WorldWideScience

Sample records for annual technical progress

  1. Solar thermal power systems. Annual technical progress report, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  2. Solar thermal power systems. Annual technical progress report, FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    A technical progress report on the DOE Solar Thermal Power Systems Program is given. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the prior to FY 1978 is given; the significant achievements and real progress of each project during FY 1978 are described; and future project activities as well as anticipated significant achievements for each project are forecast. (WHK)

  3. Intelligent distributed control for nuclear power plants. Second annual technical progress report, September 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.

    1991-12-31

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant.

  4. Professional technical support services for the Mining Equipment Test Facility. First annual technical progress report, April 14-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Garson, R C

    1981-10-01

    The Department of Energy recently began the operation of its Mining Equipment Test Facility. One component at that facility is the highly sophisticated Mine Roof Simulator (MRS) for research and development of roof support equipment. Because of its previous experience, the University of Pittsburgh was contracted to assist the Facilities Manager by providing professional technical support services, principally for the MRS. This technical progress report briefly describes the services provided during the reporting period and planned for the next period. No significant technical disclosures of interest to those not associated with the MRS are contained herein. One of the four units of the US government-owned METF is the Mine Roof Simulator. This unique $10 million test facility was designed to simulate underground mine roof loads and motions. The MRS is a hybrid, analog-digital, computer-controlled, closed-loop, electro-hydraulic, research device capable of applying either loads or displacements in the vertical and one horizontal axis. Its vertical capacity of 3,000,000 pounds can be applied over its 20 by 20 foot active test area. The horizontal load capacity is 1,600,000 pounds. It can simulate coal seam heights of up to 16 feet. Automatic data acquisition and real time display are provided. The most modern, sophisticated technology was used in its design and construction.

  5. Spray forming -- Aluminum: Third annual report (Phase 2). Technical progress -- Summary

    Energy Technology Data Exchange (ETDEWEB)

    Kozarek, R.L.

    1998-04-20

    Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of the technology, the Aluminum Company of America (Alcoa), under contract by the US Department of Energy, is investigating currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This third technical progress report will summarize research and development work conducted during the period 1997 October through 1998 March. Included are the latest optimization work on the Alcoa III nozzle, results of spray forming runs with 6111 aluminum alloy and preliminary rolling trials of 6111 deposits.

  6. MHD air heater technology development. Annual technical progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    Progress on the technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described in detail. The objective of task 1 is to continue development of ceramic materials technology for the directly-fired HTAH. The objectives of task 2 are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of task 3 are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

  7. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  8. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  9. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3, 000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research in this area

  10. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Paul M. Bertsch, (Director)

    2002-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research

  11. University of Florida, University research program in robotics. Annual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C.D. III; Tulenko, J.S.

    1994-05-01

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development.

  12. University of Florida, University research program in robotics. Annual technical progress report

    International Nuclear Information System (INIS)

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development

  13. Atmospheric Effects of Nuclear Energy Centers (AENEC) Program. Annual technical progress report, July 1975--September 1976

    Energy Technology Data Exchange (ETDEWEB)

    Patrinos, A. A.; Hoffman, H. W. [comps.

    1977-04-01

    The Technical Memorandum contains information of a preliminary nature from the six participants of the Program describing their activities and presenting the results obtained during the reporting period. The birth of the Program, its definition and evolution are described, and a complete breakdown of responsibilities and tasks assigned to the six AENEC participants is presented.

  14. Atmospheric Effects of Nuclear Energy Centers (AENEC) Program. Annual technical progress report, July 1975--September 1976

    International Nuclear Information System (INIS)

    The Technical Memorandum contains information of a preliminary nature from the six participants of the Program describing their activities and presenting the results obtained during the reporting period. The birth of the Program, its definition and evolution are described, and a complete breakdown of responsibilities and tasks assigned to the six AENEC participants is presented

  15. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  16. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2013

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis......, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2013....

  17. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2012

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis......, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2012...

  18. High energy particle physics at Purdue. Annual technical progress report, March 1982-March 1983

    International Nuclear Information System (INIS)

    Progress is reported in these areas: a study of electron-positron annihilation using the High Resolution Spectrometer at SLAC; proton decay; extensive muon showers; gamma ray astronomy; the DUMAND project; theoretical work on fundamental problems in electromagnetic, weak, strong, and gravitational interactions; chi production by hadrons; p-nucleus interactions; development of the Collider Detector at Fermilab; and study of the observed hadrons as the relativistic bound states of baryons and antibaryons

  19. High energy particle physics at Purdue. Annual technical progress report, March 1980-March 1981

    International Nuclear Information System (INIS)

    Progress is reported in these areas: study of electron-positron annihilation using the High Resolution Spectrometer; proton decay experiment; a study of rare processes in meson spectroscopy using the SLAC Hybrid Bubble Chamber System; theory of fundamental problems in gravitational, electromagnetic, weak and strong interactions; experimental neutrino and antineutrino physics; chi production; development of a colliding beam detector; internal target experiment; and theory of elementary particles with an underlying basis of relativistic quantum field theory

  20. Association Euratom - Risø National Laboratory, Technical University of Denmark - Annual Progress Report 2007

    DEFF Research Database (Denmark)

    Michelsen, Poul; Korsholm, Søren Bang; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the pla......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction...... with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been...... phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007....

  1. High energy particle physics at Purdue. Annual technical progress report, March 1983-March 1984

    International Nuclear Information System (INIS)

    Progress is reported in these areas: a study of electron-positron annihilation using the High Resolution Spectrometer; experimental study of proton decay; gamma ray astrophysics; the DUMAND project; fundamental problems in the theory of gravitational, electromagnetic, weak, and strong interactions; chi production by hadrons; study of collective phenomena; search for the onset of collective phenonmena; work on the Collider Detector at Fermilab; search for a deconfined quark-gluon phase of strongly interacting matter at the FNAL proton-antiproton collider; and development of an electrodeless drift chamber

  2. Nuclear structure theory. Annual technical progress report, September 1, 1980-August 31, 1981

    International Nuclear Information System (INIS)

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: (1) statistical spectroscopy, including: random matrix methods, with applications to fluctuations in spectra and in strength distributions; group symmetries in spectral-distribution theory; electromagnetic and β transitions, limits to time-reversal symmetry breaking in the nucleon-nucleon interaction; (2) meson scattering and absorption by nuclei, including: general scattering theory with absorption, multiple scattering theory and its reactive content, statistical theory of absorption; and (3) meson currents in electromagnetic transitions

  3. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport......, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  4. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J. (eds.)

    2008-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  5. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2011-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  6. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2010-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  7. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2009-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  8. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  9. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  10. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  11. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  12. Solar thermal hydrogen production process. Annual technical progress report, January-December, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.H.

    1979-01-01

    Westinghouse is currently under contract to DOE for technology development of the Sulfur Cycle, a hybrid thermochemical-electrochemical process for the production of hydrogen and oxygen from water. Operational studies have been conducted and have resulted in definitions of operating modes for solar/hydrogen plants and in assessments of the day/night and annual variations in performance that will influence the operating modes and the sizing of plant subsystems. Conceptual design studies have been conducted for process components that interface with the solar receiver. From related trade-off studies, a preferred configuration emerged that involves an intermediate working fluid (e.g., hot gas) between the solar receiver and the sulfuric acid decomposition reactor. The design of the reactor has been based on a shell and tube type heat exchanger configuration with catalyst placement on the shell side. A number of candidate materials for structural use in the acid decomposition reactor also have been evaluated experimentally. Screening tests and endurance tests with potential catalysts (to accelerate the rate of sulfur trioxide cracking) have been conducted with encouraging results. Approximately three dozen candidate materials for use in constructing the acid vaporizer have been tested for corrosion resistance to the expected environment. Detailed discussions of the results obtained during 1979 are presented.

  13. Instrumentation and process control for fossil demonstration plants. Annual technical progress report, October 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L. G.; O' Fallon, N. M.

    1977-10-01

    Progress on Instrumentation and Process Control for Fossil Demonstration Plants (FDP) is reported. Work has been performed on updating the study of the state-of-the-art of instrumentation for FDP, development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter, gamma ray correlation flowmeter, optical flowmeter, composition analysis system, and capacitive liquid interface level meter.

  14. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related

  15. Annual technical progress report

    International Nuclear Information System (INIS)

    During the present contract period Phaedrus has begun operation as a true tandem mirror. This was accomplished by achieving the rf sustained mode in which the plug densities were built up by a combination of central cell gas puffing and plug ICRH following stream gun turn off. It was demonstrated that the tandem mirror plasma could be sustained by plug ICRH for up to 1 msec following decay of the external plasma. In this mode plasma characteristics were no longer dominated by problems associated with a high conductivity stream gun plasma in the external region (as was the case in many previous experiments in Phaedrus). Among these problems were (1) line tying which significantly reduced instabilities in a way that would not apply to reactors and (2) low electron temperatures which had been held to approx. 20 eV

  16. 1985. Annual progress report

    International Nuclear Information System (INIS)

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information

  17. Annual progress report 1981

    International Nuclear Information System (INIS)

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a brief description of the progress made in each section of the Institut. Research activities of the Protection department include, radiation effects on man, radioecology and environment radioprotection techniques. Research activities of the Nuclear Safety department include, reactor safety analysis, fuel cycle facilities safety analysis, safety research programs. The third section deals with nuclear material security including security of facilities, security of nuclear material transport and monitoring of nuclear material management

  18. Embodied technical progress and unemployment

    OpenAIRE

    del RIO, Fernando

    2001-01-01

    In this paper we build up a canonical vintage capital model with embodied and disembodied technical progress and generalized Nash bargaining in the labor market. First, we handle both types of technical progress as exogenous, but we endogenize them after. In these setups, we comprehensively study the relations between technical progress, unemployment, and job creation and destruction in the short and long run.

  19. 1985. Progress annual report

    International Nuclear Information System (INIS)

    Tore Supra construction has been vigorously continued. The whole cryogenic system has been entirely delivered. On TFR priority has been given to electron cyclotron resonance heating; but also neutral heating mechanisms, pellet injection, plasma-wall interaction in the presence of pumped limiter, impurity transport and plasma turbulence have been studied and progress on diagnostics have been made. On Petula, with lower hybrid wave, the numerous results on ion heating, current drive, plasma stability in the presence of non-inductive current and on Tore Supra technical problems are important. At last, theoretical and numerical results are concerned with plasma equilibrium macroscopic evolution of plasma, RF heating, plasma instabilities, magnetic islands, turbulence, transport coefficients and spectroscopy

  20. Annual progress report 1980

    International Nuclear Information System (INIS)

    The technical support activities of the IPSN to competent administrations in 1980 has been marked: namely by the authorizations of divergence for 9 units EdF-PWR of 900 MW, the authorization project of creation and extension of reprocessing plant of COGEMA at the Hague UP2-800 and the authorization of starting up of the third unit of production of the EURODIF enrichment plant at Tricastin. On the other hand, IPSN has participated at the elaboration of a certain number of legislative and regulation texts relative to the control of nuclear matter, to radioprotection standards and to criteria of safety. For the safety of breeder, the test made at CABRI pile, in the international research program has given confirmation of the validity of theoretical models used in accidents calculations, hypothetical accidents which has allowed to reactualize safety criteria which have to be used for the development of this type of reactor. In worker radioprotection the results obtained in laboratory on the effect of radon, the progress made in personal dosimetry and the action of radioprotection undertaken in uranium mines constitutes a coherent effort. The deep drilling in granit (1000 m) and the experimental associated program which has finished the indispensable scientific data for the future policy in matter of storage of radioactives wastes. IPSN has contributed to progress made in the rules of exploitation of reactors, in the definition of wastes containment -specially at the output of reprocessing plant- in handling machines in hazardeous areas and in the study of environment

  1. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  2. Annual progress report 1975

    International Nuclear Information System (INIS)

    This report gives a general survey of the activities and research work done in 1975 at Institut de Physique Nucleaire, Orsay. It is divided in 5 parts. The first one is concerned with the Nuclear Physics Division and the research fields are: nuclear reactions, nuclear spectroscopy (heavy ions, on-line analog isobaric states, transfer reactions), hyperfine interactions, exotic nuclei search... The second part is concerned with the work of the High Energy Physics Division and reports the creation in Annecy of the Particle Physics Laboratory (L.A.P.P.). The third one about the Radiochemistry Division reports the research work done in nuclear chemistry (new nuclear species research, fusion, quasi-elastic transfer reactions) and in radiochemistry (cis- and trans-uranium elements, natural superheavy element research). The fourth part is concerned with theoretical research in nuclear physics (nuclear structure, nuclear reactions, weak interactions, intermediate energies) and in particle physics (field theory, gauge theory, chiral symmetry, current algebra, off-shell amplitudes and strong interactions dynamics). The fifth part reports technical research about accelerators, separators, ion sources, semiconductors and the activities of the technical departments of the Institute

  3. Research proposal and annual report No. 16. Part B. Technical progress, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Progress is reported on the following research projects: RNA synthesis in yeast; regulation of nitrogen metabolism; biological toxicity of intracellular radioisotope decay; the mechanism of energy conversion in chloroplasts; promoting vibrations in spin-orbital coupling in vibrationally deficient molecules; electronic excitation and hydrogen bonding; macromolecular biophysics; the synthesis and maturation of RNA; electronic response properties of biomolecular systems; chromosome structure and function and chromosome damage; DNA replication and chromosome structure; and influence of phospholipids on the dynamic properties of rhodopsin

  4. 1983. Annual progress report

    International Nuclear Information System (INIS)

    A beautiful experiment series for studying high energy excitation structures (10 to 80 MeV), concerning very heavy and asymmetric systems. CEV-Alice contributions to annual report concern Hg and Er high spin energy levels. About reaction mechanisms, the following contributions can be noticed: proton backward emission experiment results of high energy, at 200 MeV, on numerous targets; spectroscopic studies of direct transfer reactions by 18O with measurement of angular distributions until 00; many heavy ion experiments around 30 MeV/u concerning the mechanism evolution between 10 and 100 MeV. Pion coherent production experiments have been made this year on energy dependence of the reaction 3He+3He → 6Li+π+, considered as an existing model test. Cross section measurement of the elementary reactions (p,π+) on three targets of very different masses, in a large energy scale and a wide angular domain, have been measured at the Synchrocyclotron. Concerning the nuclear structure in low and medium energy levels, elastic scattering and transfer studies are to be noticed particularly in transition nuclei region. Exotic nuclei rich in neutrons, with medium mass, Fe, Co, Ni, Zn have been studied using the 14C beam of the Orsay tandem. The radiochemistry group work is essentially centered on actinides study

  5. Progress report (technical)

    International Nuclear Information System (INIS)

    General objectives of the proposed project are to develop technical know-how about the application of nuclear techniques for measuring soil erosion and sedimentation, promotion of these techniques to the end-user departments and to popularise soil and agro-chemical management practices suitable for rain-fed areas among the farmers through extension department. The specific objectives of the project are following. To assess soil erosion and redistribution rates in the fields using 137Cs and traditional techniques and compare the results of both the techniques. To investigate soil fertility degradation under differently eroded fields. To evaluate different soil and crop management practices for erosion control and soil fertility restoration for sustained agricultural production. To investigate pesticides residue, transport and relationship with soil loss. To promote and popularises the application of nuclear techniques for measuring soil erosion and sedimentation

  6. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2009

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens;

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature...... superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009....

  7. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2010

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens;

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature...... superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010....

  8. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2008

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens;

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have...... been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008....

  9. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation.

  10. Technical progress report

    International Nuclear Information System (INIS)

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation

  11. GPHS-RTGs in support of the Cassini RTG Program. Semi annual technical progress report, September 26, 1994--April 2, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-20

    The technical progress achieved during the period 26 September 1994 through 2 April 1995 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described herein. Monthly technical activity for the period 27 February 1995 through 2 April 1995 is included in this progress report. The report addresses tasks, including: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; ETG Fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and CAGO acquisition (capital funds).

  12. GPHS-RTGs in support of the Cassini Mission. Semi annual technical progress report, 1 April 1996--29 September 1996

    International Nuclear Information System (INIS)

    This technical progress report discusses work on the Radioisotope Generators and Ancillary Activities for the Cassini spacecraft. The Cassini spacecraft is expected to launch in October 1997, and will explore Saturn and its moons. This progress report discusses issues in: spacecraft integration and liason, engineering support, safety, qualified unicouple fabrication, ETG fabrication and testing, ground support equipment, RTG shipping and launch support, designs, reviews and mission application. Safety analysis of the RTGs during reentry and launch accidents are covered. This report covers the period of April 1 to September 29, 1996

  13. GPHS-RTGs in support of the Cassini Mission. Semi annual technical progress report, 1 April 1996--29 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-20

    This technical progress report discusses work on the Radioisotope Generators and Ancillary Activities for the Cassini spacecraft. The Cassini spacecraft is expected to launch in October 1997, and will explore Saturn and its moons. This progress report discusses issues in: spacecraft integration and liason, engineering support, safety, qualified unicouple fabrication, ETG fabrication and testing, ground support equipment, RTG shipping and launch support, designs, reviews and mission application. Safety analysis of the RTGs during reentry and launch accidents are covered. This report covers the period of April 1 to September 29, 1996.

  14. 1993 Annual progress report for subsidiary agreement No. 2 (1991--1996) between AECL and US/DOE for a radioactive waste management technical co-operative program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A coordinated research program on radioactive waste disposal is being carried out by the Atomic Energy of Canada Limited and the US Department of Energy. This annual report describes progress in the following eight studies: Fundamental materials investigations; In-situ stress determination; Development of a spent fuel dissolution model; Large block tracer test--Experimental testing of retardation models; Laboratory and field tests of in-situ hydrochemical tools; Cigar Lake--Analogue study, actinide and fission product geochemistry; Performance assessment technology exchange; and Development of multiple-well hydraulic test and field tracer test methods.

  15. 1993 Annual progress report for subsidiary agreement No. 2 (1991--1996) between AECL and US/DOE for a radioactive waste management technical co-operative program

    International Nuclear Information System (INIS)

    A coordinated research program on radioactive waste disposal is being carried out by the Atomic Energy of Canada Limited and the US Department of Energy. This annual report describes progress in the following eight studies: Fundamental materials investigations; In-situ stress determination; Development of a spent fuel dissolution model; Large block tracer test--Experimental testing of retardation models; Laboratory and field tests of in-situ hydrochemical tools; Cigar Lake--Analogue study, actinide and fission product geochemistry; Performance assessment technology exchange; and Development of multiple-well hydraulic test and field tracer test methods

  16. GPHS-RTGs in support of the Cassini mission. Semi annual technical progress report, 2 October 1995--31 March 1996

    International Nuclear Information System (INIS)

    The technical progress achieved during the period 2 October 1995 through 31 March 1996 on Contract No. DE-AC03-91SF18852, Radioisotope Generators and Ancillary Activities is described herein. This report is organized by the program task structure as follows: spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance and reliability, contract changes, non-capital CAGO acquisition, and CAGO maintenance; contract acquired government-owned property (CAGO) acquisition; and program calendars

  17. Annual Progress report - General Task

    Energy Technology Data Exchange (ETDEWEB)

    Wesnousky, S.G.

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing tasks.

  18. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  19. CEA Annual progress report 1986

    International Nuclear Information System (INIS)

    This annual report presents the general organization of the CEA, the international relations and politics in nuclear field, the activities (military application, nuclear applied research, ANDRA (National Agency for Radioactive Waste Management), nuclear safety and protection, fundamental research, applied research other than nuclear), the industrial group; among topics about men and means, the budget execution of the public establishment of research. In annex, the nuclear power plants around the world and the principal legislative texts related to CEA or atomic energy published in 1986

  20. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  1. GPHS-RTGs in support of the Cassini Mission. Semi-annual technical progress report, April 3, 1995--October 1, 1995

    International Nuclear Information System (INIS)

    This document is the April-October 1995 Progress Report on the Cassini RTG Program. Nine tasks are summarized; (1) Spacecraft integration and liason, (2) Engineering support, (3) Safety, (4) Unicouple fabrication, (5) ETG fabrication, assembly, and test, (6) Ground support equipment, (7) RTG shipping and launch support, (8) Design, reviews, and mission applications, and (9) Project management, QA, contract changes, and material acquisitions

  2. Bioremediation of mixed microbial mats: System development of mixed contaminants for application at the Savannah River Site. Annual technical progress report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    The fundamental objective of this project is to develop and field test the mixed microbial mat bioremediation system for decontamination of target sites at SRS. Although microbial mats have performed well in several pilot projects in the past, atypical problems and site characteristics at SRS demand special field designs. In the interest of designing a pilot and locating it at an appropriate site, the project investigators have worked closely with the technical staff at the SREL. We have concluded that the diverse characteristics of contaminations at SRS may dictate testing several pilot designs during the course of this project

  3. Parameterization of GCM subgrid nonprecipitating cumulus and stratocumulus clouds using stochastic/phenomenological methods. Annual technical progress report, 1 December 1992--30 November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.B.

    1993-08-27

    This document is a progress report to the USDOE Atmospheric Radiation and Measurement Program (ARM). The overall project goal is to relate subgrid-cumulus-cloud formation, coverage, and population characteristics to statistical properties of surface-layer air, which in turn are modulated by heterogeneous land-usage within GCM-grid-box-size regions. The motivation is to improve the understanding and prediction of climate change by more accurately describing radiative and cloud processes.

  4. GPHS-RTGs in support of the Cassini Mission. Semi annual technical progress report, 28 March 1994--25 September 1994

    International Nuclear Information System (INIS)

    The progress on the radioisotope generators and ancillary activities is described. This report is organized by program task as follows: spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; design, reviews, and mission applications; project management, quality assurance and reliability, contract changes, non-capital CAGO acquisition, and CAGO maintenance; contractor acquired government owned property (CAGO) acquisition

  5. Technical progress, market forms and unemployment

    Directory of Open Access Journals (Sweden)

    A. ASIMAKOPULOS A.

    2013-12-01

    Full Text Available The purpose of the present paper is threefold. The first purpose is to emphasise the importance of the insights to be found in Sylos Labini’s work. The second purpose is to expand upon it by distinguishing  between the different types of technical progress. Finally, the third purpose is to comment on Labini’s comparison of Ricardo and Keynes on the possibility of technological unemployment. Regarding his description of technological progress as “labour saving”, the author shows that a more comprehensive description would be more useful for his purposes.

  6. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, July 5, 1996--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, F. [Iowa Thin Film Technologies, Inc., Ames, IA (United States)

    1998-08-01

    Iowa Thin Film Technologies, Inc.`s (ITF) goal is to develop the most cost effective PV manufacturing process possible. To this end the authors have chosen a roll based manufacturing process with continuous deposition and monolithic integration. Work under this program is designed to meet this goal by improving manufacturing throughput and performance of the manufactured devices. Significant progress was made during Phase 2 of this program on a number of fronts. A new single pass tandem deposition machine was brought on line which allows greatly increased and improved throughput for rolls of tandem material. The TCO deposition process was improved resulting in an increase in throughput by 20%. A new alignment method was implemented on the printing process which improves throughput six fold while improving alignment from 100 {micro}m to 10 {micro}m. A roll based lamination procedure was developed and implemented on selected products which improves throughput from 20 sq. ft./hr. to 240 sq. ft./hr. A wide range of lower cost encapsulants were evaluated. A promising material was selected initially to be introduced in 5 year lifetime type products. The sum of these improvements bring the overall cost reduction resulting from this program to 49%.

  7. Technical Progress and New Logistics Technologies

    OpenAIRE

    Abel, I.; Szekely, I.

    1989-01-01

    The objective of this paper is to study new developments in logistics technologies as a prerequisite and as a consequence of technical progress in the case of the United States. Logistics is used here to denote all systematic actions aimed at bringing materials form primary producers through all intermediate steps to the end user, i.e. logistics includes transportation, handling, storage, as well as all related information processing. The rapid growth of transport and communication outpu...

  8. Technical progress in pipeline design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Hausken, K.B.

    1995-12-31

    This paper considers the technical progress in offshore pipeline construction with limitation to some general subjects covering pipeline design, installation and start-up. In future the use of limit state pipeline design philosophy, may be implemented as an alternative to the stress based design commonly used to day giving a potential for further optimisation of the pipeline design and consequently reduction of the initial investment. Comprehensive research and development efforts in Norway in the second half of the 1970`s, made it technically feasible to cross the deep water Norwegian Trench in the 1980`s. In addition, the development of several offshore pipeline systems until to day including gas distribution systems to the European continent, have brought Norway to the forefront of technical expertise

  9. Technical progress and its strategic consequences

    International Nuclear Information System (INIS)

    The history of energy during recent decades has shown that technical progress can have consequences for the organisation of markets, company strategies and the economy in general, confounding all forecasts and going beyond simple technical change. As a consequence for example, improvements in the techniques concerning the exploration and production of hydrocarbons have led to the petrol 'counter-crisis', the reduction in the power of OPEC and undreamed of gains in wealth for certain countries. The progress in gas turbines has led to the reversal of the age-old tendency towards increases in the size of electricity production units and encouraged the liberation of this sector. When looking at the future it is therefore judicious to try and understand the forces at work, and the major trends which result. This is the aim of the articles in this edition of the Revue de l'Energie, published on the occasion of the European colloquium on 'Technical progress faced with the challenges of the energy sector in the future' organised by the Association of Energy Economists. (authors)

  10. Florida Progress Corporation 1991 annual report

    International Nuclear Information System (INIS)

    Florida Progress Corporation is a utility holding company with assets of 5 billion dollars. Its principal subsidiary is the Florida Power Corporation; others are the Electric Fuels Corporation, the Mid-Continent Life Assurance Company, the Talquin Corporation, the Progress Credit Corporation and Advanced Separation Technologies Incorporated. The annual report describes achievements during the year. To meet growing energy demand Florida Power is building new peaking and base-load generating units, purchasing power from neighbouring utilities and cogenerators, and building more bulk power transmission line capacity in the state. Emphasis has been placed on meeting load growth by demand-site management. Attention is given to balancing energy needs with concerns for the environment, and there is an award-winning recycling program. The Electric Fuels Corporation major area of business is coal mining and transportation services. Advanced Separation Technologies has sold several of its patented ion separation machines. The report includes consolidated financial statements for the year ended 31 December 1991

  11. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  12. KWL Lingen nuclear plant. Technical annual report 2015

    International Nuclear Information System (INIS)

    The technical annual report 2015 on the Lingen nuclear plant covers the following issues: report on the segments operation, process engineering, safety engineering, licensing and supervising procedures, operational data, radiation protection, radioactive materials, and in-service inspections.

  13. Yakima Hatchery Experimental Design : Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Busack, Craig; Knudsen, Curtis; Marshall, Anne

    1991-08-01

    This progress report details the results and status of Washington Department of Fisheries' (WDF) pre-facility monitoring, research, and evaluation efforts, through May 1991, designed to support the development of an Experimental Design Plan (EDP) for the Yakima/Klickitat Fisheries Project (YKFP), previously termed the Yakima/Klickitat Production Project (YKPP or Y/KPP). This pre- facility work has been guided by planning efforts of various research and quality control teams of the project that are annually captured as revisions to the experimental design and pre-facility work plans. The current objective are as follows: to develop genetic monitoring and evaluation approach for the Y/KPP; to evaluate stock identification monitoring tools, approaches, and opportunities available to meet specific objectives of the experimental plan; and to evaluate adult and juvenile enumeration and sampling/collection capabilities in the Y/KPP necessary to measure experimental response variables.

  14. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    national importance. Included among them are: Advanced lithium-ion and lithium-polymer batteries for transportation and other applications, Fuel cells, including the use of an oxidative reformer with gasoline as the fuel supply, Production and storage technologies critical to the hydrogen economy, Stable nuclear waste forms suitable for storage in a geological repository, Threat attribution and training relative to radioactive dispersal devices (''dirty bombs''), and Aqueous and pyrochemical processes for the disposition of spent nuclear fuel. Other important programs are focused in superconductivity, catalysis, nanotechnology, and nuclear materials. During fiscal year 2003, CMT had an annual operating budget of approximately $36 million. Of that, more than 90% was from DOE and the remainder from other government agencies and private industry. Displayed below is an overview organization chart of the Division. A complete organization chart appears at the end of this report. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition and status of the Division

  15. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  16. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  17. Neutron scattering. Annual progress report 1997

    International Nuclear Information System (INIS)

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs

  18. Sludge Treatment Evaluation: 1992 Technical progress

    International Nuclear Information System (INIS)

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO3, NO2, PO4, SO4, and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model

  19. Works Technical Department progress report, August 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-09-17

    This document details the activities of the Savannah River Works Technical Department during the month of August 1965. Topics discussed are: Reactor Technology, Separations Technology, Engineering Assistance, Health Physics, Laboratories Overview, and Technical Papers Issued.

  20. 1981 inertial fusion research annual technical report

    International Nuclear Information System (INIS)

    This annual report consists of the following two topics: (1) target fabrication technology, and (2) fusion experiments. The first section is reported by the following seven areas: (1) characterization, (2) fuel shell technology, (3) polymer technology, (4) lithium foil development, (5) precision etch technology, (6) analytical instrumentation, and (7) target fabrication. The second area is reported by the following topics: (1) experiments, (2) plasma theory, (3) code development and simulation, and (4) lasers and optics

  1. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  2. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  3. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  4. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  5. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  6. Technical progress by major task. Semiannual technical progress report, September 29, 1997--March 29, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The technical progress achieved during the period 29 September 1997 through 29 March 1998 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described in this report. The report is organized by program task structure: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; RTG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair.

  7. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  8. Proceedings of the 1991 SPE annual technical conference and exhibition

    International Nuclear Information System (INIS)

    This book contains the proceedings of the 1991 SPE annual Technical Conference and Exhibition with some of the following topics: Arctic biomediation; A case study; A comparison of cementation logging tools in a full-scale simulator; Transient aspects of unloading oil wells through gas lift valves; A better environmental management system

  9. Inertial fusion research. Annual technical report, 1984

    International Nuclear Information System (INIS)

    This report contains research progress during this period on each of the following 5 areas: (1) parametric instabilities, (2) cryogenic implosion experiments, (3) x-ray laser experiments, (4) XCALIBR, an effective soft x-ray calibration facility, and (5) DELPHI- a new hydrodynamics code, (6) polymer technology, (7) glass shell technology, (8) shell production facility, (9) cryogenic technology, (10) characterization and quality assurance, and (11) coating technology

  10. 11. annual report of the technical advisory committee on the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    The Eleventh Annual Report of the Technical Advisory Committee (TAC) assesses the scientific and technical progress made within the Canadian Nuclear Fuel Waste Management Program (NFWMP) during the period July 1989 to June 1990. The Committee notes that the general concept of a multibarrier system involving geologic media and engineered systems is based on known technologies and current scientific knowledge, and has gained strong international scientific and engineering support as currently the most feasible and practical. TAC continues to endorse the full investigation of the concept of nuclear waste disposal deep in plutonic formations, such as those in the Canadian Shield

  11. SERI biomass program annual technical report: 1982

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  12. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  13. Integral Fast Reactor Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  14. Integral Fast Reactor Program annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.

  15. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  16. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  17. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  18. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

  19. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  20. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  1. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  2. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  3. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  4. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  5. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  6. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  7. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  8. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  9. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  10. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  11. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  12. 1993 annual final progress report: July 1992 through June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Crotty, G.; Chen, Z.; Sana, P.; Salami, J.; Doolittle, A.; Pang, A.; Pham, T. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

    1994-11-01

    This is the first annual report since the Inauguration of the University Center of Excellence for Photovoltaics Research and Development (UCEP) at Georgia Tech. The essential objective of the Center is to improve the fundamental understanding of the science and technology of advanced PV devices and materials, to provide training and enrich the educational experience of students in the field, and to increase US competitiveness by providing guidelines to industry and DOE for achieving cost-effective and high efficiency PV devices. These objectives are to be accomplished through a combination of research and education. This report summarizes the technical accomplishments, including modeling, processing, and characterization of cast multicrystalline silicon solar cells; use of modeling and PCD measurements to develop a road map for progressing toward 20% multicrystalline and 25% single crystalline cells; the development of a novel PECVD SiN/SiO{sub 2} AR coating that also provides good surface passivation; PECVD deposited SiO{sub 2} films with record low S and D{sub it} at the SiO{sub 2}/Si interface; and educational activities and accomplishments.

  13. Solar lease grant program. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress on a lease program for the installation of a solar water heater with no installation charge is reported. Information on the announcement of the program, the selection of participants, the contractural agreement, progress on installation of equipment, monitoring, and evaluation is summarized. The status of the budget concerned with the program is announced. Forms used for applications for the program and an announcement from Resource Alternatives for Cilco customers are presented.

  14. Annual progress report 1981-1982

    International Nuclear Information System (INIS)

    This progress report deals with the activities of the laboratory in the following fields: incommensurable non periodic structures, transitions by localization in incommensurable and disordered systems, neutron diffraction, liquid and amorphous states (structure and dynamics), electronic structure of alloys, polymers, magnetic excitations, phonons and molecular motions, nuclear pseudomagnetism and antiferromagnetism, high pressures

  15. Technical progress and its factors in Russia’s economy

    Directory of Open Access Journals (Sweden)

    Simon György Jr.

    2010-01-01

    Full Text Available In this paper long-term growth in Russia’s economy is viewed in the context of technical progress, based on both neoclassical and endogenous theories. The dynamics of economic growth with some aspects of catch-up development are examined, as well as capital deepening. TFP is quantified in terms of both output and productivity increases to reveal the leading role of embodied technical progress in productivity growth. An endogenous growth model helped to discern three complex factors of technical progress in the Russian economy, to which at the macro level a factor related to natural wealth (oil and gas resources was added. This enabled the author to conclude that the most important macroeconomic factor of Russia’s technical progress in the half century from the early 1960s to the late 2000s was its immobile component. At the manufacturing level the situation was more complicated, as the initial leadership of creative technical progress was superseded by the dominance of the mobile factor. The collapse of the Soviet Union made the Russian economy more service-oriented and radically changed the conditions of economic modernization, in which technology transfer ensured by FDI began to play a more prominent part, particularly after the default of 1998.

  16. Neutron scattering. Annual progress report 1997; Neutronenstreuung. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Neutronenstreuung

    1998-02-01

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs.

  17. FY13 Annual Progress Report for SECA Core Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Jeffry W.; Koeppel, Brian J.

    2014-01-31

    This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation. Primary areas of emphasis for the materials development work were metallic interconnects and coatings, cathode and anode stability/degradation, glass seals, and advanced testing under realistic stack conditions: Metallic interconnects and coatings • Effects of surface modifications to AISI 441 (prior to application of protective spinel coatings) on oxide scale growth and adhesion were evaluated as a function of temperature and time. Cathode stability/degradation • Effects of cathode air humidity on performance and stability of SOFC cathodes were investigated by testing anode-supported cells as a function of time and temperature. • In-situ high temperature XRD measurements were used to correlate changes in cathode lattice structure and composition with performance of anode-supported button cells. Anode stability/degradation • Effects of high fuel steam content on Ni/YSZ anodes were investigated over a range of time and temperature. • Vapor infiltration and particulate additions were evaluated as a potential means of improving tolerance of Ni/YSZ anodes to sulfur-bearing fuel species. Glass seals • A candidate compliant glass-based seal materials were evaluated in terms of microstructural evolution and seal performance as a function of time and temperature. Stack fixture testing • The SECA CTP stack test fixture was used for intermediate and long-term evaluation of candidate materials and processes. Primary areas of emphasis for the computational modeling work were coarse methodology, degradation of stack components, and electrochemical modeling: Coarse methodology • Improvements were made to both the SOFC-MP and SOFC ROM simulation tools. Degradation of stack

  18. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  19. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  20. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  1. Federal Facility Agreement Annual Progress Report for Fiscal Year 1998

    International Nuclear Information System (INIS)

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement

  2. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  3. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  4. Federal Facility Agreement Annual Progress Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1999-08-04

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

  5. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  6. Climate Change and Technical Progress: Impact of Informational Constraints

    OpenAIRE

    Bondarev, Anton; Clemens, Christiane; Greiner, Alfred

    2013-01-01

    In this paper we analyse a growth model that includes environmental and economic variables as well as technological progress under different informational constraints on the behavior of economic agents. To simulate the informationally constrained economy, we make use of the non-linear model predictive control technique. We compare models with exogenous and endogenous technical change as well as directed and undirected endogenous technical change under different informational structures. We sh...

  7. 1999 annual progress report -- Energy conservation team

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. (EERE OTT Office of Advanced Automotive Technologies Energy Conversion Team Leader)

    1999-10-19

    This report highlights progress achieved during FY 1999 under the Light-duty Fuels Utilization R and D Program. The program is comprised of two elements: the Advanced Petroleum-Based APB Fuels Program which focused on developing and testing advanced fuels for use with compression-ignition direct-injection (CIDI) engines and fuel cells and the Alternative Fuels Program which focused on Natural gas and natural gas derived fuels. The report contains 17 summaries of industry and National Laboratory projects. Fuel efficient vehicles with very low emissions are essential to meet the challenges of climate change, energy security, and improved air quality. The authors anticipate cooperative efforts with the auto and energy industries to develop new and innovative technologies that will be used to make advanced transportation vehicles that are fuel efficient, clean, and safe.

  8. Radiochemistry Division annual progress report for 1982

    International Nuclear Information System (INIS)

    The progress report of the Radiochemistry Division of the Bhabha Atomic Research Centre, Bombay, presents the research and development work carried out during 1982 in the form of individual summaries arranged under the headings: reactor fuel chemistry, heavy element chemistry, radioanalytical chemistry, and nuclear chemistry. Some of the highlights of the R and D activities are: (1) optimisation of the chemical parameters for the preparation of UO2 microspheres by internal gelation method, (2) synergetic extraction studies of various actinides from aqueous solutions, (3) development of methods of determination of uranium, 241Am and 239Pu, (4) fission studies of 232Th, 236U, 252Cf and 229Th, (5) determination of half-life of 241Pu by various methods. A list of publications of the members of the Division published during 1982 is also given. (M.G.B.)

  9. Radiochemistry Division annual progress report : 1990

    International Nuclear Information System (INIS)

    This progress report provides an account of the research and development activities of the Radiochemistry Division during the year 1990 in the areas of nuclear chemistry, actinide chemistry and spectroscopy. The main area of work in nuclear chemistry is centered around the fission process induced by reactor neutrons, and light and heavy ions on actinides and low Z (Z<80) elements. Actinide chemistry research is concerned mostly with extraction, complexation and separation of actinide ions from aqueous media using a variety of organic reagents under different experimental conditions. Spectroscopic studies include development and optimisation of chemical/analytical methods for separation and determination of trace metallic impurities and rare earths in fuel materials and EPR and microwave studies on several compounds to understand their superconducting, structural and magnetic properties. A list of publications by the scientific staff of the Division during 1990 is also given in the report. (author). 45 figs., 44 tabs

  10. Radiochemistry Division: annual progress report: 1987

    International Nuclear Information System (INIS)

    The progress of Research and Development (R and D) activities during the year 1987 are reported in the form of summaries, which are presented under the headings (1) Actinide Chemistry, (2) Nuclear Chemistry, and (3) Spectroscopy. Microwave absorption studies of the high Tsub(c) oxide superconductor YBa2Cu3Osub(7-x) using electron paramagnetic resonance techniques are the new feature during the report year. Radioanalytical services and radiation sources in the form of electrodeposited sources or standard soluti ons were also given to the other Divisions, other units of the Department of Atomic Energy, and other organisations in the country. A list of papers by the members of the Division published in various journals and presented at various symposia, conferences etc. is given at the end of the report. (M.G.B.). refs., 51 tabs., 33 figs

  11. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  12. Core capabilities and technical enhancement, FY-98 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  13. Technical Support Section annual work plan for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Adkisson, B.P.; Allison, K.L.; Effler, R.P.; Hess, R.A.; Keeble, T.A.; Odom, S.M.; Smelcer, D.R.

    1996-10-01

    The Technical Support Section (TSS) of the Instrumentation and Controls (I&C) Division of Oak Ridge National Laboratory (ORNL) provides technical services such as fabrication, modification, installation, calibration, operation, repair, and preventive maintenance of instruments and other related equipment. Work performed by TSS is in support of basic and applied research and development (R&D), engineering, and instrument and computer systems managed by ORNL. Because the activities and priorities of TSS must be adapted to the technical support needs of ORNL, the TSS Annual Work Plan is derived from, and driven directly by, current trends in the budgets and activities of each ORNL division for which TSS provides support such as reductions in the staffing levels. TSS does not have an annual budget to cover operating expenses incurred in providing instrument maintenance support to ORNL. Each year, TSS contacts ORNL division finance managers or division finance officers to obtain information concerning projected funding levels of programs and facilities they manage. TSS workforce and resource projections are based on the information obtained and are weighted depending on the percentage of support provided to that division or program. The Long- Range Work Plan is based on estimates of impact of the long-range priorities and directions of the Laboratory. Identifiable proposed new facilities and programs provide additional basis for long-range planning. After identifying long-range initiatives, TSS planning includes future training requirements, re-evaluation of qualifications for new hires, and identification of essential test equipment needed in new work.

  14. Annual progress report on nuclear data 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.H. [ed.

    1993-06-01

    This is the 1992 annual report on nuclear data from the Central Bureau for Nuclear Measurements, Geel (Belgium). Work on standard neutron cross sections included {sup 235}U(n,f)/H(n,n) with Frisch gridded ionization chambers and using octacosanol samples. Mass, energy, and angular distribution of fission fragments for {sup 237}Np(n,f) from 0.5 to 5.5 MeV neutron energy. Alpha decay probabilities of {sup 239}Pu. In the area of nuclear data for fission technology, a measurement on the normalization of the {sup 239}Pu fission cross sections was performed. Parameters for 384 resonances in {sup 58}Ni and 350 resonances in {sup 60}Ni have been analyzed up to 1 MeV and 800 KeV, respectively. In the field of nuclear data for fusion technology, double differential neutron emission cross sections for {sup 9}Be(n,2n) for incident neutron energies between 0. 6 and 11.1 MeV have been reported. Extensive measurements of the neutron decay cross sections of {sup 207}Pb have been made. In the radionuclide metrology subproject contributions were made by the preparation of low energy x-ray standard sources, measurements of K- shell fluorescence yields, standardization of a {sup 152}Eu solution, evaluation of the second EUROMET intercomparison of {sup 192}Ir brachytherapy sources, and low level measurements on volcanic rock, archeological ceramics, soil and river sediments. Work was also reported in neutron metrology, major facilities upgrades, radiation physics, and support for a number of PhD projects.

  15. Radiochemistry Division annual progress report: 1986

    International Nuclear Information System (INIS)

    Research and Development (R and D) activities of the Radiochemistry Division of Bhabha Atomic Research Centre, Bombay during 1986 are reported. Some of the highlights of these activities are solvent extraction studies on U(VI) and trivalent Am, Cm and Cf, low energy and medium energy fission of actinides, nuclear reactions on 197Au, perturbed angular correlation studies on polymerisation of Hf(IV) and EPR studies on Am doped BaCO3, SrSO4 and LiKSO4. Investigations on the complexation, hydrolysis and speciation of Am(III) in phosphate and carbonate media have been carried out with a view to understanding the behaviour of Am ions in natural and waste water systems. The angular momentum studies have shown that fission fragment angular momentum increases with increasing excitation energy and angular momentum of the fissioning due to coupling of various collective rotational degrees of freedom. Angular distribution studies have shown that asymmetric mode fragments have higher anisotropy compared to the symmetric mode fragments due to extended saddle point shape and hence larger effective moment of inertia. Studies on alpha induced nuclear reaction on 197Au have provided evidence for non-equilibrium particle emission process as against the expected compound nucleus mechanism. EPR and TSL studies on actinide doped solids have shown stabilisation of radicals produced on irradiations as well as provided evidence for chemically induced dynamic nuclear polarization. At the end of the report, a list of publications of the staff members of the Division during the report is given. These publications include journal articles, conference paper and technical reports. (Orig.)

  16. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  17. Radiochemistry Division: Annual progress report for 1981

    International Nuclear Information System (INIS)

    The progress report of the Radiochemistry Division of Bhabha Atomic Research Centre presents the research and development work carried out during 1981 in the form of individual summaries arranged under the headings: reactor fuel chemistry, heavy element chemistry, radioanalytical chemistry, and nuclear chemistry. Some of the highlights of the work are: (1) modification of the gelation set-up for making plutonium containing gel particles to get better yields of (U,Pu)O2 containing up to 15% of plutonium, (2) studies on solvent extraction of Am(III), Cm(III), Bk(III) and Cf(III) by 1-phenyl-2-methyl-4-benzoyl pyrazolone-5 (HPMBP), (3) study of the radiation chemistry and photochemistry of aqueous solutions of plutonium, (4) study of crystal structure of uranyl oxalate and sulphates, (5) ESR study, thermoluminescence and spectral studies of americium doped SrSO4, phosphors, (6) determination of uranium and plutonium by spectrophotometry, mass spectroscopy and alpha spectroscopy, (7) determination of isotopic ratios of plutonium isotopes by gamma spectroscopy, (8) studies on several aspects of fission chemistry of 229Th and 252Cf, and (9) fabrication of a neutron well coincidence counter. (M.G.B.)

  18. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  19. Atomic power generation and future technical progress

    International Nuclear Information System (INIS)

    The construction of the world's first atomic power station in the Soviet Union in 1954 not only marked the beginning of a new trend in power engineering but also clearly demonstrated the practicability of human utilization of the vast resource of nuclear energy. The discovery of the fundamental possibility of using the energy released by the chain reactions associated with fission of heavy nuclei and fusion of light nuclei was a stupendous gift of science. The full significance of these revelations will appear later, at the end of this century, but it is already clear that the widespread use of nuclear energy from fission and fusion is inevitable, as the only technically and economically satisfactory way of overcoming the shortage of cheap fuels such as oil and gas. The large-scale development of atomic power engineering for various purposes - electric power, process heat and district heating, heat and power supplies for the metallurgical industry, power and heat for different branches of the chemical industry and radiation stimulation of chemical products - will help to save oil and gas so that they can be used for purposes where they are most difficult to replace

  20. [Fortieth Annual] Meeting of the Technical Working Group on Fast Reactors (TWG-FR). Working Material

    International Nuclear Information System (INIS)

    The objectives of the meeting were to: - Exchange information on the national programmes on Fast Reactors (FR) and Accelerator Driven Systems (ADS); - Review the progress since the 39th TWG-FR Annual Meeting, including the status of the actions; - Consider meeting arrangements for 2007, 2008 and 2009; - Review the Agency’s ongoing information exchange and co-ordinated research activities in the technical fields relevant to the TWG-FR (FRs and ADS), as well as coordination of the TWG-FR’s activities with other organizations; - Discuss future joint activities in view of the Agency’s Programme and Budget Cycle 2008–2009 (and beyond)

  1. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques. Semi-Annual Technical Progress Report April 6, 2003 - October 5, 2006

    International Nuclear Information System (INIS)

    upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in 18O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah

  2. 78 FR 50075 - Statewide Communication Interoperability Plan Template and Annual Progress Report

    Science.gov (United States)

    2013-08-16

    ... SECURITY Statewide Communication Interoperability Plan Template and Annual Progress Report AGENCY: National... Statewide Communication Interoperability Plan (SCIP) Implementation Report was cleared in accordance with... Communications. Title: Statewide Communication Interoperability Plan Template and Annual Progress Report....

  3. Plan and Design Meticulously and Promoting Technical Progress

    Institute of Scientific and Technical Information of China (English)

    Miao Chengwu

    1994-01-01

    @@ Plan and design is the key link in captial construction, and the soul of engineering construction. China Petroleum Planning & Engineering Institute (CPPEI) is one of the main undertakers for planning and designing of petroleum industry,the only leading multi-functional institute with the first class design certificate. Now it has been an organization under the China National Petroleum Corporation(CNPC)for making development strategy planning, project evaluations and technical consulting, drawing up project development plan and providing technical recommendations. It can complete plan and design for the oil and gas field facilities, pipeline construction,petroleum relinery and petro-chemical industry engineering at home and abroad. It is also a center of servicing for new technical development and scientific research. Since CPPEI was established in 1978,it has meticulously conducted on planning and designing for the technical progress of petroleum engineering.

  4. KBS Annual Report 1983. Including summaries of technical reports issued during 1983

    International Nuclear Information System (INIS)

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work performed by the division KBS within the Swedish Nuclear Fuel Supply Co (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. The Annual Report normally contains a presentation of the legal and organizational situation followed by an account of the progress within different areas of the R and D-work. This account also includes indications of the activities planned for the future. At the end of the report the summaries of 76 technical reports and other publications issued during the year are listed in special appendices. (K.A.E.)

  5. Republic of Congo; Poverty Reduction Strategy Paper: Annual Progress Report

    OpenAIRE

    International Monetary Fund

    2010-01-01

    This paper reviews the first annual progress report (APR) on implementation of the Poverty Reduction Strategy (PRS) in the Republic of Congo. The paper discusses that a number of stages in PRS implementation have already been completed. The PRS is being implemented in an international economic context marked by a severe economic and financial crisis. At the national level, favorable circumstances have enabled Congo to maintain a high level of economic growth averaging nearly 6 percent a year ...

  6. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  7. Swallowable Wireless Capsule Endoscopy: Progress and Technical Challenges

    Directory of Open Access Journals (Sweden)

    Guobing Pan

    2012-01-01

    Full Text Available Wireless capsule endoscopy (WCE offers a feasible noninvasive way to detect the whole gastrointestinal (GI tract and revolutionizes the diagnosis technology. However, compared with wired endoscopies, the limited working time, the low frame rate, and the low image resolution limit the wider application. The progress of this new technology is reviewed in this paper, and the evolution tendencies are analyzed to be high image resolution, high frame rate, and long working time. Unfortunately, the power supply of capsule endoscope (CE is the bottleneck. Wireless power transmission (WPT is the promising solution to this problem, but is also the technical challenge. Active CE is another tendency and will be the next geneion of the WCE. Nevertheless, it will not come true shortly, unless the practical locomotion mechanism of the active CE in GI tract is achieved. The locomotion mechanism is the other technical challenge, besides the challenge of WPT. The progress about the WPT and the active capsule technology is reviewed.

  8. Technical Direction and Laboratories Fiscal Year 1999 Annual Report

    International Nuclear Information System (INIS)

    This annual report summarize achievements and list reports issued by members of TDandL, NHC group during Fiscal Year (FY) 1999, (October 1, 1998 through September 30, 1999). This report, issued by this organization, describes work in support of the Hanford Site and other U S . Department of Energy, Richland Operations Office (DOE-RL) programs. It includes information on the organization make-up, interfaces, and mission of the group. The TDandL is a group of highly qualified personnel with diverse disciplines (primarily chemistry specialties) that provide process, analytical, and in-situ chemistry services to engineering customers. This year of operation and interfaces with other contract organizations consumed considerable administrative efforts. Attention was directed to the technical challenges presented by the changing roles, responsibilities, and priorities of Hanford programs

  9. Endogenous Technical Progress and the Emergence of Child Labor Laws

    OpenAIRE

    Dessy, Sylvain E.

    2003-01-01

    I develop a theory of technical progress that uncovers sufficient conditions for opposition to the adoption of child labor laws to disappear over time. The supply of child labor comes exclusively from unskilled parents, because of their inability to help their children benefit from formal education, while its demand originates from capitalists-the firms' owners. Because child labor crowds out adult employment, there are always social pressures to ban it. However, such pressures are met by cap...

  10. Idaho chemical programs annual technical report, fiscal year 1974

    International Nuclear Information System (INIS)

    The operating experience in fuel processing, waste calcining, and other waste management activities for FY 1974 is summarized. A new zirconium fuel dissolver has performed well, and the first-cycle extraction system shows near-zero losses. Technical support activities include: a flowsheet to reduce acid consumption and volume of liquid wastes in the electrolytic process; a new dissolution process for ternary oxide PWR fuel using zirconium-fluoride-nitric acid dissolvent; a study and recommendation for treatment of fuel storage basin water; progress in design and development of processes for Rover and HTGR fuels, corrosion evaluation of bins containing calcined wastes showing corrosion rates indicative of a safe 500-year or greater storage life; demonstration on a pilot-plant scale of conditions for calcination of stainless steel and Rover fuel wastes as well as commercial wastes; evaluation of equipment alternatives for a new waste calcining facility; studies related to improvements in rare gas recovery and process off-gas treatment; demonstration of stability when various high-level waste solutions are mixed; progress on postcalcination treatment of calcined waste solids (ceramic formation, incorporation in metals, and calcine-concretes); studies on removal of actinides from ICPP wastes; a conceptual design for a proposed radioactive solid-waste repackaging facility for the INEL. Significant progress is reported on the program for determination of burnup for fast breeder reactor fuels. (U.S.)

  11. Nuclear Structure Group annual progress report June 1974 -May 1975

    International Nuclear Information System (INIS)

    This is the first annual progress report of the Nuclear Structure Group of the University of Birmingham. The introduction lists the main fields of study of the Group as: polarisation penomena and optical model studies using 3He and 4He probes; photonuclear physics; heavy-ion physics; and K- meson physics. The programme is related to particle accelerators at Birmingham, Oxford, Harwell and the Rutherford Laboratory. The body of the report consists of summaries of 38 experiments undertaken by members of the Group. The third section contains 10 notes on instrumentation topics. Appendices contain lists of (a) personnel, (b) papers published or submitted during the period. (U.K.)

  12. Commercial waste treatment program annual progress report for FY 1983

    International Nuclear Information System (INIS)

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies

  13. International Linear Collider-A Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, Eckhard; /DESY; Harrison, Mike; /Brookhaven; Hesla, Leah; /Fermilab; Ross, Marc; /Fermilab; Royole-Degieux, Perrine; /Paris, IN2P3; Takahashi, Rika; /KEK, Tsukuba; Walker, Nicholas; /DESY; Warmbein, Barbara; /DESY; Yamamoto, Akira; /KEK, Tsukuba; Yokoya, Kaoru; /KEK, Tsukuba; Zhang, Min; /Beijing, Inst. High Energy Phys.

    2011-11-04

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  14. Environmental Research Division technical progress report, January 1984-December 1985

    International Nuclear Information System (INIS)

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter

  15. Environmental Research Division technical progress report, January 1984-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  16. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES. Semi-Annual Technical Progress Report April 6, 2000 - October 5, 2002

    International Nuclear Information System (INIS)

    various types of cementation which act as barriers or baffles to fluid flow. The most significant diagenetic characteristics are microporosity (Cherokee field) and micro-boxwork porosity (Bug field), as shown from porethroat radii histograms, and saturation profiles generated from the capillary pressure/mercury injection analysis, and identified by scanning electron microscopy and pore casting. These porosity types represent important sites for untapped hydrocarbons and primary targets for horizontal drilling. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation, and publications. The project home page was updated for the Utah Geological Survey Internet web site

  17. Underground Energy Storage Program: 1981 annual report. Volume II. Technical summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1982-06-01

    This is the 1981 annual report for the Underground Energy Storage Program administered by the Pacific Northwest Laboratory for the US Department of Energy. The two-volume document describes all of the major research funded under this program during the period March 1981 to March 1982. Volume II presents the amplified technical summaries of individual tasks and projects conducted during this reporting period. The activities of the authors reporting herein were actually broader in scope than may be reflected by the mini-reports. Readers wishing additional information on specific topics are invited to contact individual authors. The work described here represents one segment of a continuing effort to encourage development and implementation of advanced energy storage technology. The results and progress reported here rely on earlier studies and will, in turn, provide a basis for continued efforts to develop the STES and CAES technologies.

  18. University of Florida training reactor. Annual progress report, September 1, 1984-August 31, 1985

    International Nuclear Information System (INIS)

    This annual progress report of the University of Florida Training Reactor discusses: reactor operation; personnel; modifications made to the reactors; reactor maintenance; and testing of reactor systems

  19. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  20. Regulatory and technical reports (abstract index journal): Annual compilation for 1996, Volume 21, No. 4

    International Nuclear Information System (INIS)

    This compilation is the annual cumulation of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors

  1. Regulatory and technical reports (abstract index journal): Annual compilation for 1996, Volume 21, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, M.A.

    1997-04-01

    This compilation is the annual cumulation of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors.

  2. KWL Lingen nuclear plant. Technical annual report 2015; KWL Kernkraftwerk Lingen. Technischer Jahresbericht 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The technical annual report 2015 on the Lingen nuclear plant covers the following issues: report on the segments operation, process engineering, safety engineering, licensing and supervising procedures, operational data, radiation protection, radioactive materials, and in-service inspections.

  3. Technical vocabulary in finance : a corpus-based study of annual reports and earnings calls

    OpenAIRE

    Ha, Ying-ho; 夏映荷

    2015-01-01

    The study investigated the technical vocabulary in finance based on a self-built Financial Corpus (FC) of 6,753,212 words of written annual reports and spoken earnings calls collected from 146 world’s largest companies in four financial sectors. Being the most important genres in corporate communication, annual reports and earnings calls provide considerable insights into the technical vocabulary of the financial sectors. The main aims of the study are to show differences among modes especial...

  4. 1980 Annual status report: provision of scientific and technical services

    International Nuclear Information System (INIS)

    Two kinds of objectives are pursued at the JRC in direct support of the various General Directorates of the Commission: Technical Evaluations where system analysis techniques are mainly employed and Technical Assistance where laboratory measurement, technical expertises and management of projects are provided

  5. [Carbon isotope fractionation in plants]: Annual technical progress report

    International Nuclear Information System (INIS)

    Plants fractionate carbon isotopes during photosynthesis in ways which reflect photosynthetic pathway and environment. The fractionation is product of contributions from diffusion, carboxylation and other factors which can be understood using models which have been developed in our work. The object of our work is to use this fractionation to learn about the factors which control the efficiency of photosynthesis. Unlike previous studies, we do not rely principally on combustion methods, but instead develop more specific methods with substantially higher resolving power. We have recently developed a new short-term method for studying carbon isotope fractionation which promises to provide a level of detail about temperature, species, and light intensity effects on photosynthesis which has not been available until now. We are studying the isotopic compositions of metabolites (particularly aspartic acid) in C3 plants in order to determine the role of phosphoenolpyruvate carboxylase in C3 photosynthesis. We are studying the relative roles of diffusion and carboxylation in nocturnal CO2 fixation in CAM plants. We are studying the use of isotopic content as an index of water-use efficiency in C3 plants. We are developing new methods for studying carbon metabolism in plants. 3 refs

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    International Nuclear Information System (INIS)

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.; Lyon, W.S. (ed.)

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  8. Annual Technical Report - Nuclear Engineering Institute/Dept. of Physics (IEN/DEFI) 1985

    International Nuclear Information System (INIS)

    The annual technical report of the Dept. of Physics of the Nuclear Engineering Institut (IEN/DEFI) is presented. The report describes the scientific and technical activities developed at this Institute, such as research, projects, development, personnel involved, support to research and the publications issued in 1985. (M.I.)

  9. Theoretical particle physics: Technical progress report, May 1987-May 1988

    International Nuclear Information System (INIS)

    This Technical Progress Report outlines the research of the Task B High Energy Theory Group at Indiana University during 1987-88. We have been active in a variety of areas/emdash/superstrings, lattice gauge theory, quarkonium and neutrino physics. The following pages provide brief summaries of the progress we were able to make in these areas during the past year. In superstring theory, rules were developed for calculating string amplitudes to the one loop level for a wide variety of topologies; the stability of the string vacuum was investiagted for bosonic strings. We continued our mathematical studies of supergroups. In lattice gauge theory, we have been particularly interested in calculating, from first principles, QCD effects on weak interaction processes (of special interest here is the search for a better understanding of the mysterious /DELTA/I = /1/2/ rule). At the same time, we have been trying to develop more efficient algorithms to reduce the amount of computing necessary in lattice calculations. In more phenomenological work, we have been studying various aspects of bound quark-antiquark systems, including a new wave equation which incorporates relativitic kinematics. We have also been trying to find ways of experimentally distinguishing between Dirac and Majorana neutrinos

  10. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  11. Technical report. Graduate Student Focus on Diversity Workshop, 1999 SIAM Annual Meeting, Atlanta, Georgia, May 12, 1999

    Energy Technology Data Exchange (ETDEWEB)

    none

    1999-05-12

    The Third SIAM Graduate Student Focus on Diversity workshop was held May 12 at the Sheraton Atlanta Hotel on the first day of the 1999 SIAM Annual Meeting. The day-long workshop consisted of several different activities: eight technical talks by under-represented minority graduate students, a lively panel discussion concerning the benefits of undergraduate summer research programs, informal luncheon and pizza breaks to foster social interaction, and an evening forum with candid discussions of graduate school experiences from a minority graduate student perspective. These sessions were open to the entire SIAM community and served to highlight the progress, achievements, and aspirations of the workshop participants.

  12. Short Rotation Woody Crops Program. Annual progress report for 1985

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J.W.; Trimble, J.L.; Wright, L.L.; Layton, P.A.; Perlack, R.D.; Wenzel, C.R.; Curtin, D.T.

    1986-05-01

    This report describes the technical progress and accomplishments in the Short Rotation Woody Crops Program (SRWCP) for the year ending September 30, 1985. The SRWCP is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division. The SRWCP is an integrated program of 17 resarch projects aimed at improving the productivity and economic efficiency of short-rotation intensive culture (SRIC) of hardwood trees and shrubs for energy. Development of a viable technology using SRIC for energy production is the ultimate goal of the program. This report presents research results that indicate that SRIC technology is becoming economically competitive under specific regional and local conditions. In most areas of the United States, additional technological improvements are needed and are attainable. This report is a synthesis of research results and conclusions in the areas of selecting and breeding for rapid juvenile growth, efficiently utilizing and manipulating site characteristics, maximizing coppice-rotation productivity, evaluating harvesting equipment, and analyzing the economic competitiveness of SRIC wood for energy. Future programmatic research priorities are presented, as well as general conclusions about SRIC woody production systems in the United States. 65 refs., 15 figs., 13 tabs.

  13. Short Rotation Woody Crops Program: Annual progress report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Doyle, T.W.; Layton, P.A.; Ranney, J.W.

    1989-10-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program (SRWCP) for the year ending September 30, 1988. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and has the goal of developing a viable technology for producing renewable feedstocks for conversion to biofuels. The most significant accomplishment has been the attainment of outstanding productivity rates by a Populus hybrid in the Pacific Northwest (43.5 Mg{center dot}ha{sup {minus}1}{center dot}year{sup {minus}1}), highlighting the potential gains achievable with breeding. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. The implications of global warming and climate-change effects on SRWC technology and applications are discussed. The early success of several monoculture viability trials is also presented. 43 refs., 12 figs., 10 tabs.

  14. Short Rotation Woody Crops Program: Annual progress report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J.W.; Ehrenshaft, A.R.; Layton, P.A.; McNabb, W.A.; Wright, L.L.

    1988-08-01

    This report describes the technical progress of the individual research projects in the Short Rotation Woody Crops Program (SRWCP) as well as synthesizing the results for an overview of the program. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and has the goal of developing a viable technology for producing renewable feedstocks for biofuels such as gasoline, diesel fuel, alcohol, and medium Btu gas in the United States. The most significant accomplishments have been the productivity rates achieved with Populus hybrids in the Pacific Northwest, the establishment of monoculture viability trials, the bioengineering developments of Populus spp. (hybrid poplar), and the initiation of wood-energy quality definitions in cooperation with biofuel conversion specialists. The most serious challenges are now seen as control of diseases in Populus, lowering cutting and handling costs, increasing productivity on moderate to poor soils in the South and Midwest, local matching and development of clones with sites in monoculture trials, and identifying and learning about the physiological and genetic variability of important growth qualities within model species for genetic improvement. 39 refs.

  15. FY 1992 work plan and technical progress reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

  16. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  17. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  18. Inventors Center of Michigan Technical Assessment Program. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The Technical Assessment Program at the Inventors Center of Michigan is designed to provide independent inventors with a reliable assessment of the technical merits of their proposed inventions. Using faculty from within Ferris State University`s College of Technology an assessment process examines the inventor`s assumptions, documentation, and prototypes, as well as, reviewing patent search results and technical literature to provide the inventor with a written report on the technical aspects of the proposed invention. The forms for applying for a technical assessment of an invention are included.

  19. Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings

    Science.gov (United States)

    1993-01-01

    This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.

  20. TMI-2 Technical Information and Examination Program. 1984 annual report

    International Nuclear Information System (INIS)

    In 1984, the US Department of Energy's Technical Information and Examination Program entered its fifth year of research and development work at Three Mile Island Unit 2 (TMI-2) and at the Idaho National Engineering Laboratory and other supporting laboratories. The work concentrated on six major areas: waste immobilization, reactor evaluation, data acquisition, information and industry coordination, core activities, and EPICOR II and waste research and disposition

  1. 2. Semi-annual progress report 1980, no 17

    International Nuclear Information System (INIS)

    This semi-annual report deals with the experimental research carried out at the Departement de Recherche Fondamentale de Grenoble (fission, nuclear spectroscopy, heavy ion reactions, physical metallurgy, magnetism, organic molecules, theoretical chemistry, molecular physical chemistry, cellular biology, vegetal biology)

  2. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  3. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    International Nuclear Information System (INIS)

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy's Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole

  4. Energy Materials Coordinating Committee, fiscal year 1997. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1997 and describes the materials research programs of various offices and divisions within the Department.

  5. Regulatory and technical reports (abstract index journal): Annual compilation for 1987

    International Nuclear Information System (INIS)

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC's intention to publish this compilation quarterly and to cumulate it annually

  6. AQSIQ Publishes China Annual Report on Technical Barriers to Trade (2007)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On September 11, 2007, Qi Xiufen, Director of the International Department of the General Administration of Quality Supervision, Inspection and Quarantine of China (AQSIQ), published the China Annual Report on Technical Barriers to Trade.Wang Nini, Director of the Standard, Law and Regulation Center of AQSIQ, gave a detailed explanation of the contents of the report.

  7. Regulatory and technical reports (abstract index journal). Annual compilation for 1984. Volume 9, No. 4

    International Nuclear Information System (INIS)

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC's intention to publish this compilation quarterly and to cumulate it annually

  8. Quarterly technical progress report, April-June 1980

    International Nuclear Information System (INIS)

    Progress and activities are reported on the following four lines of assurance (LOA-1 through 4): prevent accidents, limit core damage, maintain containment integrity, and attenuate radiological consequences

  9. The Community's research and development programme on decommissioning of nuclear installations. Third annual progress report 1987

    International Nuclear Information System (INIS)

    This is the third annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1987. The third progress report describes the objectives, scope and work programme of the 69 research contracts concluded, as well as the progress of work achieved and the results obtained in 1987

  10. The community's research and development programme on decommissioning of nuclear installations. Fourth annual progress report 1988

    International Nuclear Information System (INIS)

    This is the fourth annual progress report on the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme at 31 December 1988. The fourth progress report describes the objectives, scope and work programme of the 72 research contracts concluded, as well as the progress of work achieved and the results obtained in 1988

  11. Meeting of the Technical Working Group on Fast Reactors (TWG-FR) (39th annual meeting). Working material

    International Nuclear Information System (INIS)

    The 39th Annual Meeting of the Technical Working Group on Fast Reactors (TWG FR) was held from 15-19 May 2006 in Beijing, China, at the invitation of the China Institute of Atomic Energy (CIAEA). The meeting was attended by TWG-FR Members and Advisers from the following Member States (MS): Belgium (observer), Brazil, China, France, Germany, India, Italy, Japan, the Republic of Kazakhstan, the Republic of Korea, the Russian Federation, Sweden (observer), the United Kingdom, and the United States. Belarus, Switzerland, the European Commission, and OECD/NEA were unable to participate. Moreover, Prof. Carlo Rubbia, CERN director general emeritus, participated, upon IAEA invitation, in the meeting as distinguished scientist and IAEA expert. Mr. S.C. Chetal, from India (Indira Gandhi Centre for Atomic Research, IGCAR), was appointed chairman. The objectives of the meeting were to: - Exchange information on the national programmes on Fast Reactors (FR) and Accelerator Driven Systems (ADS); - Review the progress since the 38th TWG-FR Annual Meeting, including the status of the actions; - Consider meeting arrangements for 2006 and 2007; - Reviewed the Agency's ongoing information exchange and co-ordinated research activities in the technical fields relevant to the TWG-FR (FRs and ADS), as well as co-ordination of the TWG-FR's activities with other organizations; - Discuss future joint activities in view of the Agency's Programme and Budget Cycle 2008-2009 (and beyond)

  12. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  13. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  14. Technical and economic feasibility of thermal energy storage. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.R.

    1976-02-01

    This study provides a first-look at the system elements involved in: (1) creating a market; (2) understanding and deriving the requirements; (3) performing analytical effort; (4) specifying equipment; and (5) synthesizing applications for a thermal energy storage (TES) function. The work reviews implicated markets, energy consumption patterns, TES technologies, and applications. Further, several concepts are developed and evaluated in some detail. Key findings are: (1) there are numerous technical opportunities for TES in the residential and industrial market sectors; (2) apart from sensible heat storage and transfer, significant R and D is required to fully exploit the superior heat densities of latent heat-based TES systems, particularly at temperatures above 600/sup 0/F; (3) industrial energy conservation can be favorably impacted by TES where periodic or batch-operated unit functions characterize product manufacturing processes, i.e. bricks, steel, and ceramics; and (4) a severe data shortage exists for describing energy consumption rates in real time as related to plant process operations--a needed element in designing TES systems.

  15. Aerial Measuring System Technical Integration Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada Remote Sensing Laboratory

    2003-06-01

    Fiscal Year 2002 is the second year of a five-year commitment by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) to invest in development of new and state-of-the-art technologies for the Aerial Measuring Systems (AMS) project. In 2000, NNSA committed to two million dollars for AMS Technical Integration (TI) for each of five years. The tragedy of September 11, 2001, profoundly influenced the program. NNSA redirected people and funding resources at the Remote Sensing Laboratory (RSL) to more immediate needs. Funds intended for AMS TI were redirected to NNSA's new posture of leaning further forward throughout. AMS TI was brought to a complete halt on December 10, 2001. Then on April 30, 2002, NNSA Headquarters allowed the restart of AMS TI at the reduced level of $840,000. The year's events resulted in a slow beginning of several projects, some of which were resumed only a few weeks before the AMS TI Symposium held at RSL on July 30.

  16. Annual progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB. (ACR)

  17. Annual progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB

  18. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  19. Evaporation by mechanical vapor recompression. Technical progress report, September 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, C.H.; Coury, G.E.

    1979-01-01

    Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.

  20. Idaho Chemical programs annual technical report, fiscal year 1975

    International Nuclear Information System (INIS)

    The operating experience in fuel processing, waste calcining, and other waste management activities at the ICPP for FY 1975 is summarized. A campaign of coprocessing zirconium and aluminum fuels to recover uranium, the second electrolytic processing campaign to convert recovered and purified uranyl nitrate solution to UO3, and four operating periods of the Rare Gas Plant to recover 85Kr and xenon were successfully completed, with all systems functioning well except for minor difficulties. Support activities include laboratory-scale stability studies of various waste blends; particle size distribution studies of the ICPP stack; evaluation of possible remote radiation measuring methods; tests to estimate corrosion; treatment of fuel storage basin water; progress in development of processes for Rover and HTGR fuels; laboratory testing of filters that deteriorated during the sixth waste calcining campaign; visual inspection of the primary calciner vessel; tests to determine what causes ruthenium to volatilize; various studies in support of future fluidized-bed calcining operations; other waste management activities including studies of the collection and long-term storage of 85Kr, development of a suitable absorbent for 129I (I2); and continuing studies in support of the proposed INEL facility for treating transuranic wastes. Research programs in other areas include: determining burnup for fast breeder reactor fuels, continued study of the iodine pathway, development of a fluidized-bed heat exchanger for use with geothermal waters, and involvement in the study of the natural fossil fission reactor at the Oklo mine in Gabon, West Africa

  1. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  2. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  3. Conjoint utility analysis of technical maturity and project progress of construction project

    Directory of Open Access Journals (Sweden)

    Ma Wei

    2016-01-01

    Full Text Available In this paper, taking construction project as the research object, the relationship between the project maturity index calculated by the construction project technical risks with different fine degree and the project progress index is studied, and the equilibrium relationship between the Party A’s utility curve and the Party B’s cost curve of using project maturity index and project progress index as the research variables is analyzed. The results show that, when the construction project technical risk division is more precise, the conjoint utility of the project's technical maturity index and the project progress is higher, and the project’s Party A and Party B two sides are closer to the optimal equilibrium. This shows that the construction project technical risk must be finely divided, and managed and controlled respectively, which will help to improve the conjoint utility of the project Party A and Party B two sides.

  4. Technical and management support for the development of small wind systems. Annual report, October 1, 1977-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    The FY 1978 Annual Report of the Rocky Flats Wind Systems Program describes the objectives, approach, and achievements of the program and each of its tasks areas during the period October 1, 1977-September 30, 1978. During this period, additional testing of ten small wind energy conversion systems (SWECS) was conducted and the Test Center was expanded to accommodate up to 30 SWECS. Work on nine design and analysis projects for advanced prototypes in three size ranges progressed through a series of design reviews, with prototype delivery scheduled to begin in mid-1979. Supporting activities included a Systems Engineering project which analyzed the cost of SWECS components and fabrication, a task effort in technical support to standards development, and the dissemination of information.

  5. Energy Materials Coordinating Committee (EMaCC): Annual technical report, Fiscal year 1987

    International Nuclear Information System (INIS)

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1987 and describes the materials research programs of various offices and divisions within the Department

  6. Electro-technical industry R and D: Progress report

    International Nuclear Information System (INIS)

    Drawing from the experience gained thus far by a leading electro-technical research group involved in electric cables research and development, this paper assesses R ampersand D trends in the Italian electric power industry. The review covers the following aspects: major participants, investment, results, commercialization, parallel engineering work, cooperation with universities, and areas where further improvements can be made. Attention is also given to an analysis of the intellectual and behavioural profiles of the research personnel working in this field of research

  7. Germanischer Lloyd. Annual report 1989, technical section. Germanischer Lloyd. Fachlicher Teil des Geschaeftsberichtes 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The lavishely illustrated 1989 annual report of Germanischer Lloyd informs on: 1989 in retrospect; research - hull and machinery; ship safety; mechanical engineering; offshore technology; electrotechnology; wind energy technology; environmental protection; navy; newbuildings and conversions; yachts and small craft; underwater technology; project assistance; marine advisory services; technical safety; hydraulic engineering; containers; materials technology; industrial inspections; supervisory board; executive board, divisional directors; committees; our presence worldwide; training; statistics 1989; exhibitions and presentations; lectures and publications; new rules and regulations. (HWJ).

  8. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports.

  9. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    International Nuclear Information System (INIS)

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports

  10. Scientific and technical progress in engineering-geodetic surveys

    International Nuclear Information System (INIS)

    This paper reviews the progress made in the Soviet Union in geodetic survey methodology, instrumentation, and data processing facilities with regard to siting future hydroelectric, pumped storage, and nuclear power plants and to assessing the geologic behavior of sites already in existence for sings of deformation or settling or tectonic or seismic activity

  11. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  12. High Energy Physics Group. Annual progress report, fiscal year 1983

    International Nuclear Information System (INIS)

    Perhaps the most significant progress during the past twelve months of the Hawaii experimental program, aside from publication of results of earlier work, has been the favorable outcome of several important proposals in which a substantial fraction of our group is involved: the Mark II detector as first-up at the SLC, and DUMAND's Stage I approval, both by DOE review panels. When added to Fermilab approval of two neutrino bubble-chamber experiments at the Tevatron, E632 and E646, the major part of the Hawaii experimental program for the next few years is now well determined. Noteworthy in the SLAC/SLC/Mark II effort is the progress made in developing silicon microstrip detectors with microchip readout. Results from the IMB(H) proton decay experiment at the Morton Salt Mine, although not detecting proton decay, set the best lower limit on the proton's lifetime. Similarly the Very High Energy Gamma Ray project is closely linked with DUMAND, at least in principle, since these gammas are expected to arise from pi-zero decay, while the neutrinos come from charged meson decay. Some signal has been seen from Cygnus X-3, and other candidates are being explored. Preparations for upgrading the Fermilab 15' Bubble Chamber have made substantial progress. Sections of the Progress Report are devoted to VAX computer system improvements, other hardware and software improvements, travel in support of physics experiments, publications and other public reports, and last analysis of data still being gleaned from experimental data taken in years past (PEP-14 and E546, E388). High energy physics theoretical research is briefly described

  13. Fuel Chemistry Division: annual progress report for 1988

    International Nuclear Information System (INIS)

    The progress report gives the brief descriptions of various activites of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1988. The descriptions of activities are arranged under the headings: Fuel Development Chemistry of Actinides, Quality Control of Fuel, and Studies related to Nuclear Material Accounting. At the end of report, a list of publications published in journals and papers presented at various conferences/symposia during 1988 is given. (author). 13 figs., 61 tabs

  14. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  15. Fuel Chemistry Division annual progress report for 1990

    International Nuclear Information System (INIS)

    The progress report gives brief descriptions of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1990. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Quality Control of Nuclear Fuels, and studies related to Nuclear Materials Accounting. At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 7 figs., 52 tabs

  16. Technical meeting (TM) to 'Review of national programmes on fast reactors and accelerator driven systems (ADS)'. Technical Working Group on Fast Reactors (TWG-FR) (37th annual meeting). Working material

    International Nuclear Information System (INIS)

    The objectives of the 37th Annual Meeting of the Technical Working Group on Fast Reactors, were to: 1) exchange information on the national programmes on Fast Reactors (FR) and Accelerator Driven Systems (ADS); 2) review the progress since the 36th TWG-FR Annual Meeting, including the status of the actions; 3) consider meeting arrangements for 2004 and 2005; 4) review the Agency's co-ordinated research activities in the field of FRs and ADS, as well as co-ordination of the TWG-FR's activities with other organizations. The participants made presentations on the status of the respective national programmes on FR and ADS development. A summary of the highlights for the period since the 36th TWG-FR Annual Meeting is included in this proceedings. Annex IV contains the Review of National Programs on Fast Reactors and Accelerator Driven Systems (ADS), and the TWG-FR Activity Report for the Period May 2003-April 2004

  17. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  18. Environmental Research Division technical progress report: January 1986--October 1987

    International Nuclear Information System (INIS)

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases

  19. Technical progress report, 1 April-30 June 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    This report describes the technical accomplishments during the quarter ending June 1981, on the commercial nuclear waste management programs under the direction of the Office of Nuclear Waste Isolation (ONWI). The ONWI program is organized into 8 tasks entitled: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. Principal investigators in each of these areas have submitted summaries of quarterly highlights for inclusion in this report. Separate abstracts have been prepared for 5 of these tasks for inclusion in the Energy Data Base. (DMC)

  20. Quarterly technical progress report, February 1, 1996--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.

  1. Environmental Research Division technical progress report: January 1986--October 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  2. First quarter technical progress report for Thermally Modified Sand

    Energy Technology Data Exchange (ETDEWEB)

    Gilfilian, R.E.

    1994-02-28

    This report documents progress on a project to demonstrate suitability of Thermally Modified Sand (TMS) for large scale use by demonstrating its performance on icy roadways maintained by the State of Alaska Department of Transportation. This report deals primarily with the startup of the project and includes initial observations of the effectiveness of the use of the TMS versus the typical salt/sand combination.

  3. Crystalline Repository Project. Technical progress report, October 1982-March 1983

    International Nuclear Information System (INIS)

    This document reports the progress being made periodically on the development of a geologic repository in crystalline rock for the permanent disposal of high-level nuclear waste. The reporting elements are arranged by the work breakdown structure so that related studies are presented together. The studies are reported by the Office of Crystalline Respository Development (OCRD), a prime contractor of the US Department of Energy Repository Project Office. The studies include work by other prime contractors and by subcontractors to OCRD

  4. The superconducting super collider: Scientific motivation and technical progress

    International Nuclear Information System (INIS)

    The author summarizes the case for new physics at the TeV scale, and reviews speculations about new phenomena which may occur there. He then discusses in brief the physics prospects of a multi-TeV hadron collider, and mention some of the processes which may be studied in detail with such an instrument. Finally, he reports progress toward the design and construction of the SSC

  5. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department.

  6. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    International Nuclear Information System (INIS)

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department

  7. Research in theoretical elementary particle physics. Annual progress report

    International Nuclear Information System (INIS)

    This is a progress report on the fourth year of operation of the Theoretical Particle Physics group at the University of Florida. The group has been very productive over the last year publishing numerous research papers covering a broad range of topics in theoretical high energy physics. In addition, members of our group have traveled and given important talks at national and international physics conferences. The research we have accomplished in such subjects as quantum field theory, quantum chromodynamics, grand unified theories, and high energy phenomenology has increased mankind's understanding of elementary particle physics. Research activities are summarized, and publications are listed

  8. The theory of hadronic systems. Annual progress report

    International Nuclear Information System (INIS)

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; study of the radii of neutron distributions in nuclei; the hadronic double scattering operator; transparency in pion production; asymmetry in pion scattering and charge exchange from polarized nuclei; the mechanism of pion absorption in nuclei; the neutron-proton charge-exchange reaction; modification of the fundamental structure of nucleons in nuclei; and antiproton annihilation in nuclei

  9. The theory of hadronic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, W.R.

    1993-04-12

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; study of the radii of neutron distributions in nuclei; the hadronic double scattering operator; transparency in pion production; asymmetry in pion scattering and charge exchange from polarized nuclei; the mechanism of pion absorption in nuclei; the neutron-proton charge-exchange reaction; modification of the fundamental structure of nucleons in nuclei; and antiproton annihilation in nuclei.

  10. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  11. Fuel Chemistry Division annual progress report for 1989

    International Nuclear Information System (INIS)

    The progress report gives a brief description of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1989. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemical Quality Control, Chemistry of Actinides, Sol-Gel process for the non Nuclear Ceramics and Studies related to Nuclear Material Accounting.At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 69 tabs., 6 figs

  12. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  13. Association Euratom - Risoe National Laboratory annual progress report 2006

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  14. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  15. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  16. Technical Progress Has Positive,Differentiated Effects on Energy Efficiency of Chinese Industries

    Institute of Scientific and Technical Information of China (English)

    李廉水; 周勇

    2007-01-01

    The rebound effects of technological advancement on energy consumption make it very complicated to measure the impact of technological advancement on energy efficiency.This article,taking 35 industries as samples,utilizes the non-parameter DEA-Malmquist productivity approach to subcategorise technological advancement into three parts:science-technological(sci-tech)progress,pure technical efficiency and efficiency of scale.The panel technique is then used to work out each subcategory’s contribution to energy efficiency individually.Findings show that technological efficiency (calculated by multiplying the results of pure technical efficiency and scale efficiency)is the principal factor in the improvement of energy efficiency while the contribution from sci-tech progress is comparatively less.Overtime,however,the effect of sci-tech progress is gradually heightened while the effect of technical efficiency slowly diminishes.

  17. The VLA Sky Survey (VLASS): Technical Implementation Plans and Progress

    Science.gov (United States)

    Myers, Steven T.; Law, Casey J.; Baum, Stefi Alison; Chandler, Claire J.; Chatterjee, Shami; Lacy, Mark; Murphy, Eric J.; VLASS Survey Science Group

    2016-01-01

    The VLA Sky Survey (VLASS) was initiated to exploit the science and technical opportunities for a new large radio astronomical survey using the Karl G. Jansky Very Large Array. In March 2015, the proposal for the VLASS underwent a formal Community Review. What emerged from this review is a 5400 hour project to survey the 33885 square degrees of the sky above Declination -40 degrees from 2-4 GHz at 2MHz frequency resolution and 2.5" angular resolution. Over the survey duration of 7 years, each area of the sky will be covered in 3 epochs spaced 32 months apart, to a depth of 0.12mJy/beam rms noise per epoch (0.07mJy/beam combined) in total intensity (Stokes I) and including full polarization. Observations are planned to commence in mid-2016. The raw data will be available in the NRAO archive immediately with no proprietary period and science data products will be provided to the community in a timely manner.In this presentation we describe the survey design and the Technical Implementation Plan (TIP) for the VLASS. The VLASS Basic Data Products (BDP) that will be produced by the survey team include: raw and calibrated visibility data, quick-look continuum images, single-epoch images and spectral image cubes, single-epoch basic object catalogs, and cumulative "static sky" images and image cubes and basic object catalogs to the full survey depth. Calibration, image processing, and analysis for the VLASS will be carried out through automated pipelines being developed at NRAO. Integral to this workflow is maintaining Quality Assurance throughout the system from telescope to archive. The storage and archive services budgeted for the BDP is 1PB for the data and images combined. Significantly higher storage would be required to serve the highest spectral resolution spectral cubes over the full sky area, and thus devising an affordable strategy for providing these services is critical, for example through "Processing on Demand" based on user query of the archive. We will

  18. TECHNOLOGY AND IDENTITY: IDENTIFICATION TRANSFORMATION UNDER THE INFLUENCE OF TECHNICAL PROGRESS

    OpenAIRE

    Emelin Vadim Anatolevich; Rasskazova Elena Igorevna; Tkhostov Alexander Schamilevich

    2012-01-01

    In contemporary society, technologies are becoming "psycho-technologies" as they affect mental processes and attitudes. The paper is devoted to fundamental changes in the structure of one's identity and identification processes under the influence of technical progress. Based on the analysis of existing data four vectors of the impact of technology are suggested: incorporation of technical devices in the structure of identity, transformation of objects andrules of the identification, transfor...

  19. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  20. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  1. Progress report for 1978-79, Technical Physics Division

    International Nuclear Information System (INIS)

    The research and development activities of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The TPD's major areas of work are electronics instrumentation, crystal technology, mass spectrometers, cryogenic equipment and vacuum equipment. Some of the major achievements are: (1) fabrication of various electronic instruments and components for the pulsed nuclear magnetic resonance spectrometers, (2) growth of large size NaI(Tl) and Ge crystals, (3) growth of CsI, KDP and arsenic selenide crystals, (4) fabrication of quadrupole mass filters and (5) fabrication of mass spectrometers for gas analysis and D/H analysis in water samples. (M.G.B.)

  2. Progress report of Technical Physics Division: April 1980 - March 1982

    International Nuclear Information System (INIS)

    Activities, with an individual summary of each, of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre (BARC), Bombay are reported for the period April 1980 - March 1982. The major thrust of the TPD's work has been in: (i) design and fabrication of instruments, devices and equipment and (ii) development of techniques in the frontline research and technology areas like vacuum science, surface analysis, cryogenics and crystal growing. The Division also provided custombuilt electronics equipment, vacuum systems and glass components and devices to the various Divisions of BARC and other units of the DAE. Training and manpower development activities and technology transfer activities are also reported. Lists of seminars, colloquia, publications during the period of the report are given. (M.G.B.)

  3. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  4. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  5. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  6. 76 FR 66946 - Notice of Submission of Proposed Information Collection to OMB Annual Progress Reports for...

    Science.gov (United States)

    2011-10-28

    ... (12/3/2011) 30 day sent early. The primary purpose of this collection is to continue current data... Proposed Use: The primary purpose of this collection is to continue current data reporting for Rounds, I... URBAN DEVELOPMENT Notice of Submission of Proposed Information Collection to OMB Annual Progress...

  7. 76 FR 64369 - Notice of Submission of Proposed Information Collection to OMB Annual Progress Reports for...

    Science.gov (United States)

    2011-10-18

    ... soliciting public comments on the subject proposal. The primary purpose of this collection is to continue... Proposed Use: The primary purpose of this collection is to continue current data reporting for Rounds, I... URBAN DEVELOPMENT Notice of Submission of Proposed Information Collection to OMB Annual Progress...

  8. The domestic natural gas and oil initiatve. First annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document is the first of a series of annual progress reports designed to inform the industry and the public of the accomplishments of the Domestic Natural Gas and Oil Initiative (the Initiative) and the benefits realized. Undertaking of the Initiative was first announced by Hazel O`Leary, Secretary of the Department of Energy (Department or DOE), in April 1993.

  9. Annual progress report on the NSRR experiments, (19)

    International Nuclear Information System (INIS)

    Fuel behavior studies in simulated reactivity initiated accident (RIA) conditions have been performed by utilizing Nuclear Safety Research Reactor (NSRR) since October 1975. This report describes the results obtained from experiments performed from January through December, 1987. A total of 38 tests was carried out during this period : those are 5 NSRR standard fuel test, 6 fuel design parameter tests (2 fuel tests with iodine, 3 tests with SUS claddings, and 1 for destructive force measurement test), 7 cooling parameter tests (3 test with flow tube and 4 bundle tests), 8 advanced type fuel tests (1 NRC tests, 5 PCI-resistant fuel tests, 2 pressurized hollow fuel tests), 1 high pressure / high temperature tests, 2 high temperature / high pressure loop tests, 3 high temperature flooding tests, 3 fuel motion observation tests, and 3 miscellaneous atmospheric pressure capsule tests (1 fuel damage test, 2 acceleration tests). The progress of computer code development is also described. (author)

  10. Nuclear structure from radioactive decay. Annual progress report

    International Nuclear Information System (INIS)

    The major area of activity is the study of neutron-deficient nuclei around the Z = 82 shell closure, with special emphasis on the levels of the odd-mass Pt, Au, Hg and Tl isotopes. A crucial ingredient of this work is the systematic investigation of low-energy structural features of sequences of isotopes (and isotones) over many adjacent mass numbers. This has a two-fold purpose. First, it enables us to build up a very complete picture of nuclear structure that connects the regions of stable nuclei (where, e.g., transfer reactions and Coulomb excitation permit the measurement of detailed spectroscopic properties) with regions far from stability, where detailed spectroscopic information is very limited. Second, it provides a map of the excitation degrees of freedom as a function of the changing proton and neutron number over broad mass regions. Progress is reported

  11. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high Tc superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  12. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high Tc superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  13. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  14. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  15. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  16. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    International Nuclear Information System (INIS)

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle

  17. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  18. Annual progress report, July 1, 1982-June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The research program is carried out in three laboratory units: (1) The Laboratory of Biomolecular and Cellular Sciences focuses on fundamental cellular processes such as proliferation, differentiation, gene expression and ecogenic transformation, particularly as related to endogenous factors and energy-related exogenous factors; (2) The Laboratory of Environmental Biology uses two primary study sites to address basic arid-region process studies. The long range goal of this program is the generation of data which will lead to the development of models having predictive value. Knowledge of physiological processes in both plants and animals, particularly as influenced by environmental conditions, is required to understand the structure and dynamics of the ecosystems. The carbon, nutrient and hydrological cycles require greater attention and will be the subject of research programs in the near future; and (3) The Laboratory of Nuclear Medicine measures the physiological behavior of small parts of the brain and heart in health and disease using radioactive tracer techniques employing emission computed tomography. The method is developed technically by rapidly synthesizing biological indicators labeled with short-lived positron emitting radionuclides produced in the laboratory cyclotron. Mathematical models are developed to explain the body distributions of these indicators which are imaged with emission tomographs. This multi-disciplinary effort finally produces cross-section pictures of body biochemistry obtained noninvasively in living patients. It is expected that this approach will result in earlier diagnosis of disease and more careful monitoring of treatment.

  19. The NOx system in nuclear waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The objective of this project is to assist EM sites in the resolution of outstanding safety issues involved in the temporary storage of high-level waste (HLW) in large tanks. To achieve this objective, mechanisms of the radiolytic and radiolytically induced processes that occur in the waste are quantitatively studied. The information is incorporated into a computer modeling of the tanks chemistry under various scenarios and the predicted results are rapidly conveyed to the site operators. This report summarizes the technical achievements of a 3-year project that is now in its 2nd year of operation. The project is a collaborative effort between the ANL and PNNL and is strongly coupled to another EMSP project (''Interfacial Radiolysis Effects in Tank Waste Speciation'''' PI: T. Orlando, PNNL) and to the safety programs at the Hanford site (''Organic Tanks Safety Program: Waste Aging Studies'''', PI D. Camaioni, PNNL). Information from the project is also shared directly with Westinghouse Savannah River personnel. In general, the basic studies are performed at ANL and PNNL and the information is continuously shared with Tanks Safety Programs. To further facilitate the exchange of information and the immediate incorporation of results into operations, the authors conducted at least twice a year coordination meetings at the various laboratories where the site operators (e.g. from DE and SH, Numatec, WSRC, etc.) participate, both to present their needs and to obtain updated information.'

  20. Annual progress report, July 1, 1982-June 30, 1983

    International Nuclear Information System (INIS)

    The research program is carried out in three laboratory units: (1) The Laboratory of Biomolecular and Cellular Sciences focuses on fundamental cellular processes such as proliferation, differentiation, gene expression and ecogenic transformation, particularly as related to endogenous factors and energy-related exogenous factors; (2) The Laboratory of Environmental Biology uses two primary study sites to address basic arid-region process studies. The long range goal of this program is the generation of data which will lead to the development of models having predictive value. Knowledge of physiological processes in both plants and animals, particularly as influenced by environmental conditions, is required to understand the structure and dynamics of the ecosystems. The carbon, nutrient and hydrological cycles require greater attention and will be the subject of research programs in the near future; and (3) The Laboratory of Nuclear Medicine measures the physiological behavior of small parts of the brain and heart in health and disease using radioactive tracer techniques employing emission computed tomography. The method is developed technically by rapidly synthesizing biological indicators labeled with short-lived positron emitting radionuclides produced in the laboratory cyclotron. Mathematical models are developed to explain the body distributions of these indicators which are imaged with emission tomographs. This multi-disciplinary effort finally produces cross-section pictures of body biochemistry obtained noninvasively in living patients. It is expected that this approach will result in earlier diagnosis of disease and more careful monitoring of treatment

  1. Short rotation wood crops program: Annual progress report for 1986

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J.W.; Wright, L.L.; Layton, P.A.; McNabb, W.A.; Wenzel, C.R.; Curtin, D.T.

    1987-11-01

    This report describes accomplishments in the Short Rotation Woody Crops Program (SRWCP) for the year ending September 30, 1986. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and consists of research projects at 29 institutions and corporations. The SRWCP is an integrated program of research and development devoted to a single objective: improving the productivity, cost efficiency, and fuel quality of wood energy crops as feedstocks for conversion to liquid and gaseous fuels. SRWCP directives have shifted from species-screening and productivity evaluations to large-scale viability trials of model species selected for their productivity potential and environmental compatibility. Populus was chosen the lead genera of five model species, and initial steps were taken toward organizing a Populus Research Consortium. Production yields from SRWCP research plots and coppice studies are discussed along with new efforts to model growth results and characteristics on a tree and stand basis. Structural and chemical properties of short-rotation intensive culture wood have been evaluated to determine the desirability of species traits and the potential for genetic improvements. Innovative wood energy crop handling techniques are presented as significant cost reduction measures. The conclusion is that new specialized wood energy crops can be feasible with the advances that appear technically possible over the next 10 years. 34 refs., 9 figs., 7 tabs.

  2. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2009-08-06

    . Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

  3. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2008-12-22

    . Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

  4. Solar central receiver prototype heliostat. Interim technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-05

    The objective of Phase I of this project is to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs. (2) Identification of needs for near term and further research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from Solar Central Receiver Power Plants. The Phase I study will define a low-cost heliostat preliminary design and the conceptual design of a heliostat manufacturing/installation plan which will result in low life cycle cost when produced and installed at high rate and large quantities for commercial Solar Central Receiver Power Plants. The study will develop the annualized life cycle cost and the performance of heliostats for a 30 year plant life, for each of three rates of continuous production and installation. The three specified rates are 25,000, 250,000, and 1,000,000 heliostats per year. The analysis of these varying production rates, requiring highly automated tooling and installation equipment concepts, will define the economies of large scale not realizable on Pilot Plant or Demonstration Plant installations. Project status is described in detail. (WHK)

  5. Technical progress report, October 1, 1980-September 30, 1981

    International Nuclear Information System (INIS)

    Progress during the 12-month period, October 1, 1980 to September 30, 1981 on the University of Wisconsin Plasma Physics contract is described. Most of the work centers around two major experimental devices, the Levitated Octupole and Tokapole II. A major upgrade of the Octupole is underway to include 2 MW of ICRH and 1.8 MW of neutral beam heating. Meanwhile, gun optimization and low field operation has resulted in the attainment of 35% beta, a factor of 9 above the single fluid ballooning limit. The ICRH experiment is well underway, and the first neutral beam source has been installed. The Tokapole is operating reliably at the full design field of 10 kG with 12 msec discharges. Low q (approx. 0.4) discharges with flat current profiles are obtained at reduced (approx. 3kG) toroidal field. The device is presently being used to study shear Alfven wave heating, ECRH startup, poloidal ohmic heating, and plasma transport

  6. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  7. Technical progress report, November 1, 1983-October 31, 1984

    International Nuclear Information System (INIS)

    Progress on theoretical high-energy physics and field theory is briefly described. Research topics include consistency of the canonically-realized Salam-Weinberg theory, supergravity Kaluza-Klein theory, a simple supergravity GUT, a mechanism for fermion mass generation was considered and applied to the lepton sector of the Weinberg-Salam model, an N=1 locally supersymmetric theory, a local topological charge density for 2d U(1) lattice gauge fields, the 2d O(3) sigma-model, Minkowski space-time, quantum field theory, non-Abelian gauge theories and algebraic topology, the semiclassical approximation in quantum field theory, the origin of the CP violation, and others. Publications are listed

  8. Technical Change Theory and Learning Curves: Patterns of Progress in Energy Technologies

    OpenAIRE

    Jamasb, Tooraj

    2006-01-01

    This paper presents a comparative analysis of energy technology learning and progress within the framework of Schumpeter?s invention-innovation-diffusion paradigm. We estimate learning by doing and research rates for a range of energy technologies in four stages of technical progress. Emerging and mature technologies respond slowly to research and development (R&D) and capacity expansion; evolving technologies exhibit high learning-by-doing and research rates; reviving technologies exhibit co...

  9. Annual research progress report, FY 1980. Annual report 1 Oct 79-30 Sep 80

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.D.

    1980-10-01

    During Fiscal Year 1980 progress was attained at the Letterman Army Institute of Research in the following research areas: Basic and applied studies on blood, blood products and blood substitutes; physiology of hemorrhagic shock, pharmacological intervention of shock; the determination of coherent radiation exposure thresholds causing damage to the eye, definition and treatment for laser injuries of the skin and eye; military stress and combat effectiveness; evaluation and toxicology of insect repellents; defense against chemical agents. The progress made in this fiscal year is described in the reports of the work units presented.

  10. Environmental and Occupational Safety Division annual progress report for 1984

    International Nuclear Information System (INIS)

    Over 950 radiation workers were monitored at ORNL for both internal and external exposure to ionizing radiation and radioactive materials in 1984, and no employee exceeded 50% of the applicable DOE dose limit. No internal exposure exceeded 10% of the maximum permissible organ burden, as determined by in-vivo gamma spectrometry. Dose readings from 5000 TLDs and 136,000 pocket meters were determined, and more than 5800 calibrations were performed on these devices. Approximately 82,000 radioassays were performed; among these were 1500 urinalyses and 3000 radiochemical analyses. Over 3000 calibrations were performed for approximately 2000 portable and fixed survey instruments. Response teams were identified in support of the Radiological Assistance Program (RAP). Documentation, procedures, and equipment for the RAP vehicle were upgraded. A long-range environmental plan was issued early in the year and again in June 1984 to document the scope and justification for each project. The DEM is developing an environmental information system for managing DOE-ORO and ORNL environmental data. Five hundred eighty-four waste disposal requests containing 5769 items were handled by the Hazardous Materials Control Group during 1984. The Office of Operational Safety made significant progress in the completion of Safety Analysis Reports for existing facilities. The Radiation and Safety Surveys Department is becoming increasingly involved in work resulting in facility improvement, repair, or upgrade as well as decontamination and decommissioning of older facilities

  11. Physics Department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    Research in the Physics Department at Risoe National Laboratory covers three main fields: condensed matter physics, plasma physics and meteorology. The report is a progress report describing the principal activities in these fields for the period from 1 January to 31 December 1982. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons, X-rays, and synchrotron X-ray radiation. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometereology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  12. Physics Department. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Research in the Physics Department covers two main fields: condensed matter physics and plasma physics. The principal activites in these fields are presented in this Progress Report covering the period from 1 January to 31 December 1989. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applied nature. The discovery of the high Tc superconductors in 1986 has opened an important new research area, where neutron and x-ray diffraction are used to elucidate the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses used in producing the materials. The plasma physics research is partly experimental and partly theoretical. The plasma physics programme is also of a wide scope ranging from fundamental studies of wave propagation, instabilities, solitons and turbulence in plasmas to refuelling a fusion reactor by deuterium-tritium pellets. (author) 4 tabs., 66 ills., 71 refs

  13. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  14. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

  15. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    International Nuclear Information System (INIS)

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively

  16. Cassini RTG Program. Monthly technical progress report, 27 November--31 December 1995

    International Nuclear Information System (INIS)

    This monthly technical progress report provided information on the following tasks: spacecraft integration and liaison; engineering support; safety analysis; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, and reliability, and contractor acquired government owned (CAGO) property acquisition

  17. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  18. Annual meeting on nuclear technology 1995. Technical session: Why nuclear energy?

    International Nuclear Information System (INIS)

    The publication contains the full texts of papers presented at this technical session of the 1995 Annual Nuclear Congress held in Nuernberg. The key questions relating to the justification, the risks and the benefits of nuclear technology are discussed in the context of issues such as the global climate change and CO2 emissions. Various scenarios and models of ensured energy supply in the future are presented and explained, with a basic aspect recurring in all papers, addressing the pros and cons of the peaceful uses of nuclear energy as discussed at the onset of nuclear technology, and their validity in the light of current developments. (UA)

  19. Regulatory and technical reports (abstract index journal): Annual compilation for 1994. Volume 19, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order. These precede the following indexes: secondary report number index, personal author index, subject index, NRC originating organization index (staff reports), NRC originating organization index (international agreements), NRC contract sponsor index (contractor reports), contractor index, international organization index, and licensed facility index. A detailed explanation of the entries precedes each index.

  20. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    International Nuclear Information System (INIS)

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure

  1. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D. [eds.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  2. SKB Annual Report 1995. Including summaries of Technical Reports issued during 1995

    International Nuclear Information System (INIS)

    The annual report covers planning, construction and operation of facilities and systems as well as research, development, demonstration work and information activities. The aim of the program is to start the permanent disposal of spent nuclear fuel around year 2008. Work is undertaken for the development of encapsulation technology on an industrial scale and for design of an encapsulation plant. The siting process for the final repository for spent fuel has started with feasibility studies in a few Swedish municipalities in order to evaluate the potential technical conditions and requirements and the influence on the region. 36 refs, figs

  3. SKB Annual Report 1995. Including summaries of Technical Reports issued during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The annual report covers planning, construction and operation of facilities and systems as well as research, development, demonstration work and information activities. The aim of the program is to start the permanent disposal of spent nuclear fuel around year 2008. Work is undertaken for the development of encapsulation technology on an industrial scale and for design of an encapsulation plant. The siting process for the final repository for spent fuel has started with feasibility studies in a few Swedish municipalities in order to evaluate the potential technical conditions and requirements and the influence on the region. 36 refs, figs.

  4. Stockholm international conference 2003 on geological repositories: Political and technical progress

    International Nuclear Information System (INIS)

    The conference reviewed global progress made as well as current perspectives on the activities to develop geologic repositories. The objectives were to review the progress in policy making as well as technical issues and to strengthen international co-operation on waste management and disposal issues. The first day of the conference addressed the policy aspects of geological repositories and the second day featured the more technical issues. Session 1: International progress in performing long-term safety studies and security of geological disposal were discussed and reviewed with examples from OECD/NEA, Belgium, Sweden, USA, Switzerland and Russia. Session 2: Views on stakeholder involvement and decision making process were presented by international organisations and national implementers from Japan, United Kingdom, Belgium and OECD/NEA. Session 3: Views on stakeholder involvement and decision making process were presented by regional and local stakeholders from France, Finland, Korea and Sweden. Session 4: International instruments assisting in the implementation of geological repositories were discussed, for example ICRP and IAEA/NEA safety documents, Joint Convention, Safeguard agreements, Nuclear Liability Conventions, etc. Session 5: The contribution of Research, Development and Demonstration was discussed with overviews of the progress achieved on scientific and technical issues over the past four years. Progress and key issues were presented from Switzerland, USA, Finland, Japan, Sweden and IAEA. Each of the papers and poster presentations have been analysed and indexed separately

  5. Technical progress in INPRO activities on modelling and innovation

    International Nuclear Information System (INIS)

    Among the 31 Members of the 'International Project on Innovative Nuclear Reactors and Fuel Cycles' (INPRO) in April 2010, more than 20 are cooperating in the implementation of Collaborative Projects (CPs) related to the four substantive Programme Areas of the INPRO Action Plan. The purpose of the CPs is to contribute to the achievement of goals established in the programmatic areas. This paper presents progress status of several CPs dealing with Modelling and Innovation: - CP on Environmental Impact Benchmarking applicable to Nuclear Energy Systems under Normal Operation (ENV): A benchmark of codes and methods for determining radiation released during normal operation of nuclear facilities is performed by using established source term, release scenario, and target group (humans). - CP on Proliferation Resistance: Acquisition/Diversion Pathway Analysis (PRADA): 'PRADA' addresses the identification and analyses of high level pathways for the acquisition of weapons usable material, and makes recommendations for evaluating the multiplicity and robustness of barriers against proliferation. PRADA develops a case study based on DUPIC fuel cycle. The outcome from the project will support the assessment methodologies developed at GIF and INPRO. - CP on Global Architecture of Nuclear Energy Systems based on Thermal and Fast Reactors including Closed Fuel Cycle (GAINS): GAINS objective is to develop a methodological platform for assessing future nuclear energy systems taking into account the sustainable development, and to validate the results through sample analyses. High and moderate scenarios of nuclear energy demand and supply during the Century (5000 and 2500 GWe respectively in the year 2100) are being analysed using homogeneous and heterogeneous considerations. A non-geographic approach grouping the countries according to their planned use of nuclear energy has being established. - CP on Investigations of the 233U/Th Fuel Cycle (ThFC): ThFC objective is to explore FC

  6. PREFACE: Scientific and Technical Challenges in the Well Drilling Progress

    Science.gov (United States)

    2015-02-01

    departments - Technologies in Mineral Exploration and Technologies in Mineral Exploration were merged into one department. In 2003 the newly merged Department of Drilling was established within the Institute of Petroleum Engineering, now the Institute of Natural Resources and is located in Building № 6 where it began its life. During these 60 years more than 3000 specialists have graduated the Department of Drilling, many whom are highly-qualified and dedicated professionals. There is no doubt that this Conference involved comprehensive advanced engineering problems in drilling and issues on relevant personnel training. It is extremely important to understand how the 60-year progress and contribution in the field of drilling has left its trace in the history of this Department; and, that, now, it is necessary to move further and seek new and new horizons in drilling.

  7. The Community's research and development programme on decommissioning of nuclear installations (1989-1993). Annual progress report 1991

    International Nuclear Information System (INIS)

    This is the second annual progress report of the European Community's programme (1989-93) of research on decommissioning of nuclear installations. It shows the status of the programme on 31 December 1991. This second progress report summarizes the objectives, scope and work programme of the 76 research contracts concluded, as well as the progress of work achieved and the results obtained in 1991

  8. Appraisement on Contributive Ratio of Scientific and Technical Progresses in Milk Productive Enterprises by Model C2GS2

    Institute of Scientific and Technical Information of China (English)

    SUN Futian; SUN Liqun; YANG Guanglin

    2008-01-01

    Scientific and technical progress has been the driving forces of enterprises development. Milk productive enterprises are developing faster and growing better. It is very important to measure the contributive ratio of scientific and technical progress in milk productive enterprises. And the appraisement could help to develop milk productive enterprises. The model C2GS2 was established to appraise the contributive ratio of scientific and technical progress in milk productive enterprises in the research. And the appraisement on the contributive ratio of scientific and technical progress in milk productive enterprises was made by the model. In the results of appraisement, science and technology play a main role in milk productive enterprises. It is shown that our milk productive enterprises are developed by scientific and technical progress while not by input of productive factors.

  9. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  10. Republic of Congo; Joint Advisory Note on the Poverty Reduction Strategy Paper: Annual Progress Report

    OpenAIRE

    International Monetary Fund

    2010-01-01

    This Joint Staff Advisory Note reviews the first annual progress report (APR) on implementation of the Poverty Reduction Strategy (PRS) in the Republic of Congo. The adoption of Congo’s first full Poverty Reduction Strategy Paper was an important step toward consolidating macroeconomic stability and improved political and economic governance. The APR takes stock of the first year of PRS monitoring and implementation, and provides an update on the poverty diagnosis, and elaborates on the cen...

  11. Kootenai River fisheries investigations: rainbow and bull trout recruitment: annual progress report 1999; ANNUAL

    International Nuclear Information System (INIS)

    Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I.= 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana waters during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m(sup 2), respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline

  12. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1997 annual progress report

    International Nuclear Information System (INIS)

    'The Pacific Northwest National Lab. was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This section gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas-Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.'

  13. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R.J.

    1997-06-01

    'The Pacific Northwest National Lab. was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This section gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas-Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.'

  14. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-30

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees are established and are continuing their own programs: Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Superconductivity (established in FY 1987). In addition, the EMaCC aids in obtaining materials-related inputs for both intra- and interagency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current active membership is listed on the following four pages. The EMaCC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1988 and describes the materials research programs of various offices and divisions within the Department.

  15. Energy materials coordinating committee (EMACC) Fiscal Year 1982. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1983-03-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/ workshops on selected topics involving both DOE and major contractors. In addition, the EMaCC aids in obtaining materials - related inputs for both intra- and interagency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current membership is listed in Table 1. The EMACC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMACC terms of reference. In this report are described 1) EMACC activities for FY 1982; 2) a summary of materials funding in the Department from FY 1978 to the present; and 3) on-going materials programs in the Department.

  16. Technical progress report for ICRF [Ion Cyclotron Range of Frequencies] edge modeling

    International Nuclear Information System (INIS)

    This report describes the technical progress covering the period from May 15, 1989 to the present for the DOE sponsored grant, ''ICRF Edge Modeling.'' Progress in the areas of antenna design, and kinetic modeling of ions and electrons is cited. The design of antennas for CIT and C-MOD is currently an ongoing activity. Ion kinetic modeling indicates the impurity ion heating is not an important impurity production mechanism. The development of a quasilinear model for electron heating is presented. The relevant professional activities sponsored by this grant are given

  17. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Chaffin, J.; Lin, Moon-Sun

    1995-07-01

    About 27 million tons of asphalt and nearly twenty times this much aggregate are consumed each year to build and maintain over two million miles of roads in this country. Over a cycle of about 12 years on the average, these roads must be reworked and much of these millions of tons of rock and asphalt cannot be reused with present recycling technology. Instead, much of the maintenance is accomplished by placing thick layers (hot-mix overlays) of new material on top of the failed material. This results in considerable waste of material, both in terms of quality aggregate and in terms of asphalt binder. In addition, the new asphalt binder represents a significant source of potential energy. The main impediment to recycling asphalt binder is the poorly developed science of recycling agent composition and, as a result, optimum recycling agents are not available. An excellent recycling agent should not only be able to reduce the viscosity of the aged material, but it must also be able to restore compatibility. The properties of the old material and recycling agent must be compatible to give both good initial properties and aging characteristics, and this must be understood. The agent must also be inexpensive and easily manufactured. A large quantity of potential feedstock for the production of recycling agents is available and much of it is now fed to cokers. This material could be recovered by supercritical extraction which is an existing refinery technology. A supercritical pilot plant is available at Texas A&M and has been used to produce fractions for study. The objective of this research is to establish the technical feasibility of determining the specifications and operating parameters necessary to produce high quality recycling agents which will allow most old asphalt-based road material to be recycled.

  18. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection

  19. CGE Simulation Analysis on the Labor Transfer, Agricultural Technical Progress, and Economic Development in Chongqing

    OpenAIRE

    Heng Wang; Maosheng Ran

    2014-01-01

    The basic structure of a CGE model dividing Mainland China into two parts, including Chongqing and rest regions, is described. Based on this CGE model, both the unilateral impact and collaborative impact of two policies, agricultural technical progress and supporting policies for improving rural labor transfer on the economic development in Chongqing, are simulated and analyzed. The results demonstrate that compared with the sum of each unilateral policy effect, the collaboration of two polic...

  20. Central receiver solar thermal system. Phase 1, CDRL item 10. Second quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1976-04-01

    Results of analysis and design efforts are summarized. This is the second quarterly technical progress report published on the Phase 1 Central Receiver Solar Thermal Power System contract. The dominant activities during the reporting period have involved the detailed definition of the subsystem research experiments and the design of the test articles and test facilities. Summaries of these activities are presented. Design changes to the 10-MWe pilot plant preliminary design baseline which have occurred during the report period are also described.

  1. Cassini RTG Program monthly technical progress report, July 28--August 24, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-24

    The technical progress achieved during this period is described. This report is organized by program task structure: (1) spacecraft and integration liaison; (2) engineering support; (3) safety; (4) qualified unicouple production; (5) ETG fabrication, assembly, and test; (6) ground support equipment (GSE); (7) RTG shipping and launch support; (8) designs, reviews, and mission applications; (9) project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and (10) CAGO acquisition (capital funds).

  2. NRC high-level radioactive waste program. Annual progress report: Fiscal Year 1996

    International Nuclear Information System (INIS)

    This annual status report for fiscal year 1996 documents technical work performed on ten key technical issues (KTI) that are most important to performance of the proposed geologic repository at Yucca Mountain. This report has been prepared jointly by the staff of the Nuclear Regulatory Commission (NRC) Division of Waste Management and the Center for Nuclear Waste Regulatory Analyses. The programmatic aspects of restructuring the NRC repository program in terms of KTIs is discussed and a brief summary of work accomplished is provided. The other ten chapters provide a comprehensive summary of the work in each KTI. Discussions on probability of future volcanic activity and its consequences, impacts of structural deformation and seismicity, the nature of of the near-field environment and its effects on container life and source term, flow and transport including effects of thermal loading, aspects of repository design, estimates of system performance, and activities related to the U.S. Environmental Protection Agency standard are provided

  3. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  4. Environmental Management Science Program awards. Fiscal year 1997 annual progress report

    International Nuclear Information System (INIS)

    Lawrence Berkeley National Laboratory was awarded eight Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report summarizes the progress of each grant in addressing significant DOE site cleanup issues after completion of the first year of research. The technical progress made to date in each of the research projects is described in greater detail in individual progress reports. The focus of the research projects covers a diversity of areas relevant to site cleanup, including bioremediation, health effects, characterization, and mixed waste. Some of the projects cut across a number of focus areas. Three of the projects are directed toward characterization and monitoring at the Idaho National Engineering and Environmental Laboratory, as a test case for application to other sites

  5. Environmental Management Science Program awards. Fiscal year 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A. [ed.; Benner, W.H.; DePaolo, D.J.; Faybishenko, B.; Majer, E.L.; Pallavicini, M.; Russo, R.E.; Shultz, P.G.; Wan, J.

    1997-10-01

    Lawrence Berkeley National Laboratory was awarded eight Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report summarizes the progress of each grant in addressing significant DOE site cleanup issues after completion of the first year of research. The technical progress made to date in each of the research projects is described in greater detail in individual progress reports. The focus of the research projects covers a diversity of areas relevant to site cleanup, including bioremediation, health effects, characterization, and mixed waste. Some of the projects cut across a number of focus areas. Three of the projects are directed toward characterization and monitoring at the Idaho National Engineering and Environmental Laboratory, as a test case for application to other sites.

  6. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    International Nuclear Information System (INIS)

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed

  7. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.D.; Warren, R.W. [eds.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

  8. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    International Nuclear Information System (INIS)

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects

  9. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.C.; Blew, R.D. [eds.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.

  10. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    International Nuclear Information System (INIS)

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  11. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  12. The KBS annual report 1979. Including summaries of technical reports issued during 1979

    International Nuclear Information System (INIS)

    KBS was organized by the Swedish Nuclear Power Utilities at the end of 1976. The first task was to perform the necessary studies and investigations to fulfill the requirements of a Swedish Law, demanding that the existence of a safe method for final storage of spent nuclear fuel of vitrified high-level waste must be shown before new nuclear power reactors may be taken into operation. During 1977 and 1978 two main reports have been presented on the subject. - Handling of spent nuclear fuel and final storage of vitrified high-level reprocessing waste, and - Handling and final storage of unreprocessed spent nuclear fuel. This annual report for the KBS project gives a summary of the main activities during 1979. During the first months of the year most of the work was directed to supplementary site investigations connected with the licencing of two reactors according to the law mentioned above. After that period the responsibility of the project has been expanded to include also the low- and medium-activity waste both from reprocessing of nuclear fuel and the operations and decommissioning of nuclear power plants. After a chapter on the background of the project, the legal situation and the scientific reviews of the two main reports are presented. Chapters 4-10 present the main activities during the year within the areas of intereset for the project. In Chapter 10 (Safety Analysis) an emphasis is placed of the future plans with a discussion of areas where special efforts are needed. Chapter 11 gives an account for current and planned international cooperation in the abandoned mine at Stripa. Five appendices have been included giving 1) a list of the KBS Technical Reports issued during 1979 2) a list of authors 3) a key-word register 4) English summaries of the KBS Technical Reports and 5) SAC Technical Reports (Swedish-American cooperative investi- gations in the Stripa mine). (author)

  13. Flinders University of South Australia, Institute for Atomic Studies annual progress report, 1976

    International Nuclear Information System (INIS)

    The Institute of Atomic Studies was established in 1976 to act as a focus for the interaction of scientists and graduate students and for circulation of research reports in a wide variety of disciplines involving the study of the structure and interaction of quantum systems. In this, the first annual progress report, research being conducted in the following areas is reviewed: experimental and theoretical atomic reaction physics, low and intermediate energy nuclear theory, quantum field theory, statistical physics, molecular physics, quantum processes at solid surfaces and quantum chemistry. (J.R.)

  14. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  15. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  16. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor

  17. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor (BRPR).

  18. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  19. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  20. Nuclear measurements and reference materials annual progress report, january - december 1988

    International Nuclear Information System (INIS)

    The 1988 progress report of the Central Bureau for Nuclear Measurements (CBNM) is presented. The major changes in the role and orientation of the Joint Research Center, of which CBNM is an institute, are included. The main tasks of CBNM, which involve the program on Nuclear Measurements and Reference Materials, are given. Technical activities concerning the GELINA electron beam and Van de Graaff accelerators are reported. The study of transition radiation at linear electron accelerators, and the development of isotope dilution mass spectrometry, for trace analysis and isotope abundance measurements in iron and gallium, are summarized. The scientific and technical support to the commission, work for third parties, and contribution to conferences are presented

  1. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  2. The Community's research and development programme on decommissioning of nuclear installations. Second annual progress report (year 1986)

    International Nuclear Information System (INIS)

    This is the second annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1986. This second progress report describes the objectives, scope and work programme of the 58 research contracts concluded, as well as the progress of work achieved and the results obtained in 1986

  3. The UK fuel poverty strategy: 5th annual progress report 2007

    International Nuclear Information System (INIS)

    This fifth annual progress report details government progress in 2007 in tackling fuel poverty and movement towards targets. The United Kingdom were the first country in the world to recognise the issue of fuel poverty and to put in place measures to tackle the issue, including spending 20 billion pounds sterling on benefits and programmes since the year 2000. The report covers progress to date, schemes and initiatives to tackle fuel poverty, the energy market and looks ahead to the future. Progress and development of the schemes across the devolved nations are also considered. This report is the first to publish the Government's proposals for the Carbon Emissions Reduction Target (CERT) priority group, which were laid before Parliament on 5th December 2007. This report is the first to present the fuel poverty figures for 2005, and shows the effects of rising energy prices. The Government continues to take action to ensure that the energy market is working properly, and to encourage reform in the EU on energy market liberalisation - this should reduce pressure on prices. Those in fuel poverty have much to gain by switching supplier and this report outlines the action taken by Ofgem and Energywatch to encourage this

  4. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-04-01

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  5. CGE simulation analysis on the labor transfer, agricultural technical progress, and economic development in Chongqing.

    Science.gov (United States)

    Wang, Heng; Ran, Maosheng

    2014-01-01

    The basic structure of a CGE model dividing Mainland China into two parts, including Chongqing and rest regions, is described. Based on this CGE model, both the unilateral impact and collaborative impact of two policies, agricultural technical progress and supporting policies for improving rural labor transfer on the economic development in Chongqing, are simulated and analyzed. The results demonstrate that compared with the sum of each unilateral policy effect, the collaboration of two policies has more effective impact on facilitating the labor transfer, promoting regional economic growth, and improving income and welfare of urban and rural residents. PMID:24892037

  6. National Council on Radiation Protection and Measurements semiannual technical progress report, March 1989--August 1989

    International Nuclear Information System (INIS)

    This semiannual technical progress report is for the period 1 March 1989 through 31 August 1989. This National Council on Radiation Protection and Measurements (NCRP) program is designed to provide recommendations for radiation protection based on scientific principles. During this period several reports were published covering the topics of occupational radiation exposure, medical exposure, radon control, dosimetry, and radiation protection standards. Accomplishments of various committees are also reported; including the committees on dental x-ray protection, radiation safety in uranium mining and milling, ALARA, instrumentation, records maintenance, occupational exposures of medical personnel, emergency planning, and others. (SM)

  7. Prediction of the Long Term Stability of Polyester-Based Recording Media. First Annual Report, June 1982; Second Annual Report, August 1983; Progress Report, December 1984.

    Science.gov (United States)

    Brown, Daniel W.; And Others

    This document comprises three progress reports for a 5-year environmental aging study aimed at establishing the lifetimes of magnetic tapes and the poly(ethylene terephthalate) (PET) base of photographic and electronic film under archival storage conditions. The first annual report (1982) introduces the rationale for the project, provides…

  8. SKB annual report 1993. Including summaries of technical reports issued during 1993

    International Nuclear Information System (INIS)

    This is the annual report on the activities of the Swedish Nuclear and Waste Management Co., SKB. It contains in part I an overview of SKB activities in different fields. Part II gives a description of the research and development work on nuclear waste disposal performed during 1993. Lectures and publications during 1993 as well as reports issued in the SKB technical series are listed in part III. Part IV contains the summaries of all technical reports issued during 1993. SKB is the owner of CLAB, the Central Facility for Interim Storage of Spent Nuclear Fuel, located at Oskarshamn. CLAB was taken into operation in July 1985 and to the end of 1993 in total 1 885 tonnes of spent fuel (measured as uranium) have been received. Transportation from the nuclear sites to CLAB is made by a special ship, M/S Sigyn. At Forsmark the final repository for Radioactive Waste - SFR - was taken into operation in April 1988. The repository is situated in crystalline rock under the Baltic Sea. At the end of 1993 a total of 13 000 m3 of waste have been deposited in SFR. SKB is in charge of a comprehensive research and development programme on geological disposal of nuclear waste. Some of the main areas for SKB research are: Groundwater movements; Bedrock stability; Groundwater chemistry and nuclide migration; Methods and instruments for in situ characterization of crystalline bedrock; Characterization and leaching of spent nuclear fuel; Properties of bentonite for buffer, backfilling and sealing; Radionuclide transport in biosphere and dose evaluations; Development of performance and safety assessment methodology and assessment models; Construction of an underground research laboratory

  9. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1993-05-01

    This technical report presents the age-adjusted total, and race and sex specific geographic patterns of cancer mortality for South Carolina (SC) counties utilizing the 1953--1987 average annual age-adjusted mortality rates (AAMRs). The mortality information was obtained from the State Cancer Control Map and Data Program produced by the National Cancer Institute , Centers for Disease Control and the American Cancer Society. The AAMRs for selected primary sites are classified as significantly different or not significantly different from the corresponding United States and SC mortality rates. Categories for classification of the rates are determined using 95% confidence intervals. Geographic patterns of significantly high county AAMRs are identified and discussed. Individual county rates are not emphasized. The terminology, mortality rates used throughout this report pertains to the 1953--1987 AAMRS.

  10. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  11. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  12. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  14. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.

  15. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    International Nuclear Information System (INIS)

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  16. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  17. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection

  18. Development and application of the electrochemical etching technique. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This annual progress report documents further advances in the development and application of electrochemical etching of polycarbonate foils (ECEPF) for fast, intermediate, and thermal neutron dosimetry as well as alpha particle dosimetry. The fast (> 1.1 MeV) and thermal neutron dosimetry techniques were applied to a thorough investigation of the neutron contamination inherent in and about the primary x-ray beam of several medical therapy electron accelerators. Because of the small size of ECEPF dosimeters in comparison to other neutron meters, they have an unusually low perturbation of the radiation field under measurement. Due to this small size and the increased sensitivity of the ECEPF dosimeter over current techniques of measuring neutrons in a high photon field, the fast neutron contamination in the primary x-ray beam of all the investigated accelerators was measured with precision and found to be greater than that suggested by the other, more common, neutron dosimetry methods.

  19. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  20. CTR plasma engineering studies. Annual progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Work under this project is focused on plasma engineering developments in support of fusion reactor studies. The work described in this annual progress report covers a variety of topics ranging from plasma transport modelling for compact tori to radiation heating of the first wall in a fusion device. Sections 2 and 3 decribe computer codes developed for use with field-reversed configurations such as spheromaks and field-reversed mirrors. Section 4 presents an evaluation of the feasibility of heating a RFP-type reactor to ignition with ohmic current input alone. Sections 5 and 6 describe new work that has been initiated on optimal control theory for fusion reactors. Sections 7 to 9 discuss recent results on alpha-particle transport, instabilities, and diagnostics. In the final section, methods for analysis of the poloidal variation in the thermal wall loading of a tokamak reactor are discussed and some typical results are presented

  1. Development and application of the electrochemical etching technique. Annual progress report

    International Nuclear Information System (INIS)

    This annual progress report documents further advances in the development and application of electrochemical etching of polycarbonate foils (ECEPF) for fast, intermediate, and thermal neutron dosimetry as well as alpha particle dosimetry. The fast (> 1.1 MeV) and thermal neutron dosimetry techniques were applied to a thorough investigation of the neutron contamination inherent in and about the primary x-ray beam of several medical therapy electron accelerators. Because of the small size of ECEPF dosimeters in comparison to other neutron meters, they have an unusually low perturbation of the radiation field under measurement. Due to this small size and the increased sensitivity of the ECEPF dosimeter over current techniques of measuring neutrons in a high photon field, the fast neutron contamination in the primary x-ray beam of all the investigated accelerators was measured with precision and found to be greater than that suggested by the other, more common, neutron dosimetry methods

  2. Magnetic Fusion Energy Program. Volume I. Introduction, technical summaries, list of publications, etc., Appendices A-K. Annual report

    International Nuclear Information System (INIS)

    An abstract was prepared for the progress summary on transport theory for open and closed magnetic configurations. Seven abstracts were prepared for included appendices of more detailed work on individual devices. Also included is a list of publications, technical presentations, and DOE program contributions

  3. Annual Program Progress Report under DOE/PHRI Cooperative Agreement: (July 1, 2001-June 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Palafox, Neal A., MD, MPH

    2002-07-31

    OAK B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Annual Program Progress Report. The DOE Marshall Islands Medical Program continued, in this it's 48th year, to provide medical surveillance for the exposed population from Rongelap and Utrik and the additional DOE patients. The program was inaugurated in 1954 by the Atomic Energy Commission following the exposure of Marshallese to fallout from a nuclear test (Castle Bravo) at Bikini Atoll. This year marks the fourth year in which the program has been carried out by PHRI under a cooperative agreement with DOE. The DOERHRI Special Medical Care Program, awarded the cooperative agreement on August 28, 1998, commenced its health care program on January 15, 1999, on Kwajalein and January 22, 1999, on Majuro. This report details the program for the July 1, 2001, through the June 30, 2002, period. The program provides year-round, on-site medical care to the DOE patient population residing in the Republic of the Marshall Islands (RMI) and annual examinations to those patients living in Hawaii and on the Continental U.S.

  4. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  5. Environmental Sciences Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report

  7. Environmental Sciences Division annual progress report for period ending September 30, 1994

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report

  8. Environmental Sciences Division annual progress report for period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  9. Forty-Fifth Annual Meeting of the Technical Working Group on Fast Reactors (TWG-FR). Working Material

    International Nuclear Information System (INIS)

    The objectives of the meeting were to: • Exchange information on the national programmes on Fast Reactors (FR) and Accelerator Driven Systems (ADS); • Review the progress since the 44th TWG-FR Annual Meeting, including the status of the actions; • Consider topical technical meeting arrangements for 2012-2013, as well as review FR-related activities included in the IAEA Programme & Budget (P&B) biennium 2012-2013; • Review the IAEA’s concluded, on-going and planned coordinated research projects in the technical fields relevant to the TWG-FR (FRs and ADS), as well as coordination of the TWG-FR’s activities with other organizations and international initiatives (GIF, INPRO, NEA, ESNII, etc.). The 45th Meeting of the TWG-FR reached the following conclusions/recommendations: • The participants expressed satisfaction and appreciation for the large amount of new information on on-going activities carried out by the Member States in the field of FR and ADS exchanged during the meeting; • Also the organizations which have participated to the TWG-FR meeting for the first time expressed their appreciation for the lively discussion and the results and thanked the IAEA for inviting them at the meeting; • The meeting was very useful in particular for collecting inputs and advice in view of the preparation of the IAEA Programme & Budget 2014-2015 (and then 2016-2017) in the area of FR and ADS technology development; • The TWG-FR remains an unique international forum for information exchange in the field of fast neutron systems and for promoting RT&D activities in this area; • Due to the increasing interest in FR and in view of the forthcoming realizations, it would be advisable to increase the involvement of industries, regulators and other R&D organizations; • The annual TWG-FR meeting should focused on exchange of information on national and international programmes, avoiding duplications or overlapping’s with other IAEA initiatives in the field;

  10. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  11. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  12. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  13. Technical Advisory Committee on the nuclear fuel waste management program : thirteenth annual report

    International Nuclear Information System (INIS)

    -Closure Assessment primary reference document with much effort devoted to ensuring its quality and consistency through the holding of workshops complemented by extensive technical and editorial reviews. TAC continues to emphasize the importance of software quality assurance, supports the external SYVAC testing activities presently in progress, and carries on its own independent effort of code inspection and testing. International cooperative programs addressing the geosphere, biosphere, technical siting, and performance assessment aspects of waste disposal systems have been very active. An issue of increasing importance recognized by these programs is that of model validation. TAC considers the monitoring of such projects as a useful activity in support of our appraisal of the components, quality and progress of the Canadian program. For any implementation of the generic disposal concept, following environmental assessment, a continuing effective research program with the necessary experienced personnel would be required. (author)

  14. Environmental Sciences Division annual progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO2 and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program

  15. Environmental Sciences Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  16. Interfacial radiolysis effects in tank waste speciation. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The purpose of this program is to deliver pertinent, fundamental information that can be used to make technically defensible decisions on safety issues and processing strategies associated with storage and clean up of DOE mixed chemical and radioactive wastes. The radioactive and chemical wastes present in DOE underground storage tanks contain complex mixtures of sludges, salts, and supernatant liquids. These mixtures, which contain a wide variety of oxide materials, aqueous solvents, and organic components, are constantly bombarded with gamma quanta, beta and alpha particles produced via the decay of radioactive isotopes. Currently, there is a vital need to understand radiolysis of organic and inorganic species present in mixed waste tanks because these processes: (a) produce mixtures of toxic, flammable, and potentially explosive gases (i.e., H2, N2O and volatile organics) (b) degrade organics, possibly to gas-generating organic fragments, even as the degradation reduces the hazards associated with nitrate-organic mixtures, (c) alter the surface chemistry of insoluble colloids in tank sludge, influencing sedimentation and the gas/solid interactions that may lead to gas entrapment phenomena. This report summarizes the technical achievements of a 3-year project that is now in its 2nd year. Progress in three areas is reported: (1) radiation effects at NaNO 3 crystal interfaces, (2) reactions of organic complexants with NO2 in water, and (3) radiation effects in oxide particles.'

  17. Research and Test Reactor Conversion to Low Enriched Uranium Fuel: Technical and Programmatic Progress

    International Nuclear Information System (INIS)

    The U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of High Enriched Uranium (HEU) fuel in research reactors by converting them to low enriched uranium (LEU) fuel. In 2004, the reactor conversion program became the driving pilar of the Global Threat Reduction Initiative (GTRI), a program established by the U.S. DOE's National Nuclear Security Administration. The overall GTRI objectives are the conversion, removal or protection of vunerable civilian radiological and nuclear material. As part of the GTRI, the Conversion Program has accelerated the schedules and plans for conversion of additional research reactors operating with HEU. This paper provides an update on the progress made since 2007 and describes current technical challenges that the program faces. (author)

  18. Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 10. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1978-05-01

    Results of analysis and design efforts by McDonnell Douglas Astronautics Company (MDAC), Rocketdyne, Stearns-Roger, Inc., Sheldahl, Inc., and the University of Houston between 1 July 1975 and 30 June 1977 are summarized. This is the Final Technical Progress Report published on the Phase 1 Central Receiver Solar Thermal Power System contract. Historical summaries and final selection of 10-MWe pilot plant and 100-MWe commercial systems are presented, with emphasis on the collector field characteristics, overall system performance, selection of steam/feedwater operating conditions, and rationale for system and subsystem selection. The commercial and pilot plant designs, as well as the subsystem research experiment activities for the collector, receiver, and thermal storage subsystems are presented, including a historical summary, design summary, and a description of the overall SRE test program and major test results for each of the subsystems.

  19. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  20. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  1. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  2. Twenty-ninth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor, July 1, 1983-June 30, 1984

    International Nuclear Information System (INIS)

    The twenty-ninth annual progress report of the operation of the Pennsylvania State University Breazeale Reactor is submitted in accordance with the requirements of Contract DE-AC02-76ER03409 with the United States Department of Energy. This report also provides the University administration with a summary of the operation of the facility for the past year

  3. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  4. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China

    International Nuclear Information System (INIS)

    Based on environmental Kuznets curve theory, a panel data model which takes environmental regulation and technical progress as its moderating factors was developed to analyse the institutional and technical factors that affect the path of low-carbon economic development. The results indicated that there was a CO2 emission Kuznets curve seen in China. Environmental regulation had a significant moderating effect on the curve, and the inflection of CO2 emissions could come substantially earlier under stricter environmental regulation. Meanwhile, the impact of technical progress on the low-carbon economic development path had a longer hysteresis effect but restrained CO2 emission during its increasing stage and accelerated its downward trend during the decreasing stage which was conducive to emission reduction. Strict environmental regulation could force the high-carbon emitting industries to transfer from the eastern regions to the central or the western regions of China, which would make the CO2 Kuznets curve higher in its increasing stage and lower in its decreasing stage than that under looser regulation. Furthermore, energy efficiency, energy structure, and industrial structure exerted a significant direct impact on CO2 emissions; we should consider the above factors as essential in the quest for low-carbon economic development. - Highlights: • Estimate moderating effect of environmental regulation and technical progress on EKC. • There was a CO2 emission Kuznets curve in effect in China. • Environmental regulation presents significant moderating effect on EKC. • Technical progress moderates the relationship between income and CO2 emissions

  5. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  6. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  7. MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  8. Colorado School of Mines Low Energy Nuclear Physics Project technical progress report

    International Nuclear Information System (INIS)

    This report summarizes the activity and accomplishments of the Colorado School of Mines Low Energy Nuclear Physics project during the calendar year 1989. Many of the projects which were anticipated in the original grant proposal have been completed. Among these completed projects we include of study of the radiative capture of low energy protons on 6Li, 7Li, 9Be, and 11B. Preliminary measurements of the branching ratios and yields of these reactions were reported in last year's Technical Progress Report. These measurements are now complete and have been used to extract the respective astrophysical S-factors and the corresponding thermonuclear reactivities. While not complete, progress has been made in some of the other originally proposed studies. Among these include a fairly extensive study of the interaction of low energy deuterons with 6Li and 7Li. In the course of this study we have made a solid observation of the Oppenheimer-Phillips effect in the D-6Li system. Progress has been made in our study of the radiative capture of alpha particles by deuterons, 6Li, and 7Li but considerable work remains in these studies. In our earlier reports we noted the observation of d-d reactions during the bombardment of deuterated targets with energetic beams of protons, alpha particles, and other light-to-medium ions. We believe we now understand this phenomenon and feel it has some fairly significant consequences both for our studies and for those of other researchers. Our susceptibility to mob hysteria led us to invest a significant effort in cold nuclear fusion, both employing a fairly unique accelerator based approach at CSM and as one of the gamma ray diagnosticians on the Princeton Plasma Physics Laboratory's Cold Fusion Task Force

  9. Energy Materials Coordinating Committee (EMaCC). Annual Technical Report, Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-07-31

    The Energy Materials Coordinating Committee Annual Report (attached, DOE/SC-0040) provides an annual summary of non-classified materials-related research programs supported by various elements within the Department of Energy. The EMaCC Annual Report is a useful working tool for project managers who want to know what is happening in other divisions, and it provides a guide for persons in industry and academia to the materials program within the Department. The major task of EMaCC this year was to make the Annual Report a more user-friendly document by removing redundant program information and shortening the project summaries.

  10. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  11. Generation and focusing of pulsed intense ion beams. Technical progress report, 20 August 1981-30 September 1982

    International Nuclear Information System (INIS)

    The progress on this contract is described in two parts. The first deals with the technical operation of the LION accelerator which is the exact equivalent to one line of PBFA-I. The second part is concerned with the experimental results on the ion diode mounted at the front end of the LION accelerator

  12. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  13. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  14. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  15. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  16. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  17. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  19. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  20. [Chemical risk in operating rooms and technical progress: the obligations and responsibilities of law].

    Science.gov (United States)

    Oddo, Antonio

    2013-01-01

    We are going to consider the specific applications of the new legal system and of the most recent body of laws to those work environments of particular risk, such as healthcare facilities and in particular operating rooms. In such environments, volatile chemicals classified as "dangerous" are used with consequent exposure to "chemical risk", both of those persons professionally involved, depending on the type of activity, and of the patients to whom such activities are addressed in the same environment. Once the chemical risk is framed in the existing regulatory system, it must be specifically evaluated the application of the same principle to the particular chemical risk arising from the use of anesthetic agents in the operating room, for example sevoflurane and desflurane, being careful to test wether and how much this risk can be eliminated or reduced to minimum in relation to the new achievements of the technical progress. So, as soon as the quality of "dangerous chemical agent" of the "volatile chemicals" and of the "volatile liquid anesthetic" (sevoflurane and desflurane) as well--which are characterized by a lower degree of toxicity and for this reason are mostly used in current chemical practice, preferable to some anesthetic gases such as nitrous oxide--is legally verified, it is necessary to relate the scientific and technical data which result from the current "state of art" also to the other binding regulations that are imposed for the "prevention and protection from chemical agents", according to the relative Title IX of the TUSL (Unique text for Safety and Health at Work). PMID:24640081

  1. Technical progress report during Phase 1 of the continuous fiber ceramic composites program

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    1994-03-15

    United States industry has a critical need for materials that are lightweight, strong, tough, corrosion resistant and capable of performing at high temperatures; such materials will enable substantial increase in energy efficiency and reduction in emissions of pollutants. Continuous fiber ceramic composites (CFCCs) are an emerging class of materials which have the potential for the desired combination of properties to meet the industrial needs. A $10 billion annual market has been estimated for CFCC products by the year 2010, which equates to over 100,000 industrial sector jobs. The CFCC program began in the spring of 1992 as a three-phase 10-year effort to assess potential applications of CFCC materials, develop the necessary supporting technologies to design, analyze and test CFCC materials, conduct materials and process development guided by the applications assessment input, fabricate test samples and representative components to evaluate CFCC material capabilities under application conditions, and analyze scaleability and manufacturability plus demonstrate pilot-scale production engineering. DOE awarded 10 Phase I cooperative agreements to industry-lead teams plus identified generic supporting technology projects. This document highlights the broad progress and accomplishments on these contracts and support technology projects during Phase I.

  2. Facilitation of the Estuary/Ocean Subgroup and the Expert Regional Technical Group, Fiscal Year 2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.

    2014-09-01

    This document is the annual report for fiscal year 2014 for the project called Facilitation of the Estuary/Ocean Subgroup (EOS) and the Expert Regional Technical Group (ERTG). Pacific Northwest National Laboratory (PNNL) conducted the project for the Bonneville Power Administration. The EOS and ERTG are part of the research, monitoring, and evaluation and habitat restoration efforts, respectively, developed by the Action Agencies (BPA, U.S. Army Corps of Engineers) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System and implemented under the Columbia Estuary Ecosystem Restoration Program.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  9. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  10. Theory of RBE: Annual technical progress report, 1 January 1987 to 31 December 1987

    International Nuclear Information System (INIS)

    This report describes research on several topics of importance to the theory of relative biological effectiveness. Topics covered include: (1) improvement in our knowledge of the radial distribution of dose about the path of an energetic heavy ion; (2) application of the new radial dose algorithm to different detectors, notably dry enzymes and viruses, the Fricke dosimeter, and alanine as a test of track theory; (3) preparation of new computer track simulations for thindown in nuclear emulsions, the spatial distribution of Fe3+ ions about heavy ion paths in the Fricke dosimeter, and the spatial distribution of inactivated virus molecules about heavy ion paths; (4) evaluation of radiosensitivity parameters for chromosome aberrations; (5) evaluation of radiosensitivity parameters for a variety of 1-hit detectors from first principles with the understanding that a different mechanistic model will be needed for each detector

  11. MT DOE/EPSCoR planning grant. Annual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy`s Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana`s 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. ``Particularly commendable`` were our programs to involve Native American educators and the ``leveraging effect`` of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  12. MT DOE/EPSCoR planning grant. [Annual Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  13. Theory of RBE. Annual technical progress report, 1 January--31 December, 1994

    International Nuclear Information System (INIS)

    In researching the theory of RBE, attention is focused on several topics of importance. They include: improving knowledge of the radial distribution of dose about the path of an energetic heavy ion in different media; calculations which have demonstrated that three Escherichia coli mutants behave as 1-hit detectors; lethal mutations in a nematode induced by gamma radiation and heavy ion beams; prevalence in cancer induction in the Harderian gland by HZE particles; subtleties in the analysis of radiobiological data; low-dose irradiation effects; high LET effects; cellular radiosensitivity parameters; and radial dose calculations for mammalian cells

  14. Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

  15. NMR investigation of porous structures, ceramics and sandstones: Annual technical progress report

    International Nuclear Information System (INIS)

    In the past year we have continued our investigations of the fundamental aspects of NMR relaxation analysis of porous bodies and have opened two new directions. The first of these results from a strong collaborative arrangement established with BP/America. Here it has been possible to gain access to carefully controlled SiC powders and SiC green bodies for NMR relaxation characterization of their pore spaces. This work includes the first imaging results on a SiC rotor green body. Secondly, we have started a small processing program to prepare magnetic field aligned high T/sub c/ superconducting ceramics. Such c-axis aligned materials offer the potential for improved physical characterization since the principal anisotropy in physical measurement on superconducting compacts is associated with the c-axis. More important is the need to prepare the bulk superconducting materials with larger critical current densities. This might also be achievable using magnetic field induced alignment with ''binderless'' compaction methods that we are developing. 3 figs

  16. Theoretical and experimental studies of elementary physics. Annual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1992-04-30

    The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions (Fermilab E706); Production of hybrid mesons in the nuclear Coulomb field; The D-Zero experiment at the Tevatron collider; Deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; Nonlinear QED at critical field strengths at SLAC; The Experiments at KEK (AMY, 17keV neutrino); The CDF experiment at the Tevatron collider; and SSC-related detector R&D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors.

  17. Theory of RBE. Annual technical progress report, 1 January--31 December, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Katz, R.

    1994-06-15

    In researching the theory of RBE, attention is focused on several topics of importance. They include: improving knowledge of the radial distribution of dose about the path of an energetic heavy ion in different media; calculations which have demonstrated that three Escherichia coli mutants behave as 1-hit detectors; lethal mutations in a nematode induced by gamma radiation and heavy ion beams; prevalence in cancer induction in the Harderian gland by HZE particles; subtleties in the analysis of radiobiological data; low-dose irradiation effects; high LET effects; cellular radiosensitivity parameters; and radial dose calculations for mammalian cells.

  18. Theory of nuclear structure and reactions. Annual technical progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    In the period covered by this report (April 1, 1985 to March 31, 1986), work focused on five main areas: (A) relativistic effects in medium-energy nuclear reactions; (B) the role of quarks and gluons in nuclear physics; (C) quantum hadrodynamics and relativistic nuclear structure theory; (D) structure and reaction effects in intermediate-energy nuclear reactions; and (E) weak and electromagnetic interactions in nuclei. Results and publications in these areas are summarized

  19. Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  20. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  1. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  2. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  3. Heavy fermion and actinide materials. Annual technical progress report, February 1, 1992--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    During this period, 1/N expansions have been systematically applied to the calculation of the properties of highly correlated electron systems. These studies include examinations of (a) the class of materials known as heavy fermion semi-conductors, (b) the high energy spectra of heavy fermion systems, and (c) the doped oxide superconductors.

  4. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.

  5. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS. FOURTH ANNUAL TECHNICAL PROGRESS REPORT

    International Nuclear Information System (INIS)

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight hydrocarbons. Van der Laan and Beenackers hydrocarbon selectivity model provides a very good fit of the experimental data for hydrocarbons up to about C20. However, the experimental data shows higher paraffin formation rates in C12-C25 region which is likely due to hydrocracking or other secondary reactions. The model accurately captures the observed experimental trends of decreasing olefin to paraffin ratio and increasing α (chain growth length) with increase in chain length

  6. Theory of nuclear structure and reactions. Annual technical progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    In the period covered by this report, work focused on five main areas: (1) relativistic effects in intermediate-energy nuclear reactions; (2) the role of quarks and gluons in nuclear physics; (3) quantum hadrodynamics and relativistic nuclear mean-field theory; (4) structure and reaction effects in intermediate-energy nuclear reactions; and (5) weak and electromagnetic interactions in nuclei. Results and publications in these areas are summarized. Publications are listed

  7. Research in high energy physics. Annual technical progress report, December 1, 1993--November 30, 1998

    International Nuclear Information System (INIS)

    The high energy physics research program at the University of Hawaii is directed toward the study of the properties of the elementary particles and the application of the results of these studies to the understanding of the physical world. Experiments using high energy accelerators are aimed at searching for new particles, testing current theories, and measuring properties of the known particles. Experiments using cosmic rays address particle physics and astrophysical issues. Theoretical physics research evaluates experimental results in the context of existing theories and projects the experimental consequences of proposed new theories

  8. The magnesium chelation step in chlorophyll biosynthesis. Annual technical progress report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1994-02-01

    Mg-chelatase catalyses the first step unique to chlorophyll synthesis, namely the insertion of magnesium into protoporphyrin IX. When pea (Pisum sativum L., cv. Spring) chloroplasts are lysed in a buffer lacking magnesium and the thylakoids removed by centrifugation, the remaining mixture of light membranes and soluble proteins (LM/S) has high Mg-chelatase activity. Several lines of evidence are presented to show that the magnesium insertion catalysed by this preparation is a two-step reaction consisting of activation followed by magnesium chelation. An activated state of Mg-chelatase is achieved by preincubating LM/S with ATP. The activated state is observed as the elimination of the approximately 6 min lag in the rate of magnesium chelation upon addition of the prophyrin substrate. The activity of LM/S assayed at low protein concentrations can be greatly enhanced by preincubating at high protein concentrations (12 mg/ml is optimal). This activation effect requires the presence of both LM and S fractions, as well as ATP. Both steps require ATP, but at different concentrations; the first step is optimal at > 0.5 mM (EC{sub 50} = 0.3 mM) and the second step is optimal at 0.3 mM (EC{sub 50} < 0.2 mM). ATP in the first step could be replaced by ATP{gamma}S; this analog could not sustain activity in the second step. This activated state was stable for at least 30 min at room temperature, but chilling of preincubated LM/S on ice for 30 min caused an almost complete loss of the activated state.

  9. Technical Progress of Rubber Additives%橡胶助剂技术进展

    Institute of Scientific and Technical Information of China (English)

    齐琳; 梁诚

    2013-01-01

    In this review, the development and application of rubber additives are presented, including antioxidant 4030, antioxidant 4050, accelerator TBSI and TBZTD, anti-reversion agent Perkalink900, peptizer, homogenizing agent and resorcinol resin. The technical progress of production processes of several rubber additives is reviewed, for example, 4-aminodiphenylamine from nitrobenzene, antioxidant DTPD from mixed amine, and thiazole accelerators through clean process. The growth of China rubber additive industry relies strongly on continuous technological innovation.%介绍防老剂4030和4050等防护体系助剂,促进剂TBSI和TBZTD、抗硫化返原剂Perkalink900等硫化体系助剂,以及塑解剂、均匀剂、间苯二酚树脂等加工助剂的开发和应用。综述对氨基二苯胺硝基苯法工艺、混合胺合成防老剂DTPD工艺、噻唑类促进剂清洁工艺等进展。我国橡胶助剂工业应不断科技创新,才能够做大做强。

  10. Establishment of an Institute for Fusion Studies. Technical progress report, November 1, 1991--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R.D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  11. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  12. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  13. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hinga, K.R. (ed.)

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

  14. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 1 of 2

    International Nuclear Information System (INIS)

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared of each Appendix for inclusion in the Energy Data Base

  15. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    International Nuclear Information System (INIS)

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  16. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 2 of 2

    International Nuclear Information System (INIS)

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume II, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  17. Annual activities report of Brazilian Aerospace Technical Center -CTA/IEAv - 1989

    International Nuclear Information System (INIS)

    This document reports the research activities on nuclear physics and reactors physics and engineering in the Brazilian Aerospace Technical Center/Advanced Studies Institute, Sao Paulo State, in the year of 1989

  18. Canada's climate change voluntary challenge and registry program : 6. annual progress report

    International Nuclear Information System (INIS)

    A Canadian integrated energy company, Suncor Energy Inc. comprises a corporate group, three operating business units, and two emerging businesses. This annual Progress Report for Canada's Climate Change Voluntary Challenge and Registry (VCR) Program represents the sixth for this company. Suncor is committed to sustainable development. Some initiatives undertaken in 1999 by Suncor included: Oil Sands Project Millennium, which will more than double the actual production of crude oil and fuel products by 2002. Suncor is divesting of conventional oil properties in order to concentrate on exploration and production of natural gas. Alternative and renewable energy will see an investment of 100 million over the next five years. The money will be allocated to research and development, the production of fuels from biomass, and conversion of municipal solid waste to energy through the recovery of methane from landfills. Since 1990, the emissions of carbon dioxide have been reduced to 14 per cent below 1990 levels, and reductions of 622, 000 tonnes of greenhouse gases. A comprehensive tracking, reporting, and management system for greenhouse gases was implemented. Ongoing improvements in quality and comprehensiveness have validated the methodology used to monitor emissions inventories and sources. Initiatives in internal and external awareness of greenhouse gases education were implemented, such as speaking engagements at climate change activities, the retrofit of schools with advanced energy-efficient technology, education programs, employee suggestion programs, etc. Collaboration with external partners on research and development projects represents a major building block in this approach. Some of the research and development projects involve the development of advanced carbon dioxide capture and geologic sequestration technologies, work on the production of alternative and renewable energy from Canadian municipal landfills, and the study of a new process to extract heavy

  19. Fourth annual progress report for Canada's Climate Change Voluntary Challenge and Registry program

    International Nuclear Information System (INIS)

    Examples of how greenhouse gas issues are being integrated into management processes within Suncor Energy Inc. are described in this fourth annual progress report to the Climate Change Voluntary Challenge and Registry Program. The report covers Suncor's three operating businesses - oil sands and conventional oil exploration and production in Western Canada, and refining and marketing operation in Ontario. Oil sands was the largest source of greenhouse emissions, accounting for 2/3 of the total. Carbon dioxide emissions accounted for 93 per cent of total emissions. This report addresses three areas of change: one of these is Project Millennium in the oil sands division, which is a major expansion project planned for efficiency improvements. As a result of the project, total greenhouse gas emissions will increase to 9.3 million tonnes by the year 2002, in terms of operating efficiency, emissions per unit of production will continue to decline from 0.54 tonnes ECO2 in 1990 to 0.44 tonnes ECO2 in 2002, a reduction of 18 per cent. Another change is that target reductions in the Kyoto Protocol will supersede informal Canadian commitments for the year 2000, if the protocol is ratified. Thirdly, Suncor's greenhouse gas emission forecast has been extended to the year 2002 to demonstrate the impact of Project Millennium and to clarify the changes during the transition period relative to previous forecasts. New initiatives to be undertaken during 1998-2002 include heat recovery in new upgrader units, recycling diluent used in bitumen extraction without cooling, recovery of gas presently going to the flare system, installation of a 200,000 barrel hot water surge tank, addition of a third turbogenerator, and various projects to generate more electrical power internally. tabs., figs

  20. Fifth annual progress report for Canada's climate change voluntary challenge and registry program

    International Nuclear Information System (INIS)

    Suncor Energy is a growing Canada-based integrated energy company comprising a corporate group and four operating businesses including: Oil Sands with a mine and upgrading facility at Fort McMurray, AB, Exploration and Production with conventional and heavy oil business in Western Canada, a Sunoco refining and marketing operation, and the Stuart Oil Shale Development Project in Queensland, Australia. While the emphasis is laid on technical and economic advances made by the company, the environmental tradeoffs, namely, greater greenhouse gas emissions and the need to reduce them, are noted. The most important positive item in the report is the incredible transformation occurring in Suncor's business operations. The company has begun a $2 billion expansion in its Oil Sands business that will more than double production of crude oil and fuel products by 2002. The expansion initiative provides a wonderful opportunity to demonstrate the huge leaps in performance that can be implemented at the time of capital stock turnover. The new expansion facilities are designed to be twice as energy efficient as the existing plant. Equally dramatic and hard won, are the multitude of incremental improvements achieved in existing facilities. Through energy management systems and operating practices and procedures, exploration and production is reversing the trend of rising greenhouse gas (GHG) emission intensity associated with mature conventional reservoirs, and Suncoco achieved its best ever operating performance in 1998. However, the volume of Suncor greenhouse gas emissions remains on an upward trend, which is a challenge for the future. As part of its mission to become a sustainable energy company, Suncor will continue to attempt to limit its net volume contribution of GHGs to the atmosphere to 1990 levels by pursuing domestic and international offsets and the development of alternative and renewable sources of energy. Progress towards sustainability for both Suncor and Canada

  1. Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08

    Energy Technology Data Exchange (ETDEWEB)

    DEFIGH PRICE, C.

    2000-09-25

    Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.

  2. Modeling the Magnetic and Thermal Structure of Active Regions: 1st Year 1st Semi-Annual Progress Report

    Science.gov (United States)

    Mikic, Zoran

    2003-01-01

    This report covers technical progress during the first six months of the first year of NASA SR&T contract "Modeling the Magnetic and Thermal Structure of Active Regions", NASW-03008, between NASA and Science Applications International Corporation, and covers the period January 14, 2003 to July 13, 2003. Under this contract SAIC has conducted research into theoretical modeling of the properties of active regions using the MHD model.

  3. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  4. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  5. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  6. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    International Nuclear Information System (INIS)

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs

  7. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Peloquin, R.A. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  8. University of Florida training reactor. Annual progress report, September 1, 1982-August 31, 1983

    International Nuclear Information System (INIS)

    Reported are: facility operation, modifications, maintenance and tests, changes to technical specifications and standard operating procedures, radioactive releases and environmental surveillance, and utilization

  9. GPHS-RTGs in support of the Cassini Mission. Semi annual technical report, 30 September 1996--30 March 1997

    International Nuclear Information System (INIS)

    The technical progress achieved during the period 27 January through 30 September 1996 through 30 March 1997 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described. This report is organized by program task structure: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and CAGO acquisition (capital funds)

  10. Outreach and Technical Assistance Network: Twelfth Year Annual Report, July 1, 2001-June 30, 2002.

    Science.gov (United States)

    Sacramento County Office of Education, CA.

    This report reviews in detail the accomplishments of the third year of the 1999-2002 contract of the Outreach and Technical Assistance Network (OTAN). It describes and quantifies the services--electronic collaboration, access to information services, and research, development, and assistance in using technology--provided by the entire three-year…

  11. Outreach and Technical Assistance Network Tenth Year Annual Report, July 1, 1999-June 30, 2000.

    Science.gov (United States)

    Sacramento County Office of Education, CA.

    This report reviews accomplishments of the first year of the 1999-2002 contract funding the Outreach and Technical Assistance Network (OTAN), an essential component in improvement of California's adult education program. Five chapters on Electronic Communications describe the OTAN web site and provide data on World Wide Web hits and hosts, web…

  12. Savannah River Plant, Works Technical Department monthly progress report for March 1956

    Energy Technology Data Exchange (ETDEWEB)

    None

    1956-04-18

    This document details activities of the Works Technical Department during the month of March 1956. It covers reactor technology, separations technology, engineering assistance and heavy water technology.

  13. Savannah River Plant, Works Technical Department monthly progress report for March 1956

    International Nuclear Information System (INIS)

    This document details activities of the Works Technical Department during the month of March 1956. It covers reactor technology, separations technology, engineering assistance and heavy water technology

  14. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  15. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis

  16. Annual report 1992 on research and development work by the ITP, Institute for Technical Physics

    International Nuclear Information System (INIS)

    The present annual report describes the activities undertaken by the ITP in the following areas: 1. Remote sensing by means of microwaves; 2. Nuclear fusion (studies for NET/ITER; superconducting magnets, poloidal field coil development; cryogenic systems; stellarator magnets, plasma heating technology; transmission components; component-related safety investigations); 3. Superconductivity (superconductivity physics, superconducting layers; massive superconductors; magnet developments; cryogenics for superconductivity). The appendix lists all publications or primary reports by the ITP in 1992. (orig./MM)

  17. Learning Progressions: Tools for Assessment and Instruction for All Learners. Technical Report #1307

    Science.gov (United States)

    Sáez, Leilani; Lai, Cheng-Fei; Tindal, Gerald

    2013-01-01

    Conceptually, learning progressions hold promise for improving assessment and instruction by precisely outlining what students know and don't know at particular stages of knowledge and skill development. Based upon a synthesis of the literature, a rationale for the use of learning progressions maps to clarify how learning progresses in…

  18. Rocky Mountain Arsenal National Wildlife Refuge : Fiscal year 1994 annual progress report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Rocky Mountain Arsenal National Wildlife Refuge outlines Refuge accomplishments during the 1994 fiscal year. The report begins with...

  19. FY2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  20. Annual report on operation, utilization and technical development of research reactors and Hot Laboratory

    International Nuclear Information System (INIS)

    The department is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4 and the Hot Laboratory. The JRR-3M received an operational license from the authority on October 16th, 1991 and initiate a steady operation since November. This report describes the activities of our department in fiscal year of 1990 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as well as related R and D works. In the Hot Laboratory, post-irradiation examinations of fuels and materials were conducted along with the development of related techniques. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  1. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  2. Energy Materials Coordinating Committee (EMaCC). Annual technical report, Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations.

  3. Annual meeting on nuclear technology '85. Technical session on quality assurance

    International Nuclear Information System (INIS)

    This Technical Session discussed quality assurance with regard to nuclear power plant construction, also comparing guidelines and requirements of the F.R.G. with those of other countries. One paper deals with quality assurance for mechanical components, another with quality assurance for electrical equipment and control systems. Operating and maintenance and inspection conditions are discussed under this aspect, and the last paper explains a cost-benefit analysis using as an example the power plant piping system. (DG)

  4. Annual report on operation, utilization and technical development of hot laboratories

    International Nuclear Information System (INIS)

    Relating to the reorganization carried out in 1991, the subjects of operation and study for the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF) and Research Hot Laboratory (RHL) which belong to the Department of Hot laboratories were revised. RFEF and RHL conducted post-irradiation examinations and WASTEF conducted waste safety tests along the new subjects, respectively. The contents of this report are operation, utilization and technical development at RFEF, WASTEF and RHL in fiscal year 1992. (author)

  5. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  6. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  7. Physics Division annual progress report for period ending December 31, 1975. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Separate abstracts were prepared for each of the data-containing sections of this report. Additional sections deal with publications, titles of papers presented at scientific and technical meetings, personnel, etc. (RWR)

  8. Energy Materials Coordinating Committee (EMaCC) annual technical report, fiscal year 1984 with fiscal year 1985 data

    Energy Technology Data Exchange (ETDEWEB)

    None

    1985-07-01

    The Department of Energy funded about 374 million dollars of materials science and technology activities in both fiscal years 1984 and 1985. These funds and the commensurate program management responsibilities resided in 21 DOE program offices, each of which has its own mission and responsibilities. The Energy Materials Coordinating Committee (EMaCC) provides a formal mechanism to insure coordinated planning and maximum programmatic effectiveness for the Department's 374 million dollar per year materials effort. The EMaCC reports to the Director of the Office of Energy Research who in turn has oversight responsibilities for proper coordination of the technical programs of the Department. In carrying out this responsibility, EMaCC hosts meetings, organizes working groups, and publishes an annual technical report. This report is mandated by the EMaCC Terms of Reference. Its purpose is to disseminate information on the DOE materials programs for more effective coordination. It describes the materials research programs of various offices and divisions within the Department for FY 1984, contains funding information for FYs 1984 and 1985, and summarizes EMaCC activities for FY 1985.

  9. Office for Analysis and Evaluation of Operational Data 1996 annual report. Volume 10, Number 3: Technical training

    International Nuclear Information System (INIS)

    This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1996. The report is published in three parts. NUREG-1272, Vol. 10, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports and reports to the NRC's Operations Center. NUREG-1272, Vol. 10, No. 2, covers nuclear materials and presents a review of the events and concerns during 1996 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from CY 1980 through 1996. NUREG-1272, Vol. 10, No. 3, covers technical training and presents the activities of the Technical Training Center in support of the NRC's mission in 1996

  10. Energy Materials Coordinating Committee (EMaCC) annual technical report, fiscal year 1984 with fiscal year 1985 data

    International Nuclear Information System (INIS)

    The Department of Energy funded about 374 million dollars of materials science and technology activities in both fiscal years 1984 and 1985. These funds and the commensurate program management responsibilities resided in 21 DOE program offices, each of which has its own mission and responsibilities. The Energy Materials Coordinating Committee (EMaCC) provides a formal mechanism to insure coordinated planning and maximum programmatic effectiveness for the Department's 374 million dollar per year materials effort. The EMaCC reports to the Director of the Office of Energy Research who in turn has oversight responsibilities for proper coordination of the technical programs of the Department. In carrying out this responsibility, EMaCC hosts meetings, organizes working groups, and publishes an annual technical report. This report is mandated by the EMaCC Terms of Reference. Its purpose is to disseminate information on the DOE materials programs for more effective coordination. It describes the materials research programs of various offices and divisions within the Department for FY 1984, contains funding information for FYs 1984 and 1985, and summarizes EMaCC activities for FY 1985

  11. Savannah River Plant Works Technical Department progress report, July 1960: Deleted Version

    Energy Technology Data Exchange (ETDEWEB)

    1960-08-17

    This progress report by the Atomic Energy Division of the Savannah River Plant covers: Reactor Technology; Separation Technology; Engineering Assistance; Health Physics; and General Laboratory work. (JT)

  12. Savannah River Plant Works Technical Department monthly progress report for May 1958: Deleted Version

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-17

    This progress report by the Atomic Energy Division of the Savannah River Plant covers: Reactor Technology; Separation Technology; Engineering Assistance; Health Physics; and General Laboratory Work. (JT)

  13. Facilitation of the Estuary/Ocean Subgroup and the Expert Regional Technical Group, Annual Report for 2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This document is the annual report for the period September 1, 2014 through August 31, 2015 for the project—Facilitation of the Estuary/Ocean Subgroup (EOS) and the Expert Regional Technical Group (ERTG). Pacific Northwest National Laboratory (PNNL) conducted the project for the Bonneville Power Administration (BPA). The EOS and ERTG are part of the research, monitoring, and evaluation (RME) and habitat restoration efforts, respectively, developed by the Action Agencies (BPA, U.S. Army Corps of Engineers [Corps or USACE], and U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS) and implemented under the Columbia Estuary Ecosystem Restoration Program (CEERP). BPA/Corps (2015) explain the CEERP and the role of RME and the ERTG. For the purposes of this report, the lower Columbia River and estuary (LCRE) includes the floodplain from Bonneville Dam down through the lower river and estuary into the river’s plume in the ocean. The main purpose of this project is to facilitate EOS and ERTG meetings and work products. Other purposes are to provide technical support for CEERP adaptive management, CEERP restoration design challenges, and tributary RME. From 2002 through 2008, the EOS worked to design the federal RME program for the estuary/ocean (Johnson et al. 2008). From 2009 to the present day, EOS activities have involved RME implementation; however, EOS activities were minimal during the current reporting period. PNNL provided technical support to CEERP’s adaptive management process by convening 1.2 meetings of the Action Agencies (AAs) and drafting material for the “CEERP 2015 Restoration and Monitoring Plan” (BPA/Corps 2015).

  14. Energy Materials Coordinating Committee (EMaCC) Fiscal Year 1999 annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-10-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1999 and describes the materials research programs of various offices and divisions within the Department.

  15. Solar space heating systems using annual heat storage. Progress report, July 1--December 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F. C.; Attwater, C. R.; Brunger, A. P.; Cook, R. J.D.; McClenahan, J. D.

    1978-02-01

    The development of practical design methods and the evaluation of observed performance data from instrumented annual storage systems is reported. The application of new analysis and survey work to engineering design is presented. The previously developed computed simulation is extended to derive new methods of determining cost optimal annual storage systems operating under specified conditions. The development of new methods of analysis of the behaviour of soil heat flow and solar collector models is reported. The preparation of reports and scientific papers on the task, and work on related academic projects is outlined.

  16. Regulatory and Technical Reports (Abstract Index Journal). Annual compilation for 1995, Volume 20, No. 4

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission's annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1994) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  17. Regulatory and Technical Reports (Abstract Index Journal). Annual compilation for 1995, Volume 20, No. 4

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, M.

    1995-04-01

    The Nuclear Regulatory Commission`s annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1994) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided.

  18. BX in situ oil shale project. Annual technical progress report, March 1, 1979-February 29, 1980 and quarterly technical progress report, December 1, 1979-February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, P.M.

    1980-03-20

    During the year, design, construction and installation of all project equipment was completed, and continuous steam injection began on September 18, 1979 and continued until February 29, 1980. In the five-month period of steam injection, 235,060 barrels of water as steam at an average wellhead pressure of 1199 psig and an average wellhead temperature of 456/sup 0/F were injected into the eight project injection wells. Operation of the project at design temperature and pressure (1000/sup 0/F and 1500 psig) was not possible due to continuing problems with surface equipment. Environmental monitoring at the project site continued during startup and operation.

  19. NREL Solar Radiation Resource Assessment Project: Status and outlook. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy`s Resource Assessment Program.

  20. Environmental Sciences Division annual progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)

  1. DEGRO 2014. 20. annual congress of the German Radiation Oncology Society. Progress through science. Abstracts

    International Nuclear Information System (INIS)

    The proceeding of the DEGRO 2014 - 20th annual congress of the German Radiation Oncology Society - include the abstracts of lectures concerning the following topics: Radiotherapy - irradiation planning/ irradiation techniques, oligo-metastases, biology, thorax, prostate, rectal carcinoma, head and neck carcinoma. The poster section covers abstracts on the issues mamma carcinoma, head and neck tumors; neuro-oncology.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1983

    International Nuclear Information System (INIS)

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section

  3. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  4. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  5. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2003

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-10-18

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed.

  6. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1993 and describes the materials research programs of various offices and divisions within the Department. The program descriptions consist of a funding summary for each Assistant Secretary office and the Office of Energy Research, and detailed project summaries with project goals and accomplishments. The FY 1993 budget summary table for DOE Materials Activities in each of the programs is presented.

  7. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    This report covers the activities of the Department of Research Reactor Operation in fiscal 1988. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 is now under reconstruction to enhance the performance for utilization. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  8. ORNL nuclear waste programs annual progress report for period ending September 30, 1982

    International Nuclear Information System (INIS)

    Research progress is reported in 20 activities under the headings: spent fuels, defense waste management, commercial waste management, remedial action, and conventional reactors. Separate entries were prepared for each activity

  9. Environmental Sciences Division. Annual progress report for period ending September 30, 1979

    International Nuclear Information System (INIS)

    Progress for the period ending September 30, 1979 by the Environmental Sciences Division is reported. Sections reporting include terrestrial ecoloy; earth sciences; environmental resources; aquatic ecology; synthetic fuels; nuclear program; environmental impacts program; ecosystem studies; and burial ground technology

  10. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973

    International Nuclear Information System (INIS)

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling

  11. ORNL nuclear waste programs annual progress report for period ending September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    Research progress is reported in 20 activities under the headings: spent fuels, defense waste management, commercial waste management, remedial action, and conventional reactors. Separate entries were prepared for each activity.

  12. THE OPTIMAL ALLOCATION ABOUT CAPITAL AND LABOR IN THE ECONOMIC GROWTH WITH AN ENDOGENOUS TECHNICAL PROGRESS MODEL

    Institute of Scientific and Technical Information of China (English)

    刘金山; 李楚霖; 胡适耕

    2002-01-01

    In this paper, the balanced economic growth path was considered in a new growth model with endogenous technical progress. It is not only obtained the optimal allocation about capital and labor between a goods-producing sector and a R&D Sector,but also the optimal value of saving rates. By discussing the effect of parameters, it are also got the following results: When the rate of time preference (discount factor) rising, the fractions of Capital and labor in the goods-producing sector will increase , the fractions in R&D sector and the saving rates will decrease; When the population grows rapidly, the result will be contrary.

  13. Research in high energy elementary particle physics: Annual progress report, [March 1, 1986-February 29, 1988

    International Nuclear Information System (INIS)

    This is a progress report covering the period March 1, 1986 through February 29, 1988 for the High Energy Physics program at the University of Florida (DOE Florida Demonstration Project grant FG05-86-ER40272). Our research program covers a braod range of topics in theoretical and experimental physics and includes detector development and an Axion search. Included in this report is a summary of our program and a discussion of the research progress

  14. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States); Han, W.T.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, MI (United States)

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal.

  15. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1992--September 1993

    International Nuclear Information System (INIS)

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal

  16. SKB annual report 1991. Including summaries of technical reports issued during 1991

    International Nuclear Information System (INIS)

    This is the annual report on the activities of the Swedish Nuclear Fuel and Waste Management Co., SKB. SKB is the owner of CLAB, the central facility for interim storage of spent nuclear fuel, located at Oskarshamn. CLAB was taken into operation in July 1985 and to the end of 1991 in total 1514 tonnes of spent fuel (measured as uranium) have been received. Transportation from the nuclear sites to CLAB is made by a special ship, M/S Sigyn. At Forsmark the final repository for Radioactive Waste (SFR) was taken into operation in April 1988. The repository is situated in crystalline rock under the Baltic Sea. The first construction phase includes rock caverns for 60000 m3 of waste. A second phase for additional 30000 m3 is planned to be built and commissioned around the year 2000. At the end of 1991 a total of 7900 m3 of waste have been deposited in SFR. SKB is in charge of a comprehensive research and development programme on geological disposal of nuclear waste. The total cost for R and D during 1991 was 182.7 MSEK of which 15.9 MSEK came from participants outside Sweden. Geological site-investigations are a substantial part of the programme. SKB is also the managing participant of the international Stripa-project under OECD/NEA. Cost calculations for the total nuclear waste management system, including decommissioning of all reactors, are updated annually. The total cost is estimated to 55 billion SEK. SKB also handles matters pertaining to prospecting and enrichment as well as stockpiling of uranium as strategic reserves for the Swedish nuclear power industry. Consulting service from SKB and associated expert groups are available on a commercial basis. Information activities are an integrated and important part of the Swedish radioactive waste management system. During 1991 successful public information activities have been carried out using mobile exhibitions in a tailor-made trailer and on the SKB ship M/S Sigyn. (au)

  17. GT-MHR COMMERCIALZATION STUDY. TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD MAY 1 THROUGH MAY 31, 2003

    International Nuclear Information System (INIS)

    A271 GT-MHR COMMERCIALZATION STUDY TECHNICAL PROGRESS AND COST MANAGEMENT REPORT FOR THE PERIOD MAY 1 THROUGH MAY 31, 2003. Petten advised GA the start of the HFR-EU2 irradiation is being delayed until late July 2004. HFR-EU1 (pebble fuel) is also delayed until February/March 2004. The reason for the delays was implementation of new financial regulations at Petten that delayed the contracts for capsule fabrication. Review of the MHR-2 Fuel Product Specification was completed. Revision of the specification to incorporate the review results is in progress. Detailed test matrices have been drafted for capsule irradiation tests and for post-irradiation heating tests proposed for development and qualification of advanced coated-particle fuels capable of meeting anticipated VHTR fuel performance requirements

  18. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    International Nuclear Information System (INIS)

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index

  19. Physics Division annual progress report for period ending June 30, 1977. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, P.H.

    1977-09-01

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  20. Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J. (ed.)

    1988-09-01

    This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

  1. Semi-annual technical report, September 30, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2000-04-01

    The Consortium for Plant Biotechnology Research, Inc. (CPBR) continues to operate according to objectives outlined in the proposal funded through the cooperative agreement. The italicized objectives below are addressed in this report, which covers the period September 30,1999 through March 31, 2000. (1) Update the research agenda using information obtained from member companies. (2) Identify and implement research projects that are deemed by industrial, scientific, and sponsoring agency evaluation to address significantly the problems and future of U.S. energy resources and that are relevant to the Department of Energy's mission. Specifically: (1) Announce research grants competition through a Request for Preproposals. (2) Conduct a dual-stage review process: Stage one--industrial and DOE review of preproposals; and Stage two--peer review, scientific consultants' review, DOE review of full proposals and Project Recommendation Committee evaluation and recommendation for funding. (3) Board of Directors approval of recommended awards. (4) Conduct ongoing project management. (5) Obtain semiannual, annual and final reports for evaluation of research goals and technology transfer. (6) Present reports to DOE.

  2. Advanced growth and surface analysis system for in situ studies of interface formation. Annual technical report

    International Nuclear Information System (INIS)

    This is the first annual report for developing an advanced integrated in situ UHV growth/analysis system for synchrotron radiation studies of interface and surface reactions which lead to epitaxial structures on Si, Ge, and Si1-xGex alloys. This equipment will allow one to use techniques based on synchrotron radiation, such as photoemission, x-ray standing wave (XSW), and surface x-ray absorption spectroscopy (SXAFS) to determining the electronic states and atomic configurations of surfaces in metal-silicon, metal-germanium and metal-silicon-germanium alloys. Since the award of the contract the authors have completed a detailed design of the overall system, identified commercially available equipment which fits the requirements and have purchased or ordered all of this equipment. They have also custom designed a considerable amount of equipment which is not available commercially because of the special requirements. This includes both of the UHV chambers, sample manipulators, and a mobile support stand. In this report, they will describe the design and purchase status of the system. An overview of the equipment purchase status is given in Appendix 1. The details of their custom designed growth and analytical chambers are given in Appendix 2

  3. Theoretical particle physics. Technical progress report, May 1, 1985-April 30, 1986

    International Nuclear Information System (INIS)

    Research activities during this past year included theoretical work in lattice gauge theory, EMC effect, supersymmetry and supergravity, weak interactions including CP violation, and superstrings. Progress in all these areas is reported

  4. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  5. High energy physics. Technical progress report, November 1, 1982 - October 25, 1983

    International Nuclear Information System (INIS)

    Progress is reported in the following areas: quantum field theory, gauge theories, dynamical symmetry breaking, supersymmetry, magnetic monopoles, cosmology and particle physics, and phenomenological studies. 34 publications under this contract are listed

  6. Research in elementary particle physics. Technical progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Under this contract, research has been performed on both the theoretical and experimental properties of elementary particles. A brief description of the work which is either in progress or has been completed is given. Publications are listed

  7. Optimal design and routing of power lines; ecological, technical and economic perspectives (OPTIPOL). Progress report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bevanger, Kjetil; Bartzke, Gundula; Broeseth, Henrik; Dahl, Espen Lie; Gjershaug, Jan Ove; Hanssen, Frank; Jacobsen, Karl-Otto; Kleven, Oddmund; Kvaloey, Paal; May, Roel; Meaas, Roger; Nygaaard, Torgeir; Resnaes, Steinar; Stokke, Sigbjoern; Thomassen, Joern

    2012-07-01

    birds in the database, compared to only 117 a year earlier. WP5 - 'A Least Cost Path (LCP) toolbox for optimal route routing of power lines', has developed an LCP-pilot to demonstrate the LCP method, based on the impact studies were undertaken prior to construction of a 420 kV transmission line in Central Norway 2005. Relevant economic, ecological and technological environment criteria based on suggestions from interested users (NGOs, government, industry, etc.), was used. LCP-pilot and a fuzzy-logic approach of this was demonstrated in the first dialogue-based workshop, 23.-24. april 2012. The seminar, which had an emphasis on criteria definitions were followed up with a working seminar that focused criterion values ??on 20 november 2012. Lecture - 'A Least Cost Path (LCP) Toolbox for Optimal Routing of Power Lines, -was presented and submitted as contributions to the conference report from 'The 10th ROW Conference' in Arizona, 'The 32nd Annual Conference of the International Association for Impact Assessment (IAIA12) ' in Porto, Portugal, and 'The ESRI European User Conference' in Oslo. WP6 - 'Birds and camouflaging of power lines', has almost completed the final report, 'Power line camouflaging. An assessment of the ecological and technical challenges'. 'Because of the budget situation in CEDREN However, completion of the report postponed until the end of April 2013. WP7 - 'Effect of line marking / modifications remedial measures against bird mortality' has almost completed the final report 'Opportunities and limitations in terms of reducing mortality in birds due to collision and electrocution.' Due to overall budget situation in CEDREN the report deferred to the end of april 2013. WP8, 'guidelines for technological solutions that may reduce mortality in birds because of the power line's', has focused topics relating to the labeling, design, insulation, camouflage and wiring. The results, which are presented in the notes and articles, will be implemented in

  8. Annual Continuation And Progress Report For Nuclear Theory At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vranas, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Nuclear Theory research under the auspices of the Department of Energy (DOE) Office of Nuclear Physics (NP) is conducted within several funding sources and projects. These include base funding, and early career award, and a collaborative SciDAC-­3 award that is jointly funded by DOE/NP and the Advanced Simulations and Computations (ASC) effort within the National Nuclear Security Agency (NNSA). Therefore, this annual report is organized within the three primary sections covering these projects.

  9. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany. Reporting period 1993. Progress report

    International Nuclear Information System (INIS)

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general information of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  10. Energy Materials Coordinating Committee (EMaCC), fiscal year 1985. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-05-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meeting/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees on Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Steel are established and are continuing their own program. The FY 1985 and FY 1986 meeting program is given. The EMaCC aids in obtaining materials-related inputs for both intra- and inter-agency compilations. Brief summaries of the materials research programs associated with each office and division are presented, including tables listing individual projects and the FY 1985 budgets for each. More details on the individual projects within the divisions and the specific tasks or subcontracts within the various projects are given in the paragraph descriptions.

  11. Annual report of Technical Development Division of the Tono Geoscience Center, PNC in 1996 fiscal year

    International Nuclear Information System (INIS)

    This is a report collected working results of research and development conducted at Technical Development Division of the Tono Geoscience Center, PNC (Power Reactor and Nuclear Fuel Development Corporation) in 1996 fiscal year. In this fiscal year, Ore Bed Analysis and Evaluation Group entered into this division by changing name of Resource Analysis and Evaluation Group, which was shared to conduct some actions such as survey of resource information, analysis of potential, evaluation of ore bed, and so forth. The other conducted works were same as those in last fiscal year. Beside them, as taking the Monju reactor accident on December 8, 1995 an opportunity, safety management of facility was reconsidered as the most important item, preparation of the mining facilities such as renewal of lifting winder in vertical road for survey, new construction of general management building, preparation around the precipitation pond, and so on were executed, as a response to normal work for the yearly elapsed change in the Tono Mine. (G.K.)

  12. Second Annual AEC Scientific Computer Information Exhange Meeting. Proceedings of the technical program theme: computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin,A.M.; Shimamoto, Y.

    1974-01-01

    The topic of computer graphics serves well to illustrate that AEC affiliated scientific computing installations are well represented in the forefront of computing science activities. The participant response to the technical program was overwhelming--both in number of contributions and quality of the work described. Session I, entitled Advanced Systems, contains presentations describing systems that contain features not generally found in graphics facilities. These features can be roughly classified as extensions of standard two-dimensional monochromatic imaging to higher dimensions including color and time as well as multidimensional metrics. Session II presents seven diverse applications ranging from high energy physics to medicine. Session III describes a number of important developments in establishing facilities, techniques and enhancements in the computer graphics area. Although an attempt was made to schedule as many of these worthwhile presentations as possible, it appeared impossible to do so given the scheduling constraints of the meeting. A number of prospective presenters 'came to the rescue' by graciously withdrawing from the sessions. Some of their abstracts have been included in the Proceedings.

  13. Energy Materials Coordinating Committee (EMaCC), fiscal year 1985. Annual technical report

    International Nuclear Information System (INIS)

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meeting/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees on Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Steel are established and are continuing their own program. The FY 1985 and FY 1986 meeting program is given. The EMaCC aids in obtaining materials-related inputs for both intra- and inter-agency compilations. Brief summaries of the materials research programs associated with each office and division are presented, including tables listing individual projects and the FY 1985 budgets for each. More details on the individual projects within the divisions and the specific tasks or subcontracts within the various projects are given in the paragraph descriptions

  14. Technical progress report for the quarter 1 October-31 December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report describes the technical accomplishments on the commercial nuclear waste management programs and on the geologic disposal of nuclear wastes. The program is organized into eight tasks: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. (DLC)

  15. Technical progress report for the quarter 1 October-31 December 1980

    International Nuclear Information System (INIS)

    This report describes the technical accomplishments on the commercial nuclear waste management programs and on the geologic disposal of nuclear wastes. The program is organized into eight tasks: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management

  16. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  17. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal

  18. 1984. Annual progress report of the Institut de Physique Nucleaire at Orsay

    International Nuclear Information System (INIS)

    The first part of this report presents the work of the year 1984 of research in the Division of experimental physics of the Institute of Nuclear Physics in Orsay, the activities are conducted in six axes: nuclear structure, high excitation energy nuclear states, heavy ion collision phenomena, intermediate energy nuclear physics, radiochemistry and perinuclear research. The second part presents the studies of the theoretical physics division of the Institute for Nuclear Physics in Orsay in 1984. The different research axes are the following: nuclear physics, intermediate energy nuclear physics, elementary particles. The third part presents a compilation of the work done by the technical groups of the laboratory. The different axes are: operation and development of accelerators, design studies on new superconducting cyclotron project equipment and instrumental projects, technical developments used for specific research

  19. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2005

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-09-29

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.

  20. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2004

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-08-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.