characteristics of electrical machines include non-sinusoidal supplies, in particular pulse-width modulation (PWM). This information can be experimentally obtained, but only measuring systems that have function generators with arbitrarily programmable waveforms allow measurements in the presence of higher harmonics. Therefore, having an analytical tool to obtain the most accurate estimation of the magnetic losses is of great interest in addressing the design of electric machines. This paper validates an analytical-expression-based procedure, which delivers results with acceptable accuracy under all operating conditions for the estimation of losses in laminated cores. In addition, it investigates the influence of the modulation amplitude and the switching frequency of the PWM signals in the magnetic losses of soft magnetic materials. For this purpose, non-oriented fully processed electrical steel strips have been measured in a commercial AC permeameter using a single strip tester.

  7. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  8. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that:(1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4)The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that presented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.

  9. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    International Nuclear Information System (INIS)

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 μm. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot

  10. Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber

    Science.gov (United States)

    Zhi-Yuan, Huang; Ye, Dai; Rui-Rui, Zhao; Ding, Wang; Yu-Xin, Leng

    2016-07-01

    We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, 11134010, and 61205208), the National Basic Research Program of China (Grant No. 2011CB808101), and the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800).

  11. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    International Nuclear Information System (INIS)

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities

  12. Diffractive analysis of annular resonators.

    Science.gov (United States)

    Morin, M; Bélanger, P A

    1992-04-20

    The modal properties of annular resonators are investigated by using an approximate version of the Kirchhoff-Fresnel integral. It is shown that the radial diffraction of a thin annular beam with a large inside radius is similar to that of a cylindrical field distribution. This permits the formal demonstration of the equivalence that exists between large Fresnel number annular resonators and infinite strip resonators. The model explains the properties of annular resonators that have been observed either experimentally or numerically by others, such as the lack of azimuthal discrimination. PMID:20720842

  13. Elastic instability in stratified core annular flow

    CERN Document Server

    Bonhomme, Oriane; Leng, Jacques; Colin, Annie

    2010-01-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic -- it is caused by viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  14. Spectral broadening and temporal compression of 100 fs pulses in air-filled hollow core capillary fibers,

    OpenAIRE

    C. Li; Rishad, K.P.M.; Horak, P.; Matsuura, Y.; Faccio, D

    2014-01-01

    We experimentally study the spectral broadening of intense, ~100 femtosecond laser pulses at 785 nm coupled into different kinds of hollow core capillary fibers, all filled with air at ambient pressure. Differently from observations in other gases, the spectra are broadened with a strong red-shift due to highly efficient intrapulse Raman scattering. Numerical simulations show that such spectra can be explained only by increasing the Raman fraction of the third order nonlinearity close to 100%...

  15. Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers.

    Science.gov (United States)

    Li, C; Rishad, K P M; Horak, P; Matsuura, Y; Faccio, D

    2014-01-13

    We experimentally study the spectral broadening of intense, ∼ 100 femtosecond laser pulses at 785 nm coupled into different kinds of hollow core capillary fibers, all filled with air at ambient pressure. Differently from observations in other gases, the spectra are broadened with a strong red-shift due to highly efficient intrapulse Raman scattering. Numerical simulations show that such spectra can be explained only by increasing the Raman fraction of the third order nonlinearity close to 100%. Experimentally, these broadened and red-shifted pulses do not generally allow for straightforward compression using, for example, standard chirped mirrors. However, using special hollow fibers that are internally coated with silver and polymer we obtain pulse durations in the sub-20 fs regime with energies up to 300 μJ. PMID:24515074

  16. Effects of geometrical factors on iron loss increase in wound toroidal cores energized by pulse width modulated voltage sources

    International Nuclear Information System (INIS)

    The pulse width modulated (PWM) inverter power supplies have been used increasingly to drive many electromagnetic devices for various purposes. When typical magnetic cores are energized by such voltage waveforms, additional iron losses occur due to distorted flux waveform. Most of these losses are due to an increase in frequency dependent losses. It should be noted that core geometry may also affect total power loss increase under PWM voltage excitation. This is because of a different magnetization process with respect to sinusoidal excitation. The effects of geometrical factors on magnetic properties of wound toroidal cores made of 3% grain oriented electrical steel were investigated. The results indicated that geometrical factors affect an iron loss increase under PWM voltage excitation as well as under sinusoidal excitation. The aspect ratio is particularly important in this regard

  17. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    International Nuclear Information System (INIS)

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. (paper)

  18. Interfacial friction in cocurrent upward annular flow

    Science.gov (United States)

    Hossfeld, L. M.; Bharathan, D.; Wallis, G. B.; Richter, H. J.

    1982-03-01

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor.

  19. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  20. Development of highly repetitive pulse power system using amorphous metallic cores

    International Nuclear Information System (INIS)

    A new type of pulse power system has been developed to obtain an efficient highly repetitive pulse-power generation. The system is constructed of a double pulse circuit (1st stage), step-up transformer and Blumlein pulse forming line (BL) and can generate high power pulse of 600 kV, 24 kA, 60 ns. In the system, discharge gap switches are replaced by magnetic switches. In addition, instead of Marx generator, a step-up transformer is utilized to generate high voltage pulse. The system is tested under the double pulse mode where two 1st stage capacitors are connected in parallel and switched with a interval of Td. The minimum value of Td is limited by the recovery of 1st stage gap switches and at Td ≥ 500 μs (equivalent rep-rate of 2 kHz), the system is operated with good reproducibility. To enhance the recovery, magnetic switch is utilized, which enables operation at Td ≥ 30 μs (equivalent rep-rate of 33 kHz). (author). 7 figs., 7 refs

  1. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  2. Shaping frequency correlations of ultrafast pulse-pumped modulational instability in gas-filled hollow-core PCF

    CERN Document Server

    Finger, Martin A; Russell, Philip St J; Chekhova, Maria V

    2016-01-01

    We vary the time-frequency mode structure of ultrafast pulse-pumped modulational instability (MI) in an argon-filled hollow-core kagom\\'e-style PCF by adjusting the pressure, pump pulse chirp, fiber length and parametric gain. Compared to solid-core systems, the pressure dependent dispersion landscape brings increased flexibility to the tailoring of frequency correlations. The resulting mode content is characterized by measuring the multimode second-order correlation function g(2) and by directly observing frequency correlations in single-shot MI spectra. We show that, from such measurements, the shapes and weights of time-frequency Schmidt (TFS) modes can be extracted and that the number of modes directly influences the shot-to-shot pulse-energy and spectral-shape fluctuations in MI. Using this approach we are able to change the number of TFS modes from 1.3 (g(2) = 1.75) to 4 (g(2) = 1.25) using only a single fiber.

  3. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  4. Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Highlights: • Pin and assembly lift-off forces are compared between solid and annular fuel. • Annular fuel experiences much stronger uplift forces. • Much stronger hold-down forces are required by annular fuel assembly. • Engineering modifications for hold-down mechanisms are required by annular fuel. - Abstract: In the PWR core, the fuel assembly is firmly seated on the lower core plate during operation. However, if the hydraulic force exerted on the fuel assembly by coolant flow is too large and the fuel assembly is lifted-off from the lower core plate, the excessive vibration will cause fuel failure. Therefore, the hydraulic lift-off issue needs to be addressed when the advanced fuel assembly is developed. It has been shown that the advanced annular fuel design with internal cooling allows power uprating up to 50% while the peak temperature of the fuel can be reduced and the MDNBR can be maintained. However, if the coolant condition in the core is kept unchanged, increasing the core power by 50% requires the core flow rate also increase proportionally, which will give rise to the hydraulic lift-off, an important issue to be addressed. In this paper, taking the 17 × 17 solid fuel design as the reference, the hydraulic lift-off issue is investigated for proposed 12 × 12 and 13 × 13 annular fuel designs. Both the steady-state and start-up operating conditions are evaluated. It is found that the hydraulic lift-off indeed is an issue for annular fuel design which requires careful analysis. By comparison, the lift-off forces and hold-down forces required for the externally and internally cooled annular fuels (13 × 13 and 12 × 12 arrays) are several times larger than that of the referenced solid fuel (17 × 17 array). Therefore, the hold-down mechanism for annular fuel needs to be carefully designed

  5. Digital signal processing of pulse counting and MSV measurement for in-core instrumentation

    International Nuclear Information System (INIS)

    A digital signal processing technique for pulse counting and mean-square-voltage (MSV) measurement were developed for start-up range neutron monitor (SRNM) used in BWR plants. The output pulse of fission detector is sampled at 40 MHz. From these sampled data, digital signal processing directly performs pulse counting and MSV measurement. This processing has the following two key features: (1) digital pulse counting technique, allowing rejection of the error counts induced by external noises, and (2) digital over-sampling technique, allowing MSV measurement to cover the ranges of the measurement required for SRNM. A real-time processing prototype apparatus was manufactured and tested at Toshiba Training Reactor (TTR). This apparatus can demonstrate a successful performance of the digital signal processing for SRNM and make it possible to accurately count only the detector output. (author)

  6. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  7. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  8. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  9. Royer oscillator type pulse triggered switching devices using YBCO and BSCCO HT sub c SC cores. Y kei, Bi kei sankabutsu koon chodendo jishin wo mochiita royer hasshingata pulse kudo switch soshi

    Energy Technology Data Exchange (ETDEWEB)

    950Uchiyama, T.; Shibata, T.; Mori, K. (Nagoya University, Nagoya (Japan). Faculty of Engineering)

    1991-04-30

    This report proposes a new Royer oscillator type pulse triggered switching device using a high temperature superconductor (HT {sub c} SC) core instead of a conventional high transmissivity core, and shows the results of the analyses and the experiments on its on-off properties by pulse current. When a 1A transistor is used, this device with a YBCO or BSCCO core is capable of switching with a turn-on time of 0.13-0.2 micro seconds and a turn-off time 0.1-0.2 micro seconds at 77K. These values are about (1/10) to (1/100) times shorter than those of a transistor switching device with an amorphous ferromagnetic core. This is attributed to the Meissner effect of the superconducting core employed, and high speed on-off operation property can be realized by making the value of inductance to approach to zero. 9 refs., 8 figs., 1 tab.

  10. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    DEFF Research Database (Denmark)

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9...... MPa. It was found that the measured tube film flow rate per unit tube perimeter is always many times greater than the corresponding rod film flow rate. Possible explanations for this asymmetry are discussed....

  11. Simulation of power pulses during large break LOCAs in natural and slightly enriched cores in the Embalse NPP

    International Nuclear Information System (INIS)

    In the frame of a joint technical feasibility study between Nucleoelectrica Argentina and Atomic Energy of Canada of using slightly enriched uranium fuel (with 0.9 w% U235) in Embalse NPP, a CANDU-6, loss of coolant accidents (LOCAs) simulations were performed. The power pulse due to two large breaks were simulated: 35% of a Reactor Inlet Header (RIH) and 80% of a Reactor Outlet Header (ROH). For each break size four simulations were performed for different initial conditions o scenarios and for Natural Uranium (NU) and slightly enriched uranium (SEU) cores. The power transients have been simulated using the 3D diffusion, spatial kinetics neutronic program PUMA (developed in Argentina) and the thermal-hydraulics program CATHENA. These codes were coupled by an iterative methodology. The CATHENA thermal-hydraulic simulation results (fuel temperatures and coolant temperatures and densities) were used as input of the PUMA calculation and the time dependent power distribution calculated by PUMA was later applied as input for a new CATHENA calculation. The process was repeated up to convergence. Single channel models were developed to calculate the relevant three key safety parameters: the maximum transient fuel centerline temperature, the maximum transient sheath temperature and the maximum transient stored energy. The main results of power pulse calculation show that the behavior of the SEU core are similar to the NU one. The result of the three safety parameter values show that in the hypothetical large break LOCA occurrence the fuel channel integrity is maintained. The maximum fuel temperature values are lower than the melting temperature of UO2 , the maximum stored enthalpies are lower than the fuel break-up limit and the maximum sheath temperature are lower than Zircalloy fusion temperature. The values of these safety parameters are similar or slightly lower for the SEU core compared with the NU one. (author)

  12. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin;

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE......-like schemes in general. More importantly, we show gains of up to 4 fold over COPE-like schemes in terms of transmissions per packet in one of the investigated topologies....

  13. Phase flow rate measurements of annular flows

    OpenAIRE

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  14. Supercontinuum Generation with 15-fs Pump Pulses in a Microstructured Fibre with Random Cladding and Core Distributions

    Institute of Scientific and Technical Information of China (English)

    郑义; 张玉萍; 黄小军; 王莉; 王衍勇; 周凯南; 王晓东; 郭仪; 袁晓峰; 周桂耀; 侯蓝田; 侯峙云; 邢广忠; 姚建铨

    2004-01-01

    A supercontinuum extending from 350 nm to more than 1700 nm is generated in microstructured fibre (MF) with randomly distributed air holes in cladding and core by using 15-fs pulses of a 790-nm laser. The maximum total power of the supercontinuum is 63mW with 288mW pump power from a 100× microscope objective. The wavelength and power of visible light ranging in the supercontinuum can be tuned by adjusting the input end of random the MF (to change pump incident point or incident angle). In particular, white light has been observed.The polarization states and waveguide modes of the visible light change with adjustment of the pump incident point or incident angle.

  15. Spin wave mediated unidirectional vortex core reversal by two orthogonal monopolar field pulses: The essential role of three-dimensional magnetization dynamics

    Science.gov (United States)

    Noske, Matthias; Stoll, Hermann; Fähnle, Manfred; Gangwar, Ajay; Woltersdorf, Georg; Slavin, Andrei; Weigand, Markus; Dieterle, Georg; Förster, Johannes; Back, Christian H.; Schütz, Gisela

    2016-05-01

    Scanning transmission x-ray microscopy is employed to investigate experimentally the reversal of the magnetic vortex core polarity in cylindrical Ni81Fe19 nanodisks triggered by two orthogonal monopolar magnetic field pulses with peak amplitude B0, pulse length τ = 60 ps , and delay time Δ t in the range from - 400 ps to + 400 ps between the two pulses. The two pulses are oriented in-plane in the x- and y-directions. We have experimentally studied vortex core reversal as a function of B0 and Δ t . The resulting phase diagram shows large regions of unidirectional vortex core switching where the switching threshold is modulated due to resonant amplification of azimuthal spin waves. The switching behavior changes dramatically depending on whether the first pulse is applied in the x- or the y-direction. This asymmetry can be reproduced by three-dimensional micromagnetic simulations but not by two-dimensional simulations. This behavior demonstrates that in contrast to the previous experiments on vortex core reversal, the three-dimensionality in the dynamics is essential here.

  16. Hydrodynamics of annular-dispersed flow

    International Nuclear Information System (INIS)

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  17. All-fiber 30-μm core diameter Yb-doped pulse-pumped amplifier cascade generating 10 nm-bandwidth 545 kW peak power pulses

    International Nuclear Information System (INIS)

    An electric-pulse-driven super-luminescent diode laser generating 1064 nm wavelength with 37 nm-bandwidth, several nanoseconds pulses at 20 Hz repetition rate was used to seed an amplifier cascade featuring a 30 μm core Yb-doped fiber as the final power amplifier. From this amplifier cascade, we obtained pulse energy from 1.0 to 1.5 mJ depending on different pulse durations with beam quality of M2 1.7; the highest peak power in excess of 545 kW and 10 nm-bandwidth centered at 1064 nm, which is the widest bandwidth of pulsed Yb-doped millijoule fiber amplifier to our knowledge. Moreover, this all-fiber structure has application to many fields

  18. Annular-Efficient Triangulations of 3-manifolds

    CERN Document Server

    Jaco, William

    2011-01-01

    A triangulation of a compact 3-manifold is annular-efficient if it is 0-efficient and the only normal, incompressible annuli are thin edge-linking. If a compact 3-manifold has an annular-efficient triangulation, then it is irreducible, boundary-irreducible, and an-annular. Conversely, it is shown that for a compact, irreducible, boundary-irreducible, and an-annular 3-manifold, any triangulation can be modified to an annular-efficient triangulation. It follows that for a manifold satisfying this hypothesis, there are only a finite number of boundary slopes for incompressible and boundary-incompressible surfaces of a bounded Euler characteristic.

  19. Improvement of image processing algorithms for annular flow

    International Nuclear Information System (INIS)

    Annular flow occurs in a wide range of industrial heat-transfer equipment, including the top of a BWR core, in the steam generator of a PWR, and in postulated accident scenarios including critical heat flux (CHF) by dryout. The modeling of annular flow often requires information regarding the average thickness of liquid film at the periphery of the flow channel as a measurement of film roughness (film roughness concept). More recently, two-region modeling efforts require wave intermittency as a measurement of disturbance wave (as opposed to base film thickness) contribution to gas-to-liquid momentum transfer and pressure loss. The present work focuses on the characterization of film behaviors in annular flow using quantitative visualization. The data reduction codes for planar laser-induced flourescence (PLIF) imaging and back-lit quartz tube imaging have been further developed to improve measurement accuracy. Film thickness distribution (base film and wave), disturbance wave length, and wave intermittency estimates have been updated and applied to a recent two-region annular flow model. Outputs of average film thickness, pressure gradient, and average wave velocity have been modeled with mean absolute errors of 8.70%, 17.42%, and 19.14%, respectively. (author)

  20. Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Chun, Tae-Hyun, E-mail: thchun@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Oh, Dong-Seok, E-mail: dsoh1@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); In, Wang-Kee, E-mail: wkin@kaeri.re.kr [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel array is evaluated. Black-Right-Pointing-Pointer The subchannel analysis code for the dual-cooled annular fuel, MATRA-AF is validated. Black-Right-Pointing-Pointer We evaluate the sensitivity for geometry tolerances and operating parameter. Black-Right-Pointing-Pointer We decide the essential design parameters to uprate the power generation by dual-cooled annular fuel. Black-Right-Pointing-Pointer A thermal margin amount accommodating a 20% power-uprate seems viable. - Abstract: An internally and externally cooled annular fuel was proposed for an advance PWR, which can endure substantial power uprating. KAERI is pursuing the development for a reloading of power uprated annular fuel for the operating PWR reactors of OPR-1000. In this paper, the characteristics and verification of the MATRA-AF are described. The thermal hydraulic performance of a 12 Multiplication-Sign 12 annular fuel is calculated for the major design parameters and its performance is compared against the reference 16 Multiplication-Sign 16 cylindrical fuel assembly. In particular, the enhancements of the thermal hydraulic performance of dual-cooled annular fuel are estimated for the 100% normal power reactor core. The purpose of this study is to estimate a normal power for OPR-1000 with dual-cooled annular fuel, and ultimately to assess the feasibility of 120% core power. The parametric study was carried out for the fuel rod dimension, gap conductance, thermal diffusion coefficients, and pressure loss of the spacer grids. As a result of the analysis on the nominal power, annular fuel showed a sufficient margin available on DNB and fuel pellet temperature relative to cylindrical fuel. The margin amount seems accommodating a 20% power-uprate seems viable.

  1. Laser-induced retinal damage thresholds for annular retinal beam profiles

    Science.gov (United States)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  2. Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C "bomb pulse curve"

    DEFF Research Database (Denmark)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Frei, R.; Heinemeier, J.; Asmund, G.; Lohse, C.; Hansen, T. S.

    2003-01-01

    the "atmospheric bomb pulse," the chronology of Hg accumulation in GL is remarkably similar to the bog in DK where Hg was supplied only by atmospheric deposition: this suggests not only that Hg has been supplied to the surface layers of the minerotrophic core (GL) primarily by atmospheric inputs, but...

  3. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  4. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO2-BeO (5-15 w/o UO2), UC-ZrC-C (200-500 mg U/cc) and U-ZrH1.5. The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO2-BeO and UC-ZrC-C fuel candidates. (author)

  5. Design of intense 1.5-cycle pulses generation at 3.6 µm through a pressure gradient hollow-core fiber.

    Science.gov (United States)

    Huang, Zhiyuan; Wang, Ding; Dai, Ye; Li, Yanyan; Guo, Xiaoyang; Li, Wenkai; Chen, Yun; Lu, Jun; Liu, Zhengzheng; Zhao, Ruirui; Leng, Yuxin

    2016-05-01

    We theoretically study the nonlinear compression of the 10-mJ, 62-fs, 3.6-µm laser pulses in an argon gas-filled hollow-core fiber with large diameter of 1000 µm. Using a pressure gradient to restrict undesirable nonlinear effect such as ionization, especially at the entrance, we obtain the intense 18.3-fs (~1.5 cycle) pulses at 3.6 µm only through compression with CaF2 crystal, which can be used as an ultrafast source for strong field driven experiments. In addition, we calculate and discuss the relation between optimal fiber length and coupling efficiency for a given bandwidth. These results are useful for the design of using hollow-core fiber to compress the high-energy pulses with long wavelength. PMID:27137543

  6. Shut-down margin study for the next generation VVER-1000 reactor including 13 x 13 hexagonal annular assemblies

    International Nuclear Information System (INIS)

    Highlights: → Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated. → The MCNP-5 code is run for many cases with different core burn up at various core temperatures. → There is a substantial drop in SDM in the case of annular fuel for the same power level. → SDM for our proposed VVER-1000 annular pins is calculated for specific average fuel burn up values at the BOC, MOC, and EOC. - Abstract: Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43 MW-days/kg-U, respectively.

  7. Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor.

    Science.gov (United States)

    Chen, Hung-Wen; Sosnowski, Tom; Liu, Chi-Hung; Chen, Li-Jin; Birge, Jonathan R; Galvanauskas, Almantas; Kärtner, Franz X; Chang, Guoqing

    2010-11-22

    We demonstrate a high-energy femtosecond laser system that incorporates two rapidly advancing technologies: chirally-coupled-core large-mode-area Yb-fiber to ensure fundamental-mode operation and high-dispersion mirrors to enable loss-free pulse compression while preserving the diffraction-limited beam quality. Mode-locking is initiated by a saturable absorber mirror and further pulse shortening is achieved by nonlinear polarization evolution. Centered at 1045 nm with 39-MHz repetition rate, the laser emits 25-nJ, positively chirped pulses with 970-mW average power. 6 bounces from double-chirped-mirrors compress these pulses down to 80 fs, close to their transform-limited duration. The loss-free compression gives rise to a diffraction-limited optical beam (M2 = 1.05). PMID:21164816

  8. Safe operation of TRIGA reactor in the situation of LEU-HEU core conversion

    International Nuclear Information System (INIS)

    Romanian TRIGA reactor was commissioned in 1980. The location of the research institute is Pitesti, 100 Km west of Bucharest. In fact there are two independent cores sharing the same pool. There are a 14 MW Steady State Reactor (SSR), high flux, and materials testing reactor and an Annular Core Pulsing Reactor (ACPR). The SSR reactor is a forced convection reactor cooled via a primary circuit with 4 pumps and 3 heat exchangers. The ACPR is natural convection reactor cooled by the pool water. The characteristics of the two reactors are presented. The reactor core configuration is shown as well as the original start-up core configuration. Fuel management of TRIGA steady state core allows obtaining the requested fluxes for experimental purposes in safe operation condition. One can firmly state that the present operation of the reactor and the HEU-LEU (High Enriched Uranium - Low Enriched Uranium), core conversion fully respect the provisions of the National Regulatory Body and IAEA. (authors)

  9. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  10. CFD Simulation of Annular Centrifugal Extractors

    OpenAIRE

    Vedantam, S.; Wardle, K. E.; Tamhane, T. V.; Ranade, V. V.; Joshi, J. B.

    2012-01-01

    Annular centrifugal extractors (ACE), also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of cent...

  11. Granuloma annulare in herpes zoster scars.

    Science.gov (United States)

    Ohata, C; Shirabe, H; Takagi, K; Kawatsu, T

    2000-03-01

    A 54-year-old Japanese female developed granuloma annulare twice in herpes zoster scars. Soon after the second event, she developed ulcerative colitis, which was well controlled by sulfonamides and corticosteroid suppository. She had no history of diabetes mellitus. There was no recurrence of granuloma annulare by June of 1999. Granuloma annulare might have contributed to the complications of ulcerative colitis, although this had not been noticed before. PMID:10774142

  12. Startup testing of Romania dual-core test reactor

    International Nuclear Information System (INIS)

    Late in 1979 both the Annular Core Pulsed Reactor (ACPR) and the 14-MW steady-state reactor (SSR) were loaded to critical. The fuel loading in both was then carried to completion and low-power testing was conducted. Early in 1980 both reactors successfully underwent high-power testing. The ACPR was operated for several hours at 500 kW and underwent pulse tests culminating in pulses with reactivity insertions of $4.60, peak power levels of about 20,000 MW, energy releases of 100 MW-sec, and peak measured fuel temperatures of 830 deg. C. The SSR was operated in several modes, both with natural convection and forced cooling with one or more pumps. The reactor successfully completed a 120-hr full-power test. Subsequent fuel element inspections confirmed that the fuel has performed without fuel damage or distortion. (author)

  13. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts

    NARCIS (Netherlands)

    Mahajan, V.N.; Aftab, M.

    2010-01-01

    The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic comparison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is shown that, unlike the annular coefficients, the circle coefficients generally change as t

  14. An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors

    OpenAIRE

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2010-01-01

    Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations, and metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fuelled cores, where it can enable a power uprate of ~20%; the magnitude ...

  15. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naranjo, Gerald E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lippert, Lance L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma - ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

  16. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  17. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  18. Soliton bunching in annular Josephson junctions

    DEFF Research Database (Denmark)

    Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter;

    1996-01-01

    By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used to...

  19. Bistability and hysteresis of annular impinging jets

    Science.gov (United States)

    Tisovsky, Tomas

    2016-06-01

    In present study, the bistability and hysteresis of annular impinging jets is investigated. Annular impinging jets are simulated using open source CFD code - OpenFOAM. Both flow field patterns of interest are obtained and hysteresis is found by means of dynamic mesh simulation. Effect of nozzle exit velocity on resulting hysteresis loop is also illustrated.

  20. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    Science.gov (United States)

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures. PMID:22418551

  1. Interfacial friction in cocurrent upward annular flow. Final report

    International Nuclear Information System (INIS)

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor

  2. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  3. Power pulse tests on CANDU type fuel elements in TRIGA reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensor for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280cal g-1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (author)

  4. Behavior of CANDU fuel under power pulse conditions at the TRIGA reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensors for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280 cal g-1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (orig.)

  5. Behavior of CANDU fuel under power pulse conditions at the TRIGA reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Dobrea, D.; Parvan, M.; Stefan, V. [Institute for Nuclear Research, Pitesti (Romania)

    2009-04-15

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensors for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280 cal g{sup -1} UO{sub 2}. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (orig.)

  6. Power pulse tests on CANDU type fuel elements in TRIGA reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Ionescu, D.; Olteanu, G. [Inst. for Nuclear Research, Pitesti (Romania)

    2008-07-01

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensor for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280cal g{sup -1} UO{sub 2}. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (author)

  7. Etizolam-induced superficial erythema annulare centrifugum.

    Science.gov (United States)

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  8. Safety and Economics of High Power Density PWR with Novel Annular Fuel

    International Nuclear Information System (INIS)

    The internally and externally cooled annular fuel is a new type of fuel for PWRs that enables an increase in core power density by 50% within the same or better safety margins as the traditional solid fuel. Each assembly of traditional side dimensions has 160 annular fuel rods arranged in a 13x13 array. Even at the much higher power density, the fuel exhibits substantially lower temperatures and a MDNBR margin comparable to that of the traditional solid fuel at nominal (100%) power. Safety analyses indicate that the new annular fuel can accommodate 50% power up-rate in a PWR and still maintain adequate safety margins for a variety of transients and accidents including Loss of Flow Accident, Main Steam Line Break, Large Break Loss of Coolant Accident and Rod Ejection Accident. An economic study of 50% up-rate of an existing 1200 MW(e) PWR using the annular fuel shows that: (1) an Internal Rate of Return (IRR) on the order of 20% or more can be expected from such projects, even when accounting for uncertainties in the fuel price, electricity price inflation and cost of equipment; (2) Gradual replacement of the solid core by annular batches prior to up-rating can improve the IRR by 2.3% to 3.5% as it allows to full use of the energy in two already paid for batches of solid fuel rather than discarding them. Mixing of annular and solid fuel assemblies in one core appears feasible due to similar pressure drop characteristics of both assemblies. (authors)

  9. COVERING A CORE BY EXTRUSION

    Science.gov (United States)

    Karnie, A.J.

    1963-07-16

    A method of covering a cylindrical fuel core with a cladding metal ms described. The metal is forced between dies around the core from both ends in two opposing skirts, and as these meet the ends turn outward into an annular recess in the dics. By cutting off the raised portion formed by the recess, oxide impurities are eliminated. (AEC)

  10. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In...

  11. Production of silver-silica core-shell nanocomposites using ultra-short pulsed laser ablation in nanoporous aqueous silica colloidal solutions

    International Nuclear Information System (INIS)

    Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm; pulse duration: 120 fs; repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm  −  2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV–vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV–vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure

  12. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  13. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    CERN Document Server

    Bromberger, H; Belli, F; Liu, H; Calegari, F; Chavez-Cervantes, M; Li, M T; Lin, C T; Abdolvand, A; Russell, P St J; Cavalleri, A; Travers, J C; Gierz, I

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  15. Developments in fabrication of annular MOX fuel pellet for Indian fast reactor

    International Nuclear Information System (INIS)

    Mechanical rotary presses along with adoption of core rod feature were inducted for fabrication of intricate annular Mixed Oxide (MOX) pellets for Prototype Fast Breeder Reactor (PFBR). In the existing tooling, bottom plungers contain core rod whereas top plungers contain a central hole for the entry of core rod during compaction. Frequent manual clean up of top plungers after few operations were required due to settling of powder in the annular hole of top plungers during compaction. Delay in cleaning can also result in breakage of tooling apart from increase in the dose to extremities of personnel. New design of tooling has been introduced to clean up the top plungers online during the operation of rotary press. It leads to increase in the productivity, reduces the spillage of valuable nuclear material and also reduces man-rem to operators significantly. The present paper describes the modification in tooling design and compaction sequence established for online cleaning of top plungers. (author)

  16. Dual annular rotating open-quotes windowedclose quotes nuclear reflector reactor control system

    International Nuclear Information System (INIS)

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures

  17. CFD Simulation of Annular Centrifugal Extractors

    Directory of Open Access Journals (Sweden)

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  18. Instability patterns in a miscible core annular flow

    Science.gov (United States)

    D'Olce, Marguerite; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique; Talon, Laurent

    2006-11-01

    Laboratoire FAST, batiment 502, campus universitaire, 91405 Orsay Cedex (France). Experiments are performed with two miscible fluids of equal density but different viscosities. The fluids are injected co-currently and concentrically into a cylindrical pipe. The so-obtained base state is an axisymmetric parallel flow, for which the ratio of the flow rates of the two fluids monitors the relative amount (and so the radius) of the fluids. Depending on this relative amount and on the total flow rate of the fluids, unstable axisymmetric patterns such as mushrooms and pearls are observed. We delineate the diagram of occurrence of the two patterns and characterize the instabilities.

  19. Annular bilayer magnetoelectric composites: theoretical analysis.

    Science.gov (United States)

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  20. Mathematical model for multicomponent separations on the continuous annular chromatograph

    International Nuclear Information System (INIS)

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally

  1. Mathematical model for multicomponent separations on the continuous annular chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  2. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Shin, C. H.; Bang, J. G.; Kim, D. H.; Kim, S. K.; Lim, I. S.; Koo Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2010-09-15

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  3. Development of Dual Cooled Annular Fuel Temperature Analysis Program

    International Nuclear Information System (INIS)

    To calculate the temperature distribution of dual cooled annular fuel, the DUOS program has been developed. Various thermal hydraulic models to determine the inner channel and outer channel flow distribution were established based on equal pressure drop condition at the top of fuel rod. The effect of gap width change was considered by employing thermal deformation model of pellet and claddings. Heat conduction model in the pellet was solved by finite difference method to consider burnup and power difference according to pellet radius. Pellet temperature model was validated by comparison with calculated temperature profile, which was determined by analytical solution of heat conduction equation under controlled input condition. Accuracy of thermal hydraulic models of DUOS were validated by core sub-channel analysis code MATRA-AF. Coolant bulk temperature of inner/outer channel and pressure drop prediction results of DUOS program show good agreement with that of MATRA-AF. Further models should be added in DUOS program to describe dual cooled annular fuel in-pile behavior, but basic thermal analysis structure has been established successfully

  4. Stitching algorithm for annular subaperture interferometry

    Institute of Scientific and Technical Information of China (English)

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen

    2006-01-01

    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  5. Z-pinch of an annular gas jet

    International Nuclear Information System (INIS)

    The implosion and thermalization of an annular argon plasma is investigated. The plasma is produced by the z-pinch of an annular jet of argon gas, using a marx bank-transmission line system which delivers a peak current of 415 kA in 200 ns. The annulus implodes from its initial diameter of 2.5 cm and reaches a peak velocity of approx.2.8 x 107 cm/sec. Measurements of the plasma's radius, thickness, electron density, and average ionization state as a function of time are performed. When the imploding plasma reaches the axis, an 8 ns pulse of soft (0.1-1 keV) x rays is emitted. X rays with energies between 1 and 6 keV are also observed, and are emitted in a single pulse 2 to 5 ns wide. The thermalized plasma is inhomogeneous along the axial direction; vacuum ultraviolet spectroscopy indicates that some regions are approx.270 eV, with Ar XIV in abundance, while x-ray spectroscopy indicates that other regions of the plasma have only highly ionized argon (XVI-XVIII). Although a thermal interpretation of the x-ray spectra would indicate an electron temperature of approx.1 keV, there is evidence that an energetic beam of electrons develops in the thermalized plasma. When this beam is included in the analysis of the x-ray spectra, it is found that the temperature in the hot spots could be as low as 400 eV. The electron density in the thermalized plasma is estimated to be greater than or equal to 1020 cm-3

  6. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  7. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  8. Two-phase flow characteristic of inverted bubbly, slug, and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-critical heat flux (CHF) flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point

  9. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs

  10. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...

  11. Azimuthally forced flames in an annular combustor

    Science.gov (United States)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  12. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  13. Annular superconducting tunnel junction detectors: Experimental results under X-ray illumination

    International Nuclear Information System (INIS)

    We present an experiment detecting X-rays by an annular Nb-based Superconducting Tunnel Junction (STJ). In one magnetic field configuration, we stably trapped a single magnetic fluxon in the STJ barrier during the transition to the superconducting state. This is an innovative configuration which avoids the use of an externally applied field during detector operation. This offers potential benefits for STJs used in imaging arrays. In this configuration, and also in the conventional one with an externally applied parallel magnetic field, we observed current pulses produced by single 6 keV X-rays. The pulses were identical for both configurations

  14. Management of Periocular Granuloma Annulare Using Topical Dapsone

    Science.gov (United States)

    Patel, Mayha; Shitabata, Paul; Horowitz, David

    2015-01-01

    Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321

  15. Non newtonian annular alloy solidification in mould

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)

    2012-08-15

    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  16. Performance of annular high frequency thermoacoustic engines

    Science.gov (United States)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  17. Annular Alopecia Areata: Report of Two Cases

    OpenAIRE

    Bansal, Manish; Manchanda, Kajal; Pandey, SS

    2013-01-01

    Alopecia areata (AA) is an auto-immune disorder characterized by the appearance of non-scarring bald patches affecting the hair bearing areas of the body. Scalp is the most common site of involvement. AA can affect any age group. The usual pattern of the hair loss is oval or round. We hereby, report two cases of annular and circinate pattern of AA due to its unusual morphology.

  18. Annular pancreas associated with duodenal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Enrico; Bronnimann; Silke; Potthast; Tatjana; Vlajnic; Daniel; Oertli; Oleg; Heizmann

    2010-01-01

    Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancre...

  19. Vibration analysis of annular-like plates

    Science.gov (United States)

    Cheng, L.; Li, Y. Y.; Yam, L. H.

    2003-05-01

    The existence of eccentricity of the central hole for an annular plate results in a significant change in the natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like plates is presented based on numerical and experimental approaches. Using the finite element analysis code Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated systematically through both global and local analyses. The results show that analyses for perfect symmetric conditions can still roughly predict the mode shapes of "recessive" modes of the plate with a slightly eccentric hole. They will, however, lead to erroneous results for "dominant" modes. In addition, the residual displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like structures. Experimental modal analysis on a clamped-free annular-like plate is performed, and the results obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on modal analysis, vibration measurement and damage detection of plate-like structures.

  20. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  1. Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers

    International Nuclear Information System (INIS)

    In this paper, a nonlinear free vibration analysis of a thin annular functionally graded (FG) plate integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the annular FG plate is presented based on Kirchhoff plate theory. The material properties of the functionally graded core plate are assumed to be graded in the thickness direction according to the power law distribution in terms of the volume fractions of the constituents and the distribution of the electric potential field along the thickness direction of piezoelectric layers is simulated by a sinusoidal function such that the Maxwell static electricity equation is satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. The analytical solutions are derived and validated by comparing the obtained resonant frequencies of the piezoelectric coupled FG annular plate with those of an isotropic core plate. In a numerical study the emphasis is placed on investigating the effect of varying the gradient index of the FG plate on the free vibration characteristics of the structure. Also the good agreement between the results of this paper and those of the finite element (FE) analyses validated the presented approach

  2. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl2

    International Nuclear Information System (INIS)

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl2 solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV–vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl2 solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl2 solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  3. Effect of Annular Slit Geometry on Characteristics of Spiral Jet

    Institute of Scientific and Technical Information of China (English)

    Shigeru Matsuo; Kwon-Hee Lee; Shinsuke Oda; Toshiaki Setoguchi; Heuy-Dong Kim

    2003-01-01

    A spiral flow using an annular slit connected to a conical cylinder does not need special device to generate a tangential velocity component of the flow and differs from swirling flows. Pressurized fluid is supplied to an annular chamber and injected into the convergent nozzle through the annular slit. The annular jet develops into the spiral flow. In the present study, a spiral jet discharged out of nozzle exit was obtained by using a convergent nozzle and an annular slit set in nozzle inlet, and the effect of annular slit geometry on characteristics of the spiral jet was investigated by using a Laser Doppler Velocimeter (LDV) experimentally. Furthermore, velocity distributions of the spiral jet were compared with those of a normal jet.

  4. Ultrasonogrphic diagnosis of snapping annular ligament in the elbow

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jee Won; Kim Su Jin; Lim, Hyun Kyong; Bae, Kee Jeong [SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-01-15

    Elbow snapping by annular ligament is rare and may be difficult to diagnose, when this Epub ahead of print condition is not familiar. We report a case of elbow snapping by annular ligament diagnosed by ultrasonography, which was confirmed by arthroscopic observation. The ultrasonographic findings were thickening of the annular ligament and snapping in and out of the radiocapitellar joint during elbow flexion and extension on dynamic ultrasonography.

  5. Granuloma annulare localized to the shaft of the penis

    DEFF Research Database (Denmark)

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  6. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach

    International Nuclear Information System (INIS)

    Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate

  7. Thread-annular flow in vertical pipes

    Science.gov (United States)

    Frei, Ch.; Lüscher, P.; Wintermantel, E.

    2000-05-01

    Thread injection is a promising method for different minimally invasive medical applications. This paper documents an experimental study dealing with an axially moving thread in annular pipe flow. Mass flow and axial force on the thread are measured for a 0.46 mm diameter thread in pipes with diameters between 0.55 and 1.35 mm. The experiments with thread velocities of up to 1.5 ms[minus sign]1 confirm the findings of theoretical studies that for clinical requirements the radius ratio between thread and pipe is crucial for the adjustments of mass ow and force on the thread.

  8. Deep variant of Erythema Annulare Centrifugum

    OpenAIRE

    Ahu Yorulmaz; Ferda Artuz; Devrim Tuba Unal

    2014-01-01

    A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1). It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1).

  9. Deep variant of Erythema Annulare Centrifugum

    Directory of Open Access Journals (Sweden)

    Ahu Yorulmaz

    2014-10-01

    Full Text Available A 29-year-old woman came to our outpatient clinic with a several-month history of itchy red lesions over her trunk. There was no family history and past history of any other diseases or medication. Dermatological examination revealed annular and oval-shaped plaques up to several cm’s in size, one of which was polycyclic in configuration, on back of the patient (Fig. 1. It was also noticed that lesions had erythematous indurated bordes with paler central areas (Fig. 1.

  10. Visualization of the annular synthetic jet

    Czech Academy of Sciences Publication Activity Database

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    Praha: Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 13-16 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012. Praha (CZ), 15.02.2012-17.02.2012] R&D Projects: GA AV ČR(CZ) IAA200760801; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * annular jet * visualization Subject RIV: BK - Fluid Dynamics

  11. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  12. Air-water countercurrent annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    1979-09-01

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes.

  13. Annular diffraction of very unstable light nuclei

    International Nuclear Information System (INIS)

    Because they are brittle, unstable light nuclei can produce an annular diffraction pattern observed on their decay products with large cross sections. With such a simple model, the 9Li angular distribution observed in the 11Li fragmentation have been reproduced together with the reaction cross-section and the fragmentation yield provided recoil effects from neutron emission are included. It results that for this projectile and for light targets, diffraction is the main source of transverse momentum for 9Li whereas for neutrons it originates from its emission energy in the 11Li center of mass

  14. Air-water countercurrent annular flow

    International Nuclear Information System (INIS)

    Countercurrent annular flow of air and water in circular tubes of diameters ranging from 6.4 to 152 mm is investigated. Experimental measurements include liquid fraction, pressure gradients and countercurrent gas and liquid fluxes. Influences of tube end geometries on the countercurrent fluxes are isolated. Analogies between countercurrent flow, open channel flow, and compressible flow are established. Interfacial momentum transfer between the phases are characterized by empirical friction factors. The dependence of interfacial friction factors on tube diameter is shown to yield a basis for extending the present results to larger tubes

  15. Detonation diffraction from an annular channel

    Science.gov (United States)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  16. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    Science.gov (United States)

    2010-05-04

    ... Recommended Practice (RP) 90. As explained in API RP 90, Section 3, Annular Casing Pressure Management Program... Institute's Recommended Practice for managing annular casing pressure. New regulations are needed because... Continental Shelf lessees to follow best industry practices for wells with sustained casing pressure....

  17. Obtention of an empirical equation for annular channels

    International Nuclear Information System (INIS)

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  18. Effect of annular secondary conductor in a linear electromagnetic stirrer

    Indian Academy of Sciences (India)

    R Madhavan; V Ramanarayanan

    2008-10-01

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder. Experimental and numerical simulations are performed for a 2-pole in house built 15 kW linear electromagnetic stirrer (EMS). It is observed for a supply current of 200 A at 30 Hz the force densities in the hollow annular ring is 67% higher than the equivalent solid cylinder. The same values are 33% for annular ring with a solid cylinder. Force density variation with supply frequency and current are also reported. Numerical simulations using finite element model are validated with experimental results.

  19. Thermal-hydraulic design calculations for the annular fuel element with replaceable test bundles (TOAST) on the test zone position 205 of KNK II/3

    International Nuclear Information System (INIS)

    Annular fuel elements are foreseen in KNK II as carrier elements for irradiation inserts and test bundles. For the third core a reloadable annular element on position 205 is foreseen, in which replaceable 19-pin test bundles (TOAST) shall be irradiated. The present report deals with the thermal-hydraulic design of the annular carrier element and the test bundle, whereby the test bundle required additional optimization. The code CIA has been used for the calculations. Start of irradiation of the subassembly is planned at the beginning of the third core operation. After optimization of the pin-spacer geometry in the test bundle, design calculations for both bundles were performed, whereby thermal coupling between both was taken into account. The calculated mass-flows and temperature distributions are given for the nominal and the eccentric element configuration. The calculated bundle pressure losses have been corrected according to experimental results

  20. Dual-core TRIGA research and materials testing reactor

    International Nuclear Information System (INIS)

    General Atomic Company is under contract from the Romanian Institute for Nuclear Technologies to design, fabricate, and install a research reactor in support of the Romanian National Program for Power Reactor Development. The goal was to select a design concept that provided reasonably high neutron fluxes for long term testing of various fuel-cladding-coolant combinations and also provide high performance pulsing for transient testing of fuel specimens. An effective solution was achieved by the selection of a 14 MW steady-state TRIGA reactor for high flux endurance testing, and an Annular Core Pulsing Reactor (ACPR) for high performance pulsing testing, with both reactors mounted in the same reactor tank and operated independently. The fuel bundles for the steady-state reactor consist of 25 uranium-zirconium hydride rods clad in stainless steel arranged in a square 5 x 5 array. The steady-state core is provided with downflow cooling at a rate of approximately 275 gpm/bundle. Bundle flow tests will be performed with both heated and unheated models. The core will be optimized for peak thermal neutron flux and reactivity lifetime within the constraint of a peak fuel meat temperature of 7500C. The operation of the steady-state reactor at a power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position of 2.9 x 1014 n/cm2-sec. The corresponding fast neutron flux (less than 1.125 keV) will be 2.6 x 1014 nv. (U.S.)

  1. Dual-Band Annular-Ring Microstrip Patch Antenna for Satellite Applications

    Directory of Open Access Journals (Sweden)

    Tvs Divakar

    2014-08-01

    Full Text Available A dual-band circularly polarized antenna fed by four apertures that covers the bands of GPS, Galileo, is introduced. The ARSAs designed using FR4 substrates in the L and S bands have 3-dB axial-ratio bandwidths (ARBWs of as large as 37% and 52%, respectively, whereas the one using an RT5880 substrate in the L band, 61%. In these 3-dB axial-ratio bands, impedance matching with VSWR<=1.8 is also achieved. Three wideband planar baluns are used to achieve good axial ratio and VSWR. The results of the annular-ring microstrip antenna show good performance of a dual-band operation, which meets the requirement of Global Navigation Satellite System (GNSS applications.

  2. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays. PMID:27610860

  3. The development of an annular-beam, high power free-electron maser for future linear colliders

    International Nuclear Information System (INIS)

    Work is underway to develop a 17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. We plan to use a 500 keV, 5 kA, 6-cm-dia annular electron beam to excite a TM02 mode Raman FEM amplifier in a corrugated cylindrical waveguide. The annular beam will run close to the interaction device walls to reduce the power density in the fields, and to greatly reduce the kinetic energy loss caused by beam potential depression associated with the space charge which is a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. A key advantage of the annular beam is that the reduced plasma wave number can be tuned to achieve phase stability for an arbitrary correlation of interaction strength with beam velocity. It should be noted that this technique for improving phase stability of an FEM is not possible with a solid beam klystron. The annular beam FEM provides the opportunity to extend the output power of sources in the 17 GHz regime by well over an order of magnitude with enhanced phase stability. The design and experimental status are discussed. (author)

  4. A study of annular flows with bubbles in the liquid ring and entrained droplets by means of stochastic analysis techniques

    International Nuclear Information System (INIS)

    By employing stochastic analysis techniques, an experimental study of a large number of annular flows with bubbles in the liquid ring and entrained droplets has been undertaken in the experimental air-water loop FREDLI, in which the information carrier is two visible light beams crossing the diameter of the tube and modulated by the scattering of the photons at the randomly arriving interfaces; also, some earlier neutron noise measurements in the upper part of a commercial BWR core are carefully analyzed. For the BWR measurements, it is shown for the first time that in the upper part of the core, there are usually three peaks in the cross-correlation function and that all noise analytic functions look extraordinarily similar to the corresponding noise analytic functions of some of the investigated annular flows at the FREDLI loop; a plausible explanation of these findings is given. (Auth.)

  5. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.;

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  6. Interfacial friction in cocurrent upward annular flow. Final report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hossfeld, L.M.; Bharathan, D.; Wallis, G.B.; Richter, H.J.

    1982-03-01

    Cocurrent upward annular flow is investigated, with an emphasis on correlating and predicting pressure drop. Attention is given to the characteristics of the liquid flow in the film, and the interaction of the core with the film. Alternate approaches are discussed for correlating suitably defined interfacial friction factors. Both approaches are dependent on knowledge of the entrainment in order to make predictions. Dimensional analysis is used to define characteristic parameters of the flow and an effort is made to determine, to the extent possible, the influences of these parameters on the interfacial friction factor.

  7. Detection and analysis of transition from annular to intermittent flow in vertical tubes

    International Nuclear Information System (INIS)

    In vertical co-current gas-liquid flow, the transition from annular to intermittent flow occurs when gas core becomes interrupted by liquid bridges due to the instability of the interfacial capillary waves. An analytical model is formulated to explain the liquid bridging in terms of the growth of finite amplitude interfacial capillary waves. Experimental results show that the longest wave length, which is associated with the transition, is about eight times the wave length of waves moving with the velocity of the liquid film. (author). 12 refs., 8 figs

  8. Effect of entrained liquid on turbulent mixing rate between subchannels in annular two-phase flows

    International Nuclear Information System (INIS)

    Turbulent mixing rates of gas and liquid phases between the subchannels have been measured for various air-water two-phase annular flows in a multiple channel consisting of the two identical circular subchannels. In order to study effect of entrained liquid in the gas core on the turbulent mixing rates, experiments were conducted for two types of liquid injection method, i.e., a small bore nozzle placed in the subchannel center and a porous wall, at a fixed gas injection method. The result showed that the effect of entrained liquid on the turbulent mixing rates of both phases is negligibly small. (author)

  9. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow

    International Nuclear Information System (INIS)

    Highlights: ► New method to predict the entrained liquid fraction in annular two-phase flow. ► Circular and non-circular tubes, adiabatic and evaporating conditions covered. ► Large underlying experimental database (2460 points). ► New method explicit and fully stand-alone. ► New method based on just 1 dimensionless group: the core flow Weber number. - Abstract: A new method to predict the entrained liquid fraction in annular two-phase flow is presented. The underlying experimental database contains 2460 data points collected from 38 different literature studies for 8 different gas–liquid or vapor–liquid combinations (R12, R113, water–steam, water–air, genklene–air, ethanol–air, water–helium, silicon–air), tube diameters from 5.0 mm to 95.3 mm, pressures from 0.1 to 20.0 MPa and covers both adiabatic and evaporating flow conditions, circular and non-circular channels and vertical upflow, vertical downflow and horizontal flow conditions. Annular flows are regarded here as a special form of a liquid atomization process, where a high velocity confined spray, composed by the gas phase and entrained liquid droplets, flows in the center of the channel dragging and atomizing the annular liquid film that streams along the channel wall. Correspondingly, the liquid film flow is assumed to be shear-driven and the energy required to drive the liquid atomization is assumed to be provided in the form of kinetic energy of the droplet-laden gas core flow, so that the liquid film–gas core aerodynamic interaction is ultimately assumed to control the liquid disintegration process. As such, the new prediction method is based on the core flow Weber number, representing the ratio of the disrupting aerodynamic force to the surface tension retaining force, a single and physically plausible dimensionless group. The new prediction method is explicit, fully stand-alone and reproduces the available data better than existing empirical correlations, including in

  10. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    Directory of Open Access Journals (Sweden)

    Shaohui Liu

    2013-10-01

    Full Text Available We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP. Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients.

  11. Stability of cantilevered coaxial shells with internal and annular flow

    International Nuclear Information System (INIS)

    This paper is a theoretical study of the stability of cantilevered coaxial cylindrical shells conveying incompressible fluid in the annular space in- between and within the inner shell. The viscous effects of the mean flow are taken into account, but the perturbations of the equilibrium state on the basis of which stability is assessed is carried out by means of potential flow theory, thus neglecting unsteady viscous effects which are known to become important for narrow annular flows. Shell displacements are described by Flugge's equations of motion. Solution of the coupled fluid-structure equations is carried out by means of the Fourier Transform Method. The main finding of this research is that stability is lost by flutter for internal flow, according to both the inviscid and viscous variants of the theory; for annular flow, however, whereas inviscid theory predicts loss of stability by flutter, viscous theory (with dissipative effects included) predicts that the shell loses stability by divergence and then, at appreciably higher flow, by flutter. Reduction of the annular gap generally destabilizes the system; while increased steady viscous effects slightly stabilize the system for internal flow, they strongly destabilize it for annular flow. Increasing the length of the shell destabilizes the system for both internal and annular flows. The presence of internal flow in addition to annular flow tends to stabilize the system vis-a-vis the case of annular flow, but only at low flow velocities, having the opposite effect at higher flows; the same effects arise when the main flow is internal and an annular flow added to the system

  12. Detonation Initiation by Annular Jets and Shock Waves

    OpenAIRE

    Shepherd, Joseph E.

    2005-01-01

    The objective of this research is to experimentally determine the feasibility of initiating detonation in fuel-air mixtures using only the energy in hot, compressed air. The existing 6-inch shock tube at Caltech was used to create hot, high-pressure air behind a reflected shock wave. The hot air created an imploding annular shock wave when it jetted through an annular orifice into a 76-mm-diameter, 1-m-long tube attached to the end of the shock tube. A special test section with an annular ...

  13. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  14. Nonlinear Femtosecond Pulse Reshaping in Waveguide Arrays

    OpenAIRE

    Darren D. Hudson; Shish, Kimberlee; Schibli, Thomas R.; Kutz, J. Nathan; Christodoulides, Demetrios N.; Morandotti, Roberto; Cundiff, Steven T.

    2008-01-01

    We observe nonlinear pulse reshaping of femtosecond pulses in a waveguide array due to coupling between waveguides. Amplified pulses from a mode-locked fiber laser are coupled to an AlGaAs core waveguide array structure. The observed power-dependent pulse reshaping agrees with theory, including shortening of the pulse in the central waveguide.

  15. Assessment of Inner Channel Blockage on the Annular Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; In, W. K.; Oh, D. S.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A dual-cooled annular fuel for a pressurized water reactor (PWR) has been introduced for a significant amount of reactor power uprate. The Korea Atomic Energy Research Institute (KAERI) has been performing a research to develop a dual-cooled annular fuel for the power uprate of 20% in an optimized PWR in Korea, OPR1000. An inner channel blockage is principal one of technical issues of the annular fuel rod. The inner channel in an annular fuel is isolated from the neighbor channels unlike the outer channels. The inner channel will be faced with a DNB accident by the partial blockage. In this paper, the largest fractional channel blockage was assessed by subchannel analysis code MATRA-AF and an end plug design to complement inlet blockage of inner channel was estimated by CFD code, CFD-ACE

  16. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  17. Principle of radial transport in low temperature annular plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Bldg 60, Mills Road, Australian Capital Territory 2601 (Australia)

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  18. Annular-intermittent flow regime transition model and its application to boil-off pattern transition and dryout model

    International Nuclear Information System (INIS)

    A model is developed to describe the transition of annular flow to intermittent flow in a vertical two-phase flow system. The instability of the disturbance wave, which is a dominant wave shape at the boundary between annular flow and intermittent flow, is considered as the governing mechanism and this instability is described by the concept of hyperbolicity breaking in the characteristic equation. The developed model is validated by comparing its predictions of gas superficial velocity for the transition with the experimental data available from the literature, and comparing those with the predictions of the other correlations. The comparison results show that the developed model gives better predictions for the transition condition than the existing correlations and the effects of fluid properties, geometry and liquid flow rate on the transition are well considered by the developed model. It is found that the predictions of the developed model have much smaller bias than those of the other correlations; the average of the prediction error is 3% for the present model. The standard deviation of the prediction errors of the present model reaches 28%, which is the smallest among the models compared here. Through the core uncovery experiments, it has been known that the low power and high power core boil-off patterns are observed in the high pressure core uncovery following a small-break loss-of-coolant accident. The developed model for the annular to intermittent flow regime transition was applied to the classification of low power boil-off and high power boil-off patterns. At first, the applicability of the developed criterion to the rod-bundle geometry is demonstrated using the flow pattern transition data taken by Bergles et al. and Venkateswararao. It is shown that the developed criterion well predicts the boundary between low power boil-off and high power boil-off through the comparisons of the predicted annular to intermittent flow transition conditions with

  19. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    OpenAIRE

    Rishi Hassan; P Arunprasath; Padmavathy, L.; K Srivenkateswaran

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the clas...

  20. Annular bright and dark field imaging of soft materials

    International Nuclear Information System (INIS)

    Here polyethylene, as an example of an important soft material, was studied by STEM annular bright and dark field. The contrast as function of the probe size/shape and the detector collection angle are discussed. The results are compared to conventional bright field transmission electron microscopy, electron energy filtered imaging and energy dispersive spectroscopy mapping. Annular bright and dark field gave a higher contrast than conventional transmission and analytical mapping techniques

  1. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    Science.gov (United States)

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices. PMID:26903412

  2. Fabrication and Resintering of Annular UO2 Pellet

    International Nuclear Information System (INIS)

    Nuclear fuel is one of the most important components in a PWR affecting its safety and economy. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 800 μm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. Recently, Massachusetts Institute of Technology (MIT) has proposed an annular UO2 fuel with an internal cooling of each fuel rod. Annular fuel pellets with a voided central region have been used in VVER reactors without an internal cooling. Annular fuels with both internal and external cooling have been proposed for high temperature gas cooled reactors. However, commercial PWR reactors have not used such annular internally and externally cooled fuel rods, yet. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimension tolerance and the thermal stability of a pellet are very important from the viewpoint of fabrication technology, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In this study, annular UO2 pellets with various densities were fabricated and then a resintering test was conducted. The changes of dimension and density of the sintered pellets were characterized

  3. Sonographic evaluation of digital annular pulley tears

    International Nuclear Information System (INIS)

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  4. Annular burnout data from rod bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests

  5. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  6. The numerical calculation of heat transfer performance for annular flow of liquid nitrogen in a vertical annular channel

    Science.gov (United States)

    Sun, Shufeng; Wu, Yuyuan; Zhao, Rongyi

    2001-04-01

    According to a separated phase flow model for vertical annular two-phase flow in an annular channel, the liquid film thickness, distributions of velocities and temperatures in the liquid layer are predicted in the range of heat fluxes: 6000-12000 W/m 2, mass flux: 500-1100 kg/m2 s. The pressure drop along the flow channel and heat transfer coefficient are also calculated. The liquid film thickness is in the order of micrometers and heat transfer coefficient is 2800-7800 W/m2 K of liquid nitrogen boiling in narrow annular channels. The measured heat transfer coefficient is 29% higher than the calculated values. With the mass flux increasing and the gap of the annular channel decreasing, pressure drop and heat transfer coefficient increase.

  7. A two-dimensional parabolic model for vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br

    2010-07-01

    This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)

  8. X-ray diffraction from bone employing annular and semi-annular beams

    International Nuclear Information System (INIS)

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. (paper)

  9. Sea Carousel—A benthic, annular flume

    Science.gov (United States)

    Amos, Carl L.; Grant, J.; Daborn, G. R.; Black, K.

    1992-06-01

    A benthic annular flume (Sea Carousel) has been developed and tested to measure in situ the erodibility of cohesive sediments. The flume is equipped with three optical backscatter sensors, a lid rotation switch, and an electromagnetic (EM) flow meter capable of detecting azimuthal and vertical components of flow. Data are logged at rates up to 10·66 Hz. Erodibility is inferred from the rate of change in suspended sediment concentration detected in the annulus. The energy-density/wave number spectrum of azimuthal flow showed peaks in the energy spectrum at paddle rotation wave numbers (k) of 14 and 7 m -1 (macroturbulent time scales) but were not significant. Friction velocity ( U*), measured (1) at 1 Hz using a flush-mounted hot-film sensor, and (2) derived from measured velocity profiles in the inner part of the logarithmic layer gave comparable results for Ū* 0·32 m s -1. Radial velocity gradients were proportional to ( Ū y - 0·32 m s -1). Maximum radial differences in U* were 10% for Ū y = 0·5 ms -1. Suspended sediment mass concentration ( S) in the annulus resulted in a significant decrease (10·5%) in Ū* derived by method (1) over the range 0calibration with changes in S. Subaerial deployments of Sea Carousel caused severe substrate disturbance, water losses, and aeration of the annulus. Submarine deployments produced stable results, though dispersion of turbid flume water took place. Results clearly demonstrated the existence of 'Type I' and 'Type II' erosion documented from laboratory studies.

  10. Far-field Diffraction Properties of Annular Walsh Filters

    Directory of Open Access Journals (Sweden)

    Pubali Mukherjee

    2013-01-01

    Full Text Available Annular Walsh filters are derived from the rotationally symmetric annular Walsh functions which form a complete set of orthogonal functions that take on values either +1 or −1 over the domain specified by the inner and outer radii of the annulus. The value of any annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus. The three values 0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh filter by using transmission values of zero amplitude (i.e., an obscuration, unity amplitude and zero phase, and unity amplitude and phase, respectively. Not only the order of the Walsh filter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring of point spread function by using these filters for pupil plane filtering in imaging systems. In this report, we present the far-field amplitude characteristics of some of these filters to underscore their potential for effective use in several demanding applications like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

  11. Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly Flow

    Directory of Open Access Journals (Sweden)

    Gérard PINEAU

    2011-09-01

    Full Text Available For some applications it must be considered that the flow in the annular seal contains a mixture of liquid and gas. The multiphase character of the flow is described by the volume fraction of gas (usually air contained in the liquid under the form of bubbles.The fluid is then a homogenous mixture of air and liquid all thru the annular seal. Its local gas volume fraction depends on the pressure field and is calculated by using a simplified form of the Rayleigh-Plesset equation.The influence of such of a multiphase (bubbly flow on the dynamic characteristics of a straight annular seal is minimal because the volume of the fluid is reduced.The situation is quite different for textured annular (damper seals provided with equally spaced deep cavities intended to increase the damping capabilities and to reduce the leakage flow rate.As a by-product, the volume of the fluid in the seal increases drastically and the compressibility effects stemming from the bubbly nature of the flow are largely increased even for a low gas volume fraction. The present work depicts the influence of the gas volume fraction on the dynamic characteristics of a textured annular seal. It is shown that variations of the gas volume fraction between 1% and 0.1% can lead to frequency dependent stiffness, damping and added mass coefficients.

  12. Pressure loss coefficient and flow rate of side hole in a lower end plug for dual-cooled annular nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr; Park, Ju-Yong, E-mail: juyong@kaeri.re.kr; In, Wang-Kee, E-mail: wkin@kaeri.re.kr

    2013-12-15

    Highlights: • A lower end plug with side flow holes is suggested to provide alternative flow paths of the inner channel. • The inlet loss coefficient of the lower end plug is estimated from the experiment. • The flow rate through the side holes is estimated in a complete entrance blockage of inner channel. • The consequence in the reactor core condition is evaluated with a subchannel analysis code. - Abstract: Dual-cooled annular nuclear fuel for a pressurized water reactor (PWR) has been introduced for a significant increase in reactor power. KAERI has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized PWR in Korea, the OPR1000. This annular fuel can help decrease the fuel temperature substantially relative to conventional cylindrical fuel at a power uprate. Annular fuel has dual flow channels around itself; however, the inner flow channel has a weakness in that it is isolated unlike the outer flow channel, which is open to other neighbouring outer channels for a coolant exchange in the reactor core. If the entrance of the inner channel is, as a hypothetical event, completely blocked by debris, the inner channel will then experience a rapid increase in coolant temperature such that a departure from nucleate boiling (DNB) may occur. Therefore, a remedy to avoid such a postulated accident is indispensable for the safety of annular fuel. A lower end plug with side flow holes was suggested to provide alternative flow paths in addition to the central entrance of the inner channel. In this paper, the inlet loss coefficient of the lower end plug and the flow rate through the side holes were estimated from the experimental results even in a complete entrance blockage of the inner channel. An optimization for the side hole was also performed, and the results are applied to a subchannel analysis to evaluate the consequence in the reactor core condition.

  13. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  14. Air entrainment into annular water flows in a vertical pipe

    International Nuclear Information System (INIS)

    An experimental investigation was carried out on air entrainment into water flowing downward in a vertical pipe. Local flow rates of water and air in a fluid layer of annular flow, formed on the pipe wall, were measured precisely by using a small tube probe. Measurements were also made of local flow rates of water and air in bubbly flow downstream of annular water flow. Distributions of local flow rates in the radial direction of the pipe for annular flow regime indicate that the fluid layer consists of a water layer adjacent to the pipe wall and a water-air (two-phase fluid) layer located inside of the water layer. The water-air layer is formed as a result of air entrainment. The departure of air bubbles from a water pool to air phase was found for bubbly flow regime. (author)

  15. High-power, high-frequency, annular-beam free-electron maser

    International Nuclear Information System (INIS)

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 micros, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM02 mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability

  16. Study of the synchronous operation of an Annular Field Reversed Configuration plasma device

    Science.gov (United States)

    Kirtley, David E.

    Field Reversed Configuration (FRC) plasmas are high-density, magnetized, pulsed plasmas with unique translational and efficient formation properties that lend themselves to many uses. This dissertation furthers the understanding and empirical investigations into a slow-formation FRC, the low-voltage Annular Field Reversed Configuration plasma (AFRC) by successfully operating with heavy gases, at low-voltages, and in a synchronous discharge configuration. The AFRC plasma is an evolution of the cylindrical shock compression driven FRC that aims to increase compression times well into diffusive timescales, thereby increasing overall plasma content, lifetime, and greatly simplifying pulsed switching and transmission hardware. AFRC plasmas have uses ranging from primary pulsed magnetic fusion, refueling for Tokamak plasmas, and advanced space propulsion. In this thesis it is shown that AFRCs operating in a synchronous discharge configuration generate efficient, high-density magnetized toroidal plasmas with clear transitional regimes and optimal discharge parameters. A 10-kJ pulsed power facility and discharge network was constructed to explore AFRC plasmas. An extensive array of pulsed diagnostics were developed to explore the operational characteristics of a 40-cm outer diameter annular theta pinch and its pre-ionization, compression, field reversal, and translation configurations. Twelve high-speed, 3-axis B-dot probes were used to show plasma magnetization and compression for various discharge geometries. A fast DICAM and wide-angle photometer examined overall plasma content, compression regimes, downstream translation, and plasma instabilities for argon and xenon discharges ranging from 3--20 mTorr, 500--1000 V, and 185--450 mus discharge periods. Downstream B-dot probes and collimated, amplified photometers examined downstream plasma translation and magnetization. An axially-scanning internal triple probe was utilized to measure temporal plasma temperature, density

  17. Study on natural convection heat transfer in vertical annular space of a double coaxial cylinder

    International Nuclear Information System (INIS)

    Water cooling panels are adopted as a vessel cooling system of a high temperature-engineering test reactor (HTTR) to cool the reactor core indirectly by natural convection and thermal radiation. In this study, we carried out experiments on natural convection heat transfer coupled with thermal radiation in vertical annular space of a double coaxial cylinder in order to investigate heat transfer characteristics in vertical annular space between the reactor pressure vessel and the cooling panels of the HTTR. In the present experiments, Rayleigh number based on the width of the vertical space was set to be 6.8 x 105 6 for helium and 4.2 x 107 8 for nitrogen. This report described about the heat transfer coefficient of natural convection in the vertical space and the effect of thermal radiation of the transferred heat. As a result, a heat transfer coefficient of natural convection coupled with thermal radiation was obtained as functions of Rayleigh number, aspect ratio of the space, temperature and emissivities on the heated and cooled walls. In addition to the experiments, numerical analyses were performed on the combined phenomena of natural convection and thermal radiation in the space. The numerical results were in good agreement with the experimental ones regarding the temperature on the heated and cooled walls. (author)

  18. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    Directory of Open Access Journals (Sweden)

    Rishi Hassan

    2016-01-01

    Full Text Available Annular elastolytic giant cell granuloma (AEGCG is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis.

  19. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis.

    Science.gov (United States)

    Hassan, Rishi; Arunprasath, P; Padmavathy, L; Srivenkateswaran, K

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis. PMID:27057492

  20. Portal annular pancreas: the pancreatic duct ring sign on MRCP.

    Science.gov (United States)

    Lath, Chinar O; Agrawal, Dilpesh S; Timins, Michael E; Wein, Melissa M

    2015-12-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  1. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    Directory of Open Access Journals (Sweden)

    Chinar O. Lath, MD

    2015-12-01

    Full Text Available Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature.

  2. Flow Visualisation of Annular Liquid Sheet Instability & Atomisation

    CERN Document Server

    Duke, Daniel; Soria, Julio

    2012-01-01

    Fluid dynamics videos of unstable thin annular liquid sheets are presented in this short paper. These videos are to be presented in the Gallery of Fluid Motion for the American Physical Society 65th Annual Meeting of the Division of Fluid Dynamics in San Diego, CA, 18-20 November 2012. An annular sheet of thickness h=1mm and mean radius R=18.9mm is subjected to aerodynamic axial shear from co-flowing air at various shear rates on both the inner and outer surface at a liquid sheet Reynolds Number of Re=500.

  3. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B{sub 4}C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B{sub 4}C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer

  4. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.; Griffin, Patrick J.; Naranjo, Gerald E.; Luker, Spencer M.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.

  5. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    OpenAIRE

    Dazhuan Wu; Leqin Wang; Qinglei Jiang; Lulu Zhai

    2011-01-01

    The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The ...

  6. A droplet entrainment model based on the force balance of an interfacial wave in two-phase annular flow

    International Nuclear Information System (INIS)

    Highlights: → Knowledge of the interfacial wave structure is essential for making an accurate prediction of the amount of entrained droplets. → A new droplet entrainment model based on the force balance of interfacial waves in vertical annular flow. → An analytic wave shape function was developed. → A new droplet entrainment model was validated using the experimental data reported by Hewitt and Pulling and by Keeys et al. - Abstract: Droplets are generated at the interface of annular flow due to an interaction between a liquid film and gas core flow. Therefore, knowledge of the interfacial wave structure is essential for making an accurate prediction of the amount of entrained droplets. A new droplet entrainment model was proposed based on the force balance of interfacial waves in vertical annular flow. An analytic wave shape function was developed reflecting the detailed experimental findings, and was used in the development of a new model. The model was validated using the experimental data reported by Hewitt and Pulling at low pressures and by Keeys et al. at high pressures, which had been performed in adiabatic vertical tubes. The root-mean-square error of the prediction of the amount of entrainment was approximately 27% when the model was implemented into COBRA-TF code, which is approximately 23% less than that determined by the Wuertz model. The models proposed by Okawa et al. and Stevanovic et al. were also implemented into COBRA-TF and compared with the proposed model.

  7. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  8. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  9. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement. 15 claims

  10. Localized granuloma annulare and autoimmune thyroid disease. Are they associated?

    OpenAIRE

    Moran, J; Lamb, J.

    1995-01-01

    This case report identifies a temporal relationship between the diagnosis of localized granuloma annulare and the subsequent development of primary hypothyroidism in a previously healthy 10-year-old girl. We suspect these disorders are associated, but any association between them requires further study.

  11. Fluxon dynamics in long annular Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.; Shchukin, A.V.; Filippenko, L.; Monaco, R

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on...

  12. Radiation characterization summary : ACRR 44-inch lead-boron bucket located in the central cavity on the 32-inch pedestal at the core centerline (ACRR-LB44-CC-32-cl).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J.,; Quirk, Thomas J.; Lippert, Lance L.; Griffin, Patrick Joseph; Naranjo, Gerald E.; Luker, Spencer Michael

    2013-04-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the 44-inch-long lead-boron bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-LB44-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra are presented as well as radial and axial neutron and gamma-ray flux profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse and steady-state operations are presented with conversion examples.

  13. Effect of liquid entrainment on turbulent mixing rates between subchannels in gas-liquid annular two-phase flows

    International Nuclear Information System (INIS)

    Turbulent mixing rates of gas and liquid phases between adjacent subchannels have been measured for various air-water two-phase annular flows in a multiple channel consisting of two identical circular subchannels. In order to study effect of liquid entrainment in the gas core on the turbulent mixing rates, experiments were conducted for two types of liquid injection method, i.e., a small bore nozzle placed in the subchannel center and a porous wall. The result showed that the effect of liquid entrainment on the turbulent mixing rates of both phases is negligibly small. (author)

  14. Methane partial oxidation using FeO(x)@La(0.8)Sr(0.2)FeO(3-δ) core-shell catalyst--transient pulse studies.

    Science.gov (United States)

    Shafiefarhood, Arya; Hamill, Joseph Clay; Neal, Luke Michael; Li, Fanxing

    2015-12-14

    The chemical looping reforming (CLR) process, which utilizes a transition metal oxide based redox catalyst to partially oxidize methane to syngas, represents a potentially efficient approach for methane valorization. The CLR process inherently avoids costly cryogenic air separation by replacing gaseous oxygen with regenerable ionic oxygen (O(2-)) from the catalyst lattice. Our recent studies show that an Fe2O3@La0.8Sr0.2FeO3-δ core-shell redox catalyst is effective for CLR, as it combines the selectivity of an LSF shell with the oxygen capacity of an iron oxide core. The reaction between methane and the catalyst is also found to be highly dynamic, resulting from changes in lattice oxygen availability and surface properties. In this study, a transient pulse injection approach is used to investigate the mechanisms of methane partial oxidation over the Fe2O3@LSF redox catalyst. As confirmed by isotope exchange, the catalyst undergoes transitions between reaction "regions" with markedly different mechanisms. While oxygen evolution maintains a modified Mars-van Krevelen mechanism throughout the reaction with O(2-) conduction being the rate limiting step, the mechanism of methane conversion changes from an Eley-Rideal type in the first reaction region to a Langmuir-Hinshelwood-like mechanism in the third region. Availability of surface oxygen controls the reduction scheme of the catalyst and the underlying reaction mechanism. PMID:26549423

  15. Study of film boiling dispersed two phase in narrow annular gap

    International Nuclear Information System (INIS)

    Experimental investigation on film boiling dispersed two phase friction pressure drop in narrow annular gap with deionized water was performed in three types of narrow annular gap. The friction pressure drop differences were compared between narrow annular gap and circular channel was compared in the paper. The influence of narrow annular gap on friction pressure drop was examined in this paper. Results showed that the modified Sadatomi's correlation can be used to calculate film boiling dispersed two-phase friction pressure drop in narrow annular gap for engineering application

  16. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin;

    2008-01-01

    We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 dB. The...... reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 ± 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be −14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the...

  17. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  18. Solubility enhancement and epitaxial core-shell structure of Si-doped ZnO via a specific pulsed laser ablation route

    Science.gov (United States)

    Huang, Chang-Ning; Chen, Shuei-Yuan; Zheng, Yuyuan; Shen, Pouyan

    2015-09-01

    Wurtzite (W)-type ZnO nanocondensates and particulates with enhanced solid solubility of Si4+ and special defect nanostructures were synthesized via pulsed laser ablation of Zn2SiO4/ZnO composite target under a relatively high peak power density of 1.4 × 1012 W/cm2 in high vacuum (3.5 × 10-5 torr). The nanocondensates were either dispersed in an amorphous Zn-O-Si phase as a composite sphere up to submicrons in size or coalesced by the {}, {}, and {} facets as unity and twin. The particulates tended to have an epitaxial 1D commensurate 2× (0002) superstructure (i.e., 1 × 1 × 2 superstructure in 3D) at the edge with enhanced Si4+ doping and the amorphous phase coverage. Such W-ZnO nanocondensates and particulates have modified Raman bands and photoluminescence due to internal compressive stress and overdoped Si4+ in substitutional and/or interstitial sites coupled with charge/volume compensating defects for potential optoelectronic and optocatalytic applications.

  19. A self-reset circuit of pulse transformer

    International Nuclear Information System (INIS)

    A self-reset circuit of pulse transformer is introduced. Using this method, the distortion of output pulse waveform is decreased, pulse transformer can operate normally when pulse high voltage is raised from zero to design value, and it is unnecessary to use additional reset power supply or to increase the turns of pulse transformer primary winding and the volume of core

  20. ANNULAR PANCREAS CAUSING DUODENAL OBSTRUCTION: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Swish Kumar

    2016-01-01

    Full Text Available Annular pancreas is a rare congenital anomaly characterized by the band of pancreatic tissue of variable width partially or completely encircling the duodenum. This abnormality, although at times clinically silent or may be the cause of a broad spectrum of diseases. Complications range from neonatal intestinal obstruction to more complex pathologies in the adult such as pancreatitis, duodenal stenosis or duodenal or gastric ulceration. This condition is important to recognise, because radiologists are usually the first person to diagnose such condition. We report the case of a young patient of 10 years old female hospitalized for epigastric pain and repeated episodes of vomiting, in whom radiological investigations showed an annular pancreas. No other congenital anomaly of the intra-abdominal organs was noted. Both the rarity of this congenital abnormality and its probability of successful correction by surgical means have prompted us to make the following presentation.

  1. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  2. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  3. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  4. Axisymmetric buckling of laminated thick annular spherical cap

    Science.gov (United States)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  5. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-04-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter (S r = r 2 /r 1), dimensionless temperature ratio (θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  6. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99Mo from the fissioning of 235U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  7. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  8. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Science.gov (United States)

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. PMID:25997390

  9. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316. ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  10. Heat transfer to liquid sodium flowing through annular channel, (4)

    International Nuclear Information System (INIS)

    An experimental study was carried out to clarify the heat transfer characteristics of liquid sodium flowing turbulently through an annular channel. For a concentric condition, average psi(=average epsilonH/epsilonM) was found to agree with that proposed by Aoki or Ramm for circular tube. For eccentric conditions, circumferential temperature variations around the inner wall were measured and Nusselt numbers were evaluated. Numerical calculations were also made for temperature fields and compared with the measurements. (author)

  11. Unusual Presentation of Acute Annular Urticaria: A Case Report

    OpenAIRE

    Gilles Guerrier; Jean-Marc Daronat; Roger Deltour

    2011-01-01

    Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history...

  12. Fluxon dynamics in long annular Josephson tunnel junctions

    OpenAIRE

    Martucciello, N.; Mygind, Jesper; Koshelets, V. P.; Shchukin, A. V.; Filippenko, L.; Monaco, R.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is...

  13. Ignition sequence of an annular multi-injector combustor

    OpenAIRE

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  14. Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers

    OpenAIRE

    Wolf, Pierre

    2011-01-01

    Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the...

  15. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author)

  16. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    Science.gov (United States)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  17. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    Science.gov (United States)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  18. Entrainment in vertical annular two-phase flow

    International Nuclear Information System (INIS)

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  19. Treatment of generalized granuloma annulare - a systematic review.

    Science.gov (United States)

    Lukács, J; Schliemann, S; Elsner, P

    2015-08-01

    Granuloma annulare (GA) is a benign inflammatory skin disease. Localized GA is likely to resolve spontaneously, while generalized GA (GGA) is rare and may persist for decades. GGA usually is resistant to a variety of therapeutic modalities and takes a chronic course. The objective of this study was to summarize all reported treatments of generalized granuloma annulare. This is a systematic review based on MEDLINE, Embase and Cochrane Central Register search of articles in English and German and a manual search, between 1980 and 2013, to summarize the treatment of generalized granuloma annulare. Most medical literature on treatment of GGA is limited to individual case reports and small series of patients treated without a control group. Randomized controlled clinical studies are missing. Multiple treatment modalities for GGA were reported including topical and systemic steroids, PUVA, isotretinoin, dapsone, pentoxifylline, hydroxychloroquine, cyclosporine, IFN-γ, potassium iodide, nicotinamide, niacinamide, salicylic acid, dipyridamole, PDT, fumaric acid ester, etanercept, infliximab, adalimumab. While there are numerous case reports of successful treatments in the literature including surgical, medical and phototherapy options, well-designed, randomized, controlled clinical trials are required for an evidence-based treatment of GGA. PMID:25651003

  20. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Huang; Guoxin, Hu [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Fengchao, Wang [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed. (author)

  1. Experimental study on particles mixing in an annular spouted bed

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hao [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Hu Guoxin [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: hugx@sjtu.edu.cn; Wang Fengchao [Science and Technology Development Office, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-02-15

    A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed.

  2. A self-standing two-fluid CFD model for vertical upward two-phase annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: yang_liu@mail.dlut.edu.c [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China); Li, W.Z.; Quan, S.L. [Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province (China)

    2011-05-15

    Research highlights: A mathematic model for two-phase annular flow is established in this paper. Pressure loss and wall shear stress increase with inlet gas and liquid flow velocities. Droplet mass fraction distribution exhibits a concave profile radially. - Abstract: In this paper, a new two-fluid CFD (computational fluid dynamics) model is proposed to simulate the vertical upward two-phase annular flow. This model solves the basic mass and momentum equations for the gas core region flow and the liquid film flow, where the basic governing equations are accounted for by the commercial CFD package Fluent6.3.26. The liquid droplet flow and the interfacial inter-phase effects are accounted for by the programmable interface of Fluent, UDF (user defined function). Unlike previous models, the present model includes the effect of liquid roll waves directly determined from the CFD code. It is able to provide more detailed and, the most important, self-standing information for both the gas core flow and the film flow as well as the inner tube wall situations.

  3. The influence of annular seal clearance to the critical speed of the multistage pump

    International Nuclear Information System (INIS)

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest

  4. Evaluation of NSRR reactor characteristics using a core transient behavior simulation code EXCURS-NSRR

    International Nuclear Information System (INIS)

    The Nuclear Safety Research Reactor(NSRR) in Japan Atomic Energy Research Institute (JAERI) is a modified TRIGA-ACPR(Annular Core Pulse Reactor) which was constructed in 1975 in order to investigate the fuel behavior mainly under reactivity initiated accident (RIA) conditions. This reactor generates very sharp pulse power with the maximum of 23GW by rapid reactivity insertion of the maximum of 4.7$, and has capability to simulate a power burst in RIAs of power reactors. Fuel failure mechanisms and the fuel failure threshold in RIAs have been investigated through irradiation of test fuel rods in the NSRR. The control system and the operation data acquisition system of the NSRR were modified in 1989. By the modification, the controlled high power operation with various power shape became possible. Also on-line data acquisition of reactor data such as reactor power, regulating rod position, and so on, became possible by the modification. Evaluation of reactor characteristics became easy and accurate by detailed comparison of the time history of operation data and calculation results. Authors have tried to evaluate some parameters or constants of reactor characteristics by using a core transient behavior simulation code EXCURS-NSRR which consists of one point reactor kinetic equations and thermal equations of driver fuel and coolant. Especially in a relatively small and slow pulse power generation with reactivity insertion of less than 1$, evaluation of feedback reactivity coefficient and relation between reactivity insertion and regulating rod position was conducted. This article presents the evaluation results by the comparison between obtained reactor data and parametric calculation results. (author)

  5. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... (flickering light bulbs; polyrhythmic layers). Taking our point of departure in a discussion of Gilles Deleuze’s concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces...

  6. Safe operation of a TRIGA reactor in the situation of LEU-HEU core conversion

    International Nuclear Information System (INIS)

    Romanian TRIGA reactor was commissioned in 1980. The location of the research institute is Pitesti, 100 Km west of Bucharest. In fact there are two independent cores sharing the same pool. There are a 14 MW Steady State Reactor (SSR), high flux, and materials testing reactor and an Annular Core Pulsing Reactor (ACPR). The SSR reactor is a forced convection reactor cooled via a primary circuit with 4 pumps and 3 heat exchangers. The ACPR is natural convection cooled by the pool water. Modifications performed concerning core configuration resulted in the following. Removal the central pin from the bundle leads to slightly temperature increase of approximately 1% for the corner and edge pins, for the same pin power density. Also, the temperature slightly decreases for the 4 pins adjacent to the water hole. This is caused by the coolant flow redistribution. But, according to preliminary neutronic computations, PPF-s are decreasing, the edge and corner temperatures changes are no more detectable. DNB are decreasing, leading to a safer operation. Fuel management of TRIGA steady state core allows to obtain the requested fluxes for experimental reasons in the safer operation conditions. We can firmly state that the present operation of the reactor and the HEU-LEU core conversion fully respect the provisions of the National Regulatory Body and the IAEA. On the other side, we have to mention the common fact that research reactors cannot sustain themselves in the financial domain. The lack of sufficient financial support leads to shortage of the maintenance programs and to reduce of activities and personnel member; this is a real danger in maintaining the actual standards of nuclear safety. During this transition period, the Romanian TRIGA reactor is used much its capability in the frame of international cooperation this facility can ensure support for various research programmes in the fields of interest

  7. HYDRODYNAMIC ANALYSIS OF SUCK-IN PULSED JET IN WELL DRILLING

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-he; DU Yu-kun; NI Hong-jian; MA Lin

    2011-01-01

    The development of new drilling methods is important for the exploration and production of oil fields. The pulsed jet is a drilling technology of high potentiality. This article proposes a new concept of suck-in pulsed jet with self-excited oscillation, by which a full use of the hydraulic power can be made in the annular space. A hydrodynamic analysis of suck-in pulsed jet with self-excited oscillation is carried out by numerical simulations and rock-breaking experiments. It is shown that with the jet, a negative pressure zone will be formed in the oscillation cavity to ensure automatic sucking of enough annular fluids and the formation of an efficient pulsed jet. The rock-breaking and pressure testing results have verified the reliability of the numerical simulation. The research provides a basis for the development of the pulsed jet drilling technology.

  8. A transformer of closely spaced pulsed waveforms

    Science.gov (United States)

    Niedra, J.

    1970-01-01

    Passive circuit, using diodes, transistors, and magnetic cores, transforms the voltage of repetitive positive or negative pulses. It combines a pulse transformer with switching devices to effect a resonant flux reset and can transform various pulsed waveforms that have a nonzero average value and are relatively cosely spaced in time.

  9. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  10. Steady thermocapillary-buoyant convection in a shallow annular pool.Part 2: Two immiscible fluids

    Institute of Scientific and Technical Information of China (English)

    You-Rong Li; Shuang-Cheng Wang; Chun-Mei Wu

    2011-01-01

    This work is devoted to the study of steady thermocapillary-buoyant convection in a system of two horizontal superimposed immiscible liquid layers filling a lateral heated thin annular pool.The governing equations are solved using an asymptotic theory for the aspect ratios e → 0.Asymptotic solutions of the velocity and temperature fields are obtained in the core region away from the cylinder walls.In order to validate the asymptotic solutions,numerical simulations are also carried out and the results are compared to each other.It is found that the present asymptotic solutions are valid in most of the core region.And the applicability of the obtained asymptotic solutions decreases with the increase of the aspect ratio and the thickness ratio of the two layers.For a system of gallium arsenide (lower layer) and boron oxide (upper layer),the buoyancy slightly weakens the thermocapillary convection in the upper layer and strengthens it in the lower layer.

  11. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    International Nuclear Information System (INIS)

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs

  12. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    Science.gov (United States)

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power. PMID:25831302

  13. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case

    OpenAIRE

    Kawaida, Hiromichi; KONO, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-01-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving panc...

  14. Repeated mitral valve replacement in a patient with extensive annular calcification

    OpenAIRE

    Kitamura Tadashi; Fukuda Sachito; Sawada Takahiro; Miura Sumio; Kigawa Ikutaro; Miyairi Takeshi

    2011-01-01

    Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular...

  15. Development of probabilistic design method for annular fuel. Development of BORNFREE-CEPTAR code

    International Nuclear Information System (INIS)

    The increase of linear power and burn-up during the reactor operation is considered as one of measures for the utility of fast reactor in future, and then the application of annular fuels is under consideration. In order to make a design for thus annular fuels, annular fuel design code 'CEPTAR' has been developed in Japan Atomic Energy Agency (JAEA). In addition, probabilistic fuel design code 'BORNFREE' has been also developed for the reasonable fuel design with safety and the quantitative evaluation of design margin. In this study, aiming at the development of probabilistic design method, we developed BORNFREE-CEPTAR code to develop the reasonable design method for annular fuels. As the results of probability evaluation of fuel melting at the transient at the initial power increase, by using the probabilistic annular fuel design code 'BORNFREE-CEPTAR', the melting probability for annular fuels was estimated to be approximately two figures lower than that for solid fuels, and the remarkable decrease of melting probability, which was caused by the fuel restructuring effect, was seen in the estimation results for solid fuels, on the other hand, the results for annular fuels indicated that this effect was comparably small. In addition, the permissive linear power for annular fuels tended to enhance from that for solid fuels with the increase of initial central-hole diameter under the similar fuel melting probability condition. This indicated the possibility of higher linear power operation for high-density annular fuels than low-density solid fuels. (author)

  16. Electron beam diagnostic system using computed tomography and an annular sensor

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  17. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  18. Experimental investigation of the pre-implosion stages of an annular puff-gas Z-pinch

    International Nuclear Information System (INIS)

    The stages of an argon annular puff-gas z-pinch prior to implosion were experimentally investigated. A fast responding conical pressure probe was developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the puff valve and nozzle. Neutral gas density profiles for two different nozzles show radial expansion of the annular gas jets. Radial and axial profiles at two different azimuthal positions of the azimuthal magnetic field at 20 ns into the main current pulse show that the current flows in the outer 1 cm of the shell, and is returned by posts supporting the wire mesh anode at initially low axial positions, which increase with time. Image converter and streak photographs show luminosity peaked azimuthally at the post positions, radially outside the positions of the neutral gas peaks, and axially near the cathode. The photography shows that the plasma is initially tapered but that it is swept into more of a right cylinder as the implosion begins, although strong axial and azimuthal dependencies are retained. Streak interferometry yields electron line density and average volume densities in particular regions of the plasma as functions of time. These results show that the early plasma is fully ionized only at high radial positions, and that it is strongly dependent on both axial and azimuthal position

  19. Modeling of annular film dryout with Cobra-TF

    International Nuclear Information System (INIS)

    The COBRA-TF computer code uses a two-fluid, three-field and three-dimensional formulation to model a two-phase flow field in a specific geometry. The liquid phase is divided in a continuous liquid field and a separate dispersed field, which is used to describe the entrained liquid drops. For each space dimension, the code solves three momentum equations, three mass conservation equations and two energy conservation equations. Entrainment and depositions models are implemented into the code to model the mass transfer between the two liquid fields. In annular flow condition critical heat flux is caused by annular film dryout. Film dryout is a complex function of the film flow rate, the applied heat flux, and the entrainment from the liquid film to the continuous vapor region, and the deposition of entrained droplets back to the liquid film. Because of the three-field approach, COBRA-TF hydrodynamic equations are able to predict dry-out by solving directly the film dry-out as a hydrodynamic process rather than using an empirical dry-out correlation. The dry-out is driven by the hydraulic calculation and the prediction is the result of the combined effect of the entrainment, the deposition models and interfacial heat transfer. The paper discusses the annular film entrainment and deposition models used in the code as well as the logic, which is used to determine the dry-out phenomena as the film thickness decreases. The obtained results with COBRA-TF are compared with the test data from the Bennett Tube Dry-out Experiments. In general, the COBRA-TF prediction of the dry-out location is in good agreement with Bennett test data. In particular, results show that the predicted dry-out length tends to be longer than the measured value and in the post dry-out region the wall temperature, which is dependent on vapor superheat, tends to be underestimated by the code. (authors)

  20. Characteristic analysis of a double stator annular linear electromagnetic pump

    International Nuclear Information System (INIS)

    A annular linear induction electromagnetic pump (ALIP) is generally used to transport liquid sodium coolants for liquid metal reactors. In the present study, the theoretical induction of a developing equation has been carried out for a double stator version of the ALIP which is noticebly employed for the sodium circulation of a large flowrate. The computerzed P-Q relation, which is represented by the pump geometrical and electrical variables, has been applied to a double stator version of the ALMR EM pump. An induced equation was verified by the compared analysis with the known data on the P-Q characteristic according to the input currents

  1. A high efficiency annular dark field detector for STEM.

    Science.gov (United States)

    Kirkland, E J; Thomas, M G

    1996-01-01

    A new high efficiency annular dark field (ADF) detector for an HB501 STEM (Scanning Transmission Electron Microscope) has been constructed and tested. This detector uses a single crystal YAP scintillator and a solid quartz light pipe extending from the scintillator (inside the vacuum) to the photomultiplier tube (outside the vacuum). A factor of approximately 100 improvement in signal relative to the original detector has been obtained. This has substantially improved the signal to noise ratio in the recorded high resolution ADF-STEM images. PMID:22666919

  2. Unusual Presentation of Acute Annular Urticaria: A Case Report

    Directory of Open Access Journals (Sweden)

    Gilles Guerrier

    2011-01-01

    Full Text Available Acute urticarial lesions may display central clearing with ecchymotic or haemorrhagic hue, often misdiagnosed as erythema multiforme, serum-sickness-like reactions, or urticarial vasculitis. We report a case of acute annular urticaria with unusual presentation occurring in a 20-month-old child to emphasize the distinctive morphologic manifestations in a single disease. Clinicians who care for children should be able to differentiate acute urticaria from its clinical mimics. A directed history and physical examination can reliably orientate necessary diagnostic testing and allow for appropriate treatment.

  3. Analytic vortex dynamics in an annular Bose-Einstein condensate

    Science.gov (United States)

    Toikka, L. A.; Suominen, K.-A.

    2016-05-01

    We consider analytically the dynamics of an arbitrary number and configuration of vortices in an annular Bose-Einstein condensate obtaining expressions for the free energy and vortex precession rates to logarithmic accuracy. We also obtain lower bounds for the lifetime of a single vortex in the annulus. Our results enable a closed-form analytic treatment of vortex-vortex interactions in the annulus that is exact in the incompressible limit. The incompressible hydrodynamics that is developed here paves the way for more general analytical treatments of vortex dynamics in non-simply-connected geometries.

  4. New fluxon resonant mechanism in annular Josephson tunnel structures

    International Nuclear Information System (INIS)

    A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system

  5. Exhaust emissions of a double annular combustor: Parametric study

    Science.gov (United States)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  6. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  7. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  8. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    International Nuclear Information System (INIS)

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale

  9. Non-linear dynamics of annular creeping flow enclosed by an elastic membrane

    Science.gov (United States)

    Elbaz, Shai; Gat, Amir

    2015-11-01

    This study deals with the fluid-structure-interaction problem of longitudinal annular flow about a varying cross-section centre-body enclosed by an elastic membrane. The gap between the centre-body and membrane wall may be initially filled with a thin fluid layer or devoid of it. We employ elastic shell theory and the lubrication approximation and obtain a forced nonlinear diffusion equation governing the problem. In the case of an advancing liquid front in an initially unpenetrated interface (viscous peeling) the governing equation degenerates into a forced porous medium equation, for which several closed-form solutions can be obtained. Based on self-similarity we define propagation laws for the fluid-elastic interaction which in turn provide the basis for numerical investigation of compound solutions such as pulse trains and other waveforms. The presented interaction between viscosity and elasticity may be applied to fields such as soft-robotics and micro-scale or larger swimmers by allowing for the time-dependent control of a compliant boundary.

  10. Final Report 200 MW L-Band Annular Beam Klystron for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael; Ferguson, Patrick; Ives, Lawrence; Song, Liqun; Carlsten, Bruce; Fazio, Michael

    2009-02-11

    This program developed a 200 MW, 1.3 GHz, Annular Beam Klystron (ABK) for accelerator systems. An ABK provides lower impedance than a conventional klystron, making it possible to produce higher RF powers with lower voltages. With a higher power per unit, fewer klystrons would be required for a large accelerator. Lower voltage also simplifies and reduces the cost of the power supply system. Both features will significantly lower the cost of an RF system. This device operates at 475 kV. The klystron uses a magnetron injection gun producing 1100 A in one microsecond pulses. Power is extracted into fundamental rectangular waveguide through two output windows. The predicted gain is approximately 45 dB with estimated efficiency of 45%. The klystron was assembled, but no facility was available for testing. Consequently, no high power performance measurements are available. Because the assembled klystron is approximately 15 feet long, it was disassembled for storage. It can be reassembled should a use materialize.

  11. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  12. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  13. Variable property buoyancy-influenced heat transfer to air flowing in a vertical passage of annular cross-section

    International Nuclear Information System (INIS)

    This experimental and computational study is concerned with variable property mixed convection heat transfer to air flowing through a vertical passage of annular cross-section having a uniformly heated core and an unheated and well-insulated outer casing. The aims of the study were to investigate the extent to which established ideas concerning the effects of variable properties and buoyancy in heated tubes apply in the case of such an annular passage and to use the basic data produced to validate a computational formulation designed for simulating flow and heat transfer under such conditions. The experimental results confirm that systematic enhancement of heat transfer occurs with increase of buoyancy influence for downward flow and that impairment of heat transfer followed by recovery and enhancement occurs with upward flow in a passage of the kind considered. However, the onset of such effects is delayed and the magnitude is reduced in comparison with those for a circular tube. The computational simulations of the experiments using a variable property, developing flow formulation which took account of property variations and buoyancy influences and incorporated the low-Reynolds number k-ε turbulence model of Abe-Kondoh-Nagano reproduced the main features of the experimental results

  14. Numerical Simulation of Fluid Mixing in Upper Annular Space of SMART during Early Stage of non-LOCA

    International Nuclear Information System (INIS)

    KAERI (Korea Atomic Energy Research Institute) is developing a passive safety injection system (PSIS) to supply cold borated water into a reactor coolant system (RCS) without any operator actions or AC power under the occurrence of postulated design basis accidents. The PSIS consists of four independent trains, each of which is furnished with a gravity drained core makeup tank (CMT) and a safety injection tank (SIT). The CMT is designed to provide makeup and boration functions to the RCS during the early stage of a loss of coolant accident (LOCA) and a non-LOCA. In this paper, we investigate numerically the fluid mixing characteristics in the upper annular space of SMART, especially when single-phase natural circulation is formed between the CMT and RCS following a non-LOCA such as a main steam line break. In this paper, the fluid mixing characteristics in the upper annular space of SMART are investigated numerically when single-phase natural circulation is formed between the RCS and CMT during the early stage of a non-LOCA

  15. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    International Nuclear Information System (INIS)

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  16. Electrorheological damper with annular ducts for seismic protection applications

    Science.gov (United States)

    Makris, Nicos; Burton, Scott A.; Taylor, Douglas P.

    1996-10-01

    This paper presents the design, analysis, testing and modeling of an electrorheological (ER) fluid damper developed for vibration and seismic protection of civil structures. The damper consists of a main cylinder and a piston rod that pushes an ER fluid through a stationary annular duct. The behavior of the damper can be approximated with Hagen - Poiseuille flow theory. The basic equations that describe the fluid flow across an annular duct are derived. Experimental results on the damper response with and without the presence of electric field are presented. As the rate of deformation increases, viscous stresses prevail over field-induced yield stresses and a smaller fraction of the total damper force can be controlled. Simple physically motivated phenomenological models are considered to approximate the damper response with and without the presence of electric field. Subsequently, the performance of a multilayer neural network constructed and trained by an efficient algorithm known as the Dependence Identification Algorithm is examined to predict the response of the electrorheological damper. A combination of a simple phenomenological model and a neural network is then proposed as a practical tool to approximate the nonlinear and velocity-dependent damper response.

  17. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  18. Investigation of azimuthal staging concepts in annular gas turbines

    Science.gov (United States)

    Noiray, Nicolas; Bothien, Mirko; Schuermans, Bruno

    2011-10-01

    In this work, the influence of azimuthal staging concepts on the thermoacoustic behavior of annular combustion chambers is assessed theoretically and numerically. Staging is a well-known and effective method to abate thermoacoustic pulsations in combustion chambers. However, in the case of, for example, fuel staging the associated inhomogeneity of equivalence ratio may result in increased levels of NOx emissions. In order to minimize this unwanted effect a staging concept is required in which the transfer functions of the burners are changed while affecting the equivalence ratio as little as possible. In order to achieve this goal, a theoretical framework for predicting the influence of staging concepts on pulsations has been developed. Both linear and nonlinear analytical approaches are presented and it is shown that the dynamics of azimuthal modes can be described by coupled Van der Pol oscillators. A criterion based on the thermoacoustic coupling strength and on the asymmetry degree provides the modal behavior in the annular combustor, i.e. standing or traveling waves. The model predictions have been verified by numerical simulations of a heavy-duty gas turbine using an in-house thermoacoustic network-modeling tool. The interaction between the heat release of the flame and the acoustic field was modeled using measured transfer functions and source terms. These numerical simulations confirmed the original theoretical considerations.

  19. The Growth of Instabilities in Annular Liquid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  20. Study on annular mist flow in pipe, 1

    International Nuclear Information System (INIS)

    An annular mist flow using air and water at room temperature has been studied experimentally in a vertical pipe with a nozzle along the axis of the pipe for supplying liquid. Observations were made of flow patterns of liquid on the inner surface of the pipe, and measurements were made of pressure losses in pipe, profiles of radial distribution of liquid droplets and total flow rates of the liquid droplets. Changes of these four factors along the pipe were measured in the non-equilibrium region. It was found that the non-equilibrium length should be decided by a position where any changes in the four factors mentioned above could not be recognized in the axial direction. For relatively high velocities of air, i.e., for apparent gaseous Reynolds number R sub(ego) >= 9.4 x 104, it was ascertained that the annular mist flow reached equilibrium at a distance of 170 - 190 diameters from the nozzle outlet when apparent liquid Reynolds number R sub(elo) = 62.1 - 183.6. (author)

  1. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  2. A complete fuel development facility utilizing a dual core TRIGA reactor system

    International Nuclear Information System (INIS)

    A TRIGA Dual Core Reactor System has been chosen by the Romanian Government as the heart of a new fuel development facility which will be operated by the Romanian Institute for Nuclear Technologies. The Facility, which will be operational in 1976, is an integral part of the Romanian National Program for Power Reactor Development, with particular emphasis being placed on fuel development. The unique combination of a new 14 MW steady state TRIGA reactor, and the well-proven TRIGA Annular Core Pulsing Reactor (ACPR) in one below-ground reactor pool resulted in a substantial construction cost savings and gives the facility remarkable experimental flexibility. The inherent safety of the TRIGA fuel elements in both reactor cores means that a secondary containment building is not necessary, resulting in further construction cost savings. The 14 MW steady state reactor gives acceptably high neutron fluxes for long- term testing of various prototype fuel-cladding-coolant combinations; and the TRIGA ACPR high pulse capability allows transient testing of fuel specimens, which is so important for accurate prediction of the performance of power reactor fuel elements under postulated failure conditions. The 14 MW steady state reactor has one large and three small in-core irradiation loop positions, two large irradiation loop positions adjacent to the core face, and twenty small holes in the beryllium reflector for small capsule irradiation. The power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position approaching 3.0 x 1014 n/cm2-sec. The ACPR has one large dry central experimental cavity which can be loaded at pool level through a shielded offset loading tube; a small diameter in-core flux trap; and an in-core pneumatically-operated capsule irradiation position. A peak pulse of 15,000 MW will yield a peak fast neutron flux in the central experimental cavity of about 1.5 x 1017 n/cm2-sec. The pulse width at half maximum during a

  3. A magnetorheological valve with both annular and radial fluid flow resistance gaps

    International Nuclear Information System (INIS)

    In order to increase the efficiency of magnetorheological (MR) valves, Ai et al (2006) proposed an MR valve simultaneously possessing annular and radial fluid flow resistance channels with the assumption that the magnetic flux densities at the annular and radial fluid flow gaps are identical. In this paper, an MR valve simultaneously possessing annular and radial fluid flow resistance channels is designed, fabricated, modeled and tested. A model for the developed MR valve is produced and its performances are theoretically predicted based on the average magnetic flux densities in the annular and radial fluid flow gaps through finite element analysis. The theoretical results for the developed MR valve are compared with the experimental results. In addition, the performances of the developed MR valve are theoretically and experimentally compared with those of the MR valve with only annular fluid flow gaps. It has been shown that the theoretical results match well with the experimental results. Mainly attributed to the radial fluid flow gaps, the pressure drops across the MR valve with both annular and radial fluid flow gaps are larger than those across the MR valve with only annular fluid flow gaps for varying valve parameters. The radial fluid flow gaps in the MR valve can reach a higher efficiency and larger controllable range than those by annular fluid flow gaps to some extent

  4. Multiple lesions of granuloma annulare on the hand in a patient with scabies

    Directory of Open Access Journals (Sweden)

    Al Aboud K

    2011-08-01

    Full Text Available Khalid Al Aboud1, Daifullah Al Aboud21Department of Dermatology, King Faisal Hospital, Makkah; 2Department of Dermatology, Taif University, Taif, Kingdom of Saudi ArabiaAbstract: Granuloma annulare induced by scabies infection has been described previously in three patients. In this report, we share our observation of a fourth case.Keywords: granuloma annulare, scabies, skin

  5. DC intrinsic Josephson effect in 1{mu}m-lateral-size annular Bi-2212 stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.J.; Yamashita, T. [Tohoku Univ., Sendai (Japan). Research Inst. of Electrical Comunication; Latyshev, Y.I.; Pavlenko, V.N. [Tohoku Univ., Sendai (Japan); Inst of Radio-Engineerig and Electronics Russian Academic of Sciences, Moscow (Russian Federation)

    1999-11-10

    Small annular junctions were the subjects of particular interest last decade because of possibility of flux trapping (see, e.g. [1]). Related magnetic field can contain radial component affecting Josephson critical current. Here we report on the first studies of intrinsic dc Josephson effect [2] in small annular type Bi-2212 mesas and its sensitivity to the trapped flux. (translated by NEDO)

  6. In-Reactor Densification of Dual Cooled Annular Fuel Pellet during Irradiation Test at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Kim, Dong Joo; Kwon, Hyoung Mun; Kim, Keon Sik; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    These advantages result in a considerably low pellet centerline temperature. Because of this considerably low pellet temperature, in-reactor behavior of an annular pellet, such as densification and swelling may be significantly different from that of the conventional PWR solid pellet. Since the pellet temperature of an annular fuel rod is lower than that of a PWR solid fuel rod by several hundred degrees, the in-reactor densification and swelling of a dual cooled annular fuel pellet might be considered as athermal phenomena due to a low pellet temperature. In order to investigate the in-reactor behavior of the annular UO{sub 2} pellet, HANARO irradiation test was planned and conducted for annular pellets with 5 different types. Post irradiation test is being carried out in the KAERI's PIE facility. In this study, we are going to report the preliminary results of PIE test on the inreactor densification behavior of a dual cooled annular fuel pellet. Irradiation test of dual cooled annular UO{sub 2} pellet was conducted at the OR-4 hole in HANARO by using a non-instrumented test rig. The preliminary results of PIE test on the in-reactor densification behavior showed that the irradiated pellets densified much more than expected values based on MATPRO relations of inreactor densification at low temperature in the annular pellet with low initial sintered density. It might be attributed to the higher fission rate during HANARO irradiation.

  7. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    Science.gov (United States)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  8. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  9. Solid cartridge for a pulse weld forming electrode and method of joining tubular members

    Energy Technology Data Exchange (ETDEWEB)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas; Dawson, Scott Alwyn; deVries, James

    2016-02-23

    A cartridge assembly is disclosed for a pulse welding a first tube supported on a mandrel to a second tube. An outer tool is assembled over the second tube and a stored charge is discharged in the cartridge assembly. The cartridge comprises an annular conductor and a solid casing enveloping the conductor. The stored charge is electrically connected to the conductor and discharged through the conductor to compress the second tube and pulse weld the second tube to the first tube.

  10. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    Science.gov (United States)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  11. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  12. Theoretical and experimental study of inverted annular film boiling and regime transition during reflood transients

    Science.gov (United States)

    Mohanta, Lokanath

    The Loss of Coolant Accident (LOCA) is a design basis accident for light water reactors that usually determines the limits on core power. During a LOCA, film boiling is the dominant mode of heat transfer prior to the quenching of the fuel rods. The study of film boiling is important because this mode of heat transfer determines if the core can be safely cooled. One important film boiling regime is the so-called Inverted Annular Film Boiling (IAFB) regime which is characterized by a liquid core downstream of the quench front enveloped by a vapor film separating it from the fuel rod. Much research have been conducted for IAFB, but these studies have been limited to steady state experiments in single tubes. In the present work, subcooled and saturated IAFB are investigated using high temperature reflood data from the experiments carried out in the Rod Bundle Heat Transfer (RBHT) test facility. Parametric effects of system parameters including the pressure, inlet subcooling, and flooding rate on the heat transfer are investigated. The heat transfer behavior during transition to Inverted Slug Film Boiling (ISFB) regime is studied and is found to be different than that reported in previous studies. The effects of spacer grids on heat transfer in the IAFB and ISFB regimes are also presented. Currently design basis accidents are evaluated with codes in which heat transfer and wall drag must be calculated with local flow parameters. The existing models for heat transfer are applicable up to a void fraction of 0.6, i.e. in the IAFB regime and there is no heat transfer correlation for ISFB. A new semi-empirical heat transfer model is developed covering the IAFB and ISFB regimes which is valid for a void fraction up to 90% using the local flow variables. The mean absolute percentage error in predicting the RBHT data is 11% and root mean square error is 15%. This new semi-empirical model is found to compare well with the reflood data of FLECHT-SEASET experiments as well as data

  13. Liquid transfer and entrainment correlation for droplet-annular flow

    International Nuclear Information System (INIS)

    A correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasi-equilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, cand total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which has not been available previously

  14. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Directory of Open Access Journals (Sweden)

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  15. An in-house developed annular bright field detection system

    International Nuclear Information System (INIS)

    Annular bright field (ABF) detectors have been developed in the last few years allowing the direct imaging of low-Z atoms from oxygen down to hydrogen. These types of detectors are now available as standard attachments for the latest generation of top-end electron microscopes. However these systems cannot always be installed in previous generation microscopes. In this paper we report the preliminary results of an in-house implementation of a ABF detection system on a CEOS aberration corrected JEOL 2200FS STEM. This has been obtained by exploiting the standard BF detector coupled with a high vacuum compatible, X-ray tight and retractable shadowing mechanism. This results in the acquisition of near zero-angle scattered electrons with inner collection semi-angle from 2.0 mrad to 23 mrad and outer semi-angle in the range from 3.0 mrad to 35 mrad. The characteristics and performances of this ABF detection system are discussed

  16. Aerodynamic performance of an annular classical airfoil cascade

    Science.gov (United States)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  17. A Novel Design of Magnetorheological Damper with Annular Radial Channel

    Directory of Open Access Journals (Sweden)

    Shisha Zhu

    2016-01-01

    Full Text Available With the development of automotive vibration technology, the semiactive suspension system with adjustable damping force and high reliability is taken seriously. The magnetorheological damper (MRD that applies intelligent material (magnetorheological fluid is the key element of this system. It can achieve a continuous and adjustable damping and then reaches the purpose of comfort. In order to improve the damping effect of MRD, this paper presents a MRD, which has magnetorheological (MR effect along annular radial channel. The paper completely designs the structure and magnetic circuit of MRD. Based on the theory of electromagnetism and MR fluid dynamics, the paper analyzes and tests the external characteristics of the MRD by the MATLAB/Simulink and the vibration experiment. The results compared with ordinary MRD reveal that the damping force obviously increases and has wide adjustable range, thus verifying the reasonableness of the damper design.

  18. Investigation of a low NOx full-scale annular combustor

    Science.gov (United States)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  19. Development of annular targets for 99MO production-1999

    International Nuclear Information System (INIS)

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99Mo

  20. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 104. In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  1. Application study on fast extracting plutonium with annular centrifugal extractor

    International Nuclear Information System (INIS)

    An extraction system with annular centrifugal extractors has been designed to separate plutonium. It worked well when centrifugal speed was ranged from 2000 to 8000 r/min and organic-aqueous flow ratio (o/a) ranged from 1/3 to 1, without obvious entraining phenomenon Pu (IV) in 6 mol/L HNO3 solution was fast extracted and separated, using 0.1 mol/L TOPO/Cyclohexane as extraction solvent and 0.01 mol/L oxalic acid as back extraction solvent. The extraction ratio of two stages was larger than 90%, and the back ratio per stage was more than 96%. The extraction system shows fast operating speed and high extraction ratio, therefore it is suitable for fast extracting Pu. (authors)

  2. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  3. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    Science.gov (United States)

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  4. Intermittent Flow of Granular Matter in an Annular Geometry

    Science.gov (United States)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  5. Periocular granuloma annulare: a case report and review of literature.

    Science.gov (United States)

    Chiang, Katherine; Bhalla, Rohan; Mesinkovska, Natasha A; Piliang, Melissa P; Tamburro, Joan E

    2014-01-01

    Granuloma annulare (GA) is a granulomatous dermatosis that rarely presents on the face and is extremely uncommon in the periocular region. We report our experience with the presentation and management of GA lesions on the eyelids of a 17-year-old girl. We performed a review of published literature and identified 13 cases of pediatric periocular GA. One additional case was identified upon review of all pediatric GA cases at the Cleveland Clinic Foundation. Review of these cases suggests that periocular GA is a benign condition that spontaneously regresses within a few months. GA nodules have a predilection for the upper eyelids. A greater incidence is noted in African American children. Awareness of the self-resolving nature of this condition can prevent unnecessary surgical excisions in affected children. PMID:23551387

  6. MHD stability analysis of a liquid sodium flow at the annular gap of an EM pump

    International Nuclear Information System (INIS)

    Highlights: ► A MHD stability analysis on an electromagnetic pump was carried out. ► Small perturbations for MHD fields were considered in sinusoidal form. ► Critical Reynolds number depends on the Hartman number and perturbed wave number. ► A magnetic field has a significant stabilizing effect on liquid sodium flow. - Abstract: A stability analysis of a viscous, incompressible, and electrically conducting liquid sodium flow in an annular linear induction electromagnetic pump for sodium coolant circulation of a Sodium Fast Reactor (SFR) was carried out when transverse magnetic fields permeate the sodium fluid across the narrow annular gap. Due to a negligible skin effect and the presence of a magnetic core outside the gap, radial magnetic field is assumed to be constant over the narrow channel gap, and the steady state solution of the axial velocity is obtained as a function of radius. Small perturbations for MHD fields were considered in sinusoidal form as a function of the angular frequency and wave number, and the resulting equations were linearized. The solutions of the perturbed equations were sought in the form of a linear combination of independent orthogonal functions in a non-dimensional radial interval (0, 1), and each orthogonal function was chosen to satisfy the boundary conditions of adhesion to the solid walls of the channel. Under the assumption that solutions of the equations were not oscillated rapidly according to the radial coordinate, finite numbers of orthogonal polynomials were considered. As a result, simultaneous equations with coefficients of steady-state solutions were arranged, and dispersion relations between angular frequency and wave number of perturbed state were sought. The imaginary part of the angular frequency was taken into consideration from the condition of existence of a nontrivial solution of the system, which leads to the relation between critical Reynolds number (Recr) and Hartmann number (Ha). In the present study

  7. Magnetically guided free surface annular NaK flow experiment

    International Nuclear Information System (INIS)

    In order to gain basic information on the magnetically guided liquid metal Li waterfall type blanket concept for ICF reactors and liquid metal Li free surface flow for FMIT type accelerator target, an experimental study was conducted by using LINAK (NaK: 50 l, Ar: 0-0.3 MPa) device. A 45 mm O.D. and 25 mm I.D. annular free jet of NaK, which flowed downwards coaxially through a superconducting magnet (2.7 Tmax, B=0.38 T at the nozzle exit), was formed in vacuum chamber and at the nozzle exit where magnetic flux density B was divergent. The experiment covered ranges of U=0.5-2.5 m/s and B=0-0.38 T at the nozzle exit. Photographic and VTR observations were made on the behavior of outer surface of annular flow. The results are summarized as follows. (1) When B=0 T, the downward flow was rather convergent due to the surface tension. (2) By applying B, the flow became divergent like a cone shell and more stable. The divergent half angle increased with intensifying B. (3) The experimental results on the flow divergence agreed fairly well with the numerical analysis which took into account the MHD force, the surface tension and the gravitational force. (4) No growth of outer surface disturbance occurred within an attained maximum divergent half angle of 8deg or less. The results are considered to be encouraging for applying to ICF blanket and FMIT type target. (author)

  8. Annular fuel pin heat transfer and lumped model correction

    International Nuclear Information System (INIS)

    Fuel pin heat transfer studies are important in nuclear reactor accident analysis. Based on the requirement of accuracy and the speed of the computation, a simple lumped heat transfer method or detailed numerical methods are chosen to solve the heat transfer equations. In a nuclear reactor design calculations, accuracy of the solution is very important than the speed. In a nuclear reactor simulator, the speed is important. Lumped model assumes fuel pellet is solid without central hole and the heat transfer coefficient is constant across the fuel pin. In the present study a new modified lumped heat transfer model is developed to consider the annular fuel pin's central hole, and the heat transfer coefficient is made as a function of average fuel pin temperature. Transient analyses are carried out with the above said modifications for a typical LMFBR annular fuel pin. The results of lumped heat transfer model are almost matching with the accurate numerical schemes like Crank-Nicolson method. Comparisons of results with Crank-Nicolson methods are good for small step reactivity addition, ramp reactivity insertion and large step reactivity addition, ramp reactivity insertion with and without reactivity feedbacks. Comparisons of results are good for LOFA also, with and without reactivity feedbacks. With the consideration of reactivity feedbacks, fuel temperature calculated through the present modified lumped model is matching well with Crank-Nicolson methods, and the nominal power also matching well. The modified lumped heat transfer model can be used in nuclear reactor simulation studies and in conservative accident analyses where fastness of the solution is a matter of concern. (author)

  9. DNB experiments for high-conversion PWR core design

    International Nuclear Information System (INIS)

    It is very important to clarify the departure from nucleate boiling (DNB) performance of core fuel assemblies for the high conversion pressurized water reactors (PWR). To investigate this, DNB experiments were performed in tight lattice rod bundles, using the model fluid Freon 12 and water under the actual operating conditions. In addition, DNB heat flux measurements in an annular-flow channel were carried out for the design of the fertile rods, which are installed in thimble tubes. (orig.)

  10. DNB experiments for high conversion PWR core design

    International Nuclear Information System (INIS)

    It is very important to clarify the departure from nucleate boiling (DNB) performance of core fuel assemblies for the high conversion PWR design. To investigate this, DNB experiments were performed in tight lattice rod bundles, using the model fluid freon-12 and the actual water. And also DNB heat flux mesurements in an annular flow channel were carried out for design of fertile rods which are installed in thimble tubes. (orig.)

  11. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  12. Numerical Simulation of the Laval Annular Mechanical Foam Breaker for Foam Drilling

    Directory of Open Access Journals (Sweden)

    Pin Lu Cao

    2013-12-01

    Full Text Available The Computational Fluid Dynamics (CFD code, Fluent, is employed to simulate the flow phenomena inside the annular foam breaker in order to improve its performance. The numerical simulation results show that the value and the distribution of the negative pressure are very important for the annular foam breaker. The design of the Laval nozzle not only can increase the fluid velocity, but also can reduce the pressure value from -30.2 to -50.3 kPa compared with the common annular nozzle foam breaker. In order to improve the range of the internal negative pressure, the two-stage Laval annular foam breaker is designed in this study. The analysis results show the distance between the two annular slit have greatly influence on its performance. There is a small overlap area between the two negative pressure zones generated by the two annular slits. The smaller the value distance is, the larger the overlap zone is. When the value of the distance decreases to 50 mm, the minimum negative pressure can be reduced to approximately -65.5 kPa. Meanwhile, the range of the internal negative pressure is larger than the single Laval annular foam breaker, which is benefit to break foam.

  13. Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun

    Science.gov (United States)

    Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.

    2002-08-01

    In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.

  14. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    Science.gov (United States)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  15. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  16. Numerical analysis of supercritical water flowing in an annular channel using the two-fluid model code ACE-3D

    International Nuclear Information System (INIS)

    The Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water cooled reactor that operates above the critical pressure of water. In order to perform efficiently the thermal design of the SCWR, it is important to assess the thermal-hydraulics in rod bundles of the core. The experimental conditions of mockup tests, however, have to be limited because of technical and financial reasons. Therefore, it is required to establish an analytical design technique which can extrapolate experimental data to various design conditions of the reactor. JAEA (Japan Atomic Energy Agency) have been improved the three-dimensional two-fluid model analysis code ACE-3D, which has been developed originally for the two-phase flow thermal hydraulics of light water reactors, to handle the thermal hydraulic properties of water at supercritical region. In the present paper, heat transfer experiments of supercritical water flowing in a vertical annular channel around a heater pin, which simulates the core flow around a fuel rod, were analyzed with the improved ACE-3D to assess the prediction performance of the code. As a result, it was confirmed that the calculated wall surface temperature agreed with the measured results and the code is applicable to prediction of heat transfer of supercritical water in the system that simulates the SCWR core. (author)

  17. Method of improving image sharpness for annular-illumination scanning electron microscopes

    Science.gov (United States)

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  18. Ultra-Wide-Band Microstrip Concentric Annular Ring Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Salima Azzaz-Rahmani

    2012-01-01

    Full Text Available In this paper, a new design technique for bandwidth enhancement of concentric microstrip annular ring slot antennas is presented. Using this technique, an Ultra-Wide-Band antenna is designed with simulated bandwidth of 111.29%.

  19. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  20. Effect of January 15, 2010 annular solar eclipse on meteorological parameters over Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Nisha, P.G.; Mohankumar, K.

    Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper...

  1. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  2. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  3. Boiling two-phase flow and heat transfer in concentric annular tube

    International Nuclear Information System (INIS)

    The boiling flow resistance and heat transfer characteristics is experimentally investigated under the outer tube wall heating condition in a concentric annular tube with 2.1 mm gap size. The results show that the flow resistance in the annular tube is greater than that in circular tube, as well as the boiling heat transfer becomes enhanced. The heat transfer coefficient has close relationship with the pressure, thermal equilibrium quality, mass flux, heat flux, gap size of the annular tube, and heat models as well. The physical explanation about the enhancement boiling heat transfer in the annular tube is proposed with both micro-film evaporation mechanics and bubble disturbance mechanics. The correlations to calculate the flow friction coefficient and heat transfer coefficient are proposed based on the experimental data. (authors)

  4. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  5. Non-approximate method for designing annular field of two-mirror concentric system

    Institute of Scientific and Technical Information of China (English)

    Yuanshen Huang; Dongyue Zhu; Baicheng Li; Dawei Zhang; Zhengji Ni; Songlin Zhuang

    2012-01-01

    Annular field aberrations of a three-reflection concentric system, which are composed of two spherical mirrors, are analyzed. An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane. Aberrations are determined by the object height and aperture angle. In this letter, the general expression of the system aberration is derived using the geometric method, and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles. The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is, the smaller the system aberration is. The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.%Annular field aberrations of a three-reflection concentric system,which are composed of two spherical mirrors,are analyzed.An annular field with a high level of aberration correction exists near the position where the principal ray is perpendicular to the object-image plane.Aberrations are determined by the object height and aperture angle.In this letter,the general expression of the system aberration is derived using the geometric method,and the non-approximate design method is proposed to calculate the radii of the annular fields that have minimum aberrations under different aperture angles.The closer to 0.5 (the ratio of the radius of convex mirror to the radius of concave mirror) is,the smaller the system aberration is.The examples analyzed by LABVIEW indicate that the annular field designed by the proposed method has the smallest aberration in a given system.

  6. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    International Nuclear Information System (INIS)

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect

  7. Recent achievements on annular Josephson structures and their application as radiation detectors

    International Nuclear Information System (INIS)

    One of the stimulating area of superconductors investigations lies in the achieved and potential applications as radiation detectors. Results concerning annular Josephson junctions in this context are discussed. Fundamental aspects, mainly related to the fluxon dynamics in such structures, are discussed in detail. The results confirm the importance of the precious sharing of technological requests with fundamental physical implications. Peculiar results are reported dealing with new resonances occurring on these Josephson junctions of annular configuration

  8. Fabrication of Annular Pellet for HANARO Irradiation Test of Dual Cooled Fuel

    International Nuclear Information System (INIS)

    One of the most important components in a Pressurized Water Reactor affecting its safety and economy is a nuclear fuel. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 8 mm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in the fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. An internally and externally cooled annular fuel has been considered seriously as a promising solution for an extended power uprate of a PWR fuel assembly. A dual cooled annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimensional changes of the annular fuel pellets during the early irradiation stage are very important, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In order to gain an insight to how the annular pellets deform, a HANARO irradiation test is planned for annular pellets with 5 different types. The detailed specification of the annular pellet was shown in Table 1. It is noted that Type C has the same pore structure as a commercial PWR pellet. The purpose of this paper is to report on the manufacturing process of an annular fuel pellet for a HANARO irradiation test

  9. Large Eddy Simulation of ignition in an annular multi-injector combustor

    Science.gov (United States)

    Vicquelin, Ronan; Philip, Maxime; Boileau, Matthieu; Schmitt, Thomas; Bourgoin, Jean-François; Durox, Daniel; Candel, Sébastien

    2013-11-01

    The present work deals with validating the LES methodology for transient ignition simulations, and in particular elucidating the mechanisms that control the light round sequence in a laboratory annular combustor, representative of many practical industrial systems. The simulation benefits from the unique experimental database built at EM2C on a fully transparent annular chamber equipped with 16 premixed swirled injectors. The F-TACLES combustion model is used for its ability to properly represent the flame propagation.

  10. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers

    OpenAIRE

    Parmentier, Jean-François; Salas, Pablo; Wolf, Pierre; Staffelbach, Gabriel; Nicoud, Franck; Poinsot, Thierry

    2012-01-01

    This study describes a simple analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing experimental, acoustic and large eddy simulation (LES) data obtained in these combustion chambers. It is based on a one-dimensional zero Mach number formulation where N burners are connected to a single annular chamber. A manipulation of the corresponding acoustic equations in this configuration leads to a simple dispersion relation which can be solved by ...

  11. The numerical solution of flow field of short-annular combustion chamber

    Science.gov (United States)

    Xu, H.; Ning, H.

    1986-05-01

    The recirculating flow field of a short-annular combustion chamber has been studied. The body-fitting coordinate system and the 'simple' method combined with a constant viscosity model have been employed to solve the Navier-Stokes equations in a regime containing a complicated curved boundary. The result could provide the theoretical reference for the design and improvement of short-annular combustion chambers.

  12. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    Science.gov (United States)

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  13. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  14. A research on the mechanisms of transition from annular flow in two-phase pipeline flow

    International Nuclear Information System (INIS)

    Various kinds mechanisms of transitions from two-phase annular flow in tubes were studied and modelled, and the affection factors on the transitions were also discussed. Some mathematical equations and transition criteria for every mechanisms presented were derived, and an unified general criterion for the annular flow transitions in whole range of pipe inclinations was recommended. The boundaries predicted show good agreement with the air-water two-phase experimental data

  15. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    OpenAIRE

    Bhardwaj, N; Gupta, A. P.; Choong, K.K.

    2008-01-01

    In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thicknes...

  16. Modified Surgical Intervention for Extensive Mitral Valve Endocarditis and Posterior Mitral Annular Calcification

    Science.gov (United States)

    Kim, Gwan Sic; Beom, Min Sun; Kim, Sung Ryong; Kim, Na Rae; Jang, Ji Wook; Jang, Mi Hee; Ryu, Sang Wan

    2016-01-01

    The concomitant presence of posterior mitral annular calcification and infectious mitral valve lesions poses a technical challenge with considerable perioperative risk when using previously proposed techniques for mitral valve surgery. Herein, we report a case of the use of a modified surgical technique to successfully treat a patient with mitral infective endocarditis complicated by a subendocardial abscess and extensive posterior mitral annular calcification. PMID:26889447

  17. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations, but the......Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  18. Suppression of space-charge effects in transport through an RFQ using an annular beam

    International Nuclear Information System (INIS)

    High intensity proton linacs (HIPLs) have severe space-charge issues that can lead to emittance blow-up and the production of beam halos, both of which lead to limitations in the operable beam current. Hollow or annular beams are known to have a small spacecharge force (for a given current). Here we present preliminary studies on the production of such annular beams in the Low Energy Beam Transport (LEBT) line, and the subsequent transport of such a beam through a Radio- Frequency Quadrupole (RFQ). We show, using three-dimensional particle-in-cell simulations, that such an annular beam experiences a smaller emittance blow-up as well as reduced beam halo. Starting with an nns normalized emittance of 0.2 πmn-mrad, after transport through the RFQ the emittance blows up to 0.39 πmm-mrad for a Gaussian beam, but only to 0.26 πmm-mrad for an annular beam. Similarly, the halo parameter for the annular beam is only 0.4 as compared to 1.4 for the Gaussian beam. Thus, annular beams suffer lesser deterioration due to space-charge forces in transport through the RFQ, and may therefore be a better choice for HIPLs. (author)

  19. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Directory of Open Access Journals (Sweden)

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  20. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  1. An optical system design that converts a Gaussian to a flattop annular beam

    Science.gov (United States)

    Li, Chaochen; Wu, Tengfei; Wang, Yu

    2015-10-01

    Flattop annular beam has been predicted with good character over an increasing application, but the generating of flattop annular beam is rarely mentioned by academic article. In our paper, an optical refractive system, which is designed to achieve flattop annular beam, are proposed. The cone prism is commonly used to get an annular beam, however, the beam intensity distribution is non-uniform. In our design, an additional aspheric lens is placed in front of the cone prism along the optical axis. The lens parameters are theoretically analyzed and well optimized to homogenize the optical field. Furthermore, to lower the requirement of machining accuracy, a pair of aspheric lenses is also designed, which can be used independently to generate flattop annular beam. It combines the function of cone prism and aspheric lens, so as to replace them both. The performance of the implementations has been demonstrated in detail. Simulation result shows that the proposed design is effective and feasible. It is hope that our work would be helpful in related fields. Flattop annular beam, Aspheric lens, Cone prism

  2. Computation of Flow through an Annular Diffuser and Volute Exhaust

    Directory of Open Access Journals (Sweden)

    M. Arun

    2006-04-01

    Full Text Available Turbulent flow in a diffuser with swirl occurs in many commonly used fluid mechanicaldevices,eg, diffusers located downstream of a gas turbine, and in certain types of combustionchambers. Diffusers are widely used for converting kinetic energy to pressure, and a reliableprediction method of such flows with the required flow conditions would lead to the design offluid machinery with improved efficiency. As a first step, turbulent swirling flow through a 12oincluded angle conical diffuser for a swirl parameter, m = 0.18 was numerically investigated usingvarious turbulence models like standard k- , RNG-based k- , shear-stress transport (SST kandReynolds stress model (RSM. Though the comparison between the experimental and thepredicted mean velocity profile by RSM is superior to that by RNG kandSST models, the lattertwo models give closer comparison with the experimental pressure distribution. Subsequently,computation of flow inside a complex duct involving axisymmetric annular diffuser, transitionfrom rectangular to circular cross section, and exit pipe have been carried out using RNG kandSST k models.The comparison of computed and experimental results indicates that theSST k modelgives predictions with reasonable accuracy.

  3. DCH dispersal and entrainment experiment in a scaled annular cavity

    International Nuclear Information System (INIS)

    The objective of this experiment was to measure the amount of corium dispersal and the droplet size distribution during high pressure melt ejection from a CE reactor. The melt and the steam flowed to the containment through a narrow annular cavity. The experiment was carried out on a 1/20th scaled model of the cavity and the containment. The scaling was based on dimensionless numbers obtained from a two-phase flow model of the dispersal and entrainment mechanisms in the cavity. Furthermore, the model shows that the flow in the cavity was choked, so high levels of dispersal and entrainment were possible. The experiment consisted of air-water, air-helium, air-woods metal and helium-woods metal tests; the main result being that the level of dispersal was very high in all cases. The woods metal data supported a separated flow model in the cavity, implying that the gas choked velocity was very high and the droplets very small. In contrast, the measured drop sizes for the water tests were much larger than the separated flow model predictions. This discrepancy could not be resolved because the entrainment mechanism is not properly understood at the present time. (orig.)

  4. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  5. Experimental investigation of the low NOx vortex airblast annular combustor

    Science.gov (United States)

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  6. Development of an annular arc accelerator shock tube driver

    Science.gov (United States)

    Leibowitz, L. P.

    1973-01-01

    An annular arc accelerator (ANAA) shock tube driver has been developed that deposits the energy of an arc discharge into a flowing gas, which then expands and cools without any delay for the opening of a diaphragm. A simplified one-dimensional flow analysis of the ANAA shock tube has been performed, which indicates that shock velocities greater than 40 km/sec may be obtained using a 300-kJ capacitor bank. The ANAA driver consists of a high-pressure driver, an expansion section, and an electrode section. In operation, the cold gas driver is pressurized until the diaphragm bursts, sending a pressure front down the expansion tube to the arc section. When the accelerated flow arrives at the electrode section, a 100-capacitor, 300-kJ capacitor bank is discharged either by breaking an insulating diaphragm between the electrodes or by the triggering of a series of external switches. Shock velocities of 28 km/sec have been obtained, and modifications are described that are expected to improve performance.

  7. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  8. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    Science.gov (United States)

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  9. Flow Pressure Loss through Straight Annular Corrugated Pipes

    Science.gov (United States)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  10. Mathematical behavior and computation of transmission probabilities for annular regions

    International Nuclear Information System (INIS)

    One convenient way of treating neutron transport problems is to use the transmission probability method. For cylindrical geometry consisting of many annular subregions, this method can be formulated in terms of T/sub i//sup OO/, the transmission probability from the outer-to-outer surface of the i-th annulus, and T/sub i//sup OI/, the transmission probability from the inner-to-outer surface of the i-th annulus. The quantities T/sub i//sup OO/ and T/sub i//sup OI/ are extremely complex functions of r/sub i-1//r/sub i/, the ratio of the inner-to-outer radius, and the optical path length r/sub i/Σ/sub ti/ for region i. The latter quantity can have a wide range of values in the problems of practical interest. This paper describes new, improved methods for treating these transmission probabilities on the basis of their individual mathematical properties. These improved methods have three objectives: to provide a rigorous treatment of the asymptotic behavior of these functions, which is currently lacking in the MC2-2 code; to provide a separate treatment of T/sub i//sup OO/ and T/sub i//sup OI/ according to their distinct functional dependencies; to eliminate the two-dimensional tables currently in use to obtain these functions in the MC2-2 code. 2 figures

  11. Measurement of large aspheric surfaces by annular subaperture stitching interferometry

    Institute of Scientific and Technical Information of China (English)

    Xiaokun Wang; Lihui Wang; Longhai Yin; Binzhi Zhang; Di Fan; Xuejun Zhang

    2007-01-01

    A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced.It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical optimization stitching model and effective algorithm are established based on simultaneous least-square fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley (PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433λ and 0.052λ (λis 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from null test, and the difference of PV and RMS errors between them are 0.031λ and 0.005λ, respectively.This stitching model provides another quantitive method for testing large aspheric surfaces besides null compensation.

  12. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  13. NB-UVB phototherapy for generalized granuloma annulare.

    Science.gov (United States)

    Pavlovsky, Mor; Samuelov, Liat; Sprecher, Eli; Matz, Hagit

    2016-05-01

    Granuloma annulare (GA) is a benign, usually self-limited, granulomatous skin disease of unknown etiology. The generalized form of the disease shows a more chronic, relapsing course, rare spontaneous resolution, and poorer response to therapy. Psoralen plus UVA phototherapy has been reported to be effective for GA. However, little is known regarding the efficacy of narrowband UVB phototherapy. Our goal was to determine the efficacy of NB-UVB phototherapy in generalized GA. We carried out a retrospective study of patients with generalized GA treated with NB-UVB phototherapy over a period of 3 years. On completion of treatment, outcome was assessed as complete response (complete clearance of the lesions), partial response (>50% clearance of the lesions), and poor response (<50% clinical response). Therapy was stopped if no improvement was seen after 20 treatments. Thirteen patients were included in the study. 54% of patients treated with NB-UVB had a complete/partial response by the end of the treatment period. NB-UVB phototherapy was well-tolerated, with no serious adverse effects. NB-UVB phototherapy is effective in a substantial portion of patients with generalized GA. To determine the true efficacy of this therapeutic modality, a prospective study comparing it to PUVA is warranted. PMID:26626163

  14. Annular flow entrainment rate experiment in a small vertical pipe

    International Nuclear Information System (INIS)

    Two-fluid model predictions of film dryout in annular flow, leading to nuclear reactor fuel failure, are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate-effects experimental data in the range of the operating conditions in nuclear power reactors. An air-water experiment has been performed to measure the entrainment rate in a small pipe. The current data extend the available database in the literature to higher gas and liquid flows and also to higher pressures. The measurements were made with the film extraction technique. A mechanistic model was obtained based on Kelvin-Helmholtz' instability theory. The dimensionless model includes the Weber number of the gas and the liquid film Reynolds number. Kataoka and Ishii's correlation (Kataoka, I., Ishii, M., (1982)) is modified based on this model and the new data. The new correlation collapses the present air-water data and Cousins and Hewitt's data (Cousins, L.B. (1968)) The effects of pressure and surface tension were considered in the derivation so it may be applied for boiling water reactor operating conditions. (orig.)

  15. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  16. Benchmark problems of start-up core physics of High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    The experimental data of the HTTRs start-up core physics are useful to verify design codes of commercial HTGRs due to the similarities in the core size and excess reactivity. Form these viewpoints, it is significant to carry out the bench mark tests of design codes by using data of start-up core physics experiments planned for the HTTR. The evaluations of the first criticality, excess reactivity of annular cores, etc., are proposed for the benchmark problem. It was found from our precalculations that diffusion calculations provide larger excess reactivity and small number of fuel columns for the first criticality than Monte Carlo calculations. 19 refs

  17. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    Science.gov (United States)

    Kim, Junsu; Reichler, Thomas

    2015-10-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  18. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH2) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  19. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  20. Development, implementation and assessment of specific, two-fluid closure laws for inverted-annular film-boiling

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de [Laboratory for Thermal Hydraulics, Villigen (Switzerland)

    1995-09-01

    Inverted-Annular Film-Boiling (IAFB) is one of the post-burnout heat transfer modes taking place during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous, liquid core is separated from the wall by a superheated vapour film. the heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfers between the wall, the vapour film, the vapour-liquid interface, and the liquid core. Such closure laws have been developed and adjusted using IAFB-relevant experimental results, including heat flux, wall temperature and void fraction data. The model is extensively assessed against data from three independent sources. A total of 46 experiments have been analyzed. The overall predictions are good. The IAFB-specific closure laws proposed have also intrinsic value, and may be used in other two-fluid models. They should allow to improve the description of post-dryout, low quality heat transfer by the safety codes.

  1. Characterization and modeling of annular two-phase flows

    International Nuclear Information System (INIS)

    Three aspects of annular two-phase flow are studied: (a) wave motion on falling films, (b) flow transition from downflow to upflow, and (c) the upflow. For the case of wave motion on falling films, it is shown that the assumption of the Nusselt velocity profile for finite-amplitude waves is solution of the wave profile, wave velocity, and velocity components within the wave is developed. An algorithm based on collocation methods is also detailed and can be applied to extend the model to solve for higher order terms in the velocity profile. Comparisons with experimental studies show good agreement. Flow transition and the upflow experiments are conducted in a 5.08 x 10-2m inner diameter, 6.5m long Plexiglas column. The liquid rates are varied from 0 to 0.126 kg/s and the gas rates from 0 to 0.0524 kg/s. At four measuring stations along the length of the column, an electrical conductance technique which employs two electrodes mounted flush with the wall is utilized to measure film thickness and pressure transducers are used to make the pressure measurements. Flow visualization studies indicate that flooding takes place as a result of entrainment from the crests of large waves. The effect of column length and pore size of the feed device on flooding velocities is studied. No previous correlation or theory is found to be fully adequate. A speculative interaction among system parameters is proposed to form a basis for a physical model for flooding phenomena

  2. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  3. Core transfer

    Science.gov (United States)

    Good news for all petroleum geoscientists, mining and environmental scientists, university researchers, and the like: Shell Oil Company has deeded its Midland core and sample repository to the Bureau of Economic Geology (BEG) at the University of Texas at Austin. The Midland repository includes more than 1 million linear meters of slab, whole core, and prepared cuttings. Data comprising one of the largest U.S. core collections—the geologic samples from wells drilled in Texas and 39 other states—are now public data and will be incorporated into the existing BEG database. Both Shell and the University of Texas at Austin are affiliated with the American Geological Institute, which assisted in arranging the transfer as part of its goal to establish a National Geoscience Data Repository System at regional centers across the United States.

  4. Core strengthening.

    Science.gov (United States)

    Arendt, Elizabeth A

    2007-01-01

    Several recent studies have evaluated interventional techniques designed to reduce the risk of serious knee injuries, particularly noncontact anterior cruciate ligament injuries in female athletes. Maintenance of rotational control of the limb underneath the pelvis, especially in response to cutting and jumping activities, is a common goal in many training programs. Rotational control of the limb underneath the pelvis is mediated by a complex set of factors including the strength of the trunk muscles and the relationship between the core muscles. It is important to examine the interrelationship between lower extremity function and core stability. PMID:17472321

  5. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    The Web Services Business Process Execution Language (WS-BPEL) is a language for expressing business process behaviour based on web services. The language is intentionally not minimal but provides a rich set of constructs, allows omission of constructs by relying on defaults, and supports language...... extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs...

  6. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    International Nuclear Information System (INIS)

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1–3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure. (paper)

  7. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Seo, K. W.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly.

  8. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    International Nuclear Information System (INIS)

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly

  9. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb

    International Nuclear Information System (INIS)

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions

  10. A modified stitching algorithm for testing rotationally symmetric aspherical surfaces with annular sub-apertures

    Science.gov (United States)

    Hou, Xi; Wu, Fan; Yang, Li; Wu, Shi-bin; Chen, Qiang

    2006-02-01

    Annular sub-aperture stitching technique has been developed for low cost and flexible testing rotationally symmetric aspherical surfaces, of which combining accurately the sub-aperture measurement data corrupted by misalignments into a complete surface figure is the key problem. An existed stitching algorithm of annular sub-apertures can convert sub-aperture Zernike coefficients into full-aperture Zernike coefficients, in which use of Zernike circle polynomials represents sub-aperture data over both circle and annular domain. Since Zernike circle polynomials are not orthogonal over annular dominion, the fitting results may give wrong results. In this paper, the Zernike polynomials and existed stitching algorithm have been reviewed, and a modified stitching algorithm with Zernike annular polynomials is provided. The performances of a modified algorithm on the reconstruction precision are studied by comparing with the algorithm existed. The results of computer simulation show that the sub-aperture data reduction with the modified algorithm is more accurate than that obtained with the existed algorithm based on Zernike circle polynomials, and the undergoing matrix manipulation is simpler.

  11. The clinical application of “jetting suture” technique in annular repair under microendoscopic discectomy

    Science.gov (United States)

    Qi, Lei; Li, Mu; Si, Haipeng; Wang, Liang; Jiang, Yunpeng; Zhang, Shuai; Li, Le

    2016-01-01

    Abstract To introduce a new designed suture technique in annular repair under the microendoscopic discectomy (MED) surgery and to evaluate the clinical application of the technique in annular repair under MED with at least 2-year follow-up period. A new method of annular repair was designed and named “jetting suture” technique. Thirty consecutive patients with lumbar disc herniation were enrolled in the prospective single-cohort observational study. Patients were followed up at intervals of preoperative, postoperative 1 week, 3 months, 6 months, 1 year, and last follow-up. The clinical outcomes were evaluated by using Japanese Orthopaedic Association (JOA) score, Oswestry Disability Index, and modified Mcnab criteria. The procedure was successfully performed in all cases. No case required conversion to an open procedure. The mean age of patients was 36.6 years. Average blood loss was 45.8 ± 10.2 mL. The preoperative symptoms were alleviated significantly after surgery. All the standardized measures improved significantly at the last follow-up, including JOA score (10.1 to 26.6; P disc herniation was reported. The designed “jetting suture” technique in annular repair under MED can be performed safely and effectively. It could be a viable alternative to annular repair under lumbar discectomy. PMID:27495101

  12. Repeated mitral valve replacement in a patient with extensive annular calcification

    Directory of Open Access Journals (Sweden)

    Kitamura Tadashi

    2011-11-01

    Full Text Available Abstract Background Mitral valve replacement in the presence of severe annular calcification is a technical challenge. Case report A 47-year-old lady who had undergone mitral and aortic valve replacement for rheumatic disease 27 years before presented with dyspnea. At reoperation, extensive mitral annular calcification was hindering the disc motion of the Starr-Edwards mitral prosthesis. The old prosthesis was removed and a St Jude Medical mechanical valve was implanted after thorough annular debridement. Postoperatively the patient developed paravalvular leak and hemolytic anemia, subsequently undergoing reoperation three days later. The mitral valve was replaced with an Edwards MIRA valve, with a bulkier sewing cuff, after more aggressive annular debridement. Although initially there was no paravalvular leak, it recurred five days later. The patient also developed a small cerebral hemorrhage. As the paravalvular leak and hemolytic anemia gradually worsened, the patient underwent reoperation 14 days later. A Carpentier-Edwards bioprosthetic valve with equine pericardial patches, one to cover the debrided calcified annulus, another as a collar around the prosthesis, was used to eliminate paravalvular leak. At 7 years postoperatively the patient is doing well without any evidence of paravalvular leak or structural valve deterioration. Conclusion Mitral valve replacement using a bioprosthesis with equine pericardial patches was useful to overcome recurrent paravalvular leak due to severe mitral annular calcification.

  13. Numerical modeling of a horizontal annular flow experiment using a droplet entrainment model

    International Nuclear Information System (INIS)

    Highlights: • A new droplet entrainment model within the AIAD framework is proposed. • The approach was validated against a horizontal annular flow experiment. • Important flow phenomena could be calculated and analyzed. - Abstract: One limitation in current simulating horizontal annular flows is the lack of treatment of droplet formation mechanisms. For self-generating annular flows in horizontal pipes, the interfacial momentum exchange and the turbulence parameters have to be modelled correctly. Furthermore the understanding of the mechanism of droplet entrainment in annular flow regimes for heat and mass transfer processes is of great importance in the chemical and nuclear industry. A new entrainment model is proposed. It assumes that due to liquid turbulence the interface gets rough and wavy and forms droplets. The new approach is validated with HZDR annular flow experiments. Important phenomena like the pressure drop, the wave pumping effect, the droplet entrainment, the liquid film formation and the transient flow behavior could be calculated, analyzed and some of the phenomena compared with the measurement

  14. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrHx) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to those

  15. Enhancing VVER annular proliferation resistance fuel with minor actinides

    International Nuclear Information System (INIS)

    reactivity control of the systems into which they are incorporated. In the study, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems

  16. Exploring flocculation of suspended burned sediment using an annular flume

    Science.gov (United States)

    Blake, W. H.; Clarke, P.; Manning, A. J.; Fitzsimons, M. F.

    2010-05-01

    The frequency and severity of wildfire events are predicted to increase in many fire-prone areas of the world with implications for erosion, sediment transport and sedimentation. While cohesive suspended sediment is known to be transported primarily as flocculated material in river channels, with important implications for catchment nutrient and contaminant fluxes, there has been little work to date to explore the effect of burning on suspended sediment flocculation processes. Since heating has profound effects on surface soil biogeochemistry, it can be hypothesised that in-channel flocculation processes may also be affected as burned eroded material is transported through the catchment system. Using an annular flume and LISST-ST (Laser in Situ Scatter and Transmissometry with Settling Tube) particle size analyser, short-term suspended sediment flocculation dynamics were examined in burned and unburned sediment collected from a wildfire-impacted catchment, Southern Peloponnese, Greece. Fine sediment (stresses (0.1, 0.3, 0.6 and 0.9 Pa). Experiments were undertaken for a range of suspended sediment concentrations (111, 222 and 333 mg l-1) of burned and unburned material. For each shear and sediment concentration scenario, the flume was operated for 30 minutes to induce a theoretical equilibrium between flocs and fluid shear stress after which 5 replicate subsamples were collected and analysed for effective particle size using the LISST-ST. Material was also analysed for absolute particle size following chemical and ultrasonic dispersion. At the two higher sediment concentrations, the effective particle size distribution of unburned material notably coarsened at shear stresses of 0.1-0.3 Pa in comparison to the absolute particle size distribution. This is reflected in a reduction of the percentage of 250 μm) e.g. from 14.4 ± 4.1 % to 5.9 ± 2.0 % at the highest sediment concentration. While similar increases in effective particle size were seen at the lower

  17. Panoramic Imaging and Holographic Interferometry Using a Panoramic Annular Lens.

    Science.gov (United States)

    Puliparambil, Joseph Thomas

    1992-01-01

    Ideally, a device for making measurements of the inner surface of a cavity should be rugged, compact, and capable of obtaining an unobstructed, complete, and comprehensive image of the cavity space in every direction. The first attempt to patent a system for panoramic imaging was made by Mangin in 1878 and since that time several other devices have been patented. Most of these devices depend on a scanning system or on a complex set of lenses and mirrors and as such they are not very practical for use. However, in 1984 Dr. Pal Greguss invented a simple lens known as a Panoramic Annular Lens (PAL) capable of giving a full 360 degree surround image of the area around the lens. This lens can be utilized along with digital cameras and computer programs to inspect and measure the interior walls of cavities. If a cavity can be regarded as a cylindrical rather than a spherical volume, the image information can be transformed, using stretching methods, onto a flat surface creating a two-dimensional representation of a three-dimensional cylindrical surface. This phenomenon called Flat Cylindrical Perspective (FCP) forms the basis for the image produced by a PAL. To apply standard methods of analysis on an image and also for visual interpretation, image processing algorithms were developed to linearize a PAL image. These programs can be used for endoscopy which is a technique for imaging the inner part of a volume or cavity. Such techniques have applications in the fields of medicine, civil engineering and aerospace; indeed, anywhere tubes and pipes are involved. Holographic interferometry has become an important diagnostic tool in non-destructive testing, but due to lack of panoramic imaging systems this work could not be effectively used for the analysis of cavities. Now, the PAL can be used for panoramic holographic interferometry which can be used to measure submicron deformations of cavity walls caused by small perturbations in temperature, pressured and mechanical loads

  18. Turbulent structure at the midsection of an annular flow

    Science.gov (United States)

    Ghaemi, S.; Rafati, S.; Bizhani, M.; Kuru, E.

    2015-10-01

    The turbulent flow in the midsection of an annular gap between two concentric tubes at Reynolds number of 59 200-90 800 based on hydraulic diameter (dh = 57 mm) and average velocity is experimentally investigated. Measurements are carried out using particle tracking velocimetry (PTV) and planar particle image velocimetry (PIV) with spatial resolution of 0.0068dh (size of the binning window) and 0.0129dh (size of the interrogation window), respectively. Both PTV and PIV results show that the location of maximum mean streamwise velocity (yU) does not coincide with the locations of zero shear stress (yuv), minimum streamwise velocity fluctuation (yu2), and minimum radial velocity fluctuation (yv2). The separation between yU and yuv is 0.013dh based on PTV while PIV underestimates the separation distance as 0.0063dh. Conditional averages of turbulent fluctuations based on the four quadrants across the annulus demonstrate that the inner and outer wall flows overlap in the midsection. In the midsection, the flow is subject to opposing sweep/ejection events originating from both the inner and outer walls. The opposite quadrant events of the two boundary layers cancel out at yuv while the local minimum of spatial correlation of u (maximum mixing of the two wall flows) occurs at yU. Investigation of the budget of Reynolds shear stress showed that production and advection terms act towards the coincidence of the yU and yuv while the dissipation term works against the coincidence of the two points. The location of max also overlaps with zero dissipation of . The production of turbulent kinetic energy is slightly negative in the narrow region between yU and yuv. This negative production acts towards smoothing the mean velocity profile at the joint of the two wall flows by equalizing its curvature (∂2/∂y2) on the two sides of yU. The small separation distance of the yU and yuv is associated with slight deviation from the fully developed condition.

  19. Fuel and core testing plan for a target fueled isotope production reactor

    International Nuclear Information System (INIS)

    pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.

  20. A Study on the Pressure Drop of a Subchannel Analysis Code for an Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Seo, K. W.; In, W. K.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. KAERI is pursuing the development for its reloading to operating PWR reactors of OPR-1000. Thermal hydraulic analysis is critical part of annular fuel design because it determines dimensions of the fuel within acceptable MNDBR margins. An annular fuel subchannel analysis code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow split and heat split in the internal and external subchannels has been developed. In this paper, the effects of the parameters related with a calculation of a single-phase and two-phase pressure drop have been estimated.

  1. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  2. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    International Nuclear Information System (INIS)

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Fast Photoacoustic Imaging of Blood Vessels Based on an Annular Transducer Array

    International Nuclear Information System (INIS)

    We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array. The annular transducer array consists of 256 elements arranged along a 300° arc with a 50-mm radius of curvature, using piezocomposite technology for high sensitivity and high signal-to-noise ratio. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and a limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. The experiments with phantom and blood vessels of a chicken are performed and clear photoacoustic images are obtained. The results demonstrate that the photoacoustic imaging system using the annular transducer array holds the potential application in monitoring neovascularization in tumor angiogenesis

  4. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    International Nuclear Information System (INIS)

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  5. Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path

    International Nuclear Information System (INIS)

    Scintillation characteristics of annular beams propagating through atmospheric turbulence along a slanted path are studied by using the numerical simulation method and some new results are obtained, which are explained in physical terms. It is found that, when the zenith angle is not large enough, the saturation phenomenon of the scintillation index never appears even if the propagation distance is large enough, which is quite different from the behavior for the horizontal propagation case. However, under the same condition (i.e. the zenith angle is not large enough), the on-axis scintillation index still approaches an asymptotical value, which increases as the zenith angle increases, and depends on the obscure ratio of annular beams. Furthermore, the relation of the on-axis scintillation index between annular beams and flat-topped beams is also examined in this paper. It is shown that their relation will change as the zenith angle changes. (paper)

  6. Diametric Tolerance Control of Dual Cooled Annular Fuel Pellet without Inner Surface Grinding

    International Nuclear Information System (INIS)

    A dual cooled fuel consists of internal and external cladding tubes in which annular pellets are stacked and cooling water flows in both internal and external coolant passages. It is recently being reconsidered as a promising option for a power up-rate of a pressurized water reactor fuel assembly because an annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to an increased heat transfer area and a thin pellet thickness. Many technical issues might cause a serious problem to adopt the dual cooled annular fuel to the commercial PWR reactors. One of the most important issues is a heat flux split toward an internal cladding and an external cladding due to the gap conductance asymmetry which results from a preferential expansion of a fuel pellet toward the outside during an irradiation. Gap conductance is directly related to the inner and outer gap thicknesses. Initial gap thicknesses can vary with a pellet's dimensions which are affected by a reactor operation condition. Recently, it is suggested that a fuel rod with a smaller inner gap and a larger outer gap can reduce this gap conductance asymmetry. This approach can be effective only after precise tolerance technology is achieved. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press. Thus, a sintered pellet usually undergoes a center-less grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a center-less grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications

  7. Anti-oxidative therapy with oral dapsone improved HCV antibody positive annular elastolytic giant cell granuloma.

    Science.gov (United States)

    Igawa, K; Maruyama, R; Katayama, I; Nishioka, K

    1997-05-01

    A 72-year-old fisherman who was positive for the HCV antibody developed an annular, erythematous, infiltrated lesions on sun-exposed areas. The lesions were diagnosed as annular elastolytic giant cell granuloma both clinically and histologically. Topical corticosteroid and cryotherapy with liquid nitrogen for several months failed to improve the lesions. We then started dapsone, a known anti-oxidant, at 50 mg/day. A month later, the margins of the erythematous lesions faded, and the infiltration gradually decreased. No recurrence has been observed for one year after the start of the therapy. Anti-oxidative therapy appears to be effective for annular elastolytic giant cell granuloma and could be an alternate therapy for refractory granulomatous disease. PMID:9198323

  8. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  9. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    Science.gov (United States)

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-01

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples. PMID:26921513

  10. Analytical and experimental study of the vibratory response of a flexible tube subjected to external annular flow part way along its length

    International Nuclear Information System (INIS)

    In large pressurized water Nuclear Power Plants of the type exploited by Electricite de France, neutron flux and temperature distributions are monitored by means of miniature sensing devices inserted into the reactor core. Insertion of these measuring devices is made possible through the existence of small diameter hollow steel tubes which enter the reactor through the lower vessel head and pass vertically upward through a rigid circular passage to the upper end of the fuel strings. Pressurized water enters the annular region between the tube and passage near the lower extremity and flows axially through the annulus for about 1.5 meters. It then passes radially outward and flows vertically upward through the fuel strings. These flexible instrument tubes, known in the French Nuclear Industry as doigts de gant (glove fingers) have been found to undergo serious high amplitude vibration because of the liquid flow. The project reported here began with an analytical study conducted with a view toward establishing the mechanism of tube excitation. This study was followed by the construction of a full-scale laboratory model whereby it was confirmed that the annular nozzle utilized in current reactors is the actual source of the vibration excitation. It was demonstrated that the problem can be resolved by means of modifications to the geometry of this nozzle. (author)

  11. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  12. Propagation of hermite-cosh-gaussian beams passing through ABCD optical system with an annular aperture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using the expansion of the aperture function into a finte sum of complex Gaussian functions, the corresponding analytical expressions of Hermite-cosh-Gaussian beams passing through annular apertured paraxially and symmetrically optical systems written in terms of ABCD matrix were derived, and they could reduce to the cases with squared aperture. In a similar way, the corresponding analytical expressions of cosh-Gaussian beams through annular apertured ABCD matrix were also given. The method could save more calculation time than that by using the diffraction integral formula directly.

  13. Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube

    Institute of Scientific and Technical Information of China (English)

    Li Bin; He Anding; Wang Yueshe; Zhou Fangde

    2001-01-01

    Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.

  14. Ultrasonography of the trigger fingers: Emphasis on findings of annular pulley

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-06-15

    To analyze the sonographic findings of clinically diagnosed trigger fingers by comparing those of normal fingers with a special emphasis on findings of the annular pulleys that has not been demonstrated previously. Forty-four fingers of 38 patients with clinically diagnosed trigger fingers and 31 asymptomatic contralateral fingers from 29 patients as the normal control group were included in this study. The mean age of the subjects with trigger fingers was 39 years (age range, 7-74 years; female:male = 32:6) while that of the normal control group, 49 years (age range, 7-74 years; female:male = 24:5). Longitudinal and axial images of the flexor digitorum tendons (FDTs) and adjacent soft tissue were obtained with a careful examination of the annular pulleys including A1 pulley. Two radiologists conducted a retrospective analysis of sonographic findings with an emphasis on the visualization and thickness of annular pulleys, thickness and echo pattern of FDTs, distension of tendon sheath , and presence of ganglion. Statistical significances for the difference of thickness of the annular pulleys and FDTs between patients and normal control group were determined with independent sample t-test. The probability value less than .05 was considered statistically significant. Twenty-six of 44 fingers (59%) showed thickened annular pulleys (A1 in 20 and A3 in 6 cases). The thickness of annular pulleys of control and patient groups was 0.27 +- 0.40 mm and 0.77 +- 85 mm, respectively. The average thickness of FDTs of the control and patient groups were 3.35+- 0.77 mm and 3.6 +- 0.9 mm, respectively. The annular pulleys were thickened in the patient group with a statistical significance (p<0.05) whereas the thickness of FDTs did not. The echo pattern of FDTs was normal in 38 fingers of 44 patients (86%) while only six remaining fingers (14%) showed decreased echo and loss of the normal fibrillary pattern within the tendon. Three fingers showed distension of tendon sheath; one

  15. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  16. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    OpenAIRE

    Padma Lochannayak; suvendumohanty

    2015-01-01

    The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46...

  17. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang; Tao Huang

    2015-01-01

    The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD) simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the ro...

  18. Applicability of annular flow model to countercurrent flow in debris beds consisting of large particles

    International Nuclear Information System (INIS)

    Countercurrent flow limitation (CCFL) is the dominant dryout phenomenon in a debris bed that may be formed during a severe accident such as that observed at Three Mile Island unit 2. The actual CCFL situation in a debris bed is very complex, and it is difficult to treat. An annular flow model was developed to predict CCFL in a pipe. If a hypothetical flow channel were assumed, CCFL in a debris bed could be treated in the same manner as CCFL in a pipe. The purpose of this study is to investigate whether the annular flow model developed for CCFL in a pipe is applicable for CCFL in a debris bed

  19. Quasi-static transient thermal stresses in a thick annular disc

    Indian Academy of Sciences (India)

    V S Kulkarni; K C Deshmukh

    2007-10-01

    The present paper deals with the determination of transient thermal stresses in a thick annular disc. A thick annular disc is considered having zero initial temperature and subjected to arbitrary heat flux on the upper and lower surfaces where as the fixed circular edges are at zero temperature.The governing heat conduction equation have been solved by using integral transform technique. The results are obtained in series form in terms of Bessel’s functions. The results for displacement and stresses have been computed numerically and are illustrated graphically

  20. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  1. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  2. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    International Nuclear Information System (INIS)

    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  3. Pulse radiolysis

    International Nuclear Information System (INIS)

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  4. Modeling of debris cooling with annular gap in the lower RPV and verification based on ALPHA experiments

    International Nuclear Information System (INIS)

    For severe accident assessment in a light water reactor, heat transfer models in a narrow annular gap between the overheated core debris and the reactor pressure vessel (RPV) are important for evaluating RPV integrity and emergency procedures. Using existing data, the authors developed heat transfer models on the average critical heat flux (CHF) restricted by countercurrent flow limitation (CCFL) and local boiling heat fluxes, and showed that the average CHF depended on the steam-water flow pattern in the narrow gap and that the local heat fluxes were similar to the pool boiling curve. We evaluated the validity of heat transfer models by simple calculations for ALPHA experiments performed at Japan Atomic Energy Research Institute. Calculated results showed that heat fluxes on the crust surface were restricted mainly by thermal resistance of the crust after the crust formation, and emissivity on the crust surface did not have much effect on the heat fluxes. The calculated vessel temperature during the heat-up process and peak vessel temperature agreed well with the measurements, which confirmed the validity of the average CHF correlation. However, the vessel cooling rate was underestimated mainly due to underestimation of the gap size.

  5. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  6. Fiber Reinforced Composite Cores and Panels

    Science.gov (United States)

    Day, Stephen W. (Inventor); Campbell, G. Scott (Inventor); Tilton, Danny E. (Inventor); Stoll, Frederick (Inventor); Sheppard, Michael (Inventor); Banerjee, Robin (Inventor)

    2013-01-01

    A fiber reinforced core panel is formed from strips of plastics foam helically wound with layers of rovings to form webs which may extend in a wave pattern or may intersect transverse webs. Hollow tubes may replace foam strips. Axial rovings cooperate with overlying helically wound rovings to form a beam or a column. Wound roving patterns may vary along strips for structural efficiency. Wound strips may alternate with spaced strips, and spacers between the strips enhance web buckling strength. Continuously wound rovings between spaced strips permit folding to form panels with reinforced edges. Continuously wound strips are helically wrapped to form annular structures, and composite panels may combine both thermoset and thermoplastic resins. Continuously wound strips or strip sections may be continuously fed either longitudinally or laterally into molding apparatus which may receive skin materials to form reinforced composite panels.

  7. Stress Intensity Factor using Finite Element Analysis in Rectangular Orthotropic Composite Annular Disk

    Directory of Open Access Journals (Sweden)

    P. Ravinder Reddy

    1997-01-01

    Full Text Available The quadratic isoparametric elements which embody the inverse squareroot singularity were used to determine the stress intensity factor in an annular disk made of Boron-Epoxy composite material. The displacements and stresses were determined in a rectangular orthotropic composite annular disk using isoparametric finite elements. The singularity in the strain field was provided by means of 8-noded isoparametric elements (4-nodes at the four corners and four mid-side nodes each at l/4th distance from the edge. The results were obtained for various material properties and fibre orientation. The geometry of the annular disk was reported when subjected to a boundary radial and tangential. The r singularity was provided at the boundary of the circular hole and the rest of the annular disk was modelled with ordinary isoparametric elements. The apparent stress intensity factor (K/sub I/= was computed from the stress data near the circular hole, when it was subjected to uniform tension. A curve was drawn for apparent stress intensity factor versus the distance from the crack edge and was extrapolated to r = 0, the actual stress intensity factor was found on the y-axis.

  8. Application of Lubricant to Minimize Axial Deviation of Annular Pellet Diameter

    International Nuclear Information System (INIS)

    In the nuclear industry, the elevation of an economical efficiency for a nuclear fuel is one of the major issues. To increase the efficiency, a development of the nuclear fuel for a high burnup and extended cycle is necessary. In the development of a high performance fuel, in-reactor fuel behavior must be seriously considered. Also, a fuel fabrication and an enrichment process must be discussed. A modification and an improvement of a nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow for a substantial increase in the power density, an additional cooling is necessary. One of the best ways is the application of a new fuel geometry that is of an annular shape and has both an internal and external cooling. From this point of view, a double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process for a UO2 annular pellet is now in progress. In developing the fabrication technology for an annular pellet, there are various methods which can be applied to the fabrication of an annular pellet. But a die pressing method was dominantly chosen, because it is profitable for a production on a large scale

  9. Thermal hydraulic analysis of thorium fuel assemblies loaded with annular seed pins

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using MATRAA combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and MATRAA showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 qC. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that interchannel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels

  10. Stress Functions in a Thin Annular Disc Due To Partially Distributed Heat Supply

    Science.gov (United States)

    Bagde, Sunil D.; Khobragade, N. W.

    2012-09-01

    This paper concerned with stress functions in thin annular disc due to partially distributed heat supply to determine the temperature, displacement function and stress functions with the help of finite Fourier cosine transform, Marchi-Zgrablich transform and Laplace transform techniques.

  11. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    Science.gov (United States)

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  12. Development of Technology for Improving the Dual Cooling Annular Fuel Pellet Heat Transfer

    International Nuclear Information System (INIS)

    The purpose of this project is to conduct CHF experiments using nano fluid and to check the application possibility of nano fluid to annular fuel for developing high performance dual cooling annular fuel pellet. To achieve this purpose, We set the direction of research by literature survey and conducted experiments using various experimental apparatus. The main purposes of the experiments contained in the present study are understanding about effect of nano fluid on CHF and investigation of related phenomena. CHF enhancement by nano fluid can increase the the thermal margin of dual cooling annular fuel and thus increase the application possibility of annular fuel to nuclear power plant. The present study consist of two parts. First, we study about the effect of nano fluid on thermal conductivity, wettability, CHF in pool boiling condition. Second, we study about the effect of nano fluid on CHF in flow boiling condition. Part 1 : Thermal conductivity, wettability, CHF experiments using nano fluid in pool boiling condition Part 2 : CHF experiments using nano fluid in flow boiling condition

  13. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers. Comp......, the efficiency of the displacement is analysed for various flow situations....

  14. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  15. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator

    International Nuclear Information System (INIS)

    Highlights: • Exergy analysis in the annular thermoelectric generator (ATEG) system is proposed. • Analytical expressions for the power output, exergy efficiency of an ATEG is derived. • The effects of Sr, RL, and θ in Pout and exergy efficiency of an ATEG is studied. • The influence of Thomson effect in Pout and exergy efficiency of an ATEG is studied. - Abstract: The exoreversible thermodynamic model of an annular thermoelectric generator (ATEG) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum power output and maximum energy, exergy efficiency conditions, and dimensionless irreversibilities in the ATEG are derived. The modified expression for figure of merit of a thermoelectric generator considering the Thomson effect has also been obtained. The results show that the power output, energy and exergy efficiency of the ATEG is lower than the flat plate thermoelectric generator. The effects of annular shape parameter (Sr = r2/r1), load resistance (RL), dimensionless temperature ratio (θ = Th/Tc) and the thermal and electrical contact resistances in power output, energy/exergy efficiency of the ATEG have been studied. It has also been proved that because of the influence of Thomson effect, the power output and energy/exergy efficiency of the ATEG is reduced. This study will help in the designing of the actual annular thermoelectric generation systems

  16. Existence, uniqueness and multiplicity of rotating fluxon waves in annular Josephson junctions

    OpenAIRE

    Katriel, Guy

    2007-01-01

    We prove that the equation modelling an annular Josephson junction has a rotating fluxon wave solution for all values of the parameters. We also obtain results on uniqueness of the rotating fluxon wave in some parameter regimes, and on multiplicity of rotating fluxon waves in other parameter regimes.

  17. Surgical treatment of annular pancreas in adults: a report of two cases

    Institute of Scientific and Technical Information of China (English)

    ZHENG He-ming; CAI Xiu-jun; SHEN Lai-gen; Robert Finley

    2007-01-01

    @@ A nnular pancreas is a congenital anomaly which consists of a ring of pancreatic tissue partially or completely encircling the descending portion of theduodenum. It was first described by Tiedemann1 in 1818 and named "annular pancreas" by Ecker2,3 in 1862.

  18. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  19. Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions.

    Science.gov (United States)

    Jaroszewicz, Z; Sochacki, J; Kolodziejczyk, A; Staronski, L R

    1993-11-15

    We show that the apodized annular-aperture logarithmic axicon preserves excellent uniformity of the on-axis intensity, energy flow, and lateral resolution. Numerical evaluation of the Fresnel diffraction integral leads to results very close to geometrical-optics predictions. Once again the geometrical law of energy conservation turns out to be a useful tool in designing axicons. PMID:19829438

  20. The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump

    Directory of Open Access Journals (Sweden)

    Bergoug Nassima

    2012-01-01

    Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.

  1. The effects of annular flow on dynamics of AP1000 reactor coolant pump rotor

    International Nuclear Information System (INIS)

    The feature of AP1000 RCP rotor system is that the whole rotor system is immersed in the annular flow. The rotor in annular flow induces fluctuating fluid forces, thereby causes vibration and noise, even rotor instability. The effects of annular flow on AP1000 RCP rotor system are different from that in bearings and seals and should be considered in a new approach. Based on the turbulent bulk flow theory and perturbation analysis, the rotor-flow coupled linear dynamic model is developed to predict the dynamics of AP1000 RCP immersed rotor. During the analysis, the rotor eccentricity, stator and rotor wall friction effects are emphasized. The analytic results show the rotor eccentricity induces divergence instability and significant decrease of instability speed for system with moderate or large eccentricity; however, stator and rotor wall friction effects distinctly suppress divergence instability and increase instability speed for system with small or moderate eccentricity. Finally, we can have the conclusion that the flow-structure interaction induced by annular flow has great effects on the dynamics of AP1000 RCP immersed rotor, which should be considered in rotor dynamic analysis and design of AP1000 RCP. The method and results in the paper have theoretical significance and practical importance. (author)

  2. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence%部分相干环状偏心光束通过海洋湍流的传输特性∗

    Institute of Scientific and Technical Information of China (English)

    杨婷; 季小玲; 李晓庆

    2015-01-01

    The analytical expressions for the average intensity and the centroid position of partially coherent decentred annular beams propagating through oceanic turbulence are derived, and the propagation equation of the position of the maximum intensity is also given. Changes of the average intensity, the centroid position and the position of the maximum intensity of partially coherent decentred annular beams during propagation are studied in detail. It is shown that both in free space and in oceanic turbulence, the position of the maximum intensity moves to the propagation z-axis with increasing the propagation distance, and is kept unchanged when the propagation distance is large enough. Furthermore, in free space the position of the maximum intensity is closer to the propagation z-axis than to the centroid position when the propagation distance is large enough. The position of the maximum intensity is closer to the propagation z-axis with increasing the correlation parameter, and far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. However, in oceanic turbulence the position of the maximum intensity is close to the centroid position when the propagation distance is large enough, and the evolution is speeded with increasing the strength of oceanic turbulence. The influence of the beam coherence on propagation characteristics decreases due to oceanic turbulence. On the other hand, the centroid position is independent of the beam coherence, the propagation distance and the oceanic turbulence. The centroid position is far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. In addition, the hollow core of partially coherent decentred annular beams is filled up as the propagation distance increases, and the evolution is speeded with increasing the strength of oceanic turbulence. The results obtained in this paper are very useful for applications of partially coherent decentred annular beams in

  3. Fabrication of Mn-Al doped UO{sub 2} Annular Pellet with High Thermal Stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Rhee, Young Woo; Yang, Jae Ho; Oh, Jang Soo; Kim, Jong Hun; Nam, Ik Hui; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    For a higher burnup and extended cycle, one of the innovative nuclear fuel concepts being developed has a new fuel geometry design that is of an annular sintered pellet, inner and outer cladding, and a dual cooling system which is cooled by both an internal and external coolant (dual cooled fuel). The advantages of dual cooled fuel are considerably lower surface heat flux and lower fuel temperature than those of solid fuel. While the lower heat flux gives a higher DNB (Departure from Nucleate Boiling) margin for the same power rate, the lower temperature reduces the stored energy of the fuel and cladding peak temperature. The dual cooled fuel has promising potential to increase both the reactor economy and safety. In the development of a nuclear fuel pellet, the improvement of fuel performance to reduce the FGR (Fission Gas Release) and increase the resistance to the PCI (Pellet Cladding Interaction) is a technical challenge. As in the annular fuel pellet, the in-reactor performance of dual cooled fuel can be definitely enhanced by an improvement in PCI and FGR. In the development of the dual cooled fuel concept, a 'heat split' behavior of the fuel is one of the issues that must be significantly considered. The heat split is a phenomenon with an unbalanced distribution of heat flux between inner and outer coolant-direction. In the densification of the annular pellet, inner gap of fuel will be changed narrower than outer gap of fuel. And then, the thermal resistance of inner gap will decrease lower than that of outer gap. Finally, the heat flux of inner coolant-direction will rise higher, and the temperature of inner coolant and cladding will increase. Therefore, if an annular sintered pellet with a higher thermal stability can be fabricated, the dual cooled fuel performance in the reactor can be remarkably improved. That is to say, the annular pellet with a minimized dimensional change by densification needed. In this study, an annular sintered pellet

  4. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  5. Thermal radiation in gas core nuclear reactors for space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J. (Sandia National Lab, Albuquerque, NM (United States))

    1994-05-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs.

  6. Ultrafast nanomagnetic toggle switching of vortex cores

    OpenAIRE

    Hertel, R.; Gliga, S.; Fähnle, M.; Schneider, C. M.

    2007-01-01

    We present an ultrafast route for a controlled, toggle switching of magnetic vortex cores with ultrashort unipolar magnetic field pulses. The switching process is found to be largely insensitive to extrinsic parameters, like sample size and shape, and it is faster than any field-driven magnetization reversal process previously known from micromagnetic theory. Micromagnetic simulations demonstrate that the vortex core reversal is mediated by a rapid sequence of vortex-antivortex pair creation ...

  7. Pre-pulse irradiation examination, NSRR pulse irradiation and post-pulse irradiation examination of MH-1 fuel rod

    International Nuclear Information System (INIS)

    The Nuclear Safety Research Reactor (NSRR) program for studying failure threshold of pre-irradiated LWR fuel under simulated reactivity initiated accident conditions is in progress. In this program a 14 x 14 PWR type fuel K4-1 was segmented from K4/G08 long size PWR rod pre-irradiated in MIHAMA Unit-2 and was pulse irradiated on November 28, 1989 at NSRR. Energy deposition given to the test rod was 60 cal/g·fuel. No failure indication was observed by in-core monitoring and by post-pulse irradiation examination. As one of the NSRR data base on fuel behavior during transient/RIA, data obtained from pre-pulse irradiation examination, during NSRR pulse irradiation, and from post-pulse irradiation examination are summarized. (author)

  8. Pre-pulse irradiation examination, NSRR pulse irradiation and post-pulse irradiation examination of MH-2 fuel rod

    International Nuclear Information System (INIS)

    The Nuclear Safety Research Reactor (NSRR) program for studying failure threshold of pre-irradiated LWR fuel under simulated reactivity initiated accident conditions is in progress. In this program, a 14 x 14 PWR type fuel K4-2 was segmented from a K4/G08 long size PWR rod pre-irradiated in MIHAMA Unit-2 and was pulse irradiated on March 8, 1990 at NSRR. Energy deposition given to the test rod was 68 cal/g·fuel. No failure indication was observed by in-core monitoring and by post-pulse irradiation examination. As one of the NSRR data base on fuel behavior during transient/RIA, data obtained from pre-pulse irradiation examination, during NSRR pulse irradiation, and from post-pulse irradiation examination are summarized. (author)

  9. Generation of short and intense attosecond pulses

    Science.gov (United States)

    Khan, Sabih Ud Din

    intense SAP from an APT driven by blue laser pulses. We also demonstrated compression of long blue pulses into >240 microJ broad-bandwidth pulses using neon filled hollow core fiber, which is the highest reported pulse energy of short blue pulses. However, compression of phase using chirp mirrors is still a technical challenge.

  10. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  11. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  12. 单、双环腔燃烧室燃烧性能的对比%Combustion Captibility Comparison of Single Annular Combustor and Dual Annular Combustor

    Institute of Scientific and Technical Information of China (English)

    李锋; 程明; 李龙贤; 彭浪青; 尚守堂

    2011-01-01

    In order to change a Single Annular Combustor(SAC) into a Dual Annular Combustor(DAC), the authors kept the diffuser,outer case and atomize of the SAC unchanged,redesigned the combustor from a single annular structure into a dual annular structure,and designed six different structure DAC. Taking the same physical models(including the turbulence, radiation, spray and emission models), simulations of three dimensional two-phase reacting turbulent flow in both the SAC and DAC were developed in the Fluent Code. The total-pressure recovery coefficient, temperature distribution and exhaust emission levels were given. Finally,by comparing the simulation results,the feasibility of displacing the SAC into DAC structure was certified.%保持单环腔主燃烧室的扩压器,外机匣最大直径尺寸以及喷口不变的前提下,将其火焰筒结构重新设计为并联式双环腔结构,设计了6种不同旋流器组合的双环腔结构燃烧室.采用相同的物理模型(包括湍流模型、辐射模型、喷雾模型及污染排放模型等),对单、双环腔主燃烧室分别进行全流程的三维计算.给出了燃烧室的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放指标等燃烧室性能参数.对比分析了单、双环腔燃烧室的计算结果.结果表明,双环腔燃烧室置换单环腔燃烧室是可行的,该研究可为大飞机低污染大法动机的设计提供技术支持.

  13. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  14. Particle flux in an annular gap about a sphere

    International Nuclear Information System (INIS)

    We develop a method for joining diffusion theory to a void region in a consistent manner. In particular, we apply the theory to a three region problem with a central solid core, surrounded by a concentric void shell and this in turn is surrounded by a concentric shell of another solid material. The sources can be either incident on the outer surface or uniformly distributed in the inner and outer regions. The void flux is calculated from the free streaming Boltzmann equation and is linked to the diffusion equations by assuming that the angular distribution on the surfaces follows the form A + B cosθ, where A and B are related to the diffusion theory fluxes in the inner and outer regions. This procedure allows us to calculate the flux throughout the solid and void regions without making any diffusion theory assumptions in the void. Numerical results are given to illustrate the method and comparisons with exact transport calculations are given to establish the accuracy. An extension of the method to deal with axially symmetric systems is also given in Appendix B. The theory will apply to neutrons and photons

  15. Pulsed terahertz inspection of non-conducting sandwich composites

    Science.gov (United States)

    Lopato, P.; Chady, T.

    2013-01-01

    Pulsed terahertz inspection enables accurate, contactless and safe for operating personnel evaluation of non-conducting structures. In this paper we present results of pulsed terahertz testing of various sandwich composite structures incorporating glass and basalt fibers based skin materials and spherecore and balsa wood based core materials. Various Time-Frequency Distributions (TFD) are utilized in order to obtain most valuable defects response.

  16. Advanced pulsed and CW high-power fiber lasers

    OpenAIRE

    Nilsson, J.; Grudinin, A.B.; Turner, P.W.

    2000-01-01

    We examine design issues for high-energy pulsed as well as for high-power cw fiber lasers. Power handling and pump scalability are primary issues for kilowatt fiber lasers. Special core designs are needed for high-energy pulse generation.

  17. Perforating Granuloma Annulare — An Unusual Subtype of a Common Disease

    Directory of Open Access Journals (Sweden)

    João Alves

    2014-09-01

    Full Text Available Perforating granuloma annulare (GA is a rare subset of GA with an unknown etiology and chronic course. Herein, we report the case of 72 year-old women with a 3-month history of a post-traumatic, persistent, erythematous and exudative plaque located on her left leg. Differential diagnosis included mycobacterial infection, subcutaneous mycosis, perforating dermatoses, pyoderma and squamous cell carcinoma. The histopathology was highly suggestive of a perforating GA. The patient was treated with betamethasone dipropionate cream applied once daily and a complete resolution of the lesion was observed in three weeks. Despite being a very rare subtype of a common disease, perforating granuloma annulare has clinical and histopathological characteristic features that facilitate the differential diagnosis, avoiding unnecessary procedures and inadequate and potentially more invasive treatments.

  18. The quantum spectral analysis of the two-dimensional annular billiard system

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Hui; Zhang Ji-Ouan; Xu Xue-You; Lin Sheng-Lu

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimeusional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.

  19. AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES

    Institute of Scientific and Technical Information of China (English)

    Guojun Nie; Zheng Zhong

    2007-01-01

    Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.

  20. Irradiation Test Plan of the Dual Cooled UO{sub 2} Annular Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Geon; Kim, Dae Ho; Chun, Tae Hyun; Kim, Keon Sik; Kim, Hyung Kyu; In, Wang Ki; Yang, Yong Sik; Song, Kun Woo; Chae, Hee Taek; Seo, Chul Gyo

    2008-09-15

    In order to study the behavior of the UO{sub 2} annular pellet developed by the high performance fuel technology development project, irradiation test will be carried out in HANARO research reactor for 5 cycles up to the burnup 12 MWD/kgU. After irradiation test in HANARO, the test fuel rod will be transferred to the hot cell and examined to verify the in-pile behavior. For the irradiation test, new irradiation test rig was designed and manufactured. The out-pile verification test and safety evaluation were performed and the results showed that the test rig and test rod will maintain the integrity and satisfy all the safety requirements during irradiation test. Therefore, it is expected that UO{sub 2} annular fuel can be irradiated safely in HANARO.

  1. Annular Pancreas in Adults: A Report of Two Cases and Review of Literature

    Directory of Open Access Journals (Sweden)

    Ajaz Ahmed Wani

    2013-05-01

    Full Text Available Context Annular pancreas is one of the rare congenital anomalies that can manifest itself in adulthood also. No specific guidelines and protocols exist about management of such cases. We hereby discuss our experience with two such cases along with a brief review of literature about the subject. Case reports The first patient was a male aged 27 years and presented with features of duodenal obstruction. He underwent duodenoduodenostomy . The second patient, a male aged 32 years, also presented with features of gastric outlet obstruction. He underwent Billroth type 2 reconstruction. Both patients had an uneventful recovery. Conclusion Annular pancreas in adults is a rare clinical scenario. Advancements in imaging modalities have brought to forefront an even larger number of such cases. In adults it is diagnosed mainly because of the complications that arise thereof. Gastroduodenal tuberculosis can be an important differential diagnosis in endemic areas. Treatment and operative protocols have to be individualized.

  2. Experimental Study on the Characteristics of Liquid Layer and Disturbance Waves in Horizontal Annular Flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The mechanism for transporting liquid from the bottom of the pipe to the top still to be established in the prediction of the film thickness distribution in horizontal annular two-phase flow.To resolve this issue,using five parallel-wire conductance probes,time records of local liquid film thickness at five circumferential positions were collected.The characteristics of circumferential liquid film thickness profiles and its variation with gas and liquid velocities were obtained.The basic features of probability distribution function,probability density function,auto-correlation,cross-correlation and power spectrum density function of the disturbance waves in annular flow were studied respectively.The characterstics of circumferential profiles of disturbance waves and its variation with gas and liquid velocities were presented.

  3. Combined evaporating meniscus-driven convection and radiation in annular microchannels for electronics cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P.; Mahulikar, S.P. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Production Engineering

    2000-03-01

    Surface radiation interchange in an annular enclosure is numerically modeled together with evaporating meniscus-driven convection, for investigating the application of the concept for cooling in microelectronic devices. The geometry is axially discretised into ring elements, where the wall and fluid temperatures within each element are unknowns. The governing algebraic energy equations for convection and surface radiation for each element are formulated for steady-state operating conditions for heat generating cylinders. These equations are then solved simultaneously for all the elements, together with the integral form of the momentum equation, which equates the driving force due to the meniscus curvature to the weight of the coolant and the frictional resistance, and solely dictates the coolant rise length in the microchannel. The results reveal the coupling of fluid flow and heat transfer in the annular microchannel, and the relative importance of radiation. (author)

  4. Experimental research on dryout point of flow boiling in narrow annular channels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0~4.0 MPa and that of mass flux is 26.0~69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.

  5. A Numerical and an Experimental Study for Optimization of a Small Annular Combustor

    Science.gov (United States)

    Iki, Norihiko; Gruber, Andrea; Yoshida, Hiro

    The small annular combustor of a micro gas turbine fueled with methane is investigated experimentally and numerically in order to improve the overall efficiency of the small engine. The CFD analysis of the tiny combustor relies on a low Reynolds number turbulence model coupled to the Eddy Dissipation Concept (EDC) and provides important insight about the turbulent flow pattern, flame shape, position and optimal flame anchoring. For the experimental observation, a model combustor, representing 120 degrees of the original annular combustor, is fabricated, which enables us to visualize internal flow. The burning area in the combustion chamber moves to downstream with increase of air flow rate. At full-load, some fuel remains at the combustion chamber exit. Moreover, temperatures are measured and compared with the numerical simulations. The results shown here will form the basis for future optimization of the micro gas turbine with minimal or no increase in combustor pressure loss.

  6. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    Science.gov (United States)

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  7. A New Approach to Designing the S-Shaped Annular Duct for Industrial Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Ivan Yurko

    2014-01-01

    Full Text Available The authors propose an analytical method for designing the inlet annular duct for an industrial centrifugal compressor using high-order Bezier curves. Using the design of experiments (DOE theory, the three-level full factorial design was developed for determination of influence of the dimensionless geometric parameters on the output criteria. Numerical research was carried out for determination of pressure loss coefficients and velocity swirl angles using the software system ANSYS CFX. Optimal values of the slope for a wide range of geometric parameters, allowing minimizing losses in the duct, have been found. The study has used modern computational fluid dynamics techniques to develop a generalized technique for future development of efficient variable inlet guide vane systems. Recommendations for design of the s-shaped annular duct for industrial centrifugal compressor have been given.

  8. THE PERTURBATION SOLUTIONS OF THE FLOW IN A ROTATING CURVED ANNULAR PIPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the flow in a rotating curved annular pipe isexamined by a perturbation method. A second order perturbation solution is presented. The characteristics of the secondary flow and the axial flow are studied in detail.The study indicates that the loops of the secondary flow are more complex than those in a curved annular pipe without rotation and its numbers depend on the ratio of the Coriolis force to centrifugal force F. As F ≈- 1 , the secondary flow has eight loops and its intensity reaches the minimum value, and the distribution of the axial flow is like that of the Poiseuille flow. The position of the maximum axial velocity is pushed to either outer bend or inner bend, which is also determined by F.

  9. Thermo economic life cycle cost optimization of an annular fin heat exchanger

    International Nuclear Information System (INIS)

    In this paper the design of annular fin heat exchanger based on economic optimization has been carried out. The optimization process targeted minimizing the life cycle cost of annular fin heat exchanger that has the same frontal area, effectiveness and heat load of available practical standard geometry exchangers. The life cycle cost includes both capital and operating costs. Beside the pumping cost, both the cost of energy destruction due to irreversibilities and 10% inflation rate are included in the operating cost. The optimization process is implemented using Evolutionary Algorithm (EA). Evolutionary Algorithm is a numerical technique which is initiated by randomly generating a set of possible solutions: The optimized design has shown a significant decrease in the life cycle cost as compared with that of standard geometry that has minimum life cycle cost. Based on the optimized design relations for Col burn and friction factors are developed. (author)

  10. Collective motion of symmetric camphor papers in an annular water channel

    Science.gov (United States)

    Ikura, Yumihiko S.; Heisler, Eric; Awazu, Akinori; Nishimori, Hiraku; Nakata, Satoshi

    2013-07-01

    We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects. The two modes are characterized by examining the local and global dynamics, and the collective motion mechanism is discussed in relation to the distribution of camphor concentration in the annular water channel. We conclude that the difference between these two modes originates from that of the driving mechanism that pushes a camphor paper away from a cluster, through which mechanism density waves are generated and maintained.

  11. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1989-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  12. Three-dimensional free vibration analysis of carbon nanotube reinforced composites annular plates

    Directory of Open Access Journals (Sweden)

    Hakimeh Zali

    2016-05-01

    Full Text Available The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced composites. Convergence of the Chebyshev–Ritz method was also checked. Numerical results are given and compared with the available literature and finite element method (FEM analysis. Results obtained from the other well-known theories (such as: Micro-Mechanical, Halpin, etc. are compared with the new form of the rule of mixtures results. Furthermore, the effects of CNT type, structures, diameter, shape factor, density, and volume fraction on the vibration behavior of the annular plates are graphically presented.

  13. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gong, X.W.; Hu, G.X.; Li, Y.H. [Shanghai Jiao Tong University, Shanghai (China). School for Mechanical & Power Engineering

    2006-06-21

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle mode and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.

  14. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    International Nuclear Information System (INIS)

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens–Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly. (paper)

  15. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system

    Science.gov (United States)

    Tang, Bin; Jiang, Chun; Zhu, Haibin; Zhou, Xin; Wang, Shuai

    2014-12-01

    By means of expanding the hard aperture function into a finite sum of complex Gaussian functions and based on the generalized Huygens-Fresnel diffraction integral, a novel approximate analytical expression of hypergeometric (HyG) beams passing through a paraxial ABCD optical system with an annular aperture is derived. The results could be reduced to the case of a circular aperture or a circular black screen. Some numerical simulations are also performed and illustrated for the propagation characteristics and focusing properties of a HyG beam through a paraxial ABCD optical system with an annular aperture. The results obtained from the approximate analytical formula provide more efficiency than the usual way of using diffraction integral formula directly.

  16. Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2015-07-01

    Full Text Available An exact solution of steady fully developed natural convection flow of viscous, incompressible, electrically conducting fluid in a vertical annular micro-channel with the effect of transverse magnetic field in the presence of velocity slip and temperature jump at the annular micro-channel surfaces is obtained. Exact solution is expressed in terms of modified Bessel function of the first and second kind. The solution obtained is graphically represented and the effects of radius ratio (η, Hartmann number (M, rarefaction parameter (βvKn, and fluid–wall interaction parameter (F on the flow are investigated. During the course of numerical computations, it is found that an increase in Hartmann number leads to a decrease in the fluid velocity, volume flow rate and skin friction. Furthermore, it is found that an increase in curvature radius ratio leads to an increase in the volume flow rate.

  17. Charged annular disks and Reissner-Nordstroem type black holes from extremal dust

    International Nuclear Information System (INIS)

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  18. Charged Annular Disks and Reissner-Nordstro ?m Type Black Holes from Extremal Dust

    CERN Document Server

    Lora-Clavijo, F D; Pedraza, J F

    2010-01-01

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disk-like configurations of matter in confomastatic spacetimes by assuming a functional dependence between the metric function, the electric potential and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin Inversion Method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstr\\"om black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  19. The effect of inlet swirl on the dynamics of long annular seals in centrifugal pumps

    Science.gov (United States)

    Ismail, M.; Brown, R. D.; France, D.

    1994-01-01

    This paper describes additional results from a continuing research program which aims to identify the dynamics of long annular seals in centrifugal pumps. A seal test rig designed at Heriot-Watt University and commissioned at Weir Pumps Research Laboratory in Alloa permits the identification of mass, stiffness, and damping coefficients using a least-squares technique based on the singular value decomposition method. The analysis is carried out in the time domain using a multi-fiequency forcing function. The experimental method relies on the forced excitation of a flexibly supported stator by two hydraulic shakers. Running through the stator embodying two symmetrical balance drum seals is a rigid rotor supported in rolling element bearings. The only physical connection between shaft and stator is the pair of annular gaps filled with pressurized water discharged axially. The experimental coefficients obtained from the tests are compared with theoretical values.

  20. Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement

    Science.gov (United States)

    Florjancic, S.; Stuerchler, R.; Mccloskey, T.

    1991-01-01

    Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.