WorldWideScience

Sample records for annual particle flux

  1. Annual particle flux observations over a heterogeneous urban area

    DEFF Research Database (Denmark)

    Järvi, L.; Rannik, Ü.; Mammarella, I.;

    2009-01-01

    in different wind directions on the measured fluxes. The particle number fluxes were highest in the direction of a local road on weekdays, with a daytime median flux of 0.8×109 m−2 s−1. The particle fluxes showed a clear dependence on traffic rates and on the mixing conditions of the boundary layer....... The measurement footprint was estimated by the use of both numerical and analytical models. Using the crosswind integrated form of the footprint function, we estimated the emission factor for the mixed vehicle fleet, yielding a median particle number emission factor per vehicle of 3.0×1014 # km−1. Particle fluxes...... stationary combustion sources are also highest. Particle number fluxes were compared with the simultaneously measured CO2 fluxes and similarity in their sources was distinguishable. For CO2, the median emission factor of vehicles was estimated to be 370 g km−1....

  2. Propagation of nuclear particle fluxes in atmosphere

    International Nuclear Information System (INIS)

    The Monte Carlo model of propagation of nuclear-active particle shower initiated in the atmosphere by cosmic rays or by any other radiation source is developed. The model permits to calculate spatial distributions and energy spectra of charged and neutral particle fluxes in the air and inside the blocks

  3. Study of particle fluxes in the LHCb detector

    CERN Document Server

    Sagidova, N; Vorobyov, A; Vorobyov, Alexei

    1997-01-01

    97-009 In the present study the particle fluxes in the LHC-B detector were investigated. The LHC-B detector setup corresponds to that of the Letter of Intent. The GCALOR package is used to study the behaviour of low energy neutrons. Radial distributions of various types particles densities are compiled as well as energy and arrival time distributions

  4. Quantifying Particle Numbers and Mass Flux in Drifting Snow

    Science.gov (United States)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2016-06-01

    We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93 ) and good correlation for the drifting snow experiments (r ≥slant 0.81 ). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.

  5. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the North China Plain.

    Science.gov (United States)

    Wang, Xilong; Liu, Shuzhen; Zhao, Jingyu; Zuo, Qian; Liu, Wenxin; Li, Bengang; Tao, Shu

    2014-04-01

    The present study examined deposition fluxes of aerosol particles and 15 polycyclic aromatic hydrocarbons (PAHs) associated with the particles in the North China Plain. The annual mean deposition fluxes of aerosol particles and 15 PAHs were 0.69 ± 0.46 g/(m(2) ×d) and 8.5 ± 6.2 μg/(m(2) ×d), respectively. Phenanthrene, fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the dominant PAHs bound to deposited aerosol particles throughout the year. The total concentration of 15 PAHs in the deposited aerosol particles was the highest in winter but lowest in spring. The highest PAH concentration in the deposited aerosol particles in winter was because the heating processes highly increased the concentration in atmospheric aerosol particles. Low temperature and weak sunshine in winter reduced the degradation rate of deposited aerosol particle-bound PAHs, especially for those with low molecular weight. The lowest PAH concentration in deposited aerosol particles in spring resulted from the frequently occurring dust storms, which diluted PAH concentrations. The mean deposition flux of PAHs with aerosol particles in winter (16 μg/[m(2) ×d]) reached 3 times to 5 times that in other seasons (3.5-5.0 μg/[m(2) ×d]). The spatial variation of the deposition flux of PAHs with high molecular weight (e.g., benzo[a]pyrene) was consistent with their concentrations in the atmospheric aerosol particles, whereas such a phenomenon was not observed for those with low molecular weight (e.g., phenanthrene) because of their distinct hydrophobicity, Henry's law constant, and the spatially heterogeneous meteorological conditions.

  6. CO2, CH4 and particles flux measurements in Florence, Italy

    Science.gov (United States)

    Gioli, Beniamino; Toscano, Piero; Zaldei, Alessandro; Fratini, Gerardo; Miglietta, Franco

    2013-04-01

    We report a synthesis of seven years of eddy covariance (EC) flux measurements in the city of Florence, Italy. The measurement site is located in a densely urbanized area in the central city area, where fluxes are governed by anthropogenic emissions, considering the lack of green-space in the flux footprint. EC flux measurements of CO2 are made long-term since seven years, while short-term campaigns have been aimed at measuring CH4 and particles fluxes. CO2 and CH4 densities are measured with fast open-path sensors, while particles in the range 0.32 - 7.00 µm optical diameter are measured with a custom-built optical counter. CO2 long-term fluxes are always a net source, with a small inter-annual variability associated with a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively. CH4 fluxes to the atmosphere are relevant, representing about 8% of CO2-equivalent emissions, and do not exhibit any significant seasonality. Relative contributions of road traffic and domestic heating to observed emissions has been estimated through multi-variate analysis combined with inventorial data and emission proxies such as traffic counters and gas network flow rates, revealing that domestic heating accounts for more than 80% of observed CO2 fluxes. Heating and road traffic are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is likely dominated by gas network leakages. Particles flux data show a smaller seasonal trend and a pronounced weekend decrease, highlighting that the contribution of heating to particle emissions is relatively small compared to road traffic. Dynamics at hourly time scales during week and week-end days allows the analysis of the coupled role of emission strength and atmospheric processes such as advection and entrainment in regulating atmospheric concentrations. This set of observations highlights the potential of urban EC flux measurements as a validation tool for

  7. Modeling of the recycling particle flux and electron particle transport in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL) and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor Dα emissivity. Previous simulations were constrained by electron density (ne) and temperature (Te), ion temperature (Ti) data at the outer midplane, divertor heat flux from infrared television cameras and ne, Te and particle flux at the target from fixed Langmuir probes, along with the divertor Dα emissivity. In this paper, we present results of core fueling calculations from the 2D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier. (orig.)

  8. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  9. Branchfall dominates annual carbon flux across lowland Amazonian forests

    Science.gov (United States)

    Marvin, David C.; Asner, Gregory P.

    2016-09-01

    Tropical forests play an important role in the global carbon cycle, but knowledge of interannual variation in the total tropical carbon flux and constituent carbon pools is highly uncertain. One such pool, branchfall, is an ecologically important dynamic with links to nutrient cycling, forest productivity, and drought. Identifying and quantifying branchfall over large areas would reveal the role of branchfall in carbon and nutrient cycling. Using data from repeat airborne light detection and ranging campaigns across a wide array of lowland Amazonian forest landscapes totaling nearly 100 000 ha, we find that upper canopy gaps—driven by branchfall—are pervasive features of every landscape studied, and are seven times more frequent than full tree mortality. Moreover, branchfall comprises a major carbon source on a landscape basis, exceeding that of tree mortality by 21%. On a per hectare basis, branchfall and tree mortality result in 0.65 and 0.72 Mg C ha-1 yr-1 gross source of carbon to the atmosphere, respectively. Reducing uncertainties in annual gross rates of tropical forest carbon flux, for example by incorporating large-scale branchfall dynamics, is crucial for effective policies that foster conservation and restoration of tropical forests. Additionally, large-scale branchfall mapping offers ecologists a new dimension of disturbance monitoring and potential new insights into ecosystem structure and function.

  10. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    Hugh W. Ducklow

    2015-04-01

    Full Text Available Abstract We report results from a yearlong, moored sediment trap in the Amundsen Sea Polynya (ASP, the first such time series in this remote and productive ecosystem. Results are compared to a long-term (1992–2013 time series from the western Antarctic Peninsula (WAP. The ASP trap was deployed from December 2010 to December 2011 at 350 m depth. We observed two brief, but high flux events, peaking at 8 and 5 mmol C m−2 d−1 in January and December 2011, respectively, with a total annual capture of 315 mmol C m−2. Both peak fluxes and annual capture exceeded the comparable WAP observations. Like the overlying phytoplankton bloom observed during the cruise in the ASP (December 2010 to January 2011, particle flux was dominated by Phaeocystis antarctica, which produced phytodetrital aggregates. Particles at the start of the bloom were highly depleted in 13C, indicating their origin in the cold, CO2-rich winter waters exposed by retreating sea ice. As the bloom progressed, microscope visualization and stable isotopic composition provided evidence for an increasing contribution by zooplankton fecal material. Incubation experiments and zooplankton observations suggested that fecal pellet production likely contributed 10–40% of the total flux during the first flux event, and could be very high during episodic krill swarms. Independent estimates of export from the surface (100 m were about 5–10 times that captured in the trap at 350 m. Estimated bacterial respiration was sufficient to account for much of the decline in the flux between 50 and 350 m, whereas zooplankton respiration was much lower. The ASP system appears to export only a small fraction of its production deeper than 350 m within the polynya region. The export efficiency was comparable to other polar regions where phytoplankton blooms were not dominated by diatoms.

  11. Particle physics 2012. Highlights and annual report

    International Nuclear Information System (INIS)

    The following topics are dealt with: Particle physics at DESY, the work of the Helmholtz alliance concerning the LHC and the ILC, bringing particle physics into people's mind, research at HERA, LHC, and the linear accelerators, plasma wakefield acceleration, astroparticle physics, theory of elementary particles, research projects and scientific infrastructure. (HSI)

  12. Estimation of Particle Flux and Remineralization Rate from Radioactive Disequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Michael P. Bacon; Roger Francois

    2004-05-24

    Reactive radionuclides, such as the thorium isotopes, show measurable deficiencies in the oceanic water column because of their removal by chemical scavenging due to the particle flux. Measurement of the deficiency, coupled with measurement of the radionuclide concentration in particles, allows a determination of the effective particle sinking velocity. Results to date suggest that the effective particle sinking velocity is remarkably invariant with depth. This leads to the tentative suggestion that POC concentration profiles may, to a good approximation, be used directly to determine length scales for the remineralization of sinking organic matter. Further measurements are in progress to test this idea and to evaluate its limitations. Knowledge of the remineralization length scale is essential to an evaluation of the efficiency of the biological pump as a means for deep sequestering of carbon in the ocean.

  13. Turbulent particle flux to a perfectly absorbing surface

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pecseli, H.L.;

    2005-01-01

    The feasibility of an experimental method for investigations of the particle flux to an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well as an Eulerian representation. A laboratory experiment is carried out, where an approximately homogeneous and isotropic turbulent flow...... is generated by two moving grids. The simultaneous trajectories of many small approximately neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analysis, we select one of these as the centre of a ‘sphere of interception’, and obtain estimates for the time variation of the...

  14. Modeling of the recycling particle flux and electron particle transport in the DIII-D tokamak

    International Nuclear Information System (INIS)

    One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL), and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor D(x emissivity. Previous simulations were constrained by electron density (ne) and temperature (Te), ion temperature (Ti) data at the outer midplane, divertor heat flux from infrared television cameras, and ne, Te and particle flux at the target from fixed Langmuir probes, along with the divertor Dα emissivity. In this paper, we present results of core fueling calculations from the 2-D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier

  15. Aerosol fluxes and particle growth above managed grassland

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2009-08-01

    Full Text Available Particle deposition velocities (11–3000 nm diameter measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m and short (0.07 m grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 7.04 nm hr−1 and 1.68 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.11 and 0.44 μg m−3 h−1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night and a large error in NH4+ and NO3 aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (<1% for the 10 days following fertilization, as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2 m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 kt N yr

  16. Aerosol fluxes and particle growth above managed grassland

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2009-01-01

    Full Text Available Particle deposition velocities (11–3000 nm diameter measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m and short (0.07 m grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 3.5 nm hr−1 and 0.89 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.1 and 0.44 μg m−3 h−1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night and a larger error in NH4+ and NO3- aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (<1% for the 10 days following fertilization, as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2 m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 kt N yr

  17. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    Science.gov (United States)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  18. Study of the Interaction of Fluxes of Annihilating Particles

    Science.gov (United States)

    Nazarov, A. A.; Feropontova, N. M.

    2015-12-01

    A study of interacting particle fluxes in the form of an infinite linear queueing system with positive and negative requests is presented for different types of such systems. For the first class of systems with exponential service a stationary probability distribution of the number of positive requests in the system has been found. For the second class of systems, for the case of arbitrary service, the study is performed by the method of asymptotic analysis. Asymptotic equivalence of the systems under consideration is demonstrated.

  19. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and subantarctic waters, southwest Pacific Ocean

    Science.gov (United States)

    Nodder, Scott D.; Chiswell, Stephen M.; Northcote, Lisa C.

    2016-04-01

    The annual cycles of particle fluxes derived from moored sediment trap data collected during 2000-2012 in subtropical (STW) and subantarctic waters (SAW) east of New Zealand are presented. These observations are the most comprehensive export flux time series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near synchronous with elevated fluxes of bio-siliceous, carbonate, and organic carbon-rich materials to the deep ocean, probably facilitated by diatom and/or coccolithophorid sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW results from subsurface chlorophyll accumulation that is not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Organic carbon fluxes in STW are similar to that of other mesotrophic to oligotrophic waters (˜6-7 mg C m-2 d-1), whereas export from SAW is below the global average (˜3 mg C m-2 d-1). Regional differences in flux across the SW Pacific and Tasman region reflect variations in physical processes and ecosystem structure and function.

  20. Episodic particle flux in the deep Sargasso Sea: an organic geochemical assessment

    Science.gov (United States)

    Conte, Maureen H.; Weber, J. C.; Ralph, Nathan

    1998-11-01

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment trap study has continuously measured particle fluxes in the deep Sargasso Sea (31°50'N, 64°10'W). One feature of this 19+ year record has been the episodic occurrence of large, short-lived flux maxima that are not associated with the annual spring bloom. These maxima generally occur during the Dec.-Jan. period, but not necessarily every year. They have also occurred in other seasons. In January 1996, OFP traps located at 3200 and 3400 m depths intercepted a major flux "event" in which there was an abrupt, threefold increase in mass flux at both depths. Mass flux measured at 3200 m during the event (87 mg m -2 d -1) was the highest recorded since biweekly resolved sampling was begun in 1989. Organic biomarker analyses of material collected prior to, and during, this high flux event determined that there was an abrupt change in material composition associated with the sudden flux increase. Prior to the event, cholesterol, a single bacteriaderived C 27 hopanone (22,29,30-tris norhopan-21-one), and saturated and odd/branched fatty acids predominated: these compounds indicated that the sedimenting material was extensively degraded. During the event, organic material was greatly enriched in C 26-C 29 phytosterols, haptophyte algae-derived C 37-C 39 alkenones, labile polyunsaturated acids, degradation products such as steroidal ketones, and also in bacteria-derived compounds such as C 27-C 34 hopanoids and β and ω-1 hydroxy acids. These compounds indicated the organic fraction contained a large amount of relatively fresh phytoplankton-derived debris and tracers of bacterial biomass and metabolism, which suggested that the sinking material was undergoing active bacterial decomposition. Thus, the flux "event" appears to have resulted from a shortlived bloom in the overlying surface waters which, for reasons not currently apparent, was inefficiently remineralized in the upper ocean and rapidly settled to

  1. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    Directory of Open Access Journals (Sweden)

    M. L. Estapa

    2013-01-01

    Full Text Available Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous, profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Timeseries Study (BATS and Oceanic Flux Program (OFP sites. These observations illustrate strong variability in particle flux over very short (~1 day timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap timeseries. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately-overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  2. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  3. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Annual and seasonal characteristics of CO2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m2; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  4. 1980 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    HFR Petten has been operated in 1980 in fulfilment of the 1980/83 JRC Programme Decision. Both reactor operation and utilization data have been met within a few percent of the goals set out in the annual working schedule, in support of a large variety of research programmes. Major improvements to experimental facilities have been introduced during the year and future modernization has been prepared

  5. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  6. Using "snapshot" measurements of CH4 fluxes from peatlands to estimate annual budgets: interpolation vs. modelling.

    Science.gov (United States)

    Green, Sophie M.; Baird, Andy J.

    2016-04-01

    There is growing interest in estimating annual budgets of peatland-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges. Such budgeting is required for calculating peatland carbon balance and the radiative forcing impact of peatlands on climate. There have been multiple approaches used to estimate CO2 budgets; however, there is a limited literature regarding the modelling of annual CH4 budgets. Using data collected from flux chamber tests in an area of blanket peatland in North Wales, we compared annual estimates of peatland-atmosphere CH4 emissions using an interpolation approach and an additive and multiplicative modelling approach. Flux-chamber measurements represent a snapshot of the conditions on a particular site. In contrast to CO2, most studies that have estimated the time-integrated flux of CH4 have not used models. Typically, linear interpolation is used to estimate CH4 fluxes during the time periods between flux-chamber measurements. It is unclear how much error is involved with such a simple integration method. CH4 fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH4 flux data, and will not necessarily be properly represented by interpolation. Our fits of the CH4 flux models yielded r2 > 0.5 in 38 of the 48 models constructed, with 55% of these having a weighted rw2 > 0.4. Comparison of annualised CH4 fluxes estimated by interpolation and modelling reveals no correlation between the two data sets; indeed, in some cases even the sign of the flux differs. The difference between the methods seems also to be related to the size of the flux - for modest annual fluxes there is a fairly even scatter of points around the 1:1 line, whereas when the modelled fluxes are high, the corresponding interpolated fluxes tend to be low. We consider the

  7. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  8. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  9. Estimating Annual CO2 Flux for Lutjewad Station Using Three Different Gap-Filling Techniques

    OpenAIRE

    Dragomir, Carmelia M.; Wim Klaassen; Mirela Voiculescu; Georgescu, Lucian P.; Sander van der Laan

    2012-01-01

    Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden S...

  10. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    Science.gov (United States)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  11. Use of CMOS imagers to measure high fluxes of charged particles

    Science.gov (United States)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  12. Processes determining seasonality and interannual variability of settling particle fluxes to the deep Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Haake, B.; Rixen, T.; Reemtsma, T.; Ramaswamy, V.; Ittekkot, V.

    stream_size 20 stream_content_type text/plain stream_name Particle_Flux_Ocean_Chapter_14_1996_251.pdf.txt stream_source_info Particle_Flux_Ocean_Chapter_14_1996_251.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  13. Fresh water influx and particle flux variability in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Schafer, P.; Ittekkot, V.; Bartsch, M.; Nair, R.R.; Tiemann, J.

    stream_size 22 stream_content_type text/plain stream_name Particle_Flux_Ocean_Chapter_15_1996_271.pdf.txt stream_source_info Particle_Flux_Ocean_Chapter_15_1996_271.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  14. Particle fluxes in the Bay of Bengal measurEd. by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Parthiban, G.

    Particle fluxes were measured between October, 1987 and March, 1988 using six automated time series sediment traps at three locations in the northern, central and southern Bay of Bengal. Particle fluxes varied between 16.8 and 345 mg m/2 day/1...

  15. Evaluation of energetic particle parameters in the near-Earth magnetotail derived from flux asymmetry observations

    Directory of Open Access Journals (Sweden)

    Z. Y. Pu

    Full Text Available The flux asymmetries measured by spectrometers on board spacecraft contain information on particle parameters. The net flux intensity (NFI method provides a tool to evaluate these parameters. The NFI method is valid when both the spin period of the spacecraft and the time resolution of the particle spectrometers are much shorter than the characteristic time-scale of the particle flux variations. We apply the NFI analysis to the flux asymmetry measurements made by GEOS 2 at the nightside geosynchronous orbit in the late substorm growth phase. The cross-tail current of energetic ions, their pressure gradient and average drift velocity, as well as a field-aligned flows are investigated. Current disruption at substorm onset and the "convection surge" mechanism during dipolarization of the magnetic field are directly observed.

    Key words. Flux asymmetry · Net flux intensity · GEOS 2 · Energetic particles

  16. Estimating Annual CO2 Flux for Lutjewad Station Using Three Different Gap-Filling Techniques

    NARCIS (Netherlands)

    Dragomir, Carmelia M.; Klaassen, Wim; Voiculescu, Mirela; Georgescu, Lucian P.; van der Laan, Sander; Calfapietra, C.; Staebler, R.M.

    2012-01-01

    Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR),

  17. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  18. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2009-09-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens of hours; sizes at which

  19. A probabilistic description of the bed load sediment flux: 3. The particle velocity distribution and the diffusive flux

    Science.gov (United States)

    Furbish, David Jon; Roseberry, John C.; Schmeeckle, Mark W.

    2012-09-01

    Particles transported as bed load within a specified streambed area possess at any instant a distribution of velocities. This distribution figures prominently in describing the rates of transport and dispersal of particles. High-speed imaging of sand particles transported as bed load over a planar bed reveals that the probability density functions of the streamwise and cross-stream particle velocities are exponential-like. For quasi-steady conditions the exponential-like density of streamwise velocities reflects a balance among three fluxes in momentum space: (1) an advection of streamwise momentum whose magnitude and sign vary with the momentum state; (2) a diffusion of momentum from higher to lower values of momentum density; and (3) a drift of momentum from regions in momentum space having high average rates of generation of kinetic energy toward regions having low rates of generation of kinetic energy. The probability density of cross-stream velocities similarly reflects a balance of fluxes of cross-stream momentum. Whereas the average net force acting on particles is zero under steady conditions, the mean, variance and asymmetry of the distribution of forces acting on particles vary with the momentum state of the particles. Numerical simulations of particle motions that are faithful to these statistical properties reproduce key empirical results, namely, the exponential-like velocity distribution and the nonlinear relation between hop distances and travel times. The simulations also illustrate how steady gradients in particle activity, the solid volume of particles in motion per unit streambed area, induce a diffusive flux as described in companion papers.

  20. Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2004-01-01

    Full Text Available Size-dependent particle number fluxes measured by eddy-covariance (EC and continuous fluxes of ammonium (NH4+ measured with the aerodynamic gradient method (AGM are reported for a Dutch heathland. Daytime deposition velocities (Vd by EC with peak values of 5 to 10 mm s-1 increased with particle diameter (dp over the range 0.1–0.5 µm, and are faster than predicted by current models. With a mean Vd of 2.0 mm s-1 (daytime: 2.7; night-time 0.8 mm s-1 NH4+ fluxes by AGM are overall in agreement with former measurements and NH4+-N dry deposition amounts to 20% of the dry input of NH3-N over the measurement period. These surface exchange fluxes are analyzed together with simultaneous gas-phase flux measurements for indications of gas-particle interactions. On warm afternoons the apparent fluxes of acids and aerosol above the heathland showed several coinciding anomalies, all of which are consistent with NH4+ evaporation during deposition: (i canopy resistances for HNO3 and HCl of up to 100 s m-1, (ii simultaneous particle emission of small particles (DpDp>0.18 µm, (iii NH4+ deposition faster than derived from size-distributions and size-segregated EC particle fluxes. These observations coincide with the observations of (i surface concentration products of NH3 and HNO3 well below the thermodynamic equilibrium value and (ii Damköhler numbers that indicate chemical conversion to be sufficiently fast to modify exchange fluxes. The measurements imply a removal rate of volatile NH4+ of 3−30×10-6 s-1 averaged over the 1 km boundary-layer, while NH3 deposition is underestimated by typically 20 ng m-2 s-1 (28% and flux reversal may occur.

  1. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  2. Statistical similarity between high energy charged particle fluxes in near-earth space and earthquakes

    Science.gov (United States)

    Wang, P.; Chang, Z.; Wang, H.; Lu, H.

    2014-05-01

    It has long been noticed that rapid short-term variations of high energy charged particle fluxes in near-Earth space occur more frequently several hours before the main shock of earthquakes. Physicists wish that this observation supply a possible precursor of strong earthquakes. Based on DEMETER data, we investigate statistical behaviors of flux fluctuations for high energy charged particles in near-Earth space. Long-term clustering, scaling, and universality in the temporal occurrence are found. There is high degree statistical similarity between high energy charged particle fluxes in near-Earth space and earthquakes. Thus, the observations of the high energy particle fluxes in near-Earth space may supply a useful tool in the study of earthquakes.

  3. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  4. Modified Diffusion Flux Model for Analysis of Turbulent Gas-Particle Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    YANG Ruichang; ZHOU Weiduo; FUKUDA Kenji; JU Zejian; SHANG Zhi

    2005-01-01

    A modified diffusion flux model (DFM) was developed to analyze turbulent multi-dimensional gas-particle two-phase flows. In the model, the solid particles move in a modified acceleration field, , which includes the effects of various forces on the particles as if all the forces have the same effect on the particles as the gravity. The accelerations due to various forces are then taken into account in the calculation of the diffusion velocities of the solid particles in the gas-particle two-phase flow. The DFM was used to numerically simulate the gas-solid two-phase flow behind a vertical backward-facing step. The numerical simulation compared well with experimental data and numerical results using both the k-ε-Ap and k-ε-kp two-fluid models available in the literature. The comparison shows that the modified diffusion flux model correctly simulates the turbulent gas-particle two-phase flow.

  5. Size-resolved flux measurement of sub-micrometer particles over an urban area

    Directory of Open Access Journals (Sweden)

    Malte Julian Deventer

    2013-12-01

    Full Text Available From April 11th to May 27th, 2011, the turbulent exchange of sub-micrometer particles between the urban surface and the urban boundary-layer was measured above the city area of Münster (NW Germany. The scope of the study is to examine the contributions of particles of different size classes to the total measured fluxes. Eddy-covariance measurements were performed at 65 m above ground. The particle concentrations in 99 size bins with particle diameters ranging from 55 to 1000 nm were measured with an optical particle spectrometer. For flux calculations we grouped these 99 original bins into 18 wider channels with an upper cut-off of 320 nm, and a further rather coarse channel for particles up to 1 ?m. The overall results reveal that Münster is a relevant source of about 2.8 · 108 particles m?2 d?1 on weekdays and 1.8 · 108 particles m?2 d?1 on Sundays within the indicated size range. These emissions are predominantly driven by secondary particles of the Aitken mode, which are most likely caused by traffic. Hence traffic hotspots are a major contribution to the net fluxes. On the other hand, considering the mass fluxes, Münster is a sink of 0.53 ?g m?2 d?1 on weekdays and 0.08 ?g m?2 d?1 on Sundays. Here, mainly particles of the accumulation mode with diameters above 167 nm lead to deposition fluxes. Number and mass fluxes exhibit distinct daily and weekly patterns.

  6. Particle flux in a tokamak: fundamental experimental constraints on the form and relation to fluctuations

    International Nuclear Information System (INIS)

    The local density may be significantly (∼10%) modulated in a tokamak by control of the gas feed; the electron temperature and the level of density fluctuations are also modulated. From a transport analysis of such experiments in the TEXT tokamak, the perturbed particle and energy fluxes can be determined and compared with the equilibrium values as a function of minor radius. The analysis implies that the particle flux does not obey Fick's law Γ= -D∇n - additional terms are required - and that the amplitude of electrostatic turbulence is not an index of Γ. The energy flux is equally complex. (author) 2 refs., 4 figs

  7. Model predictions and visualization of the particle flux on the surface of Mars

    Science.gov (United States)

    Cucinotta, Francis A.; Saganti, Premkumar B.; Wilson, John W.; Simonsen, Lisa C.

    2002-01-01

    Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.

  8. Radionuclide fluxes in the Arabian Sea: The role of particle composition

    Digital Repository Service at National Institute of Oceanography (India)

    Scholten, J.C.; Fietzke, J.; Mangini, A.; Stoffers, P.; Rixen, T.; Gaye-Haake, B.; Blanz, T.; Ramaswamy, V.; Sirocko, F.; Schulz, H.; Ittekkot, V.

    previously published from the Southern Ocean, Equatorial Pacific and North Atlantic [Z. Chase, R.F. Anderson, M.Q. Fleisher, P.W. Kubik, The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean, Earth Planet. Sci...

  9. Visualization of particle flux in the human body on the surface of Mars

    International Nuclear Information System (INIS)

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the high Z and energy transport (HZETRN), quantum multiple-scattering theory of nuclear fragmentation(QMSFRG), and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.(author)

  10. Visualization of particle flux in the human body on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Saganti, P.B.; Cucinotta, F.A. [National Aeronautics and Space Administration, Houston, TX (United States). Johnson Space Center; Wilson, J.W.; Schimmerling, W. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    2002-12-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO{sub 2} atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm{sup 2} of water in steps of 5 g/cm{sup 2}) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the high Z and energy transport (HZETRN), quantum multiple-scattering theory of nuclear fragmentation(QMSFRG), and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.(author)

  11. Visualization of particle flux in the human body on the surface of Mars

    Science.gov (United States)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  12. Limits for the fluxes of non-conventional particles in muon showers underground

    International Nuclear Information System (INIS)

    A search for non-conventional massive particles was carried out with the Mt. Cappuccini spark chamber array, by a study of the interactions initiated in the chamber absorbers. Neither an excess of large electro-magnetic cascades, nor an excess of large-angle scattering events was found. Likewise no difference was seen between the interaction features of prompt and of delayed shower particles. The estimated upper limits of the underground fluxes are not or barely consistent with the assumptions of the mandela or passive X-particle hypotheses; zero fluxes appear most likely. (orig./BJ)

  13. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp

    CERN Document Server

    Good, Michael R R

    2015-01-01

    It is recently argued that if the Hawking radiation process is unitary, then a black hole's mass cannot be monotonically decreasing. We examine the time dependent particle count and negative energy flux in the non-trivial conformal vacuum via the moving mirror approach. A new, exactly unitary solution is presented which emits a characteristic above-thermal positive energy burst, a thermal plateau, and negative energy flux. It is found that the characteristic positive energy flare and thermal plateau is observed in the particle outflow. However, the results of time dependent particle production show no overt indication of negative energy flux. Therefore, a black hole's birth cry is detectable by asymptotic observers via particle count, whereas its death gasp is not.

  14. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies

    International Nuclear Information System (INIS)

    In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for in vivo quantification of capillaries and microvessels. Compared to the existing methods in the literature that can either quantify flow direction or power, our proposed method allows simultaneous flow (velocity) direction and relative flux (power) estimation. (paper)

  15. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies

    Science.gov (United States)

    Yousefi, Siavash; Wang, Ruikang K.

    2014-11-01

    In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for in vivo quantification of capillaries and microvessels. Compared to the existing methods in the literature that can either quantify flow direction or power, our proposed method allows simultaneous flow (velocity) direction and relative flux (power) estimation.

  16. Characteristics of flux variations of energetic particles associated with storm sudden commencement at synchronous orbit

    Energy Technology Data Exchange (ETDEWEB)

    Tomomura, Kiyoshi; Kato, Yoshio; Sakurai, Tohru (Tokai Univ., Tokyo (Japan). Faculty of Engineering)

    1982-11-01

    Characteristics of flux variations of energetic particles associated with Storm Sudden Commencement (SSC) are examined on the basis of the particle's data observed by solid state detecter onboard the synchronous satellite, GMS ''Himawari'', during the period from Febuary 1978 to August 1979. The energy of the particles are covered from 1.2 to 4.0 MeV for proton and greater than 2 MeV for electron, respectively. The flux variations for protons generally increase in association with SSC. However, for electrons, they show the increase except 7 events (the decrease event) among 40 events studied. It is evident that the values of the flux attained immediately after SSC (J) clearly depend on those just before SSC(J/sub 0/). They follow a Power law (J proportional J/sub 0/sup( n)). The variation of the proton flux (/sup +/..delta..J/sup +/ = /sup +/J - J/sup 0 +/) increases with the value of the flux just before SSC. In both increase and decrease events for electrons, the variation of the flux tends to increase until the flux just before SSC attains the value of 10/sup 4/, then to decrease as its value exceeds 10/sup 4/.

  17. Microcomputer-controlled system for measuring atmospheric particle fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, R.; Murphy, C.E. Jr.

    1985-01-01

    A Hiac/Royco Model 4102 optical airborne particle counter equipped with the Model 1200 sensor was interfaced to an existing data acquisition system. Due to the location of the instruments and data transmission problems, special interfaces and software solutions were required to achieve data transmission and instrument control integrity. System design, instrument operation, and the software and hardware solutions required for operation are described.

  18. Seasonal variability of deep ocean particle fluxes and particle composition in the north open sea of Prydz Bay

    Institute of Scientific and Technical Information of China (English)

    Chuanyu HU; Bin XUE; Xiaoya LIU; Jianming PAN

    2008-01-01

    Time-series Mark Ⅶ sediment trap was deployed at 72°58.55′E, 62°28.63′S (north of the Prydz Bay, Antarctica) during the cruise of CHINARE-15 in cooperation with University of Marine of America. Seasonal variability of deep ocean particle fluxes and bio-genic components were investigated in order to reveal the fluxes and biogeochemistry of sinking particles in the deep ocean. The results show that the total mass flux of sinking particles at a water depth of 1000 m ranges from 13.00 toin the fluxes of all particle components reflecting the sea-sonal changes in upper water productivity. Biogenic material was a significant component and biogenic silica represented more than 80% of the biogenic matter, reflect-ing a diatom dominated system, but a lithogenic fraction is always present. The fact that the POC dominated over particulate inorganic carbon (as CaCO3) and Cinorg/Corgwas always greater than 1, indicate a net removal of CO2 from surface water by biological activity.

  19. HTGR experiment HRB-15b: particle loadings and irradiation in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.E.; Long, E.L. Jr.; Conlin, J.A.; Johnsen, B.P.

    1979-12-01

    Candidate high-temperature gas-cooled reactor fissile and fertile particles were irradiated in the High Flux Isotope Reactor removable beryllium reflector facility (RB-5) for eight reactor cycles. The experiment contained 18 different ''types'' of fissile particles and five different ''types'' of fertile particles. All uranium was 20% enriched in /sup 235/U. The loose particles were loaded into ''trays'' that resemble flat graphite washers, each having 116 drilled holes in one face. One hundred eighty-four trays were stacked in columns in an alternate fertile particle-fissile particle sequence. The particles were irradiated for 169.4 full power days. The report discusses methods used to specify particle loadings and contains thermal and neutronics results applicable to the irradiation test period.

  20. Upward- directed charged particle flux detection in the MSL/RAD instrument

    Science.gov (United States)

    Appel, Jan Kristoffer; Zeitlin, Cary; Koehler, Jan; Hassler, Donald M.; Rafkin, Scot; Guo, Jingnan; Ehresmann, Bent; Wimmer-Schweingruber, Robert; Matthiä, Daniel; Lohf, Henning

    2016-07-01

    The Mars Science Laboratory rover Curiosity, operating on the surface of Mars, is exposed to radiation fluxes from above and below. Galactic Cosmic Rays travel through the Martian atmosphere, producing a modified spectrum consisting of both primary and secondary particles at ground level. These particles produce an upward- directed secondary particle spectrum as they interact with the Martian soil.These upward- directed particles then pass through the rover and enter the Radiation Assessment Detector onboard the rover from below. Here, we characterize the upward- and downward- directed spectra measured by the detector through a combination of GEANT4 and Planetocosmics simulations. We develop and demonstrate a method to discriminate between upward- and downward- directed particle fluxes during the MSL cruise phase to Mars and the surface science phase. This method enables us to extend the energy range and directionality of RAD beyond its design limits.

  1. Elementary particle physics at the University of Florida. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P. [and others

    1995-12-01

    This is the annual progress report of the University of Florida`s elementary particle physics group. The theoretical high energy physics group`s research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment`s high-resolution spectrometer`s assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University`s three-year proposal to the United States Department of Energy to upgrade the University`s high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group.

  2. Behavior of TPC`s in a high particle flux environment

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J. [Brookhaven National Lab., Upton, NY (United States); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. [City College of New York, New York (United States); Hallman, T.J.; Madansky, L. [Johns Hopkins Univ., Baltimore, MD (United States); Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B. [Bonner Nuclear Lab., Houston, TX (United States)

    1991-12-31

    TPC`s (Time Projection Chamber) used in E-810 at the TAGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10 minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  3. MARIE measurements and model predictions of GCR particle flux at Mars

    International Nuclear Information System (INIS)

    Full text: The Galactic Cosmic Ray spectra in Mars orbit were generated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations, and compared with the first twelve months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculations. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with particle flux distributions. Model calculation particle fluxes also includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current mapping period are presented

  4. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bak, J.G., E-mail: jgbak@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, H.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Bae, M.K. [Hanyang University, Seoul (Korea, Republic of); Juhn, J.W.; Seo, D.C.; Bang, E.N. [National Fusion Research Institute, Daejeon (Korea, Republic of); Shim, S.B. [Pusan National University, Pusan (Korea, Republic of); Chung, K.S. [Hanyang University, Seoul (Korea, Republic of); Lee, H.J. [Pusan National University, Pusan (Korea, Republic of); Hong, S.H. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.

  5. Reversal of particle flux in collisional-finite beta tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Weiland, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chalmers University of Technology and EURATOM-VR Association, Gothenburg (Sweden); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-01-15

    The mixed gradient method [Zhong et al. Phys. Rev. Lett. 111, 265001 (2013)] is adopted and effects of collisions and finite beta are included in the Weiland 9-equation fluid model. The particle flux and particle pinch, obtained using the Weiland anomalous transport fluid model, are compared with Tore Supra experimental results. Particle transport is also studied using predictive simulation data for an experimental advanced superconducting tokamak discharge in which neutral beam heating is utilized. The effects of collisions on particle transport are studied by turning collisions on and off in the Weiland model. It is found that the particle pinch region is related to the mode structure. The particle pinch region coincides with the region where the strong ballooning modes are present due to large gradients. The general properties of the fluid model are examined by finding regions where collisions can enhance the particle pinch.

  6. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  7. Reconstruction of charged particle fluxes detected by the Radiation Assessment Detector onboard of MSL

    Science.gov (United States)

    Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Zeitlin, C. J.; Ehresmann, B.; Kohler, J.; Boehm, E.; Appel, J. K.; Lohf, H.; Boettcher, S.; Burmeister, S.; Rafkin, S. C.; Kharytonov, A.; Martin-Garcia, C.; Matthiae, D.; Reitz, G.

    2013-12-01

    One of the main science objectives of the Mars Science Laboratory (MSL) is to help planning future human exploration to Mars by constraining the radiation environment during the cruise phase and on the planet's surface. During the 253-day, 560 million km cruise to Mars, the Radiation Assessment Detector, RAD made detailed measurements of the energy spectrum deposited by energetic particles from space and scattered within the spacecraft. Two types of radiation pose potential health risks to astronauts in deep space: a prolonged low-dose exposure to Galactic Cosmic Rays (GCRs) and short-term exposures to the Solar Energetic Particles (SEPs). On the surface of Mars such energetic particles penetrate through its thin atmosphere and generate secondary particles that can also result harms to humans. In order to interpret the energetic charged particle flux coming into the detector, we have developed the Detector Response Function (DRF) using GEANT 4 simulations and employed a Maximum likelihood inversion technique to invert the detected energy spectrum. This method has been applied to RAD detection of GCRs and secondary charged particles on the Martian surface, giving us an unique insight into their energy fluxes. The spectra of the stopping particle fluxes (hydrogen and helium) are also directly obtained from RAD observations and compared with the inversion results.

  8. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.

  9. Performance of ERNE in particle flux anisotropy measurement

    Directory of Open Access Journals (Sweden)

    E. Riihonen

    Full Text Available The HED particle detector of the ERNE experiment to be flown on the SOHO spacecraft is unique compared to the earlier space-born detectors in its high directional resolution (better than 2°, depending on the track inclination. Despite the fixed view cone due to the three-axis stabilization of the spacecraft, the good angular and temporal resolution of the detector provides a new kind of opportunity for monitoring in detail the development of the anisotropies pertaining, for example, to the onset of SEP events, or passage of shock fronts related to gradual events. In order to optimize the measurement parameters, we have made a preflight simulation study of the HED anisotropy measurement capabilities. The purpose was to prove the feasibility of the selected measurement method and find the physical limits for the HED anisotropy detection. The results show HED to be capable of detecting both strong anisotropies related to impulsive events, and smoother anisotropies associated with gradual events.

  10. The viscosity effect on marine particle flux: A climate relevant feedback mechanism

    OpenAIRE

    Taucher, Jan; Lennart T Bach; Riebesell, Ulf; Oschlies, Andreas

    2014-01-01

    Oceanic uptake and long-term storage of atmospheric carbon dioxide (CO2) are strongly driven by the marine “biological pump,” i.e., sinking of biotically fixed inorganic carbon and nutrients from the surface into the deep ocean (Sarmiento and Bender, 1994; Volk and Hoffert, 1985). Sinking velocity of marine particles depends on seawater viscosity, which is strongly controlled by temperature (Sharqawy et al., 2010). Consequently, marine particle flux is accelerated as ocean temperatures increa...

  11. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Ilona [VTT Energy, Helsinki (Finland)

    2002-04-01

    Dryout heat flux experiments on particle beds have been reviewed. The observed dryout heat flux varies from some tens of kW/m{sup 2} to well over 1 MW/m 2 . The variation can be qualitatively and to some extent also quantitatively explained. The effect of particle diameter has been clearly demonstrated. For particles having diameter less than about 1 mm, the dryout heat flux on the order of 100-200 kW/m{sup 2}, and increases on square of the particle diameter. For larger than 1 mm particles the dryout heat flux increases on square root of the particle diameter. Typical values for {approx} 5 mm particles is 500 kW/m{sup 2} to 1 MW/m{sup 2} . An effect of bed thickness can be seen for small particles and medium range (50-500 mm) beds. For thick beds, > 500 mm, the dryout heat flux does not any more change as the bed height increases. The dryout heat flux increases with increasing coolant pressure. This can be explained by the increasing vapour density, which can remove more latent heat from the bed. Debris bed stratification, with small particles on top, clearly decreases the dryout heat flux. The dryout heat flux in a stratified bed can even be smaller than a heat flux of an equivalent debris bed consisting of the smaller particles alone. This is due to the capillary force, which draws liquid towards the smaller particles and causes the dryout to occur at the interface of the particle layers. A model has been developed by Lipinski to estimate dryout heat fluxes in a particle bed. The model has been derived based on solution of momentum, energy and mass conservation equations for two phases. The 1-D model can take into account variable particle sizes (stratification) along the bed and different coolant entry positions. It has been shown that the model can quite well predict the observed dryout characteristics in most experiments. The simpler 0-D model can give reasonable estimates for non-stratified beds. Results and observations of several tests on melt jet

  12. Estimating Annual CO2 Flux for Lutjewad Station Using Three Different Gap-Filling Techniques

    Directory of Open Access Journals (Sweden)

    Carmelia M. Dragomir

    2012-01-01

    Full Text Available Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR, multiple imputation (MI, and artificial neural networks (ANNs, applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2, root mean square error (RMSE, mean absolute error (MAE, maximum absolute error (MaxAE, and mean square bias (MSB. The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.

  13. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2008-08-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are higher than 200 m day−1. The current vertical velocity field is computed from a high resolution Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However, we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. By analyzing the delayed effects of ocean vertical velocities on deep particle fluxes we envisage a spectrum of particle sinking speeds ranging from about 100 m day−1 to more than 200 m day−1. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  14. Resonant cyclotron acceleration of particles by a time periodic singular flux tube

    CERN Document Server

    Asch, Joachim; Stovicek, Pavel

    2010-01-01

    We study the dynamics of a classical nonrelativistic charged particle moving on a punctured plane under the influence of a homogeneous magnetic field and driven by a periodically time-dependent singular flux tube through the hole. We observe an effect of resonance of the flux and cyclotron frequencies. The particle is accelerated to arbitrarily high energies even by a flux of small field strength which is not necessarily encircled by the cyclotron orbit; the cyclotron orbits blow up and the particle oscillates between the hole and infinity. We support this observation by an analytic study of an approximation for small amplitudes of the flux which is obtained with the aid of averaging methods. This way we derive asymptotic formulas that are afterwards shown to represent a good description of the accelerated motion even for fluxes which are not necessarily small. More precisely, we argue that the leading asymptotic terms may be regarded as approximate solutions of the original system in the asymptotic domain as...

  15. {sup 10}Be/{sup 230}Th ratios as proxy for particle flux in the equatorial Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Fleisher, M.Q. [LDEO of Columbia Univ. (United States); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Particulate {sup 10}Be/{sup 230}Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs.

  16. Production of high transient heat and particle fluxes in a linear plasma device

    NARCIS (Netherlands)

    De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.

    2010-01-01

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70x10(20) m

  17. Multi-annual fluxes of carbon dioxide from an intensively cultivated temperate peatland

    Science.gov (United States)

    Cumming, Alex; Balzter, Heiko; Evans, Chris; Kaduk, Joerg; Morrison, Ross; Page, Susan

    2016-04-01

    East Anglia contains the largest continuous area of lowland fen peatlands in the United Kingdom (UK) which store vast quantities of terrestrial carbon (C) that have accrued over millennia. These long term C stores have largely been drained and converted for agricultural land use over the last 400 years due to their high agricultural production potential. Initial drainage of these peatlands leads to surface lowering and peat wastage. Prolonged exposure of carbon dense peat soils to oxygen through continued agricultural management results in sustained losses of carbon dioxide (CO₂) to the atmosphere. An increasing population in the UK has the potential to put further stress on these productive but rapidly diminishing Grade 1 agricultural land. Improving our understanding of land management impacts on CO₂ emissions from these soils is crucial to improving their longevity as an important store of C and as an economic resource. Our measurements at an intensively cultivated lowland peatland in Norfolk, UK, are the first multi-annual record using the micrometeorological eddy covariance (EC) technique to measure CO₂ fluxes associated with the production of horticultural salad crops. Three full years of flux measurements over leek (2013), lettuce (2014) and celery (2015) cropping systems found that the site was a net annual source of CO₂ with a net ecosystem exchange (NEE) of 6.59, 7.84 and 7.71 t C-CO₂ ha-1 a-1 respectively. The leek crop, with its longer growing period, had a lower annual NEE due to its long growth period from early spring through to late autumn, whereas the shorter growing periods of lettuce and celery meant their peak growth (CO₂ uptake, Gross Primary Productivity, GPP) took place during early/mid-summer with post-harvest weeds exploiting the later growing season but exhibited lower CO₂ assimilation than the leek crop. Periods of high CO₂ emissions from the soil to the atmosphere were measured during mechanical disruptions to the soils

  18. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  19. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    Science.gov (United States)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  20. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements

    International Nuclear Information System (INIS)

    Annual terrestrial balances of methane (CH4) and nitrous oxide (N2O) are presented for a managed fen meadow in the Netherlands for 2006, 2007 and 2008, using eddy covariance (EC) flux measurements. Annual emissions derived from different methods are compared. The most accurate annual CH4 flux is achieved by gap filling EC fluxes with an empirical multivariate regression model, with soil temperature and mean wind velocity as driving variables. This model explains about 60% of the variability in observed daily CH4 fluxes. Annual N2O emissions can be separated into background emissions and event emissions due to fertilization. The background emission is estimated using a multivariate regression model also based on EC flux data, with soil temperature and mean wind velocity as driving variables. The event emissions are estimated using emission factors. The minimum direct emission factor is derived for six fertilization events by subtracting the background emission, and the IPCC default emission factor of 1% is used for the other events. In addition, the maximum direct emission factors are determined for the six events without subtracting the background emission. The average direct emission factor ranges from 1.2 to 2.8%, which is larger than the IPCC default value. Finally, the total terrestrial greenhouse gas balance is estimated at 16 Mg ha-1 year-1 in CO2-equivalents with contributions of 30, 25 and 45% by CO2, CH4 and N2O, respectively.

  1. Changes in annual CO2 fluxes estimated from inventory data in South Korea

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using a slightly modified IPCC method, we examined changes in annual fluxes of CO2 and contributions of energy consumption, limestone use, waste combustion, land-use change, and forest growth to the fluxes in South Korea from 1990to 1997. Our method required less data and resulted in a larger estimate of CO2released by industrial processes, comparing with the original IPCC guideline. However, net CO2 emission is not substantially different from the estimates of IPCC and modified methods. Net CO2 emission is intimately related to GDP as Koreaneconomy has heavily relied on energy consumption and industrial activities, which are major sources of CO2. Total efflux of CO2 was estimated to be 63.6 Tg C/ain 1990 and amounted to 112.9 Tg C/a in 1997. Land-use change contributed to annual budget of CO2 in a relatively small portion. Carbon dioxide was sequesteredby forest biomass at the rate of 6.5 Tg C/a in 1990 and 8.5 Tg C/a in 1997. Although CO2 storage in the forests increased, the sink effect was overwhelmed by extensive energy consumption, suggesting that energy-saving strategies will be more effective in reducing CO2 emission in Korea than any other practices. It is presumed that plant uptake of CO2 is underestimated as carbon contained in plant detritus and belowground living biomass were not fully considered. Furthermore, the soil organic carbon stored in forest decomposes in various ways in rugged mountains depending on their conditions, such as slope, aspect and elevation, which could have an effect on decomposition rate and carbon stores in soils. Thus, carbon sequestration of forests deserves further attention.

  2. Particle mobility over flood and annual timescales in mountain streams of the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Phillips, C. B.; Jerolmack, D. J.

    2011-12-01

    , tracer particles provide three key pieces of information regarding transport: (1) a range of critical Shields stress for initiation of motion, based on the distribution of mobile and immobile particles; (2) the travel distance of mobile particles; and (3) the fraction of particles remaining immobile. Empirically-determined critical Shields stress exhibited wide variability, and there is evidence that some of this may be due to changes in the bed state resulting from transport. Particle transport lengths were calculated for five flood events totaling 15 datasets, spread across the three reaches. Transport length was weakly correlated to grain size, and appears to be primarily a function of the local granular arrangement surrounding the particle. Results indicate that the bed typically experiences fractional transport for a characteristic flood event. At the annual scale, dispersion of tracer particles appears to be anomalous, in agreement with recent work in other coarse-grained rivers. This suggests that determination of a bed load transport rate requires averaging over timescales significantly longer than one year. Nevertheless, we use bulk transport statistics to estimate the bed load flux for the catchment for the year of observation.

  3. Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy

    Science.gov (United States)

    Shin, Dae-Kyu; Lee, Dae-Young; Kim, Kyung-Chan; Hwang, Junga; Kim, Jaehun

    2016-04-01

    Geosynchronous satellites are often exposed to energetic electrons, the flux of which varies often to a large extent. Since the electrons can cause irreparable damage to the satellites, efforts to develop electron flux prediction models have long been made until recently. In this study, we adopt a neural network scheme to construct a prediction model for the geosynchronous electron flux in a wide energy range (40 keV to >2 MeV) and at a high time resolution (as based on 5 min resolution data). As the model inputs, we take the solar wind variables, geomagnetic indices, and geosynchronous electron fluxes themselves. We also take into account the magnetic local time (MLT) dependence of the geosynchronous electron fluxes. We use the electron data from two geosynchronous satellites, GOES 13 and 15, and apply the same neural network scheme separately to each of the GOES satellite data. We focus on the dependence of prediction capability on satellite's magnetic latitude and MLT as well as particle energy. Our model prediction works less efficiently for magnetic latitudes more away from the equator (thus for GOES 13 than for GOES 15) and for MLTs nearer to midnight than noon. The magnetic latitude dependence is most significant for an intermediate energy range (a few hundreds of keV), and the MLT dependence is largest for the lowest energy (40 keV). We interpret this based on degree of variance in the electron fluxes, which depends on magnetic latitude and MLT at geosynchronous orbit as well as particle energy. We demonstrate how substorms affect the flux variance.

  4. The application of a hierarchical Bayesian spatiotemporal model for forecasting the SAA trapped particle flux distribution

    Indian Academy of Sciences (India)

    Wayan Suparta; Gusrizal

    2014-08-01

    We implement a hierarchical Bayesian spatiotemporal (HBST) model to forecast the daily trapped particle flux distribution over the South Atlantic Anomaly (SAA) region. The National Oceanic and Atmospheric Administration (NOAA)-15 data from 1–30 March 2008 with particle energies as < 30 keV (mep0e1) and < 300 keV (mep0e3) for electrons and 80–240 keV (mep0p2) and < 6900 keV (mep0p6) for protons were used as the model input to forecast the flux values on 31 March 2008. Data were transformed into logarithmic values and gridded in a 5° × 5° longitude and latitude size to fulfill the modeling precondition. A Monte Carlo Markov chain (MCMC) was then performed to solve the HBST Gaussian Process (GP) model by using the Gibbs sampling method. The result for this model was interpolated by a Kriging technique to achieve the whole distribution figure over the SAA region. Statistical results of the root mean square error (RMSE), mean absolute percentage error (MAPE), and bias (BIAS) showed a good indicator of the HBST method. The statistical validation also indicated the high variability of particle flux values in the SAA core area. The visual validation showed a powerful combination of HBST-GP model with Kriging interpolation technique. The Kriging also produced a good quality of the distribution map of particle flux over the SAA region as indicated by its small variance value. This suggests that the model can be applied in the development of a Low Earth Orbit (LEO)-Equatorial satellite for monitoring trapped particle radiation hazard.

  5. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  6. Edge Particle Flux with Temperature Fluctuation in the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHENG Jun; YAN Long-Wen; HONG Wen-Yu; QIAN Jun; ZHAO Kai-Jun

    2007-01-01

    Electron temperature, density, plasma potential and their fluctuation profiles at edge plasmas are measured simultaneously with a reciprocating probe system in HL-2A. The analysis results of four-tip data indicate that the temperature fluctuation has relative amplitude of 10-15%, gives more contribution to particle flux in lower (0- 25 kHz) and higher frequency (50-250 kHz) ranges. The coherence between temperature fluctuation's and density or potential fluctuations implies that their coupling will impact anomalous transport. The measured diffusion coefficient is about three times of the Bohm diffusion coefficient when considering the temperature fluctuation. The particle flux with temperature fluctuation is discussed in HL-2A for the first time.

  7. Far scrape-off layer particle and heat fluxes in high density

    DEFF Research Database (Denmark)

    Müller, H. W.; Bernert, M.; Carralero, D.;

    2014-01-01

    -mode. Parallel particle and power flux densities of several 1023 m−2 s−1 and 10 MW m−2 have been detected about ∼40 to 45 mm outside the separatrix mapped to the outer mid-plane. The particle flux fall-off length reached up to 45 mm. This paper presents for the first time an empirical condition to enter the high......The far scrape-off layer transport is studied in ASDEX Upgrade H-mode discharges with high divertor neutral density N0,div, high power across the separatrix Psep and nitrogen seeding to control the divertor temperature. Such conditions are expected for ITER but usually not investigated in terms...

  8. Method and apparatus for simultaneous detection and measurement of charged particles at one or more levels of particle flux for analysis of same

    Science.gov (United States)

    Denton, M. Bonner; Sperline, Roger , Koppenaal, David W. , Barinaga, Charles J. , Hieftje, Gary , Barnes, IV, James H.; Atlas, Eugene

    2009-03-03

    A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner.

  9. Annual variation of carbon flux and impact factors in the tropical seasonal rain forest of Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration

  10. The Influence of Filaments in the Private Flux Region on Divertor Particle and Power Deposition

    CERN Document Server

    Harrison, J R; Thornton, A J; Walkden, N R

    2015-01-01

    The transport of particles via intermittent filamentary structures in the private flux region of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggests that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the private flux region (PFR) of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1-2cm in diameter. The most probable toroidal mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a sp...

  11. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2009-03-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  12. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  13. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal.

    Science.gov (United States)

    Zhang, Wei; Zhang, Xiaojian; Li, Yonghong; Wang, Jun; Chen, Chao

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the effect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (J(P)/J(P0) = a x exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of J(P)/J(P0) at the beginning of a filtration cycle, reflecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k reflected the trend of flux dynamics. Integrated total permeability (SigmaJ(P)) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing. PMID:22432326

  14. L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

    CERN Document Server

    Harrison, J R; Kirk, A

    2013-01-01

    The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.

  15. Solar energetic particle events: trajectory analysis and flux reconstruction with PAMELA

    CERN Document Server

    Bruno, A; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bravar, U; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Lee, M; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergè, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2016-01-01

    The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.

  16. Infrared experiment on the wall temperature distribution for a particle packed channel with constant heat flux

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With constant heat flux, wall temperature distribution for a particle filled channel was measured using infrared thermal vision technology. It was found that nonuniform relative high-temperature regions were randomly distributed on the heating wall, possibly due to the lower flow velocity, or even due to the blocked flow near the points where particles contact with the heating wall directly. Not only porosity but also the size and shape of the pores are changed in the wall region of particle-packed structures,because of the limitation of the wall, and the changes affect largely the fluid flow and heat transfer. The transition of the flow pattern in pores can be inferred according to the variation of Nu with Re, where the area weighted wall temperature is adopted to calculate the Nu.``

  17. Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux

    Institute of Scientific and Technical Information of China (English)

    Tian-Li Bo; Xiao-Jing Zheng; Shao-Zhen Duan; Yi-Rui Liang

    2013-01-01

    In the research of windblown sand movement,the lift-off and incident velocities of saltating sand particles play a significant role in bridging the spatial and temporal scales from single sand particle's motion to windblown sand flux.In this paper,we achieved wind tunnel measurements of the movement of sand particles near sand bed through improving the wind tunnel experimental scheme of paticle image velocimetry (PIV) and data processing method.And then the influence of observation height on the probability distributions of lift-off and incident velocities of sand particles was analyzed.The results demonstrate that the observation height has no obvious influence on the distribution pattern of the lift-off and incident velocities of sand particles,i.e.,the probability distribution of horizontal and vertical velocities of lift-off and incident sand particles follow a Gaussian distribution and a negative exponential distribution,respectively.However,it influences the center of the Gaussian distribution,the decay constant and the amplitude of the negative exponential distribution.

  18. Seasonal and annual variations of marine sinking particulate flux during 1993~1996 in the central South China Sea

    Institute of Scientific and Technical Information of China (English)

    CHEN Ronghua; WIESNER M G; ZHENG Yulong; CHENG Xinrong; JIN Haiyan; ZHAO Qingying; ZHENG Lianfu

    2007-01-01

    A total of 67 samples from the upper and lower sediment traps in the central South China Sea were analyzed, which were collected during 1993~1996. It is indicated that the distribution of stable isotope values, surface primary productivity, fluxes of total particulate matter, carbonate, biogenic opal, organic carbon, planktonic foraminiferal species and their total amount exhibit obviously seasonal and annual fluctuations. High values of the fluxes occurred in the prevailing periods of the northeastern and southwestern monsoons, and the low values occurred during the periods between the two monsoons. The fluxes of some planktonic foraminiferal species (Globigerinoides sacculifer, G. ruber, Globigerinita glutinata, Neogloboquadrina dutertrei) and their percentages also exhibit two prominent peaks during the prevailing periods of the northeastern and southwestern monsoons respectively, while those of Globigerina bulloides, Globorotalia menardii and Pulleniatina obliquiloculata only exhibit one peak in the prevailing periods of the northeastern monsoon. In addition, fluxes and percentages of Globigerinoides sacculifer and Globorotalia menardii as well as the fluxes of carbonate and total amount of planktonic foraminifera decrease gradually from 1993 to 1996, and those of Globigerina bulloides, Globigerinita glutinata and biogenic opal increase gradually from 1993 to 1996. The fluxes of carbonate and organic carbon in the upper trap are higher than those in the lower one. The study indicates that the seasonal and annual variations of the sediment fluxes and planktonic foraminiferal species are mainly controlled by the changes of surface primary productivity and hydrological conditions related to the East Asian monsoon. The lower carbonate and organic carbon fluxes in the lower trap are related to the dissolution.

  19. The Fecal Pellet fraction of biogeochemical particle fluxes to the deep sea

    Science.gov (United States)

    Pilskaln, Cynthia H.; Honjo, Susumu

    1987-03-01

    Fecal pellets produced by suspension-feeding crustacean zooplankton, specifically copepods and euphausids, have frequently been cited as an important mode of large particle transport in the open ocean. The objectives of the present study were to determine the various biogeochemical fluxes provided by pelagic crustacean fecal pellets, to examine such fluxes as a function of depth and variable levels of surface water productivity, and to assess the overall fecal pellet contribution to oceanic particle fluxes as measured with sediment traps. Pellet subsamples were obtained from particulate samples collected at depths between 389 and 5068 m by moored PARFLUX sediment traps deployed for up to 12 months at three tropical-subtropical open ocean localities. The sites were located over the East Hawaii Abyssal Plain (P site), over the Demerara Abyssal Plain (E site), and in the Pacific Panama Basin (PB site). Fecal pellet flux and chemical composition were found to vary significantly on a geographic scale as a function of productivity levels in the surface waters. The total carbonate, organic carbon, opaline silica, and lithogenic fluxes provided by pellets at the oligotrophic P1site were 1-2 orders of magnitude less than that measured at the eutrophic station in Panama Basin. The pellet data show that contrary to previous assumptions, these biogenic aggregates are responsible for no more than 5% of the total mass flux of oceanic particulate material. Despite the fact that at all trap depths, large numbers of intact pellets were collected which displayed minimal effects of dissolution and microbial degradation, fecal pellets contributed an average of only 1-10%, 0.5-5%, 1-3%, and 0.5-4% to the total measured mass fluxes of organic, carbonate, opaline silica, and lithogenic material, respectively. However, the pellets showed elevated C/N ratios (9-14) as well as high organic content (representing up to 50% of the individual pellet weight), suggesting that they constitute an

  20. UCLA Particle Physics Research Group annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end.

  1. Aerodynamic focusing of particles and heavy molecules: First annual report

    International Nuclear Information System (INIS)

    Our first goal was to investigate the phenomenon of aerodynamic focusing in supersonic free jets, in order to assess its potential technological uses in /open quotes/direct writing/close quotes/ and other energy-related applications. Our research program divides itself naturally into two chapters: on focusing microscopic particles, and on focusing individual molecules of heavy vapors carried in jets of He and H2. In both lines we combine diverse experimental and theoretical methods of attack. 3 refs., 4 figs

  2. Fluctuations in annual cycles and inter-seasonal memory in West Africa: rainfall, soil moisture and heat fluxes,

    OpenAIRE

    Fontaine, Bernard; Louvet, Samuel; Roucou, Pascal

    2007-01-01

    Annual cycle and inter-seasonal persistence of surfaceatmosphere water and heat fluxes are analyzed at a 5-day time step over the West African Monsoon (WAM) through observational precipitation estimates (CMAP), model datasets (NCEP=DOE level 2 reanalyses) and a Soil Water Index (SWI) from the ERS scatterometer. Coherent fluctuations (30–90 days) distinct from supra-synoptic variability (10–25 day periods) are first detected in the WAM precipitation and heat fluxes over the period 1979–2001. D...

  3. Flux induced growth of atmospheric nano-particles by organic vapors

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-09-01

    Full Text Available Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation followed by growth of these clusters to a detectable size (~3 nm. Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.

  4. Synthesis of observed air–sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes

    Directory of Open Access Journals (Sweden)

    C.-M. Tseng

    2013-08-01

    Full Text Available Limited observations exist for reliable assessment of annual CO2 uptake that takes into consideration the strong seasonal variation in the river-dominated East China Sea (ECS. Here we explore seasonally representative CO2 uptakes by the whole East China Sea derived from observations over a 14 yr period. We firstly identified the biological sequestration of CO2 taking place in the highly productive, nutrient-enriched Changjiang river plume, dictated by the Changjiang river discharge in warm seasons. We have therefore established an empirical algorithm as a function of sea surface temperature (SST and Changjiang river discharge (CRD for predicting sea surface pCO2. Synthesis based on both observation and model show that the annually averaged CO2 uptake from atmosphere during 1998–2011 was constrained to about 1.9 mol C m–2 yr–1. This assessment of annual CO2 uptake is more reliable and representative, compared to previous estimates, in terms of temporal and spatial coverage. Additionally, the CO2 time-series, exhibiting distinct seasonal pattern, gives mean fluxes of −3.0, −1.0, −0.9 and −2.5 mol C m–2 yr–1 in spring, summer, fall and winter, respectively, and also reveals apparent inter-annual variations. The flux seasonality shows a strong sink in spring and a weak source in late summer-early fall. The weak sink status during warm periods in summer-fall is fairly sensitive to changes of pCO2 and may easily shift from a sink to a source altered by environmental changes under climate change and anthropogenic forcing.

  5. Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory

    Science.gov (United States)

    Frigstad, H.; Henson, S. A.; Hartman, S. E.; Omar, A. M.; Jeansson, E.; Cole, H.; Pebody, C.; Lampitt, R. S.

    2015-10-01

    In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m-2 day-1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production. Seasonal NCP and new production were found to be 4.57 ± 0.85 mol C m-2 and 0.37 ± 0.14 mol N m-2, respectively. The C : N ratio was high (12) compared to the Redfield ratio (6.6), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4 %, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses.

  6. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the Malina experiment

    Science.gov (United States)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-01-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted for 28-50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap dataset from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depth where they represented up to 25% of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a

  7. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton

    Science.gov (United States)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-08-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted between 28 and 50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap data set from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depths below 100 m, where they represented up to 25 % of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily

  8. Prediction of dryout heat flux of volumetrically heated particulate beds packed with multi-size particles

    International Nuclear Information System (INIS)

    This paper presents MEWA code calculations for the experiments performed on the POMECO-HT facility to investigate the dryout heat flux of various particulate beds, with the objective to interpret the experimental data and validate the code. The code is then applied to coolability assessment for ex-vessel debris beds related to severe accident scenarios of a boiling water reactor (BWR). The characteristics of a prototypical debris bed, such as multidimensionality and multiple particle sizes are emphasized in this study. The volumetrically heated particulate beds of the POMECO-HT experiments are packed with multi-size particles and equipped with a downcomer to investigate the bottom-fed coolability by natural circulation which demands 2D simulation. The results show that the MEWA code is capable of predicting the coolability of the bed with a downcomer (2D) as well as the top-flooding bed whose dryout heat flux can also be predicted by the Reed model (1D). Given the effective particle diameter (1 mm) and porosity (0.45) defined from a few FCI tests, the ex-vessel debris beds for a BWR chosen here are coolable with varied margins: i) compared with a top-flooding bed (spreading over the entire floor of the cavity), the cylindrical configuration with an annular-gap water supply enhances the coolability comparison , but the gain is marginal since the large diameter of the bed prevents the side coolant from flowing into the center of the bed; ii) a heap-like debris bed reduces rather than improves coolability due to its considerable height and base diameter; iii) a stratified debris bed with a fine-particle layer on the top may challenge the coolability. (author)

  9. 2006 Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology across Taiwan Straits

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The 2006 Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology across Taiwan Straits, held in Beijing from August 18 to 21, 2006, was hosted by Chinese Society of Particuology and organized jointly by Institute of Process Engineering, CAS, and State Key Laboratory of Heavy Oil Processing,China University of Petroleum.

  10. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  11. Enceladus' Supersonic Gas Jets' Role in Diurnal Variability of Particle Flux

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry W.; Portyankina, Ganna; Hendrix, Amanda; Colwell, Joshua E.; Aye, Klaus-Michael

    2016-10-01

    Introduction: The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 6 occultations of stars by Enceladus' plume from 2005 to 2011 [1]. Supersonic gas jets were detected, imbedded in the overall expulsion of gas at escape velocity along the tiger stripe fissures that cross Enceladus' south pole [2]. The gas flux can be calculated [1], and is observed to vary just 15% in over 6 years, representing a steady output of ~200 kg/sec. In contrast, the brightness of the particle jets, a proxy for the amount of particles expelled, varies 3x with orbital longitude [3], implicating tidal stresses. This is not necessarily inconsistent with the steady gas flux, which had not been measured at apokrone until now.2016 epsilon Orionis Occultation: In order to investigate whether gas flow increases dramatically at apokrone an occultation observation was inserted into the Cassini tour on March 11, 2016 on orbit 233. Enceladus was at a mean anomaly of 208 at the time of the occultation. Using the same methodology as previously employed the column density has been determined to be 1.5 x 1016 cm-2, giving a gas flux of 250 kg/sec. This value is 20% higher than the average 210 kg/sec, but only 15% higher than the occultations at a mean anomaly of 236; i.e. higher than the others but not by a factor of 2 or 3. The overall expulsion of gas from the south pole of Enceladus thus does not seem to change dramatically with orbital position.Jets: The line of sight to the star pierced the Baghdad I gas jet. The jet data, in contrast to the integrated plume, look significantly different in this dataset. The column density of the jet is higher than observed in previous occultations. The collimation of the jet is more pronounced and from that we derive a mach number of 8-9, compared to a previous value for this jet of 6. We conclude that the higher velocity and increased quantity of gas in the jet close to apokrone indicate that the jets are the primary contributors to the increased

  12. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  13. Tailoring the charged particle fluxes across the target surface of Magnum-PSI

    Science.gov (United States)

    Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.

    2016-04-01

    Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of  -80 to  -25 V, while the floating potential of the target was about  -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.

  14. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-08-26

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos. PMID:27610839

  15. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2016-08-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e- flux exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  16. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  17. Energetic particle induced inter-annual variability of ozone inside the Antarctic polar vortex observed in satellite data

    Directory of Open Access Journals (Sweden)

    T. Fytterer

    2014-12-01

    Full Text Available Measurements from 2002–2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the inter-annual variability of stratospheric and mesospheric O3 volume mixing ratio (vmr inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux. The indices are 26 day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26 day running means from 1 April–1 November at altitudes from 20–70 km. During solar quiet time from 2005–2010, the composite of all three instruments reveals an apparent negative O3 feedback associated to the geomagnetic activity (Ap index around 1 April, on average reaching amplitudes between −5 and −10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ∼ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.

  18. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    . The fluxes of heat and freshwater across the air-sea interface, and hence the surface buoyancy flux, show strong spatial and temporal variability. The Bay of Bengal and eastern equatorial Indian Ocean are characterized by a net freshwater gain due to heavy...

  19. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Science.gov (United States)

    Buesseler, K. O.; Trull, T. W.; Steinberg, D. K.; Silver, M. W.; Siegel, D. A.; Saitoh, S.-I.; Lamborg, C. H.; Lam, P. J.; Karl, D. M.; Jiao, N. Z.; Honda, M. C.; Elskens, M.; Dehairs, F.; Brown, S. L.; Boyd, P. W.; Bishop, J. K. B.; Bidigare, R. R.

    2008-07-01

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's "twilight zone" (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3-week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency ( Teff) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150-m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500-m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking

  20. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.O.; Trull, T.W.; Steinberg, D.K.; Silver, M.W.; Siegel, D.A.; Saitoh, S.-I.; Lamborg, C.H.; Lam, P.J.; Karl, D.M.; Jiao, N.Z.; Honda, M.C.; Elskens, M.; Dehairs, F.; Brown, S.L.; Boyd, P.W.; Bishop, J.K.B.; Bidigare, R.R.

    2008-06-10

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's 'twilight zone' (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (T{sub eff}) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of

  1. Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign in Värriö field station

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2007-01-01

    Full Text Available The LAPBIAT measurement campaign took place in the SMEAR I measurement station located in Eastern Lapland in the spring of 2003 between 26 April and 11 May. In this paper we describe the measurement campaign, concentrations and fluxes of aerosol particles, air ions and trace gases, paying special attention to an aerosol particle formation event broken by a polluted air mass approaching from industrial areas of Kola Peninsula, Russia. Aerosol particle number flux measurements show strong downward fluxes during that time. Concentrations of coarse aerosol particles were high for 1–2 days before the nucleation event (i.e. 28–29 April, very low immediately before and during the observed aerosol particle formation event (30 April and increased moderately from the moment of sudden break of the event. In general particle deposition measurements based on snow samples show the same changes. Measurements of the mobility distribution of air ions showed elevated concentrations of intermediate air ions during the particle formation event. We estimated the growth rates in the nucleation mode size range. For particles <10 nm, the growth rate increases with size on 30 April. Dispersion modelling made with model SILAM support the conclusion that the nucleation event was interrupted by an outbreak of sulphate-rich air mass in the evening of 30 April that originated from the industry at Kola Peninsula, Russia. The results of this campaign highlight the need for detailed research in atmospheric transport of air constituents for understanding the aerosol dynamics.

  2. Direct detection of cosmic rays: through a new era of precision measurements of particle fluxes

    CERN Document Server

    Mocchiutti, Emiliano

    2014-01-01

    In the last years the direct measurement of cosmic rays received a push forward by the possibility of conducting experiments on board long duration balloon flights, satellites and on the International Space Station. The increase in the collected statistics and the technical improvements in the construction of the detectors permit the fluxes measurement to be performed at higher energies with a reduced discrepancy among different experiments respect to the past. However, high statistical precision is not always associated to the needed precision in the estimation of systematics; features in the particle spectra can be erroneously introduced or hidden. A review and a comparison of the latest experimental results on direct cosmic rays measurements will be presented with particular emphasis on their similarities and discrepancies.

  3. Control of particle flux and energy on substrate in an inverted cylindrical magnetron for plasma PVD

    International Nuclear Information System (INIS)

    Inverted cylindrical magnetrons (ICMs) are often used in dc, pulsed dc or mid-frequency ac mode for coating complex objects with thin films deposited by plasma PVD. Since in such a configuration the substrate is inherently surrounded by the target and hence by the plasma, the energy flux of the impinging particles represents the main contribution to the substrate heating. This can readily constitute a limiting factor in the deposition process, especially when it is not possible to cool and bias the substrate. This work concerns a dc-driven ICM configuration subjected to several constraints: not only is the substrate surface area small by comparison to the cathode surface area, but its imposed potential is the ground one, thus itself constituting the anode surface of the considered setup. Several important substrate heating factors are highlighted and, in order to reduce the most prominent of them, a means to raise the plasma potential is proposed. This is achieved by positively polarizing two additional electrodes with respect to the ground. This additional surface generates a redistribution of the current and consequently regulates the electron flux on the substrate. The results are shown as a function of bias applied on the auxiliary electrodes and discussed in terms of the impact on the substrate heating. (paper)

  4. FORTE satellite constraints on ultra-high energy cosmic particle fluxes

    CERN Document Server

    Lehtinen, N G; Jacobson, A R; Roussel-Dupre, R A; Lehtinen, Nikolai G.; Gorham, Peter W.; Jacobson, Abram R.; Roussel-Dupre, Robert A.

    2004-01-01

    The FORTE (Fast On-orbit Recording of Transient Events) satellite records bursts of electromagnetic waves arising from near the Earth's surface in the radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna. We investigate the possible RF signature of ultra-high energy cosmic-ray particles in the form of coherent Cherenkov radiation from cascades in ice. We calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE) neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK) cutoff. Some constraints on supersymmetry model parameters are also estimated due to the limits that FORTE sets on the UHE neutralino flux. The FORTE database consists of over 4 million recorded events to date, including in principle some events associated with UHE neutrinos. We search for candidate FORTE events in the period from September 1997 to December 1999. The candidate production mechanism is via coherent VHF radiation from a UHE neutrino shower in the Greenland ice sheet. We...

  5. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  6. Flux enhancement of slow-moving particles by Sun or Jupiter: Can they be detected on Earth?

    International Nuclear Information System (INIS)

    Slow-moving particles capable of interacting solely with gravity might be detected on Earth as a result of the gravitational lensing induced focusing action of the Sun. The deflection experienced by these particles is inversely proportional to the square of their velocities, and as a result their focal lengths will be shorter. We investigate the velocity dispersion of these slow-moving particles, originating from distant point-like sources, for imposing upper and lower bounds on the velocities of such particles in order for them to be focused onto Earth. Stars, distant galaxies, and cluster of galaxies, etc., may all be considered as point-like sources. We find that fluxes of such slow-moving and non-interacting particles must have speeds between ∼0.01 and .14 times the speed of light, c. Particles with speeds less than ∼0.01c will undergo way too much deflection to be focused, although such individual particles could be detected. At the caustics, the magnification factor could be as high as ∼106. We impose lensing constraints on the mass of these particles in order for them to be detected with large flux enhancements that are greater than 10–9 eV. An approximate mass density profile for Jupiter is used to constrain particle velocities for lensing by Jupiter. We show that Jupiter could potentially focus particles with speeds as low as ∼0.001c, which the Sun cannot.

  7. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  8. Annual mean statistics of the surface fluxes of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Rao, L.V.G.

    MEAN STATISTICS OF THE SURFACE FLUXES OF THE TROPICAL INDIAN OCEAN (Research Note) M. R. RAMESH KUMAR and L. V. GANGADHARA RAO Physical Oceanography Division, National Institute of Oceanography, Dona Paula, 403004, Goa, India (Received in final...

  9. Seasonal and Intra-annual Controls on CO2 Flux in Arctic Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter [San Diego State Univ., CA (United States); Kalhori, Aram [San Diego State Univ., CA (United States)

    2015-12-01

    In order to advance the understanding of the patterns and controls on the carbon budget in the Arctic region, San Diego State University has maintained eddy covariance flux towers at three sites in Arctic Alaska, starting in 1997.

  10. Particle fluxes in the NW Iberian coastal upwelling system: Hydrodynamical and biological control

    Science.gov (United States)

    Zúñiga, D.; Villacieros-Robineau, N.; Salgueiro, E.; Alonso-Pérez, F.; Rosón, G.; Abrantes, F.; Castro, C. G.

    2016-07-01

    To better understand sources and transport of particulate material in the NW Iberian coastal upwelling system, a mooring line dotted with an automated PPS 4/3 sediment trap was deployed off Cape Silleiro at the base of the photic zone. The samples were collected from November 2008 through June 2012 over sampling periods of 4-12 days. Our study represents the first automated sediment trap database for the NW Iberian margin. The magnitude and composition of the settling material showed strong seasonal variability with the highest fluxes during the poleward and winter mixing periods (averages of 12.9±9.6 g m-2 d-1 and 5.6±5.6 g m-2 d-1 respectively), and comparatively lower fluxes (3.6±4.1 g m-2 d-1) for the upwelling season. Intensive deposition events registered during poleward and winter mixing periods were dominated by the lithogenic fraction (80±3%). They were associated to high energy wave-driven resuspension processes, due to the occurrence of south-westerly storms, and intense riverine inputs of terrestrial material from Minho and Douro rivers. On the other hand, during the spring - summer upwelling season, the share of biogenic compounds (organic matter, calcium carbonate (CaCO3), biogenic silica (bSiO2)) to downward fluxes was higher, reflecting an increase in pelagic sedimentation due to the seasonal intensification of primary production and negligible river inputs and wave-driven resuspended material. Otherwise, the large variations of biogenic settling particles were mainly modulated by upwelling intensity, which by means of upwelling filaments ultimately controlled the offshore transport of the organic carbon fixed by primary producers towards the adjacent ocean. Based on the average downward flux of organic carbon (212 mg C m-2 d-1) and considering an average primary production of 1013 mg C m-2 d-1 from literature, we estimated that about 21% of the fixed carbon is vertically exported during the upwelling season.

  11. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    Science.gov (United States)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  12. Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis

    International Nuclear Information System (INIS)

    Eu-doped barium strontium silicate phosphor particles with high photoluminescence intensity under long wavelength ultraviolet were prepared from the spray solution containing NH4Cl flux by spray pyrolysis. It was found that the addition of NH4Cl to the spray solution makes it possible to greatly improve the photoluminescence intensity of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles under long wavelength ultraviolet of 410 nm. The highest photoluminescence intensity, which was achieved when the NH4Cl content was 5 wt.%, was about 150% of Ba1.488Sr0.5SiO4:Eu0.012 particles prepared from the spray solution without flux material at the post-treatment temperature of 1050 deg. C. The particle size of Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles were enlarged by using the NH4Cl flux in the spray solution because of the large grain growth which was identified from the sharpening of the XRD peaks. Adding the NH4Cl flux into the spray solution was found to lower the optimal post-treatment temperature at which the Ba1.488Sr0.5SiO4:Eu0.012 phosphor particles are fully crystallized and have the maximum photoluminescence intensity. The phosphor particles prepared from spray solution containing 5 wt.% NH4Cl flux had the maximum photoluminescence intensity at post-treatment temperature of 1100 deg. C

  13. Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension

    Science.gov (United States)

    Pilskaln, C. H.; Anderson, D. M.; McGillicuddy, D. J.; Keafer, B. A.; Hayashi, K.; Norton, K.

    2014-05-01

    Quantification of Alexandrium cyst fluxes through the Gulf of Maine water column is central to understanding the linkage between the source and fate of annual Alexandrium blooms in the offshore waters. These blooms often lead to paralytic shellfish poisoning (PSP) and extensive closures of shellfish beds. We report here on time-series sediment trap deployments completed at four offshore locations in the gulf between 2005 and 2010 as components of two ECOHAB-GOM field programs. Data presented documents the substantial spatial and temporal fluctuations in Alexandrium fundyense cyst fluxes in the gulf. Cyst delivery out of the euphotic zone peaked primarily between July and August following annual spring-summer Alexandrium blooms and was greatest in the western gulf. At all sites, cyst flux maxima to the subsurface waters were rarely coincident with seasonal peaks in the total mass export of particulate material indicating that cyst delivery was primarily via individually sinking cysts. Where persistent benthic nepheloid layers (BNLs) exist, significant sediment resuspension input of cysts to the near-bottom water column was evidenced by deep cyst fluxes that were up to several orders of magnitude greater than that measured above the BNL. The largest cyst fluxes in the BNL were observed in the eastern gulf, suggesting greater resuspension energy and BNL cyst inventories in this region. Temporal similarities between peak cyst export out of the upper ocean and peak cyst fluxes in the BNL were observed and document the contribution of seasonal, newly formed cysts to the BNL. The data however also suggest that many Alexandrium cells comprising the massive, short-lived blooms do not transition into cysts. Time-series flow measurements and a simple 1D model demonstrate that the BNL cyst fluxes reflect the combined effects of tidal energy-maintained resuspension, deposition, and input of cysts from the overlying water column.

  14. Spatial and temporal variability of annual greenhouse gas fluxes from constructed wetland in an arid region

    Science.gov (United States)

    Ramos, J.; Chapman, E. J.; Childers, D. L.

    2013-12-01

    Wetlands support ecological functions that result in valuable services to society, including the purification of water through processes such as denitrification, plant uptake, and soil retention. Wetlands are also sources of greenhouse gases (GHG), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Many free-water surface constructed treatment wetland systems (CW) in North America have been developed to remove nutrients from secondarily-treated water, but little is known about the contributions of CWS on greenhouse gas emissions, especially in arid regions. Since 2011, the 42-ha cell-1 of the Tres Rios CW in Phoenix, AZ has removed approximately 30-40% of excess nitrogen (NO3- and NH4+) from the surface water entering the CW; with most of the nitrogen uptake occurring within the 21-ha vegetated-marsh area of the CW. To increase our knowledge of ecosystem dynamics of CW in arid regions, we investigated the GHG fluxes of N2O, CH4, and CO2 from a whole-system perspective and from a vegetated-marsh to open-water gradient within the CW. Since the spring of 2012, we have been utilizing the floating chamber technique to collect and measure gas samples from two transects in the vegetated-marsh area of the CW (nearest to inflow and nearest to outflow) and along three gradient subsites within the transects (shoreline, midmarsh, and open-water). From March 2012 to March 2013, we found seasonal significant differences in CO2 and CH4 fluxes (p<0.001), but not in N2O fluxes. CO2 fluxes were higher in the spring months compared to summer and winter months however, CH4 fluxes were higher in late spring and summer compared to the fall, winter, and early spring months. We found two significant spatial patterns in GHG fluxes in the CW, between the inflow and outflow transects and along the transect gradient subsites. Between the transects, we found significantly larger CO2 and N2O fluxes at the inflow compared to the outflow (p<0.001) but not CH4, possibly as a

  15. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  16. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  17. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  18. Papers concerning fuel particles, fuel elements and graphitic materials for high temperature reactors presented at the 1980 annual conference Kerntechnik

    International Nuclear Information System (INIS)

    This report is a compilation of the papers presented by staff of the Institute for Reactor Materials, KFA-Juelich, at the 1980 annual conference Rekatortechnik, held in Berlin, 25-27th March 1980. In some cases, there were co-authors from other organisations. Where possible the manuscripts of the presentations have been reproduced, as well as the display cards shown during the poster session on the conference. In the presentations, the questions of the characterization of fuel particles and the retention of fission products are dealt with, and special attention is given to fission product release at very high temperatures. One presentation deals with the disposal of fuel elements from the AVR. Another report presents the results of radiation experiments on the standard matrix material A3-3 of the THTR fuel elements; the changes in dimensions, creep coefficient and thermal conductivity were measured as functions of the fluence and the radiation temperature. Interim results obtained from long-term radiation experiments on reflector graphites for high and very high flux reactors are presented, and models for the calculation of dimensional changes in components subjected to fluctuating temperatures from data obtained in isothermal tests are discussed. (orig.)

  19. Diel variations of marine snow concentration in surface waters and implications for particle flux in the sea

    Science.gov (United States)

    Graham, William M.; MacIntyre, Sally; Alldredge, Alice L.

    2000-03-01

    Successive measurements of the size distribution and abundance of marine snow in the upper 100 m of the Santa Barbara Channel, California, with an in situ still camera system following 11 tagged water masses revealed a consistent pattern of nighttime decreases in the abundance of large particles. A net nocturnal reduction in particulate flux from the upper 100 m as calculated from camera profiles occurred in 75% of the day-night comparisons, and nighttime aggregate carbon losses resulted in a 38% average reduction in camera-derived aggregate flux. Intensive investigation of three stations for 24-48 h each indicated that nighttime decreases in aggregate concentrations and derived aggregate flux could be registered throughout the observed water column. Nocturnal decreases in marine snow concentration are unlikely to result from diel variations in the production of marine snow either as feeding webs of zooplankton or through variations in aggregation rates of smaller particles. Moreover, measured diel variations in the intensity of surface mixing and convective overturn during one of the 24 h deployments were not intense enough to produce aggregate fragmentation and reduced aggregate flux. Nighttime increases in large crustacean zooplankton (i.e., euphausiids and the large copepod Calanus pacificus) could explain some or all of the reduction in aggregate abundance at most stations. Fragmentation and consumption of marine snow by migrating macrozooplankton could produce our observed synchronous diel cycles in marine snow concentration. This is the first empirical evidence of a diel pattern in the concentration and calculated particulate flux of large sinking particles in near-surface waters. The data presented here are consistent with the only other existing diel study, which also reported decreases in marine snow abundance at night at 270 m depths in the oceanic north Atlantic. Diel variations in the sizes and concentrations of marine snow may impact water column

  20. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  1. Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation

    Directory of Open Access Journals (Sweden)

    G. Fischer

    2015-11-01

    Full Text Available Particle fluxes at the Cape Verde Ocean Observatory (CVOO in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen anticyclonic modewater eddy (ACME in winter 2010. The eddy passage was accompanied by unusually high mass fluxes, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi and organic carbon flux peaks were observed in February–March 2010 when the eddy approached CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated to that of organic carbon in particular in the deep trap samples, suggesting a close coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/mesopelagic signatures to the bathypelagic traps. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some production under nutrient (nitrate limitation in the upper few tens of meters above the zone of suboxia might have occurred in the beginning of 2010. The δ15N record showed a decrease from January to March 2010 while the organic carbon and N fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive but nutrient depletion and/or a high availability of dust as ballast mineral for organic-rich aggregates might have contributed to the elevated fluxes during the eddy passage. Remineralization of sinking organic-rich particles could have contributed to the formation of a suboxic zone at shallow depth. Although the eddy has been formed in the African coastal area in summer 2009, no indication of coastal flux signatures were found in the sediment traps

  2. Vertical and lateral particle and element fluxes across soil catenas in southern Brazil

    Science.gov (United States)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie

    2016-04-01

    At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data

  3. Seasonal and annual variation of carbon fluxes in a young Siberian larch (Larix sibirica plantation in Iceland

    Directory of Open Access Journals (Sweden)

    B. D. Sigurdsson

    2009-07-01

    Full Text Available This study reports 3-year measurements (2004–2006 of net ecosystem exchange (NEE over a 12–14 year old Siberian larch forest in Iceland established on previously grazed heath land pasture that had been site-prepared prior to planting. The study evaluated interannual and seasonal variation of NEE and its component fluxes, gross primary production (GPP and ecosystem respiration (Re, with the aim to clarify how climatic factors controlled the site's carbon balance. The young plantation acted as a relatively strong sink for CO2 during all of the three years, with a net sequestration of −375, −566 and −245 g CO2 m−2 for years 2004, 2005 and 2006, respectively. The annual carbon balance was strongly influenced by climatic factors leading to a high inter-annual variability in NEE. This variation was more related to variation in carbon efflux (Re than carbon uptake (GPP. The abiotic factors that showed the strongest correlation to Re were air temperature during the growing season and soil water potential. The GPP mostly followed the seasonal pattern in irradiance, except in 2005, when the plantation experienced severe spring frost damage that set the GPP back to zero. It was not expected that the rather slow-growing Siberian larch plantation would be such a strong sink for atmospheric CO2 only twelve years after site preparation and afforestation.

  4. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera.

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-12-01

    Full Text Available Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR was positively correlated to C. prolifera biomass, while net community production (NCP had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP. Dissolved organic carbon (DOC production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC, however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC, as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.

  5. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    Science.gov (United States)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  6. Long-term trends in suspended chlorophyll a and vertical particle flux with respect to changing physical conditions in eastern Fram Strait, Arctic Ocean

    Science.gov (United States)

    Nöthig, Eva-Maria; Bauerfeind, Eduard; Beszczynska-Möller, Agnieszka; Kraft, Angelina; Bracher, Astrid; Cherkasheva, Alexandra; Fahl, Kirsten; Hardge, Kristin; Kaleschke, Lars; Lalande, Catherine; Metfies, Katja; Peeken, Ilka; Klages, Michael; Soltwedel, Thomas

    2014-05-01

    The Fram Strait is the main gateway for water, heat, sea ice and plankton exchanges between the Arctic Ocean and the North Atlantic. The abundance and composition of phyto- and zooplankton communities is governed to a large extent by key physical factors such as water temperature, salinity, currents, stratification of the water column and the presence or absence of sea ice. With our study we aim at tracing effects of environmental changes in pelagic system structure and impacts on the fate of organic matter produced in the upper water column in a region that is anticipated to react rapidly to climate change. Chlorophyll a, an indicator of biomass standing stock of phytoplankton, has been measured in the upper 100 m of the water column since 1991 during several summer cruises (with RV 'Polarstern') across Fram Strait. Chlorophyll a measurements are used to validate productivity estimates by remote sensing from space. The quantity and composition of export fluxes of organic matter including biomarker have been measured since 2000 by annually moored sediment traps deployed at 200-300m at the AWI long-term observatory HAUSGARTEN in eastern Fram Strait (79°/4°E). Along with sinking particles, zooplankton (so-called 'swimmers') was also caught in the traps. Analyses of the material collected by the sediment traps allowed us to track seasonal and inter-annual changes in the surface waters at HAUSGARTEN. We present temporal trends in the chlorophyll a distribution (1991-2012), in swimmer composition in the traps (2000-2009), and in the export of biomarker (2000-2008), particulate organic carbon, particulate biogenic silica, calcium carbonate, and the protist composition (2000-2012), in relation to the changing sea ice cover and water temperature. Whereas chlorophyll a (integrated values 0-100m) showed only a slight increase, the swimmer composition and the composition of the annual particle flux changed after a warm water event occurring from 2005-2007. The warm anomaly

  7. Increased particle fluxes at the INDEX site attributable to simulated benthic disturbance

    Digital Repository Service at National Institute of Oceanography (India)

    Parthiban, G.

    . During the postdisturbance period of , 5 days the recorded daily fluxes varied betwen, 73 and 122 mg m2 2day2 1(average , 95 mg m2 2day2 1). Compared with predisturbance val-ues,the average daily fluxes during the postdisturbance period were , 50 mg m 2 2...

  8. Effect of Generation of Charged Particles Fluxes by Pulsed Gas Discharge

    CERN Document Server

    Pozdnyakov, Georgiy A

    2014-01-01

    The paper describes the effect of generation of electron and ion fluxes in a gas discharge, which offers, in particular, to the emergence of "blue jets" and "elves", observed during thunderstorms. An experimental facility modeling these phenomena is described. A possibility of generation of strong-current fluxes of electrons and ions in a straightline gas electric discharge is demonstrated.

  9. On the role of local CIR-associated particle acceleration in formation of time-intensity profiles of suprathermal particle fluxes

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga E.

    2015-04-01

    A possibility of local acceleration of particles up to several MeV at the edge of corotating interaction regions (CIRs) in the solar wind is discussed. Recently, evidence for significant local particle energization due to magnetic reconnection that occurs at the heliospheric current sheet (HCS) and followed by consequent trapping and re-acceleration of suprathermal particles in magnetic islands surrounding the rippled HCS was provided (Khabarova et al. 2014). We investigate this phenomenon in application to particle energization at current sheets of various scales (from the HCS to local small-scale current sheets), including current sheets frequently observed at the edge of CIRs, and explore the role of magnetic islands in the picture of suprathermal particle flux enhancements associated with CIRs. It is commonly believed that CIRs serve as one of the sources of suprathermal particles at the Earth's orbit in addition to flares and pre-CME shocks because of particle acceleration by reverse shocks formed beyond 2-3AU. However, this paradigm demands a free way of particles back from the shocks to 1 AU, which produces specific timing and ion/electron flux features that are not observed every time. We suggest that local particle acceleration may take place directly at the CIR edge in the case of the HCS-CIR interaction, as well as be determined by the occurrence of electric field in merging/contracting magnetic islands and local reconnecting current sheets (Zank et al. 2014) in the turbulent plasma of CIRs. Multi-spacecraft data analysis (STEREO, Wind, ACE and Ulysses) is performed. Khabarova O., Zank G.P., Li G., le Roux J.A., Webb G.M., Dosch A., Zharkova V.V. and Malandraki O.E., Small-scale magnetic islands in the solar wind and their role in particle acceleration. Part 1: Dynamics of magnetic islands near the heliospheric current sheet. Submitted to ApJ, 2014 Zank G.P., le Roux J.A., Webb G.M., Dosch A., and O. Khabarova. Particle acceleration via reconnection

  10. Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain (PAP) sustained observatory

    Science.gov (United States)

    Frigstad, H.; Henson, S. A.; Hartman, S. E.; Omar, A. M.; Jeansson, E.; Cole, H.; Pebody, C.; Lampitt, R. S.

    2015-04-01

    In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m-2 d-1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production, respectively. Seasonal NCP and new production were found to be 4.57 ± 0.27 mol C m-2 and 0.37 ± 0.14 mol N m-2. The Redfield ratio was high (12), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4%, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses.

  11. Seasonal and annual variation of CO2 flux above a broad-leaved Korean pine mixed forest

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28’E and 42°24’N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.

  12. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  13. Effects of dairy manure management in annual and perennial cropping systems on soil microbial communities associated with in situ N2O fluxes

    Science.gov (United States)

    Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia

    2016-04-01

    Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil

  14. Angular dependence of energy and particle fluxes in a magnetized plasma

    International Nuclear Information System (INIS)

    A flat probe allowing simultaneous measurements of energy flux and current density as functions of a bias voltage was rotated in a spatially homogeneous plasma. The experiments were conducted at the PSI-2 facility, a linear divertor simulator with moderate magnetic field strength. Sheath parameters (ion current density j i, floating potential U f, energy flux density q, ion energy reflection coefficient R E and sheath energy transmission coefficient γ) were determined as functions of the angle α between the probe surface normal and the magnetic field. A geometric model has been developed to explain the ion flux density at grazing incidence

  15. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  16. Atomic force microscopy surface analysis of layered perovskite La2Ti2O7 particles grown by molten flux method

    Science.gov (United States)

    Orum, Aslihan; Takatori, Kazumasa; Hori, Shigeo; Ikeda, Tomiko; Yoshimura, Masamichi; Tani, Toshihiko

    2016-08-01

    Rectangular platelike particles of La2Ti2O7, a layered perovskite, were synthesized in KCl, NaCl, and LiCl by the molten flux method. The formation mechanism of the equilibrium shape in these alkali chloride fluxes was discussed in terms of the surface and interfacial energies of crystallographic planes. The atomic force microscopy (AFM) observations revealed that the developed plane of the platelike particles is along the interlayers in the {110}-type layered crystal structure, and is considered to represent the lowest surface energy plane in which strong, periodic Ti–O bond chains terminate. Herein, for the first time, a growth mechanism for La2Ti2O7 particles is proposed and discussed. Triangular prism structures along the c-axis were observed on the developed planes of KCl-grown particles whereas no such structures were found on those of LiCl-grown ones. AFM measurements suggest that the prism facets are {210}-La2Ti2O7, which results in lower interfacial energy within KCl.

  17. Experimental analysis of sand particles' lift-off and incident velocities in wind-blown sand flux

    Institute of Scientific and Technical Information of China (English)

    Li Xie; Zhibao Dong; Xiaojing Zheng

    2005-01-01

    The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the χ2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical components are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions. These pdf's depend on not only the sand particle diameter but also the wind speed.

  18. Fluctuations in annual cycles and inter-seasonal memory in West Africa: rainfall, soil moisture and heat fluxes

    Science.gov (United States)

    Fontaine, B.; Louvet, S.; Roucou, P.

    2007-01-01

    Annual cycle and inter-seasonal persistence of surface-atmosphere water and heat fluxes are analyzed at a 5-day time step over the West African Monsoon (WAM) through observational precipitation estimates (CMAP), model datasets (NCEP/DOE level 2 reanalyses) and a Soil Water Index (SWI) from the ERS scatterometer. Coherent fluctuations (30-90 days) distinct from supra-synoptic variability (10-25 day periods) are first detected in the WAM precipitation and heat fluxes over the period 1979-2001. During all the northward excursion of the WAM rain band, a succession of four active phases (abrupt rainfall increases) occurs. They are centered in the first days of March, mid-April, the second half of May and from the last week of June to mid-July (the Sahelian onset). A simple statistical approach shows that the Spring to Summer installation of the monsoon tends to be sensitive to these short periods. Other analyses suggest the existence of lagged relationship between rainfall amounts registered in successive Fall, Spring (active periods) and Summer (top of the rainy season) implying land surface conditions. The spatial extension of the generated soil moisture anomalies reaches one maximum in March, mainly at the Guinean latitudes and over the Sahelian belt where the signal can persist until the next monsoon onset. Typically after abnormal wet conditions in September-October two signals are observed: (1) more marked fluctuations in Spring with less (more) Sahelian rainfall in May (June and after) at the Sahelian-Sudanian latitudes; (2) wetter rainy seasons along the Guinean coast (in Spring and Summer with an advance in the mean date of the ‘little dry season’). The reverse arises after abnormal dry conditions in autumn.

  19. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.;

    2009-01-01

    Dry deposition of atmospheric particles is critically dependent on particle size and plays a key role in dictating the mass and number distributions of atmospheric particles. However, modeling dry deposition is constrained by a lack of understanding of controlling dependencies and accurate size...... leaf-on and are statistically robust. Particle deposition velocities normalized by friction velocity (v d +) are approximately four times smaller than comparable values for coniferous forests reported elsewhere. Comparison of the data with output from a new one-dimensional mechanistic particle...... deposition model designed for broadleaf forest exhibits greater accord with the measurements than two previous analytical models, but modeled v d + underestimate observed values by at least a factor of two for all Dp between 6 and 100 nm. When size-resolved particle deposition velocities for Dp

  20. Control of particles flux in a tokamak with an events structure; Controle des flux de particules dans un Tokamak au moyen d`une structure a events

    Energy Technology Data Exchange (ETDEWEB)

    Tsitrone, E.

    1995-12-01

    Two key problems in the development of a controlled fusion reactor are: -the control of the ashes resulting from the fusion reaction (helium) and of the impurities coming from the wall erosion, which affect the central plasma performances by diluting the fuel and dissipating a part of the produced energy by radiation. - the removal of the heat carried to the walls by charged particles, which is highly concentrated (peak values of several tens of MW per m{sup 2}). Two types of systems are generally used for the plasma-wall interface: throat limiter and axisymmetric divertor. Neither is an ideal candidate to control simultaneously the heat and particle fluxes. This thesis investigates an alternative configuration, the vented limiter, tested for the first time on the Tore Supra tokamak. The vented limiter principle lies on the recycling neutrals collection by slots, in such a way that local thermal overload is avoided. It is shown experimentally that the surface temperature of the prototype installed in Tore Supra remains uniform. As far as the particle collection is concerned, even though the pressure in the vented limiter is lower than the pressure in the throat limiter by a factor 3 for deuterium and 4 helium, it is sufficient to control the plasma density. Moreover, as with a throat limiter, the pressure exhibits a quadratic evolution with the plasma density. To interpret these results, a model describing the plasma recycling on the limiter and the pumping by the slots has been developed. The model has been validated by a comparison with the experimental data. It was then used to propose an optimized version of the prototype with reshaped slots. This should improve the pumping efficiency by a factor 2, in deuterium as well as in helium, but without removing the discrepancy between both pumping efficiencies. (Abstract Truncated)

  1. Settling particle fluxes across the continental margin of the Gulf of Lion: the role of dense shelf water cascading

    Directory of Open Access Journals (Sweden)

    C. Pasqual

    2009-07-01

    Full Text Available Settling particles were collected using sediment traps deployed along three transects in the Lacaze-Duthiers and Cap de Creus canyons and the adjacent southern open slope from October 2005 to October 2006. The settling material was analysed to obtain total mass fluxes and main constituent contents (organic matter, opal, calcium carbonate, and siliciclastics. Cascades of dense shelf water from the continental shelf edge to the lower continental slope occurred from January to March 2006. They were traced through strong negative near-bottom temperature anomalies and increased current speeds, and generated two intense pulses of mass fluxes in January and March 2006. This oceanographic phenomenon appeared as the major physical forcing of settling particles at almost all stations, and caused both high seasonal variability in mass fluxes and important qualitative changes in settling material. Fluxes during the dense shelf water cascading (DSWC event ranged from 90.1 g m−2 d−1 at the 1000 m depth station in the Cap de Creus canyon to 3.2 g m−2 d−1 at the canyon mouth at 1900 m. Fractions of organic matter, opal and calcium carbonate components increased seaward, thus diminishing the siliciclastic fraction. Temporal variability of the major components was larger in the canyon mouth and open slope sites, due to the mixed impact of dense shelf water cascading processes and the pelagic biological production. Results indicate that the cascading event remobilized and homogenized large amounts of material down canyon and southwardly along the continental slope contributing to a better understanding of the internal dynamics of DSWC events. While the late winter/early spring bloom signature was diluted when DSWC occurred, the primary production dynamics were observable at all stations during the rest of the year and highlighted the biological community succession in surface waters.

  2. Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain (PAP sustained observatory

    Directory of Open Access Journals (Sweden)

    H. Frigstad

    2015-04-01

    Full Text Available In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP sustained observatory in the northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m−2 d−1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP and new production, respectively. Seasonal NCP and new production were found to be 4.57 ± 0.27 mol C m−2 and 0.37 ± 0.14 mol N m−2. The Redfield ratio was high (12, and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4%, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses.

  3. Geomagnetically trapped, albedo and solar energetic particles: trajectory analysis and flux reconstruction with PAMELA

    CERN Document Server

    Bruno, A; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2016-01-01

    The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.

  4. Estimation of annual Groundwater Evapotranspiration from Phreatophyte Vegetation in the Great Basin using Remotely Sensed Vegetation Indices and Ground Based Flux Tower measurements

    Science.gov (United States)

    Beamer, Jordan P.

    Escalating concerns about the future of water resource management in arid regions of the American Southwest have sparked numerous hydrologic studies looking into available water resources for in-basin and inter-basin transfers. Groundwater is the primary water supply source for much of the state of Nevada and the Great Basin, thus accurate estimates of the regional scale groundwater recharge and discharge components are critical for regional groundwater budgets. Groundwater discharge from phreatophyte vegetation by evapotranspiration (ET) is the dominant component of groundwater discharge in many hydrologically closed valleys of the Great Basin, and can be measured directly from eddy-covariance (EC) and Bowen-ratio (BR) flux tower systems. The purpose of this project was to develop a predictive equation based on relationship between annual ET and meteorological data from EC and BR sites in phreatophyte vegetation with remote sensing data. Annual total ET (ET a) measured from forty site/year combinations of flux tower data from Carson Valley, Walker River Basin, Oasis Valley, Snake Valley, Spring Valley, White River Valley, and the lower Colorado River Flow system were correlated with the Enhanced Vegetation Index (EVI) from Landsat Thematic Mapper (TM) satellite. EVI was extracted from source areas at corresponding locations from 15 mid-summer Landsat TM scenes. ETa was transformed into ET* by subtracting annual precipitation and normalizing by annual reference ET (ETo) (ET*=(ETa-precipitation)/(ETo-precipitation)). ET* correlated well with EVI (r2=0.97), and because it takes basin specific climate measurements into account, it is transferable to many shallow groundwater discharge areas in the Great Basin. This relationship was used to provide a first order estimate of the mean annual groundwater ET (ETg) from four phreatophyte groundwater discharge areas in Nevada using only a mid-summer Landsat EVI image, annual ETo and precipitation data. This simple approach

  5. Reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury

    International Nuclear Information System (INIS)

    During the Mercury flyby of Mariner 10, observations of large fluxes of energetic electrons (E less than 0.3 MeV) and protons (0.53 greater than E greater than 1.9 MeV) have been reported by Simpson et al. (1974a). The reported simultaneous enhancements of protons and electrons in the magnetic field of Mercury have raised some perplexing planetology questions. It is shown here that the response of the proton detector in the Mariner 10 experiment is most plausibly attributable to the pileup of low-energy electrons rather than the presence of protons in the vicinity of Mercury. Further, the reported lower-limit electron differential spectrum exponent of γ less than or equal to 9 and the 300-keV electron fluxes are probably in quantitative error, especially where the count rates are highest. It is concluded that no ''new'' acceleration mechanism has been identified at Mercury

  6. Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory

    OpenAIRE

    Frigstad, H.; Henson, S. A.; Hartman, S. E.; A. M. Omar; E. Jeansson; Cole, H.; Pebody, C.; Lampitt, R. S.

    2015-01-01

    In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m−2 day−1. The average monthly drawdowns of inorganic carbon and nitrogen were used to...

  7. Sedimentation at the permanently ice-covered Greenland continental shelf (74°57.7‧N/12°58.7‧W): significance of biogenic and lithogenic particles in particulate matter flux

    Science.gov (United States)

    Bauerfeind, Eduard; Leipe, Thomas; Ramseier, Rene O.

    2005-05-01

    Particle flux was recorded at the Greenland continental shelf at a water depth of 245 m from July 1994 to August 1995. The annual total matter flux amounted to 51.8 g m -2. Of this total flux, 14.4 g m -2 could be ascribed to carbonate (CaCO 3) and 3.05 and 2.06 g m -2 to refractory particulate organic carbon (rPOC) and biological silica (bPSI), respectively. About the same contribution of biogenic (48%) and lithogenic (52%) matter to total flux was measured during the mooring period. However, when split up into seasons, biogenic matter predominated during the summer (May-September) (58%) and particles of lithogenic origin prevailed in winter (October-April) 73%. Within the recognizable biogenic fraction, diatoms ( Fragilaropsis sp., Chaetoceros sp.) predominated. Ice-related material certainly also contributed to vertical particle flux in July-September, as indicated by the occurrence of ice-associated algae, i.e. Melosira arctica, in the samples. The δ15N signature of the particulate matter indicated a substantial contribution of freshly produced organic matter to the sedimented particle pool during the times of elevated bPSi and diatom flux. Clay minerals dominated within the lithogenic fraction year round (66%), with illite being the most prominent mineral (50%) followed by chlorite (27%), smectite (12%) and kaolinite (7%). Significantly larger (71%) contributions of clay minerals on lithogenic matter flux were noticed during summer than in winter (53%). No clear distinction of the possible origin of the lithogenic matter (released lithogenic matter during this period. We conclude that the simultaneous occurrence of biogenic and lithogenic matters in the water column favored sedimentation due to the formation of organic-mineral aggregates during the period of ice melt and summer. During winter on the other hand, when highest current velocities were measured over the shelf, lithogenic matter in the trap samples may predominantly have originated from

  8. SPECTRUM - a computer algorithm to derive the flux-energy spectrum of precipitating particles from EISCAT electron density profiles

    International Nuclear Information System (INIS)

    Three major improvements are included. First the new algorithm includes the time rate of change of ionisation. This can be measured on a time scale of a few seconds with the EISCAT radar during auroral precipitation. Second, the fixed energies of the incident electron beams assumed in the UNTANGLE program are replaced by energies which are calculated according to the altitudes at which measurements are made. Thus the energy resolution and energy interval included in the derived spectra are determined in a physically reasonable way by the altitude resolution and the altitude interval of the electron density measurements. Third, the equations relating the incident fluxes at each energy to the electron density at each altitude are written in matrix form which allows them to be solved using standard numerical algorithms. A possibility to fit proton fluxes rather than electron fluxes is also included. A companion program (PROFILE) which calculates ionisation rate or equilibrium electron density profiles for user-defined monoenergetic or Maxwellian particle precipitation has also been developed. (author)

  9. Direct comparison of {sup 210}Po, {sup 234}Th and POC particle-size distributions and export fluxes at the Bermuda Atlantic Time-series Study (BATS) site

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gillian, E-mail: gstewart@qc.cuny.ed [Queens College, CUNY Flushing, NY 11367 (United States); Moran, S. Bradley, E-mail: moran@gso.uri.ed [Graduate School of Oceanography, URI Narragansett, RI 02882 (United States); Lomas, Michael W., E-mail: Michael.Lomas@bios.ed [Bermuda Institute for Ocean Sciences, St. George' s, GE01 (Bermuda); Kelly, Roger P., E-mail: rokelly@gso.uri.ed [Graduate School of Oceanography, URI Narragansett, RI 02882 (United States)

    2011-05-15

    Particle-reactive, naturally occurring radionuclides are useful tracers of the sinking flux of organic matter from the surface to the deep ocean. Since the Joint Global Ocean Flux Study (JGOFS) began in 1987, the disequilibrium between {sup 234}Th and its parent {sup 238}U has become widely used as a technique to measure particle export fluxes from surface ocean waters. Another radionuclide pair, {sup 210}Po and {sup 210}Pb, can be used for the same purpose but has not been as widely adopted due to difficulty with accurately constraining the {sup 210}Po/{sup 210}Pb radiochemical balance in the ocean and because of the more time-consuming radiochemical procedures. Direct comparison of particle flux estimated in different ocean regions using these short-lived radionuclides is important in evaluating their utility and accuracy as tracers of particle flux. In this paper, we present paired {sup 234}Th/{sup 238}U and {sup 210}Po/{sup 210}Pb data from oligotrophic surface waters of the subtropical Northwest Atlantic and discuss their advantages and limitations. Vertical profiles of total and particle size-fractionated {sup 210}Po and {sup 234}Th activities, together with particulate organic carbon (POC) concentrations, were measured during three seasons at the Bermuda Atlantic Time-series Study (BATS) site. Both {sup 210}Po and {sup 234}Th reasonably predict sinking POC flux caught in sediment traps, and each tracer provides unique information about the magnitude and efficiency of the ocean's biological pump.

  10. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    Science.gov (United States)

    Nieto-Pérez, Martin

    2008-04-01

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles.

  11. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    International Nuclear Information System (INIS)

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles

  12. Microscopic Deformation of Tungsten Surfaces by High Energy and High Flux Helium/Hydrogen Particle Bombardment with Short Pulses

    Science.gov (United States)

    Tokitani, Masayuki; Yoshida, Naoaki; Tokunaga, Kazutoshi; Sakakita, Hajime; Kiyama, Satoru; Koguchi, Haruhisa; Hirano, Yoichi; Masuzaki, Suguru

    The neutral beam injection facility in the National Institute of Advanced Industrial Science and Technology was used to irradiate a polycrystalline tungsten specimen with high energy and high flux helium and hydrogen particles. The incidence energy and flux of the beam shot were 25 keV and 8.8 × 1022 particles/m2 s, respectively. The duration of each shot was approximately 30 ms, with 6 min intervals between each shot. Surface temperatures over 1800 K were attained. In the two cases of helium irradiation, total fluence of either 1.5 × 1022 He/m2 or 4.0 × 1022 He/m2 was selected. In the former case, large sized blisters with diameter of 500 nm were densely observed. While, the latter case, the blisters were disappeared and fine nanobranch structures appeared instead. Cross-sectional observations using a transmission electron microscope (TEM) with the focused ion beam (FIB) technique were performed. According to the TEM image, after irradiation with a beam shot of total fluence 4.0 × 1022 He/m2 , there were very dense fine helium bubbles in the tungsten of sizes 1-50 nm. As the helium bubbles grew the density of the tungsten matrix drastically decreased as a result of void swelling. These effects were not seen in hydrogen irradiation case.

  13. Annual CO2 and CH4 fluxes of pristine boreal mires as a background for the lifecycle analyses of peat energy

    International Nuclear Information System (INIS)

    This study was conducted to improve the estimates of C gas fluxes in boreal ombrotrophic and minerotrophic mires used in the lifecycle analysis of peat energy. We reviewed literature and collected field data from two new sites in southern Finland. In the literature, annual estimates of net CO2 exchange varied from -85 to +67 g C m-2a-1for ombrotrophic mires and from -101 to +98 g C m-2a-1for minerotrophic mires. Correspondingly, net CH4 flux estimates varied from less than -1 up to -16 g C m-2a-1and from less than -1 up to -42 g C m-2a-1for ombrotrophic and minerotrophic mires, respectively. Negative values indicate net efflux from the ecosystem. The modelling of C gas fluxes for the 30 simulated years clearly highlighted the need for long-term records of multiple environmental factors from the same sites, and the need for a number of improvements in the modelling of fluxes, as well as the environmental conditions driving C fluxes. The reduction of uncertainty in the background values of lifecycle analyses requires more detailed knowledge of the mire types used for peat harvesting and long-term field measurements combined with the developed process models and meteorological information. The use of C gas fluxes in pristine mires as a background for anthropogenic emissions is, however, only one option. Another option could be to consider anthropogenic emissions from the use of peat energy as such. (orig.)

  14. The particle fluxes in the edge plasma during discharges with improved ohmic confinement in ASDEX

    International Nuclear Information System (INIS)

    In the regime of Improved Ohmic Confinement (IOC) in ASDEX the energy confinement time τE increases linearly with increasing line-averaged density n-bare up to the density limit. The establishment of the IOC is accompanied by a substantial reduction of the external gas feed, concomitant with large decreases of all plasma edge fluxes. However, the data do not supply conclusive evidence that the IOC is primarily connected with the recycling conditions. More recent observations with very clean machine conditions seem to indicate that the impurity radiation plays a significant role. (author)

  15. Importance of particle formation to reconstructed water column biogenic silica fluxes

    NARCIS (Netherlands)

    Moriceau, B.; Gallinari, M.; Soetaert, K.E.R.; Ragueneau, O.

    2007-01-01

    The particles sinking out of the ocean's surface layer are made up of a mixture of living and dead algal cells, fecal pellets, and aggregates, while the parameters used to describe the behavior of biogenic silica (bSiO2) in today's models are experimentally determined on freely suspended diatoms (FC

  16. Neutron flux density and secondary-particle energy spectra at the 184-inch synchrocyclotron medical facility

    International Nuclear Information System (INIS)

    Helium ions, with an energy of 920 MeV, produced by the 184-inch synchrocyclotron of the Lawrence Berkeley Laboratory are now being used in a pilot series to determine their efficacy in the treatment of tumors of large volume. The techniques for production of the large uniform radiation fields required for these treatments involve the use of beam-limiting collimators and energy degraders. Interaction of the primary beam with these beam components produces secondary charged particles and neutrons. The sources of neutron production in the beam transport system of the alpha-particle beam have been identified and their magnitudes have been determined. Measurements with activation detectors and pulse counters of differing energy responses have been used to determine secondary particle spectra at various locations on the patient table. These spectra are compared to a calculation of neutron production based on best estimates derived from published cross sections. Agreement between the calculated spectra and those derived from experimental measurements is obtained (at the 10 to 20% level) when the presence of charged particles is taken into account. The adsorbed dose in soft tissue is not very sensitive to the shape of the incident neutron energy spectrum, and the values obtained from unfolding the experimental measurements agree with the values obtained from the calculated spectra within the estimated uncertainty of +-25%. These values are about 3 x 10-3 rad on the beam axis and about 1 x 10-3 rad at 20 cm or more from the beam axis, per rad deposited by the incident alpha-particle beam. Estimates of upper limit dose to the lens of the eye and red bone marrow are approximately 10 rad and approximately 1 rad, respectively, for a typical treatment plan. The absorbed dose to the lens of the eye is thus well below the threshold value for cataractogenesis estimated for fission neutrons. An upper limit for the risk of leukemia is estimated to be approximately 0.04%

  17. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. I. NEUTRAL RETURN FLUX AND ITS EFFECTS ON ACCELERATION OF TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, P.; Morlino, G.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States)

    2012-08-20

    A collisionless shock may be strongly modified by the presence of neutral atoms through the processes of charge exchange between ions and neutrals and ionization of the latter. These two processes lead to exchange of energy and momentum between charged and neutral particles both upstream and downstream of the shock. In particular, neutrals that suffer a charge exchange downstream with shock-heated ions generate high-velocity neutrals that have a finite probability of returning upstream. These neutrals might then deposit heat in the upstream plasma through ionization and charge exchange, thereby reducing the fluid Mach number. A consequence of this phenomenon, which we refer to as the neutral return flux, is a reduction of the shock compression factor and the formation of a shock precursor upstream. The scale length of the precursor is determined by the ionization and charge-exchange interaction lengths of fast neutrals moving toward upstream infinity. In the case of a shock propagating in the interstellar medium, the effects of ion-neutral interactions are especially important for shock velocities <3000 km s{sup -1}. Such propagation velocities are common among shocks associated with supernova remnants, the primary candidate sources for the acceleration of Galactic cosmic rays. We then investigate the effects of the return flux of neutrals on the spectrum of test particles accelerated at the shock. We find that, for shocks slower than {approx}3000 km s{sup -1}, the particle energy spectrum steepens appreciably with respect to the naive expectation for a strong shock, namely, {proportional_to}E{sup -2}.

  18. Flux pinning properties of YBCO films with nano-particles by TFA-MOD method

    Science.gov (United States)

    Masuda, Y.; Teranishi, R.; Matsuyama, M.; Yamada, K.; Kiss, T.; Munetoh, S.; Yoshizumi, M.; Izumi, T.

    Nano-particles were doped into YBCO films as pinning centers by a metal organic deposition (MOD) method using trifluoroacetates. Two types of initial solution with a cation ratio of Y: Ba: Cu = 1: 1.5: 3 were prepared; one with the dispersion of SnO2 particles with the size of 15-25 nm and the other one with the dispersion of smaller ZrO2 particles with the size of under 8 nm, then the solution was spin-coated on CeO2/Gd2Zr2O7/Hastelloy substrates. The coated films were calcined at 430 °C in oxygen atmosphere and crystallized at 780 °C in low oxygen atmosphere. From the results of X-ray diffraction analysis (XRD), peaks of BaSnO3 were observed clearly in the YBCO film by the starting solution with SnO2. On the other hands, little peaks corresponding to BaZrO3 were observed in the film by the solution with ZrO2. Many CuO segregations were recognized at the surface of SnO2 doped YBCO film in comparison to the YBCO film with ZrO2 doping. From these results, it is indicated that most of SnO2 particles in precursors are react with Ba during heating. Critical current density (JC) of the YBCO films by both solutions showed higher performance than that of pure YBCO film in magnetic fields.

  19. Bimodal Electron Fluxes of Nearly Relativistic Electrons during the Onset of Solar Particle Events: 1. Observations

    OpenAIRE

    Sun, Lingpeng; Kartavykh, Yulia; Klecker, Berndt; Krucker, Saem; Droege, Wolfgang

    2010-01-01

    We report for several solar energetic particle events intensity and anisotropy measurements of energetic electrons in the energy range ~ 27 to ~ 500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PAD), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn - noon ...

  20. Influence of neutron flux, frequency and temperature to electrical impedance of nano silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin, E-mail: hus.elchin@yahoo.com, E-mail: hus.elchin@gmail.com; Garibov, Adil; Mehdiyeva, Ravan [Institute of Radiation Problems of Azerbaijan National Academy of Sciences, AZ 1143, B.Vahabzadeh 9, Baku (Azerbaijan); Andreja, Eršte, E-mail: andreja.erste@ijs.si [Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana Slovenia (Slovenia); Rustamov, Anar, E-mail: a.rustamov@cern.ch [Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2014-11-15

    We studied electric impedance of SiO{sub 2} nanomaterial at its initial state and after being exposed to continuous neutron irradiation for up to 20 hours. In doing so we employed a flux of neutrons of 2x10{sup 13} n⋅cm{sup −2}s{sup −1} while the frequency and temperature ranges amounted to 0,09 – 2.3 MHz and 100 – 400 K correspondingly. Analysis in terms of the Cole-Cole expression revealed that with increasing irradiation period the polarization and relaxation times decrease as a result of combination of nanoparticles. Moreover, it is demonstrated that the electric conductivity of samples, on the other hand, increases with the increasing irradiation period. At low temperatures formations of clusters at three distinct states with different energies were resolved.

  1. Characterization of the inter-annual, seasonal, and diurnal variations of condensation particle concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2011-07-01

    Full Text Available Continuous condensation particle (CP observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 cm−3 showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 103 cm−3 in March. Minimum values below 102 cm−3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM or Southern Ocean Index (SOI. The impact of the Pinatubo volcanic eruption and strong El Niño events did not affect CP concentrations. From thermodenuder experiments we deduced that the portion of volatile (at 125 °C and semi-volatile (at 250 °C particles which could be both associated with biogenic sulfur aerosol, was maximum during austral summer, while during winter non-volatile sea salt particles dominated. During September through April we could frequently detect nucleation events which occurred preferentially in the afternoon. Over the year, roughly 20 % of the particles could be assigned to the nucleation mode between 3 nm and 7 nm particle diameter.

  2. Characterization of the inter-annual, seasonal, and diurnal variations of condensation particle concentrations at Neumayer, Antarctica

    OpenAIRE

    Weller, R; A. Minikin; Wagenbach, D.; Dreiling, V.

    2011-01-01

    Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 cm−3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 103 cm−3 in March. Minimum values below 10&...

  3. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    Science.gov (United States)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; McEntire, R. W.; Iijima, T.

    1992-12-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  4. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. C. Honda

    2013-06-01

    Full Text Available At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1 accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs derived from the FNPP1 accident was detected in sinking particles collected at 500 m in late March 2011 and at 4810 m in early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 22 to 71 m day−1 between the surface and 500 m and >180 m day−1 between 500 m and 4810 m. 137Cs concentrations varied from 0.14 to 0.25 Bq g−1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs inventory by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m−2 at both depths. Compared with 137Cs input from both stations by April 2011, estimated from the surface 137Cs concentration and mixed-layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer was 0.3 to 1.5% yr−1 (68 to 312 yr. The estimated removal rates and residence times are comparable to previously reported values after the Chernobyl accident (removal rate: 0.2–1%, residence time: 130–390 yr.

  5. Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    H. Korth

    2008-06-01

    Full Text Available The response of the polar ionosphere–thermosphere (I-T system to electromagnetic (EM energy input is fundamentally different to that from particle precipitation. To understand the I-T response to polar energy input one must know the intensities and spatial distributions of both EM and precipitation energy deposition. Moreover, since individual events typically display behavior different from statistical models, it is important to observe the global system state for specific events. We present an analysis of an event in Northern Hemisphere winter for sustained southward interplanetary magnetic field (IMF, 10 January 2002, 10:00–12:00 UT, for which excellent observations are available from the constellation of Iridium satellites, the SuperDARN radar network, and the Far-Ultraviolet (FUV instrument on the IMAGE satellite. Using data from these assets we determine the EM and particle precipitation energy fluxes to the Northern Hemisphere poleward of 60° MLAT and examine their spatial distributions and intensities. The accuracy of the global estimates are assessed quantitatively using comparisons with in-situ observations by DMSP along two orbit planes. While the location of EM power input evaluated from Iridium and SuperDARN data is in good agreement with DMSP, the magnitude estimated from DMSP observations is approximately four times larger. Corrected for this underestimate, the total EM power input to the Northern Hemisphere is 188 GW. Comparison of IMAGE FUV-derived distributions of the particle energy flux with DMSP plasma data indicates that the IMAGE FUV results similarly locate the precipitation accurately while underestimating the precipitation input somewhat. The total particle input is estimated to be 20 GW, nearly a factor of ten lower than the EM input. We therefore expect the thermosphere response to be determined primarily by the EM input even under winter conditions, and accurate assessment of the EM energy input is therefore key

  6. Effects of solids with charged particles fluxes. Modern status of simulation investigation

    International Nuclear Information System (INIS)

    The data are presented on investigations carried out in Kharkov Institute of Physics and Technology (KIPT) during last years in the field of simulation and studies of radiation damage in materials with the use of accelerators of charged particles. Using irradiation with charged particle beams one could reproduce and examine practically all the known radiation effects and investigate physical nature of these effects in more details under well-controlled conditions. Simulation experiments together with results of reactor investigation contribute much to radiation physics phenomena, radiation and ion-beam technologies as well as to creation of low-activated materials with good radiation resistance. The advantages and disadvantages of simulation experiments in comparison with reactor tests are discussed. The using of new types of accelerators (of two and three beams) and of modern methods of research allows minimize the restrictions and disadvantages in the using of results of simulation experiments caused by low depth of damaged layer. Modern status of using accelerators demand by such main tasks: understanding of radiation damage mechanism of nuclear materials; achievement of better knowledge of the nature of point defects and interaction between them; set up the correlation between radiation-induced defects, structure phase evolution and material degradation mechanism; investigation of stability of systems which have nanoscale features. It is especially important for development and prediction of radiation behavior at high irradiation doses of nano-precipitates in ODS steels, which are the most pronounce materials for of next generation. (authors)

  7. Communication: Evaporation: Influence of heat transport in the liquid on the interface temperature and the particle flux.

    Science.gov (United States)

    Heinen, Matthias; Vrabec, Jadran; Fischer, Johann

    2016-08-28

    Molecular dynamics simulations are reported for the evaporation of a liquid into vacuum, where a Lennard-Jones type fluid with truncated and shifted potential at 2.5σ is considered. Vacuum is enforced locally by particle deletion and the liquid is thermostated in its bulk so that heat flows to the planar interface driving stationary evaporation. The length of the non-thermostated transition region between the bulk liquid and the interface Ln is under study. First, it is found for the reduced bulk liquid temperature Tl/Tc = 0.74 (Tc is the critical temperature) that by increasing Ln from 5.2σ to 208σ the interface temperature Ti drops by 17% and the evaporation flux decreases by a factor of 4.4. From a series of simulations for increasing values of Ln, an asymptotic value Ti (∞) of the interface temperature for Ln → ∞ can be estimated which is 21% lower than the bulk liquid temperature Tl. Second, it is found that the evaporation flux is solely determined by the interface temperature Ti, independent on Tl or Ln. Combining these two findings, the evaporation coefficient α of a liquid thermostated on a macroscopic scale is estimated to be α ≈ 0.14 for Tl/Tc = 0.74.

  8. Communication: Evaporation: Influence of heat transport in the liquid on the interface temperature and the particle flux.

    Science.gov (United States)

    Heinen, Matthias; Vrabec, Jadran; Fischer, Johann

    2016-08-28

    Molecular dynamics simulations are reported for the evaporation of a liquid into vacuum, where a Lennard-Jones type fluid with truncated and shifted potential at 2.5σ is considered. Vacuum is enforced locally by particle deletion and the liquid is thermostated in its bulk so that heat flows to the planar interface driving stationary evaporation. The length of the non-thermostated transition region between the bulk liquid and the interface Ln is under study. First, it is found for the reduced bulk liquid temperature Tl/Tc = 0.74 (Tc is the critical temperature) that by increasing Ln from 5.2σ to 208σ the interface temperature Ti drops by 17% and the evaporation flux decreases by a factor of 4.4. From a series of simulations for increasing values of Ln, an asymptotic value Ti (∞) of the interface temperature for Ln → ∞ can be estimated which is 21% lower than the bulk liquid temperature Tl. Second, it is found that the evaporation flux is solely determined by the interface temperature Ti, independent on Tl or Ln. Combining these two findings, the evaporation coefficient α of a liquid thermostated on a macroscopic scale is estimated to be α ≈ 0.14 for Tl/Tc = 0.74. PMID:27586895

  9. Contribution of winter fluxes to the annual CH4, CO2 and N2O emissions from freshwater marshes in the Sanjiang Plain

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Wetlands at the interface of the terrestrial and aquatic ecosystems are intensive sites for mineralization of organic matter,but the contribution of winter season fluxes of CH4, CO2 and N2O from wetland ecosystems to annual budgets is poorly known. By using the static opaque chamber and GC techniques, fluxes of CH4, CO2 and N2O at two freshwater marshes in the Sanjiang Plain were measured during the winter seasons of 2002/2003 and 2003/2004 with contrasting snow conditions and flooding regimes. The results showed that there were significant interannual and spatial differences in CH4, CO2 and N2O fluxes. The Carex lasiocarpa marsh emitted more CH4 and CO2 while absorbed less N2O than the Deyeuxia angustifolia marsh during the winter seasons. Over the winter season,emissions of CH4, CO2 and N2O ranged from 0.42 to 2.41 gC/m2, from 24.13 to 50.16 gC/m2, and from -25.20 to -148.96 mgN/m2,respectively. The contributions of winter season CH4 and CO2 emission to the annual budgets were 2.32%-4.62% and 22.17%-27.97%, respectively. Marshes uptake N2O during the freezing period, while release N2O during the thawing period. The winter uptake equaled to 13.70%-86.69% of the growing-season loss. We conclude that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets and cannot be ignored in a cool temperate freshwater marsh in Northeast China.

  10. Bimodal Electron Fluxes of Nearly Relativistic Electrons during the Onset of Solar Particle Events: 1. Observations

    CERN Document Server

    Sun, Lingpeng; Klecker, Berndt; Krucker, Saem; Droege, Wolfgang

    2010-01-01

    We report for several solar energetic particle events intensity and anisotropy measurements of energetic electrons in the energy range ~ 27 to ~ 500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PAD), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn - noon sector, at distances of ~ 40 to ~ 70 Earth radii away from the Earth, and magnetically well connected to the quasi-parallel bow shock, whereas ACE, located at the libration point L1, was not connected to the bow shock. The electron intensity-time profiles and energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations rather suggest that the bi-modal electron PADs are due to reflection or scattering at an obstacle located at a distance of less than ~ 150 Earth r...

  11. The particle fluxes in the edge plasma during discharges with improved ohmic confinement in ASDEX

    International Nuclear Information System (INIS)

    In the recent experimental period of ASDEX a new regime of improved ohmic confinement (IOC) was discovered. So far the energy confinement time τE increased linearly with increasing line averaged density ne up to ne = 3·1013 cm-3 saturated, however, at higher densities. In the new IOC regime τE increases further with increasing ne up to ∼5·1013 cm-3. The IOC regime is achieved for D2 discharges only since the last modification of the ASDEX divertor which substantially increased the recycling from the divertor through the divertor slits. It also led to a reduction in gas consumption for a discharge by a factor of about 2. As it appears, the high fuelling rate required during a fast ramp-up of the plasma density leads to a transition into the Saturated Ohmic Confinememt (SOC) regime. Vice versa, the strong reduction in the external gas feed when the preprogrammed density plateau is reached seems to be essential for establishing the IOC. It is characterized by a pronounced peaking of the density profile. During the transition from the SOC to the IOC regime large variations in the signals of all edge and divertor related diagnostics are observed. In this paper we concentrate on the results of the Low Energy Neutral Particle Analyser (LENA), the sniffer probe, on the mass spectrometers measuring the divertor exhaust pressure. (author) 7 refs., 2 figs

  12. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera

    OpenAIRE

    Ruiz-Halpern, Sergio; Vaquer-Sunyer, Raquel; Duarte, Carlos M.

    2014-01-01

    Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport, and fate of organic carbon (OC) is relevant to gain a better understanding on the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated OC fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the OC pool and associated fluxes in this ecosyst...

  13. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  14. Bimodal fluxes of near-relativistic electrons during the onset of solar particle events

    Science.gov (United States)

    Kartavykh, Y. Y.; Dröge, W.; Klecker, B.

    2013-07-01

    We report for several solar energetic particle events (SEPs) intensity and anisotropy measurements of energetic electrons in the energy range ˜27 to ˜500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PADs), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn-noon sector, at distances of ˜40 to ˜70REfrom the Earth, and magnetically well connected to the quasi-parallel bow shock, whereas ACE, located at the libration point L1, was not connected to the bow shock. The electron intensity-time profiles and energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations rather suggest that the bimodal electron PADs are due to reflection or scattering at an obstacle located at a distance of less than ˜150RE in the antisunward direction, compatible with the bow shock or magnetosheath of the magnetosphere of the Earth. For a modeling of the observations, we have performed transport simulations which include the effects of pitch angle diffusion, adiabatic focusing, and reflection at a boundary close to the point of observation. The results of the simulations demonstrate that the bimodal PADs are compatible with the reflection of electrons at a nearby boundary, at distances of ˜70RE. This finding is supported by the orbital configuration and the magnetic field direction: Whereas ACE is not connected, Wind is well connected to the magnetosphere of the Earth.

  15. Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Directory of Open Access Journals (Sweden)

    T. Asikainen

    2005-09-01

    Full Text Available In this paper we study the fluxes of energetic protons (30–4000 keV and electrons (20–400 keV in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons or ten (electrons times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF and internal (geomagnetic conditions. The energetic proton fluxes (but not electron fluxes in the cusp behave differently at low and high energies. At low energies (<70 keV, the fluxes increase strongly with the magnitude of IMF By. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the Kp and AE indices. The electron fluxes in HLPS depend both on the <Kp index and the solar wind speed. In the cusp the electron fluxes mainly depend on the solar wind speed, and are higher for northward than southward IMF. These results give strong evidence in favour of the idea that the

  16. Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: Millimetric particle flux at comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Hirn, Attila; Albin, Thomas; Apáthy, István; Della Corte, Vincenzo; Fischer, Hans-Herbert; Flandes, Alberto; Loose, Alexander; Péter, Attila; Seidensticker, Klaus J.; Krüger, Harald

    2016-06-01

    Context. The Philae lander of the Rosetta mission, aimed at the in situ investigation of comet 67P/Churyumov-Gerasimenko, was deployed to the surface of the comet nucleus on 12 November 2014 at 2.99 AU heliocentric distance. The Dust Impact Monitor (DIM) as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) on the lander employed piezoelectric detectors to detect the submillimetre- and millimetre-sized dust and ice particles emitted from the nucleus. Aims: We determine the upper limit of the ambient flux of particles in the measurement range of DIM based on the measurements performed with the instrument during Philae's descent to its nominal landing site Agilkia at distances of about 22 km, 18 km, and 5 km from the nucleus barycentre and at the final landing site Abydos. Methods: The geometric factor of the DIM sensor was calculated assuming an isotropic ambient flux of the submillimetre- and millimetre-sized particles. For the measurement intervals when no particles were detected the maximum true impact rate was calculated by assuming Poisson distribution of the impacts, and it was given as the detection limit at a 95% confidence level. The shading by the comet environment at Abydos was estimated by simulating the pattern of illumination on Philae and consequently the topography around the lander. Results: Based on measurements performed with DIM, the upper limit of the flux of particles in the measurement range of the instrument was of the order of 10-8-10-7 m-2 s-1 sr-1 during descent. The upper limit of the ambient flux of the submillimetre- and millimetre-sized dust and ice particles at Abydos was estimated to be 1.6 × 10-9 m-2 s-1 sr-1 on 13 and 14 November 2014. A correction factor of roughly 1/3 for the field of view of the sensors was calculated based on an analysis of the pattern of illumination on Philae. Conclusions: Considering particle speeds below escape velocity, the upper limit for the volume density of particles in

  17. The role of climate and human changes on inter-annual variation in stream nitrate fluxes and concentrations

    Science.gov (United States)

    Philippe, M.; Gascuel, C.; Pierre, A.; Patrick, D.; Laurent, R.; Jérome, M.

    2010-12-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 years variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records (30-40 years) of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. (Figure : Discharge, nitrate concentrations and fluxes in the Aulne river from 1973 to 2007.)

  18. Design optimization of radial flux permanent magnetwind generator for highest annual energy input and lower magnet volumes

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Rajabi-Sebdani, M.; Ebrahimi, B. M. (Univ. of Tehran, Tehran (Iran)); Khan, M. A. (Univ. of Cape Town, Cape Town (South Africa))

    2008-07-01

    This paper presents a multi-objective optimization method to maximize annual energy input (AEI) and minimize permanent magnet (PM) volume in use. For this purpose, the analytical model of the machine is utilized. Effects of generator specifications on the annual energy input and PM volume are then investigated. Permanent magnet synchronous generator (PMSG) parameters and dimensions are then optimized using genetic algorithm incorporated with an appropriate objective function. The results show an enhancement in PMSG performance. Finally 2D time stepping finite element method (2D TSFE) is used to verify the analytical results. Comparison of the results validates the optimization method

  19. Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, Richard Howell [ORNL; Chen, Guangye [ORNL; Meitner, Steven J [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Owen, Larry W [ORNL

    2009-01-01

    Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n(e) >= 10(19)m(-3), T(e) = 4-10 eV, particle flux Gamma(p) > 10(23) m(-3) s(-1), and magnetic field strength |B| up to I T in the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10 - 26 MHz, and power levels up to similar to 100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.

  20. Multiobjective Design of Turbo Injection Mode for Axial Flux Motor in Plastic Injection Molding Machine by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Long Kuo

    2015-01-01

    Full Text Available This paper proposes a turbo injection mode (TIM for an axial flux motor to apply onto injection molding machine. Since the injection molding machine requires different speed and force parameters setting when finishing a complete injection process. The interleaved winding structure in the motor provides two different injection levels to provide enough injection forces. Two wye-wye windings are designed to switch two control modes conveniently. Wye-wye configuration is used to switch two force levels for the motor. When only one set of wye-winding is energized, field weakening function is achieved. Both of the torque and speed increase under field weakening operation. To achieve two control objectives for torque and speed of the motor, fuzzy based multiple performance characteristics index (MPCI with particle swarm optimization (PSO is used to find out the multiobjective optimal design solution. Both of the torque and speed are expected to be maximal at the same time. Three control factors are selected as studied factors: winding diameter, winding type, and air-gap. Experimental results show that both of the torque and speed increase under the optimal condition. This will provide enough large torque and speed to perform the turbo injection mode in injection process for the injection molding machine.

  1. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  2. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  4. sup(234) Th scavenging and particle export fluxes from the upper 100 m of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarin, M.M.; Rengarajan, R.; Ramaswamy, V.

    (238) U allows us to compute the vertical export flux of particulate sup(234) Th. The flux data for the upper 100 m show spatial variations with enhanced export fluxes centered around 22 degrees N 67 degrees E, a region characterized by higher rates...

  5. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2010-02-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m−2 s−1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  6. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Directory of Open Access Journals (Sweden)

    Z. Yao

    2014-06-01

    Full Text Available To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere–atmosphere exchanges of methane (CH4, nitrous oxide (N2O and carbon dioxide (CO2. The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN and GCRPS (GUN and GNN, solely chicken manure (GCM and combined urea and chicken manure applications (GUM for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN. The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of −1.33 Mg C ha−1 yr−1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80–11.02 Mg CO2-eq ha−1 yr−1 for the conventional paddy and 3.05–9.37 Mg CO2-eq ha−1 yr−1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS

  7. PREFACE: 14th Annual International Astrophysics Conference: Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond

    Science.gov (United States)

    Zank, G. P.

    2015-09-01

    The 14th Annual International Astrophysics Conference was held at the Sheraton Tampa Riverwalk Hotel, Tampa, Florida, USA, during the week of 19-24 April 2015. The meeting drew some 75 participants from all over the world, representing a wide range of interests and expertise in the energization of particles from the perspectives of theory, modelling and simulations, and observations. The theme of the meeting was "Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond." Energetic particles are ubiquitous to plasma environments, whether collisionless such as the supersonic solar wind, the magnetospheres of planets, the exospheres of nonmagnetized planets and comets, the heliospheric-local interstellar boundary regions, interstellar space and supernova remnant shocks, and stellar wind boundaries. Energetic particles are found too in more collisional regions such as in the solar corona, dense regions of the interstellar medium, accretion flows around stellar objects, to name a few. Particle acceleration occurs wherever plasma boundaries, magnetic and electric fields, and turbulence are present. The meeting addressed the linear and nonlinear physical processes underlying the variety of particle acceleration mechanisms, the role of particle acceleration in shaping different environments, and acceleration processes common to different regions. Both theory and observations were addressed with a view to encouraging crossdisciplinary fertilization of ideas, concepts, and techniques. The meeting addressed all aspects of particle acceleration in regions ranging from the Sun to the interplanetary medium to magnetospheres, exospheres, and comets, the boundaries of the heliosphere, and beyond to supernova remnant shocks, galactic jets, stellar winds, accretion flows, and more. The format of the meeting included 25-minute presentations punctuated by two 40-minute talks, one by Len Fisk that provided an historical overview of particle acceleration in the

  8. Mariner 4 - A study of the cumulative flux of dust particles over a heliocentric range of 1-1.56 AU 1964-1967

    Science.gov (United States)

    Alexander, W. M.; Bohn, J. L.

    1974-01-01

    Between December 1964 and December 1967, the Mariner 4 dust particle experiment obtained data concerning the distribution of minute zodiacal dust cloud particles over a heliocentric range of 1-1.56 AU. The first measurement was over the complete heliocentric range, while the two additional measurements were made between 1.1 and 1.25 AU in 1966, and between 1.2 and 1.5 AU in 1967. The initial results of these measurements presented the mean cumulative flux for the respective data periods. The results of a detailed study and comparison of the three measurements are presented, with particular emphasis on the variation of the flux as a function of heliocentric range. A small, but statistically significant, increase in the flux is observed between 1.15 and 1.4 AU. The initial reports showed a lower cumulative flux for the latter two measurements. However, a detailed analysis containing corrections for spacecraft attitude indicate that all three measurements yield similar results, and that the particles detected were in low inclination orbits.

  9. Long-term investigations of summertime chlorophyll a, particulate organic carbon and continuously observations of vertical particle flux in Fram Strait and the central Arctic Ocean

    Science.gov (United States)

    Nöthig, Eva-Maria; Bauerfeind, Eduard; Bracher, Astrid; Cherkasheva, Alexandra; Fahl, Kirsten; Lalande, Catherine; Metfies, Katja; Peeken, Ilka; Salter, Ian; Boetius, Antje; Soltwedel, Thomas

    2016-04-01

    The Arctic Ocean is one of the key regions where the effect of climate change is most pronounced due to massive reduction of sea ice volume and extent. Most of the sea ice is transported out of the Arctic Ocean with the cold East Greenland Current (EGC) in the western Fram Strait, while warm Atlantic water enters the Arctic Ocean with the West Spitsbergen Current (WSC) in the eastern Fram Strait. In this scenario we conducted several cruises to Fram Strait and the central Arctic Ocean (CAO) between 1991 and 2015 to monitor phytoplankton biomass, particulate organic carbon standing stocks during summer at discrete depth using water bottle samples, and the sedimentation of organic matter by means of moored sediment traps throughout the year. With our study we aim at tracing effects of environmental changes in the pelagic system and impacts on the fate of organic matter produced in the upper water column in a region that is anticipated to react rapidly to climate change. We will present data sets of phytoplankton biomass (chlorophyll a) and particulate organic carbon (POC) from the upper 100 m of the water column as well as results from vertical particle flux measurements with yearly deployed sediment traps at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN in eastern Fram Strait (79°/4°E) between 2000 and 2012 and from two locations in the CAO close to the Lomonosov Ridge (1995/96) and the Gakkel Ridge (2011/12). Analyses of the material collected by the sediment traps allowed us to track seasonal and inter-annual changes in the upper water column at HAUSGARTEN and in the CAO. Whereas chlorophyll a (integrated values 0 -100 m) showed only a slight increase in eastern Fram Strait, it stayed more or less constant in the CAO and western Fram Strait, with the exception of 2015 exhibiting less biomass during late summer in the CAO. Highest biomass was found in the eastern Fram Strait and lowest in the heavily ice-covered regions. POC distribution

  10. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2009-10-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method (AGM. The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m−2 s−1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  11. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  12. Particle flux at the outlet of an Ecr plasma source; Flujos de particulas a la salida de una fuente de plasma ECR

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Gonzalez D, J. [ININ, Departamento de Fisica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The necessity of processing big material areas this has resulted in the development of plasma sources with the important property to be uniform in these areas. Also the continuous diminution in the size of substrates to be processed have stimulated the study of models which allow to predict the control of energy and the density of the ions and neutral particles toward the substrate. On the other hand, there are other applications of the plasma sources where it is very necessary to understand the effects generated by the energetic fluxes of ions and neutrals. These fluxes as well as another beneficial effects can improve the activation energy for the formation and improvement of the diffusion processes in the different materials. In this work, using the drift kinetic approximation is described a model to calculate the azimuthal and radial fluxes in the zone of materials processing of an Ecr plasma source type. The results obtained are compared with experimental results. (Author)

  13. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile.

    Science.gov (United States)

    Shibata, Y; Manabe, T; Kajita, S; Ohno, N; Takagi, M; Tsuchiya, H; Morisaki, T

    2014-09-01

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ~4 × 10(19) m(-2) s(-1) when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  14. Study of Different Solar Cycle Variations of Solar Energetic Particles and Cosmic Rays by Despiking ACE/SIS Heavy-Ion Fluxes

    CERN Document Server

    Qin, G

    2013-01-01

    Cosmic Rays (CRs) include Galactic Cosmic Rays (GCRs) and Anomalous Cosmic Rays (ACRs). The CR flux data of protons and heavy-ions observed with spacecraft are often seriously contaminated by Solar Energetic Particle (SEP) events. In this work, we separate SEPs from CRs of ACE/SIS spacecraft observations with an automatic despiking algorithm, so we are able to study the different variations of SEPs and CRs over a solar cycle. In particular, we study the elemental ratio, first ionization potential dependence and elemental dependence, and information entropy of SEPs and CRs. So that we can gain new insights into energetic particles' different compositions, origins, and transport processes, etc.

  15. Research in elementary particle physics. Annual report, January 1--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  16. Nonlinear fluid simulation of particle and heat fluxes during burst of ELMs on DIII-D with BOUT++  code

    Science.gov (United States)

    Xia, T. Y.; Xu, X. Q.

    2015-09-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++  six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. The profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements are used as the initial conditions for the simulations. A flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient {αj} , free streaming model with {αj}=1 , sheath-limit with {αj}=0.05 , and one value in between. The studies show that a 20 times increase in {αj} leads to  ∼6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of {{n}\\text{e}} are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. The heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures near the X-point at LFS are both broadened and elongated due

  17. Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry

    Science.gov (United States)

    Lee, Hyunchang; Böhm, Benjamin; Sadiki, Amsini; Dreizler, Andreas

    2016-07-01

    Turbulent mixing is highly important in flows that involve heat and mass transfer. Information on turbulent heat flux is needed to validate the mixing models implemented in numerical simulations. The calculation of turbulent heat fluxes requires instantaneous information on temperature and velocity. Even using minimally intrusive laser optical methods, simultaneous measurement of temperature and velocity is still a challenge. In this study, thermographic phosphor particles are used for simultaneous thermometry and velocimetry: conventional particle image velocimetry is combined with temperature-dependent spectral shifts of BAM:Eu2+ phosphor particles upon UV excitation. The novelty of this approach is the analysis of systematic errors and verification using the well-known properties of a heated turbulent jet issuing into a low velocity, cold coflow. The analysis showed that systematic errors caused by laser fluence, multiple scattering, or preferential signal absorption can be reduced such that reliable measurement of scalar fluxes becomes feasible, which is a prerequisite for applying the method to more complex heat transfer problems.

  18. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  19. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  20. High energy particle physics at Purdue. Annual technical progress report, March 1980-March 1981

    International Nuclear Information System (INIS)

    Progress is reported in these areas: study of electron-positron annihilation using the High Resolution Spectrometer; proton decay experiment; a study of rare processes in meson spectroscopy using the SLAC Hybrid Bubble Chamber System; theory of fundamental problems in gravitational, electromagnetic, weak and strong interactions; experimental neutrino and antineutrino physics; chi production; development of a colliding beam detector; internal target experiment; and theory of elementary particles with an underlying basis of relativistic quantum field theory

  1. Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: Millimetric particle flux at comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Hirn, Attila; Apáthy, István; Della Corte, Vincenzo; Fischer, Hans-Herbert; Flandes, Alberto; Loose, Alexander; Péter, Attila; Seidensticker, Klaus J; Krüger, Harald

    2016-01-01

    The Philae lander of the Rosetta mission, aimed at the in situ investigation of comet 67P/C-G, was deployed to the surface of the comet nucleus on 12 Nov 2014 at 2.99 AU heliocentric distance. The Dust Impact Monitor (DIM) as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) on the lander employed piezoelectric detectors to detect the submillimetre- and millimetre-sized dust and ice particles emitted from the nucleus. We determine the upper limit of the ambient flux of particles in the measurement range of DIM based on the measurements performed with the instrument during Philae's descent to its nominal landing site Agilkia at distances of about 22 km, 18 km, and 5 km from the nucleus barycentre and at the final landing site Abydos. The geometric factor of the DIM sensor is calculated assuming an isotropic ambient flux of the submillimetre- and millimetre-sized particles. For the measurement intervals when no particles were detected the maximum true impact rate was calculated b...

  2. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  3. Particle deposition in human and canine tracheobronchial casts: Annual progress report

    International Nuclear Information System (INIS)

    This work measures deposition patterns and efficiencies of aerosols within realistic, physical models of the tracheobronchial airways of humans and experimental animals over a range of particle sizes from 0.01 to 1.0 μm, for a variety of respiratory modes and rates. Full morphometric and flow distribution measurements were completed on casts of human and canine tracheobronchial airways, which extend from just below the larynx to airways 1 mm in diameter. They show basic similarities in the distribution of airflow, but also species differences which must be considered. The distribution of airflow was measured for minute volumes equivalent to 6, 11, 17 and 22 L min-1 for the human and 3, 6, 8 and 11 L min-1 for the canine for both constant and pulsatile inspiratory flow. Inertance was found to carry more of the flow to airways of the lower lobes at higher flow rates. Basic differences in airway branching pattern result in a more distinct change in airflow distribution as flow rate changes for the canine cast as compared with the human cast. These differences will contribute to differing patterns of mass transfer of inhaled particles in central airways of the two species. 8 refs., 2 figs., 5 tabs

  4. Particle fluxes and their drivers in the Avilés submarine canyon and adjacent slope, central Cantabrian margin, Bay of Biscay

    Science.gov (United States)

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; González-Pola, C.; Lastras, G.; Calafat, A.; Canals, M.

    2016-05-01

    The Avilés Canyon in the central Cantabrian margin is one of the largest submarine canyons in Europe, extending from the shelf edge at 130 m depth to 4765 m depth in the Biscay abyssal plain. In this paper we present the results of a year-round (March 2012 to April 2013) study of particle fluxes in this canyon and the adjacent continental slope. Three mooring lines equipped with automated sequential sediment traps, high-accuracy conductivity-temperature recorders and current meters allowed measuring total mass fluxes and their major components (lithogenics, calcium carbonate, opal and organic matter) in the settling material jointly with a set of environmental parameters. The integrated analysis of the data obtained from the moorings together with remote sensing images and meteorological and hydrographical data has shed light on the sources of particles and the across- and along margin mechanisms involved in their transfer to the deep. Our results allow interpreting the dynamics of the sedimentary particles in the study area. Two factors play a critical role: (i) direct delivery of river-sourced material to the narrow continental shelf, and (ii) major resuspension events caused by large waves and near bottom currents developing at the occasion of the rather frequent severe storms that are typical of the Cantabrian Sea. Wind direction and subsequent wind-driven currents largely determine the way sedimentary particles reach the canyon. While westerly winds favour the injection of sediments into the Avilés Canyon mainly by building an offshore transport in the bottom Ekman layer, easterly winds ease the offshore advection of particulate matter towards the Avilés Canyon and its adjacent western slope principally through the surface Ekman layer. Furthermore, repeated cycles of semidiurnal tides add an extra amount of energy to the prevailing bottom currents and actively contribute to keep a permanent background of suspended particles in near-bottom waters. High

  5. Seasonal and Annual Variations of CO2 Fluxes in Rain-Fed Winter Wheat Agro-Ecosystem of Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    WANG Wen; LIAO Yun-cheng; GUO Qiang

    2013-01-01

    To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) gCm-2y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126. 2gCm-2yr-1). However, after considering the harvested grain, the agro-ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (Reco) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between Reco and soil temperature (Ts). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the Reco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily Reco, whereas the Reco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated Reco in summer fallow period decreased carbon fixed in growing season by 16-25%, indicating that the period imposed negative impacts on annual carbon sequestration.

  6. Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores.

    Science.gov (United States)

    Stern, G A; Braekevelt, E; Helm, P A; Bidleman, T F; Outridge, P M; Lockhart, W L; McNeeley, R; Rosenberg, B; Ikonomou, M G; Hamilton, P; Tomy, G T; Wilkinson, P

    2005-04-15

    Two annually laminated cores collected from Lake DV09 on Devon Island in May 1999 were dated using 210Pb and 137Cs, and analyzed for a variety of halogenated organic contaminants (HOCs), including polychlorinated biphenyls (PCBs), organochlorine pesticides, short-chain polychlorinated n-alkanes (sPCAs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). Dry weight HOC concentrations in Lake DV09 sediments were generally similar to other remote Arctic lakes. Maximum HOC fluxes often agreed well with production maxima, although many compound groups exhibited maxima at or near the sediment surface, much later than peak production. The lower than expected HOC concentrations in older sediment slices may be due to anaerobic degradation and possibly to dilution resulting from a temporary increase in sedimentation rate observed between the mid-1960s and 1970s. Indeed, temporal trends were more readily apparent for those compound classes when anaerobic metabolites were also analyzed, such as for DDT and toxaphene. However, it is postulated here for the first time that the maximum or increasing HOC surface fluxes observed for many of the major compound classes in DV09 sediments may be influenced by climate variation and the resulting increase in algal primary productivity which could drive an increasing rate of HOC scavenging from the water column. Both the fraction (F(TC)) and enantiomer fraction (EF) of trans-chlordane (TC) decreased significantly between 1957 and 1997, suggesting that recent inputs to the lake are from weathered chlordane sources. PCDD/Fs showed a change in sources from pentachlorophenol (PeCP) in the 1950s and 1960s to combustion sources into the 1990s. Improvements in combustion technology may be responsible for the reducing the proportion of TCDF relative to OCDD in the most recent slice. PMID:15866277

  7. Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores

    International Nuclear Information System (INIS)

    Two annually laminated cores collected from Lake DV09 on Devon Island in May 1999 were dated using 210Pb and 137Cs, and analyzed for a variety of halogenated organic contaminants (HOCs), including polychlorinated biphenyls (PCBs), organochlorine pesticides, short-chain polychlorinated n-alkanes (sPCAs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). Dry weight HOC concentrations in Lake DV09 sediments were generally similar to other remote Arctic lakes. Maximum HOC fluxes often agreed well with production maxima, although many compound groups exhibited maxima at or near the sediment surface, much later than peak production. The lower than expected HOC concentrations in older sediment slices may be due to anaerobic degradation and possibly to dilution resulting from a temporary increase in sedimentation rate observed between the mid-1960s and 1970s. Indeed, temporal trends were more readily apparent for those compound classes when anaerobic metabolites were also analyzed, such as for DDT and toxaphene. However, it is postulated here for the first time that the maximum or increasing HOC surface fluxes observed for many of the major compound classes in DV09 sediments may be influenced by climate variation and the resulting increase in algal primary productivity which could drive an increasing rate of HOC scavenging from the water column. Both the fraction (F TC) and enantiomer fraction (EF) of trans-chlordane (TC) decreased significantly between 1957 and 1997, suggesting that recent inputs to the lake are from weathered chlordane sources. PCDD/Fs showed a change in sources from pentachlorophenol (PeCP) in the 1950s and 1960s to combustion sources into the 1990s. Improvements in combustion technology may be responsible for the reducing the proportion of TCDF relative to OCDD in the most recent slice

  8. A charged spinless particle in scalar–vector harmonic oscillators with uniform magnetic and Aharonov–Bohm flux fields

    Directory of Open Access Journals (Sweden)

    Sameer M. Ikhdair

    2014-10-01

    Full Text Available The two-dimensional solution of the spinless Klein–Gordon (KG equation for scalar–vector harmonic oscillator potentials with and without the presence of constant perpendicular magnetic and Aharonov–Bohm (AB flux fields is studied within the asymptotic function analysis and Nikiforov–Uvarov (NU method. The exact energy eigenvalues and normalized wave functions are analytically obtained in terms of potential parameters, magnetic field strength, AB flux field and magnetic quantum number. The results obtained by using different Larmor frequencies are compared with the results in the absence of both magnetic field (ωL = 0 and AB flux field (ξ = 0 case. Effects of external fields on the non-relativistic energy eigenvalues and wave functions solutions are also precisely presented.

  9. Fundamental radiation effects in αAg-Zn alloys: Zener relaxation, study of the mobility of point defects and the evolution of their populations in a particle flux

    International Nuclear Information System (INIS)

    After a recall on the physical effects of radiations, a model used to describe the defect populations produced in a fast particle flux is presented. The experimental devices used and the measurements carried out on a solid solution of αAg-Zn are described. The results obtained in an electron flux are compared with the forecastings of the theoretical models. The mobility and the apparent recombination radius of vacancies and autointerstitials, the absorption efficiency of dislocations in regard to point defects and the participation of autointerstitials to short-range order are studied. A similar study carried out under neutron irradiation is reported. The influence of neutron doses and temperature on atomic mobility is investigated. An experiment carried out under gamma photon irradiation enables a comparison to be made between the creation of defects by gamma photons and electrons

  10. ELM simulation experiments on Pilot-PSI using simultaneous high flux plasma and transient heat/particle source

    NARCIS (Netherlands)

    De Temmerman, G.; Zielinski, J. J.; van Diepen, S.; Marot, L.; Price, M.

    2011-01-01

    A new experimental setup has been developed for edge localized mode (ELM) simulation experiments with relevant steady-state plasma conditions and transient heat/particle source. The setup is based on the Pilot-PSI linear plasma device and allows the superimposition of a transient heat/particle pulse

  11. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    Science.gov (United States)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  12. Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models

    Science.gov (United States)

    Duan, Q.; Li, J.; Wang, Y.

    2015-12-01

    Divergence among the predictions by different global land models has not decreased over the last three assessment reports by the International Panel on Climate Change. Quantification and attribution of the uncertainties of global land surface models are important for the next phase of model improvement and development, is therefore the focus of this study. There are three sources of model uncertainties: model inputs, parameter values and model structure. Here we focus on the errors in model parameters by comparing the differences between the simulated global gross primary productivity (GPP) and latent heat flux (LE) by two global land surface models and model-data products of global GPP and LE from 1982-2005. We found that the performance of simulated annual GPP or LE by both models is most sensitive to 2 to 9 model parameters screened out by Morris method for each plant functional type (PFT). Using ensemble simulations, we applied RS-HDMR method to verify the Morris sensitivity results, and implied that about 60% of the variances of model errors in some PFTs are attributed to the sensitive parameters. We selected the combination of key parameter values that minimized the monthly errors of GPP and LE for each. Our study shows that significant improvement of model predictions can be made through parameter optimization using observations.

  13. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    DEFF Research Database (Denmark)

    Hansen, Kristina; Sørensen, Lise Lotte; Hornsby, Karen E.;

    +. Therefore, the phase partitioning between gas and aerosol phases can have a significant effect on local budgets and atmospheric transport distances (Nemitz et al., Atmos. Chem. Phys., 2004). In this study, fluxes of NH3, HNO3 and carbon dioxide (CO2) along with size-resolved N-aerosol concentrations......Quantifying the atmosphere-biosphere exchange of reactive nitrogen gasses (including ammonia (NH3) and nitric acid (HNO3)) is crucial to assessing the impact of anthropogenic activities on natural and semi-natural ecosystems. However, measuring the deposition of reactive nitrogen is challenging due...... to bi-directionality of the flux, and the dynamics of the chemical gas/aerosol equilibrium of NH3 and HNO3 (or other atmospheric acids) with aerosol-phase ammonium (NH4+) and nitrate (NO3-). NH3 and HNO3 are both very reactive and typically exhibit higher deposition velocities than aerosol NH4...

  14. Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain (PAP) sustained observatory

    OpenAIRE

    Frigstad, H.; Henson, S. A.; Hartman, S. E.; A. M. Omar; E. Jeansson; Cole, H.; Pebody, C.; Lampitt, R. S.

    2015-01-01

    In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m−2 d−1. The average monthly drawdowns of inorganic carbon and ...

  15. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    Energy Technology Data Exchange (ETDEWEB)

    Nogrette, F.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Clément, D. [Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex (France); Heurteau, D.; Sellem, R. [Fédération de Recherche LUMAT (DTPI), CNRS, Univ. Paris-Sud, Institut d’Optique Graduate School, Univ. Paris-Saclay, F-91405 Orsay (France)

    2015-11-15

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  16. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    Science.gov (United States)

    Nogrette, F.; Heurteau, D.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Sellem, R.; Clément, D.

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 106 s-1 and three-dimensional reconstruction of the coordinates up to 3.2 × 106 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 105 particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  17. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux.

    Science.gov (United States)

    Nogrette, F; Heurteau, D; Chang, R; Bouton, Q; Westbrook, C I; Sellem, R; Clément, D

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10(6) s(-1) and three-dimensional reconstruction of the coordinates up to 3.2 × 10(6) particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10(5) particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  18. Flux and spectral variability of the blazar PKS 2155 -304 with XMM-Newton: Evidence of particle acceleration and synchrotron cooling

    Science.gov (United States)

    Bhagwan, Jai; Gupta, A. C.; Papadakis, I. E.; Wiita, Paul J.

    2016-04-01

    We have analyzed XMM-Newton observations of the high energy peaked blazar, PKS 2155 -304, made on 24 May 2002 in the 0.3-10 keV X-ray band. These observations display a mini-flare, a nearly constant flux period and a strong flux increase. We performed a time-resolved spectral study of the data, by dividing the data into eight segments. We fitted the data with a power-law and a broken power-law model, and in some of the segments we found a noticeable spectral flattening of the source's spectrum below 10 keV. We also performed "time-resolved" cross-correlation analyses and detected significant hard and soft lags (for the first time in a single observation of this source) during the first and last parts of the observation, respectively. Our analysis of the spectra, the variations of photon-index with flux as well as the correlation and lags between the harder and softer X-ray bands indicate that both the particle acceleration and synchrotron cooling processes make an important contribution to the emission from this blazar. The hard lags indicate a variable acceleration process. We also estimated the magnetic field value using the soft lags. The value of the magnetic field is consistent with the values derived from the broad-band SED modeling of this source.

  19. Flux and spectral variability of the blazar PKS 2155-304 with XMM-Newton: Evidence of Particle Acceleration and Synchrotron Cooling

    CERN Document Server

    Bhagwana, Jai; Papadakis, I E; Wiita, Paul J

    2016-01-01

    We have analyzed XMM-Newton observations of the high energy peaked blazar, PKS 2155-304, made on 24 May 2002 in the 0.3 - 10 keV X-ray band. These observations display a mini-flare, a nearly constant flux period and a strong flux increase. We performed a time-resolved spectral study of the data, by dividing the data into eight segments. We fitted the data with a power-law and a broken power-law model, and in some of the segments we found a noticeable spectral flattening of the source's spectrum below 10 keV. We also performed time-resolved cross-correlation analyses and detected significant hard and soft lags (for the first time in a single observation of this source) during the first and last parts of the observation, respectively. Our analysis of the spectra, the variations of photon-index with flux as well as the correlation and lags between the harder and softer X-ray bands indicate that both the particle acceleration and synchrotron cooling processes make an important contribution to the emission from th...

  20. Decadal changes in carbon fluxes at the East Siberian continental margin: interactions of ice cover, ocean productivity, particle sedimentation and benthic life

    Science.gov (United States)

    Boetius, A.; Bienhold, C.; Felden, J.; Fernandez Mendez, M.; Gusky, M.; Rossel, P. E.; Vedenin, A.; Wenzhoefer, F.

    2015-12-01

    The observed and predicted Climate-Carbon-Cryosphere interactions in the Arctic Ocean are likely to alter productivity and carbon fluxes of the Siberian continental margin and adjacent basins. Here, we compare field observations and samples obtained in the nineties, and recently in 2012 during the sea ice minimum, to assess decadal changes in the productivity, export and recycling of organic matter at the outer East Siberian margin. In the 90s, the Laptev Sea margin was still largely ice-covered throughout the year, and the samples and measurements obtained represent an ecological baseline against which current and future ecosystem shifts can be assessed. The POLARSTERN expedition IceArc (ARK-XXVII/3) returned in September 2012 to resample the same transects between 60 and 3400 m water depth as well as stations in the adjacent deep basins. Our results suggest that environmental changes in the past two decades, foremost sea ice thinning and retreat, have led to a substantial increase in phytodetritus sedimentation to the seafloor, especially at the lower margin and adjacent basins. This is reflected in increased benthic microbial activities, leading to higher carbon remineralization rates, especially deeper than 3000 m. Besides a relative increase in typical particle degrading bacterial types in surface sediments, bacterial community composition showed little variation between the two years, suggesting that local microbial communities can cope with changing food input. First assessments of faunal abundances suggest an increase in polychaetes,holothurians and bivalves at depth, which fits the prediction of higher productivity and particle deposition rates upon sea ice retreat. The presentation also discusses the controversial issue whether there is evidence for an Arctic-wide increase in carbon flux, or whether we are looking at a spatial shift of the productive marginal ice zone as the main factor to enhance carbon flux to the deep Siberian margin.

  1. Flux and accumulation of sedimentary particles off the continental slope of Pakistan: a comparison of water column and seafloor estimates from the oxygen minimum zone, NE Arabian Sea

    Directory of Open Access Journals (Sweden)

    H. Schulz

    2013-07-01

    Full Text Available Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps, 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m−2 d−1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m−2 d−1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction. However, the high winter flux events (HFE by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden

  2. Escaping particle fluxes in the atmospheres of close-in exoplanets. ii. reduced mass loss rates and anisotropic winds

    CERN Document Server

    Guo, J H

    2013-01-01

    We constructed a multi-fluid two-dimensional hydrodynamic model with detailed radiative transfer to depict the escape of particles. We found that the tidal forces supply significant accelerations and result in anisotropic winds. An important effect of the tidal forces is that it severely depresses the outflow of particles near the polar regions. As a consequence, most particles escape the surface of the planet from the regions of low-latitude. Comparing the tidal and non-tidal locking cases, we found that their optical depths are very different so that the flows also emerge with a different pattern. In the case of the non-tidal locking, the radial velocities at the base of the wind are higher than the meridional velocities. However, in the case of tidal locking, the meridional velocities dominate the flow at the base of the wind, and they can transfer effectively mass and energy from the day sides to the night sides. Further, we also found that the differences of the winds show middle extent at large radii. I...

  3. Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    CERN Document Server

    Lashkul, S; Altukhov, A B; Gurchenko, A D; Gusakov, E; Dyachenko, V; Esipov, L A; Kantor, M; Kouprienko, D; Stepanov, A; Sharpeonok, A; Vekshina, E; Lashkul, Sergei; Shatalin, Sergei; Altukhov, Alexei; Gurchenko, Alexei; Gusakov, Evgenii; Dyachenko, Valerii; Esipov, Lev; Kantor, Mihail; Kouprienko, Denis; Stepanov, Alexsandr; Sharpeonok, Andrei; Vekshina, Elena

    2004-01-01

    This paper deals with the new spectral and microturbulence experimental data and their analysis, which show, that the radial electric field Er generated at the LH heating (LHH) in the FT-2 is high enough to form the transport barriers. The ETB is formed when LHH is switched off. The radial fluctuation-induced EB drift flux densities near LCFS in SOL are measured at two different poloidal angles. For this purpose two Langmuir probes located at low and high field sides of the torus are used. Registration of the poloidal and radial components of the electric field and density fluctuations at the same time during one discharge permits to measure the poloidal asymmetry of the transport reduction mechanism of the radial and poloidal particle fluxes in the SOL. The absolute E(~) fluctuation levels show dependence on the sign of Er shear. The modification of the microscale turbulence by the poloidal Er x B rotation shear EB at the L - H transition near LCFS is also stud...

  4. The Real-Time Data Analysis and Decision System for Particle Flux Detection in the LHC Accelerator at CERN.

    CERN Document Server

    Zamantzas, C; Dehning, B

    2006-01-01

    The superconducting Large Hadron Collider (LHC) under construction at the European Organisation for Nuclear Research (CERN) is an accelerator unprecedented in terms of beam energy, particle production rate and also in the potential of self-destruction. Its operation requires a large variety of instrumentation, not only for the control of the beams, but also for the protection of the complex hardware systems. The Beam Loss Monitoring (BLM) system has to prevent the superconducting magnets from becoming normal conducting and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. For its operation, the system requires 3600 detectors to be placed at various locations around the 27 km ring. The measurement system is sub-divided to the tunnel electronics, which are responsible for acquiring, digitising and transmitting the data, and the surface electronics, which receive the data via 2 km optical data links, process, analyze, store and issue warning...

  5. Development of pixel Micromegas detectors for high particle flux and diffractive processes' contribution to hadron leptoproduction at COMPASS

    International Nuclear Information System (INIS)

    This thesis is dedicated to the development and characterisation of a new generation of Micromegas (MICROMEsh Gaseous Structure) detectors for the COMPASS experiment at CERN, and the estimation of the diffractive processes' contribution to the production of pions and kaons, concerning the study of the quark fragmentation functions into hadrons at COMPASS. New Micromegas detectors with a 40 * 40 cm2 active area are being developed for the future physics program of the COMPASS experiment starting in 2015. These detectors will have to work in high muon and hadron flux (close to 8 MHz/cm2). In this context, a central area of about 5 cm diameter, crossed by the beam, will be composed of 1280 pixels, and discharge-reduction technologies will be used. Four prototypes with a final read-out geometry, using two different discharge-reduction technologies have been produced at CERN and studied in nominal conditions at COMPASS between 2010 and 2012. Three are hybrid detectors using a GEM (Gas Electron Multiplier) foil as a preamplification stage to reduce the discharge probability. The other is equipped with a so called 'buried resistors' resistive structure allowing to strongly reduce the discharge amplitude. Their performances are presented in this thesis. The impact of these results on the production and implementation of the final series of detectors is also discussed. Quark fragmentation functions into hadrons describe the hadronization of a quark of flavor q into a hadron h. These universal functions take part in the cross-section expression of several processes. They can be accessed at COMPASS via semi-inclusive deep inelastic scattering of muons off nucleons. The relevant observables for fragmentation function extraction are hadron multiplicities, corresponding to the mean number of hadrons produced per deep inelastic scattering event. Vector mesons produced by a diffractive process can decay into pions and kaons. As such processes do not involve quark

  6. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    Science.gov (United States)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles

  7. Annually laminated speleotherms : a review

    OpenAIRE

    Baker, Andy; Smith, Claire; Jex, Catherine; Fairchild, I. J.; Genty, Dominique; Fuller, Lisa

    2008-01-01

    This review of annually laminated speleothems firstly considers the four types of annual laminae found within speleothems: fluorescent laminae formed by annual variations in organic matter flux; visible or petrographic laminae, formed by annual variations in calcite texture or fabric; calcite-aragonite couplets; and finally trace element laminae. The methods available to confirm the annual nature, or otherwise, of lamina deposition are reviewed. We consider the use of annual laminae ...

  8. Cross-field motion of plasma blob-filaments and related particle flux in an open magnetic field line configuration on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.Q., E-mail: hqliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Hanada, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Nishino, N. [Graduate School of Engineering, Hiroshima University, Hiroshima 7398511 (Japan); Ogata, R.; Ishiguro, M. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Gao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan)

    2013-07-15

    Blob-filaments have been observed by combined measurement with a fast camera and a movable Langmuir probe in an open magnetic field line configuration of electron cyclotron resonance (ECR) heating plasma in QUEST. Blob-filaments extended along field lines do correspond to over-dense plasma structures and propagated across the field lines to the outer wall. The radial velocity of the blob structure, V{sub b}, was obtained by three methods and was dominantly driven by the E × B force. The radial velocity, size of the blob showed good agreements with the results obtained by sheath-connected interchange theoretical model. V{sub b} corresponds to roughly 0.02–0.07 of the local sound speed (C{sub s}) in QUEST. The higher moments (skewness S and kurtosis K) representing the shape of PDF of density fluctuation are studied. Their least squares fitting with quadratic polynomial is K = (1.60 ± 0.27)S{sup 2} − (0.46 ± 0.20). The larger blob structures, occurring only 10% of the time, can carry more than 60% loss of the entire radial particle flux.

  9. Bimodal electron fluxes of nearly relativistic electrons during the onset of a solar particle event observed by Wind on 4 June 2000

    Science.gov (United States)

    Sun, Lingpeng; Kartavykh, Yulia; Klecker, Berndt; Droege, Wolfgang

    We investigate electron fluxes in the energy range 27 -510 keV during a solar particle ob-served by the Wind spacecraft on 4 June 2000. The event occurred a few days after Wind had completed a transition through the magnetosphere and was located 70RE upstream from the Earth, possibly on magnetic field lines which were connected to the bow shock. At the onset of the event the electron pitch-angle distributions on Wind exhibit an unusual, bimodal pattern, whereas simultaneous ACE EPAM observations close to the L1 Lagrangian point of electrons in the same energy range show the familiar pattern of angular distributions which are strongly peaked in magnetic field direction away from the sun during the onset phase. Explanations for the observed bimodal pattern on Wind, such as an injection of electrons at the two footpoints of a possible interplanetary magnetic loop/tongue structure, or a reflection of the electrons at the bow shock will be discussed. We will also present a comparison of the Wind electron observations with results of a numerical simulation which includes pitch angle diffusion, focus-ing, and a reflection at a boundary close to the point of observation. Particular emphasis will be given to the investigation of pitch angle distributions, for which we will make use of the three-dimensional angular coverage of the Wind 3DP instrument.

  10. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    Science.gov (United States)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  11. Electrostatic surface structures of coal and mineral particles. Semi-annual report, September 1, 1996--March 1, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1997-12-31

    This paper contains three progress reports: Tribocharging Properties of Coal -- UV Photoelectron Spectroscopy by Adam Brown and Nick Grable; Electrostatic Separation of Coal as a Function of Particle Size Distribution by Jian Zheng; and Development of an Image Analyzer for Size and Charge Analysis of Coal Particles by Kevin Tennal and Gan Kok Hwee. The first paper discusses a literature survey and the instrumentation for photoelectron spectroscopy. The second discusses particle size classifying and electrodynamic trapping of charged particles. The third paper discusses laser and transmitting optics, collection optics, high voltage drives, electrodes, synchronization circuitry, camera, analysis of images, and additional considerations. An appendix to this paper describes the equations with the image analyzer.

  12. Particle dynamics in a wave with variable amplitude: Annual progress report for period August 1, 1986-July 31, 1987

    International Nuclear Information System (INIS)

    Recent work has shown that encounters of particles with separatrices in adiabatically varying Hamiltonian systems leads to spreading of the adiabatic invariant. This process can lead to transport of particles through phase space. Indeed, it can lead to loss of particles in accelerators by the transport of particles from integrable (confined) regions to nonintegrable regions. This research is applicable to a number of accelerator systems. For example, synchrotron oscillations cause tunes, resonance locations, and resonance sizes to change slowly in the betatron degrees of freedom. Particles can, therefore, be trapped in betatron resonances and transported to regions of larger betatron oscillation amplitude, where confining KAM curves may not exist. In the radiofrequency quadrupole, particles trap in buckets at the injection end and detrap at the high-energy end. In both processes the separatrix is crossed. The goal of this research is to understand the rate of phase-space spreading due to separatrix crossing. So far we have accomplished the following: (1) we have shown that correlations between separatrix crossings are significant. (2) By numerical integration we have shown that ''separatrix crossed phase space'' is nevertheless ergodic. (3) Numerical integrations also show that the diffusion rate scales as the third power of the adiabaticity parameter ε

  13. A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction

    International Nuclear Information System (INIS)

    Highlights: • A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction. • Each mixed-coding particle is composed by two coding parts of binary and real. • Five independent variables have been selected to predict future electricity consumption in Wuhan. • The proposed model has a simpler structure or higher estimating precision than other ANN models. • No matter what the scenario, the electricity consumption of Wuhan will grow rapidly. - Abstract: The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h

  14. [Theory of elementary particle studies in weak iteration and grand unification and studies in accelerator design]: Annual report

    International Nuclear Information System (INIS)

    This paper discusses the work done in high energy physics at the University of Oregon over the post year. Some of the topics briefly discussed are: string phenomenology, horizontal symmetry, heavy quark decays, neutrino counting and new quarks and leptons, treatment of heavy particles and w-bosons as constituents of hadrons, higher twist corrections to heavy particle production, factorization in the Drell-Yan process, jets and compositeness at the SSC, minimum-bias physics in hadronic collisions, and quark-gluon plasma

  15. Effect of particle size on the flux pinning properties of YBa2Cu3O7–δ thin films containing fine Y2O3 nanoprecipitates

    Science.gov (United States)

    Yamasaki, H.

    2016-06-01

    The magnetic-field angle dependence of the critical current density, J c(H, θ), was measured at various temperatures in co-evaporated YBa2Cu3O7–δ (YBCO) thin films. The YBCO films showed volcano-shaped J c(θ) peaks around H//ab, and J c(θ) peaks around H//c were not observed. Film A, deposited at a lower temperature than the commercial standard film B, showed lower J c values at high temperatures (T ≥ 60 K) compared with film B, although film A showed higher J c at T = 20 K. Plan-view transmission electron microscope observations revealed that films A and B contained a high density of fine Y2O3 nanoprecipitates. The modes in the distribution of their cross-sectional areas are 10–20 nm2 in film A and 20–30 nm2 in film B. Because of the smaller particle size, film A showed lower J c at high temperatures owing to the smaller elementary pinning force, f p, but showed higher J c at 20 K where the temperature-dependent coherence length ξ ab (T) was short (∼2 nm) and comparable with the radius of Y2O3 nanoparticles. Film A showed anisotropic scaling behavior at T = 70–80 K, and the T dependence of J c followed ∼(1 ‑ T/T c) m (1 + T/T c)2 (m ≈ 2.5), which was expected from a simple flux-pinning model.

  16. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  17. Particle dynamics in a wave with variable amplitude: Annual progress report, August 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Analysis of accelerator systems via newly developed techniques of nonlinear dynamics has been carried out. The study of transport through phase psace over the last year has clarified the effects of correlations on the dynamics of systems with slow chaos. An analytic alculation of the relation between the phases between separatrix crossings allows more accurate calculation of the rate of diffusion for particle throughout phase space. Numerical calculations show nevertheless that predictions obtained by the neglect of correlations are qualitatively correct. A new method for obtaining the dynamic apeture in accelerators has also been developed. The results from analyzing one-dimensional systems are encouraging. 11 refs., 3 figs

  18. Biological control of the removal of abiogenic particles from the surface ocean

    Science.gov (United States)

    Deuser, W.G.; Brewer, P.G.; Jickells, T.D.; Commeau, R.F.

    1983-01-01

    Concurrent measurements of particle concentrations in the near-surface water and of particle fluxes in the deep water of the Sargasso Sea show a close coupling between the two for biogenic components. The concentrations of suspended matter appear to follow an annual cycle similar to that of primary production and deepwater particle flux. Although the concentration of particulate aluminum in the surface water appears to vary randomly with respect to that cycle, the removal of aluminum to deep water is intimately linked to the rapid downward transport of organic matter.

  19. Annually Laminated Speleothems: a Review

    Directory of Open Access Journals (Sweden)

    Baker Andy

    2008-10-01

    Full Text Available This review of annually laminated speleothems firstly considers the four types of annual laminae found within speleothems: fluorescentlaminae formed by annual variations in organic matter flux; visible or petrographic laminae, formed by annual variations in calcitetexture or fabric; calcite-aragonite couplets; and finally trace element laminae. The methods available to confirm the annual nature, or otherwise, of lamina deposition are reviewed. We consider the use of annual laminae in chronology building, with particular relevanceto palaeoclimate reconstructions. Finally, the use of annual lamina width as a palaeoclimate proxy is reviewed.

  20. Temporal Variability and Annual Fluxes of Water, Sediment and Particulate Phosphorus from a Headwater River in the Tropical Andes: Results from a High-frequency Monitoring Program

    Science.gov (United States)

    Wemple, B. C.; Schloegel, C.

    2015-12-01

    The Mazar River Project, a high-frequency hydrological monitoring program, aims to generate ecohydrological information to inform watershed management in high-mountain areas of southern Ecuador. Rapid development of hydropower, accompanied by new and improved road networks, has resulted in swift changes in land-use and land cover in Ecuador's tropical Andes, all of which underscore the need for detailed information on flow and sediment production from these river systems. National and regional payment for the protection of ecosystem services (PES) programs seek to target critical areas, such as these, for watershed conservation, but are often informed by minimal information on sustainable flows and impacts of land use activities. As part of a program to inform conservation and sustainable water management in the region, we established a hydrological monitoring station in southern Ecuador on the Mazar River, a tributary of the Paute River Basin, situated on the eastern Andean cordillera. The station is equipped with sensors to continuously monitor stream stage and turbidity and an automated sampler for event-based collection of stream water samples, providing high frequency data that reduces the uncertainty of observations. Here, we report observations of continuous runoff and turbidity over the first year of observation, present relationships between turbidity and concentrations of total suspended solids (TSS) and total particulate phosphorus (TP), and provide estimates of annual loads of TSS and TP. Runoff was highly variable over the monitoring period with flows ranging from less than 3 m3/s during baseflow to nearly 80 m3/s during the flood of record. During measured storm events, TSS exceeded 1000 mg/l with maximum measured concentrations exceeding 13 g/l during storm peaks. Turbidity was highly correlated with TSS, which was in turn highly correlated with TP, providing a robust data set for load estimation. We compare our results to other montane rivers in the

  1. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso [National Tsing Hua Univ., Hsinchu (China)

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  2. Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: the largest coal base in China.

    Science.gov (United States)

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Yu, Tao; Hou, Qingye; Li, Desheng; Wang, Jianwu

    2014-11-01

    Industrialization and urbanization have led to a great deterioration of air quality and provoked some serious environmental concerns. One hundred and five samples of atmospheric deposition were analyzed for their concentrations of 13 trace elements (As, Cd, Cu, Fe, Al, Co, Cr, Hg, Mn, Mo, Pb, Se, and Zn) in Shanxi Basin, which includes six isolate basins. The input fluxes of the trace elements in atmospheric deposition were observed and evaluated. Geostatistical analysis (EF, PCA, and CA ) were conducted to determine the spatial distribution, possible sources, and enrichment degrees of trace elements in atmospheric deposition. Fe/Al and K/Al also contribute to identify the sources of atmospheric deposition. The distribution of trace elements in atmospheric deposition was proved to be geographically restricted. The results show that As, Cd, Pb, Zn, and Se mainly come from coal combustion. Fe, Cu, Mn, Hg, and Co originate mainly from interactions between local polluted soils and blowing dust from other places, while the main source of Al, Cr, and Mo are the soil parent materials without pollution. This work provides baseline information to develop policies to control and reduce trace elements, especially toxic elements, from atmospheric deposition. Some exploratory analytical methods applied in this work are also worth considering in similar researches.

  3. The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates

    Science.gov (United States)

    Mathews, J. D.; Janches, D.; Meisel, D. D.; Zhou, Q.-H.

    Radar micrometeor observations at Arecibo Observatory have enabled direct estimates of the meteoroid mass flux into the upper atmosphere. We report mass flux determinations from November 1997/1998 observations that are based on the observed number of meteor events per day in the 300-m diameter Arecibo beam and on particle mass determinations from that fraction of all particles for which deceleration is measured. The average mass of the Arecibo micrometeoroids that manifest observable deceleration is ˜0.32/0.76 µgm/particle with a resultant annual whole-Earth mass flux of 1.6 × 106/2.7 × 106 kg/yr over the ˜10-5-10² µgm mass range for 1997/1998, respectively. The annual whole-earth mass flux per decade of particle mass is calculated and compared with that of Ceplecha et al. [1998] (3.7 × 106 kg/yr) and with that derived by Love and Brownlee [1993] (LB) from small particle impact craters on the orbital Long Duration Exposure Facility (LDEF). We also give the LDEF results as significantly modified using the Arecibo-determined average particle velocity of ˜50 km/sec—much larger than the effective value of 12 km/sec used by LB. This modification results in a net LDEF mass flux of 1.8×106 kg/yr—7% of the value we determined from reanalysis of the LB data using their original 12 km/sec mean impact speed. These results may provoke some debate.

  4. Factors controlling vertical fluxes of prrticles in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Ramaswamy, V.; Parthiban, G.; Shankar, R.

    whereas organic carbon percentages decreased. Particle flux patterns show a strong seasonality with peak fluxes during the southwest (SW) monsoon (June to September). Relatively high fluxes were also observed during the northeast (NE) monsoon (December...

  5. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    Science.gov (United States)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  6. 用扩散流动模型分析悬浮床内的气固两相向上流动%A Numerical Simulation of Gas-Particle Two-Phase Flow in a Suspension Bed Using Diffusion Flux Model

    Institute of Scientific and Technical Information of China (English)

    尚智; 杨瑞昌; FUKUDA Kenji; 钟勇; 巨泽建

    2003-01-01

    A mathematical model of two-dimensional turbulent gas-particle two-phase flow based on the modified diffusion flux model (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux model, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by κ-ε-κp two-fluid model, which shows a reasonable agreement. It is confirmed that the modified diffusion flux model is suitable for simulating the multi-dimensional gas-particle two-phase flow.

  7. Eddy Correlation Measurements of Sea Spray Aerosol Fluxes

    NARCIS (Netherlands)

    Leeuw, G. de; Moerman, M.M.; Zappa, C.J.; McGillis, W.R.; Norris, S.; Smith, M.

    2007-01-01

    Fluxes of primary marine aerosol in the sub-micron fraction were measured using a flux package consisting of a sonic anemometer, a Condensation Particle Counter (CPC) and an optical particle counter (OPC) equipped with a heated inlet. Whereas the CPC provides the total particle number flux of partic

  8. Taming the post-Newtonian expansion: Simplifying the modes of the gravitational wave energy flux at infinity for a point particle in a circular orbit around a Schwarzschild black hole

    CERN Document Server

    Johnson-McDaniel, Nathan K

    2014-01-01

    (Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...

  9. [Elementary particle physics. Annual report

    International Nuclear Information System (INIS)

    The BABAR construction phase is ending and first data is expected during May, 1999. During construction, UTD has developed analysis framework software, contributed to the BABAR Physics Book, assembled a first rate computing facility, and pioneered Internet-based video techniques for the collaboration. The authors are now defining the physics goals, and are participating in the formation physics analysis groups. They are starting to use their computing facility for BABAR production jobs

  10. Cosmogenic neon from individual grains of CM meteorites - Extremely long pre-compaction exposure histories or an enhanced early particle flux

    Science.gov (United States)

    Hohenberg, Charles M.; Nichols, Robert H., Jr.; Olinger, Chad T.; Goswami, J. N.

    1990-01-01

    This paper presents the results on cosmogenic Ne extracted from individual meteoritic grains by a laser extraction system which used, at different times, two CW lasers: an Ar-ion laser and an Nd:YAG laser, with 20 and 70 W of deliverable power, respectively. Chemical etching was used to select grains exposed to solar flare VH particles. Results show that most of the grains with solar flare VH tracks (but not those which did not exhibit such tracks) contain spallation-produed Ne in significant excess of that due to the nominal cosmic-ray exposure, providing evidence for extensive energetic particle exposure during the precompaction era.

  11. Flux Creep and Flux Jumping

    CERN Document Server

    Mints, R G

    1995-01-01

    We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, $B_j$, that determines the superconducting state stability criterion. We calculate the dependence of $B_j$ on the external magnetic field ramp rate, magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\\it i.e.}, the value of $B_j$. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of $\\dot B_e$.

  12. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  13. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian

    2010-01-01

    Effects of physical changes in consistency of ruminal contents on intraruminal equilibration and net portal fluxes of volatile fatty acids (VFA) in dairy cows were studied. Four Danish Holstein cows (121 ± 17 d in milk, 591 ± 24 kg of body weight, mean ± SD) surgically fitted with a ruminal cannula...... ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151 ± 55 and 135 ± 29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal p...... differences of VFA concentrations and pH between the ventral and medial pools were observed, VFA concentrations being largest and pH being the lowest medially. This indicates that the ruminal mat acts as a barrier retaining VFA. The effects of reduced FPS were limited to the VFA pool sizes of the mat, leaving...

  14. Flux of Millimetric Space Debris

    Science.gov (United States)

    Goldstein, R. M.; Goldstein, S. J., Jr.

    1995-01-01

    In 21.4 hr of zenith radar observations on 4 days at 8510 MHz, we found 831 particles with altitudes between 177 and 1662 km. From the duration of the echoes and the angular size (0.030 deg) of the antenna beam 157 particles were identified as passing through the side lobes and not through the main beam. Our analysis is based on the 674 particles that did not broaden the beam. On the assumptions that these particles went through the main beam, their radar cross sections vary between 0.02 and 260 sq mm , and their radial velocities vary between +/- 700 m/s. If they are conducting spheres, their diameters lie between 2 and 18 mm. If not, they must be larger. The flux of these particles, that is the number per sq km day, was determined in 100 km intervals. The maximum flux, 3.3 particles per sq km day, occurs at 950 km altitude. The small and large particles are not well mixed. The largest particles occur beyond 1000 km and middle-sized particles are missing below 300 km. If the earth's atmosphere caused the smallest particles to lose energy from initial orbits identical to those of the large particles, the orbits would have lower eccentricity at low altitudes. We find a larger eccentricity for the inner particles, and conclude that two or more populations are present.

  15. Air Ejection by a Flux of Particles of a Bulk Material in a Vertical Porous Pipe with a Bypass Cylindrical Chamber

    Science.gov (United States)

    Averkova, O. A.; Logachev, I. N.; Logachev, K. I.

    2015-07-01

    Hydrodynamic equations have been derived for a fl ux of particles free falling in an air-filled circular porous pipe which is surrounded by a cylindrical bypass chamber. In these equations, the reverse influence of air on the particles' dynamics is disregarded. Numerical and analytical investigations of the derived equations made it possible to establish the regularities of change in the velocity of ejected air in the porous chute and in the pressure in the bypass chamber along the chute length as a function of the porosity of the walls and the dimensions of the chamber, and also on the ejection number. A rational range has been determined for ejection parameters ensuring the greatest reduction in the ejection volume due to the recycling of air.

  16. Characterization of a detector chain using a FPGA-based Time-to-Digital Converter to reconstruct the three-dimensional coordinates of single particles at high flux

    CERN Document Server

    Nogrette, F; Chang, R; Bouton, Q; Westbrook, C I; Sellem, R; Clément, D

    2015-01-01

    We report on the development of a novel FPGA-based Time-to-Digital Converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of Micro-Channel Plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1x10^6 per second and three-dimensional reconstruction of the coordinates up to 2.5x10^6 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) um. In addition we analyze a method to measure the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work directly apply to the detection of other kinds of particles.

  17. Feasibility study of Large-scale helium GFR employing coated particle fuel. Design study of hexagonal matrix-block fuel assembly cores. Annual report of JFY2004

    International Nuclear Information System (INIS)

    Gas-cooled fast reactor has been taken an interest as a future nuclear reactor power source; we JNC have designed large-scale (1124MW electric power), high-temperature (850degC) with high thermodynamic efficiency (around 47%), helium-cooled fast reactors as a part of feasibility study. Hexagonal-block fuel assembly configuration has been considered as a candidate, where a number of coated particles packed in a SiC matrix are cooled indirectly by ascending flow in penetrating tubes. This manuscript describes, as an annual report of JFY2004, technical keys for enhancing core neutronics/thermal-hydraulics performances of the hex-block concepts and the best-to-date core designs. Technical keys for enhancing are from neutronics viewpoints (radial peaking factor, assembly layout and configuration), thermal-hydraulic viewpoints (heat transfer and film temperature rise, thermal conductivity and fuel-matrix temperature rise, core pressure drop, and coolant temperature), and neutronics/and/thermal-hydraulics combinational viewpoints (effective fuel volume fraction, local temperature decrees for increasing Doppler effects). Two issues (reducing contacting heat resistance in a matrix, and lowering core inflow temperature under depressurization transient) are selected from quantitative pre-evaluations; then are applied to select the reference core designs for achieving reduced Pu fissile inventory and improved average discharge burnup. Two reference cores are designed; one is 'breeding' core, which achieves high breeding ratio and high discharge burnup, the other is 'break-even' core, which brings much higher discharge burnup with a breeding ratio of around unity. [Reference core designs (2400MW thermal/1124MW electric outputs)] Core equiv. diameter/Height/Outermost diameter: 5.42m/1.00m/7.49m. Average Discharge Burnup (Seed region average): 121 GWd/t/123 GWd/t. (Entire core average): 69 GWd/t/89 GWd/t. Breeding Ratio: 1.11/1.03. Initial Pu fissile quantity: 7.0 ton/GWe/7.0 ton

  18. Nitrous oxide flux following tropical land clearing

    Science.gov (United States)

    Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter

    1989-01-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  19. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  20. 盐生荒漠生态系统二氧化碳通量的年内、年际变异特征%Seasonal and Annual Variations of Carbon Dioxide Fluxes in Desert Ecosystem

    Institute of Scientific and Technical Information of China (English)

    刘冉; 李彦; 王勤学; 许皓; 郑新军

    2011-01-01

    Using eddy covariance technology, we measured the CO2 flux in a desert ecosystem during growing seasons of 2004-2006. The seasonal and annual variability of the CO2 flux(NEE) and gross primary production (GPP) and ecosystem respiration (Reco) were analyzed based on observation data. NEE, GPP, Reco had a similar seasonal variation trend, and their values follow a sequence of values in growth period>in initial growth period>in terminal growth period. Obvious difference can be seen in annual trends of GPP,NEE, and Reco. The peak NEE value was -4.66 g· m-2 · d-1 , - 1.94 g· m-2 · d-1 and - 2.02 g· m-2 · d-1 in 2004, 2005 and 2006 respectively. Carbon uptake occurred mainly in June, July and August of the growing season. Carbon uptake occurred in the three years, and the value was -236.18 g· m-2, -63.07 g· m-2,and -91.97 g·m-2 in order. The results indicate that, in contrast to previous research, desert ecosystem can be a significant carbon sink and an important component of the global carbon budget.%采用涡度相关法,并结合小气候观测,对荒漠生态系统净二氧化碳通量进行了连续3个生长季的观测(2004-2006年),并据此分析了荒漠生态系统净二氧化碳通量及其主要成分GPP和Reco的季节和年际间变化特征.结果表明,在生长季尺度上,各个阶段二氧化碳吸收量的大小分别为:生长旺盛期>生长初期>生长末期,这可能与植物叶面积的大小以及光合有效辐射,大气温度等环境要素有关系.在年际尺度上,3个生长季同阶段的二氧化碳吸收量存在明显差异,生长季初期5月,2004年碳吸收最强,2006年次之,2005年最小.对于生长旺盛期,降水量最大的2004年碳吸收能力最强.正午最大值可以达到-1.12 mg·m-2·s-1,2005年次之.最大值达-0.06 mg·m-2·s-1,仅仅是2004年最大值的1/2,2006年最小,正午吸收的最大值为-0.02 mg·m-2·s-1,生长季末期,3个生长季的月均日变化非常相似,其在正午的最

  1. The use of Pb-210 to normalize fluxes and burdens of atmospheric contaminants in lake sediment cores

    Energy Technology Data Exchange (ETDEWEB)

    Brunskill, G.J.; Wilkinson, P.; Hunt, R.; Muir, D.; Billeck, B.; Lockhart, L. (Freshwater Inst., Winnipeg, Manitoba (Canada))

    1990-01-09

    It is possible to estimate the local annual atmospheric flux (Bq/m[sup 2] [sm bullet] yr) of Pb-210 to land and lake surfaces from measurements of the integral of excess Pb-210 in soil and peat profiles. If you compare this average Pb-210 flux to the soil surface, to the Pb-210 flux to deep lake sediments, you will usually find that the lake sediment flux is a factor of 2 to 6 greater. This is because most of the clay-sized and organic material added to the lake (and resuspended in the lake) each year is funneled into the deeper parts of the lake basin. The ratio of the deep lake Pb-210 sediment flux to the average terrestrial soil Pb-210 flux will be called the focusing factor, which can be used to crudely estimate whole lake sedimentation rates (g/m[sup 2] lake surface area [sm bullet] yr). Many industrial and agricultural contaminants are delivered to remote lakes by atmospheric deposition, and those contaminants that are strongly particle reactive will usually be resuspended and funneled into the deeper parts of the lake basin similar to Pb-210. Often a single sediment core history of deposition is used to estimate contaminant burdens and fluxes at the coring site in a lake basin. These deep basin contaminant burdens and fluxes can be divided by the focusing factor to estimate the burden per unit lake surface area and the atmospheric deposition rate to the lake surface area.

  2. Source and Air-sea Fluxes of Heavy Metals in the Atmospheric Particles of East China Sea%东海海洋大气颗粒物中重金属的来源及入海通量

    Institute of Scientific and Technical Information of China (English)

    秦晓光; 程祥圣; 刘富平

    2011-01-01

    2006~2007年,对杭州湾以南的东海海域进行了春、夏、秋、冬4个航次的海洋大气调查,分析了大气颗粒物中重金属元素(Cu、Pb、Zn、Cd)的含量,根据调查结果,采用富集系数法对重金属的来源进行了初步分析,对干沉降入海通量进行了估算.结果表明,调查海域海洋大气颗粒物中的Cu、Pb、Zn、Cd含量相对于地壳和海水均表现为强富集,富集系数远远大于10,属于污染元素,主要来自人类活动污染.重金属元素的大气干沉降通量大小顺序为Zn[10.92 mg/(m2.a)]〉Pb[2.299mg/(m2.a)]〉Cu[1%From 2006 to 2007,four surveys for marine atmosphere in East China Sea were carried out included different seasons(spring,summer,autumn and winter).Based on the survey data of heavy metals in marine atmospheric particles,analyzed the source of heavy metals by the calculation of Enrichment Factors,calculated the air-sea fluxes via dry deposition.The results showed,comparing with the crustal and seawater,the heavy metals including Cu,Pb,Cd and Zn were highly concentrated,mainly from the pollutants of human activities.The fluxes of heavy metals via dry deposition were Zn[10.92mg/(m2·a)]Pb[2.299mg/(m2·a)]Cu[1.611mg/(m2·a)]Cd[0.017mg/(m2·a)].The fluxes of heavy metals in winter were highest,the summer and autumn were lower.The input of Cu,Pb,Zn and Cd from atmosphere to sea via dry deposition was 2 376 t,nearly 13% compared with the input of The Changjiang River(Yangtze River).

  3. Annual variation of CH{sub 4} emissions from the middle taiga in West Siberian Lowland (2005-2009): a case of high CH{sub 4} flux and precipitation rate in the summer of 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sasakawa, M.; Ito, A.; Machida, T. (Center for Global Environmental Research, National Inst. for Environmental Studies, Tsukuba (Japan)), Email: sasakawa.motoki@nies.go.jp; Tsuda, N. (Global Environmental Forum, Bunkyo-ku Tokyo (Japan)); Niwa, Y. (Meteorological Research Inst., Tsukuba (Japan)); Davydov, D.; Fofonov, A.; Arshinov, M. (V.E. Zuev Inst. of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch, Tomsk (Russian Federation))

    2012-03-15

    We described continuous measurements of CH{sub 4} and CO{sub 2} concentration obtained at two sites placed in the middle taiga, Karasevoe (KRS) and Demyanskoe (DEM), in West Siberian Lowland (WSL) from 2005 to 2009. Although both CH{sub 4} and CO{sub 2} accumulation (DELTACH{sub 4} and DELTACO{sub 2}) during night-time at KRS in June and July 2007 showed an anomalously high concentration, higher ratios of DELTACH{sub 4}/DELTACO{sub 2} compared with those in other years indicated that a considerably higher CH{sub 4} flux occurred relative to the CO{sub 2} flux. The daily CH{sub 4} flux calculated with the ratio of DELTACH{sub 4}/DELTACO{sub 2} and terrestrial biosphere CO{sub 2} flux from an ecosystem model showed a maximum in July at the both sites. Although anomalously high flux was observed in June and July 2007 at KRS, only a small flux variation was observed at DEM. The high regional CH{sub 4} flux in June and July 2007 at KRS was reproduced using a process-based ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT), in response to high water table depth caused by the anomalously high precipitation during the summer of 2007

  4. A quantitative method for silica flux evaluation

    Science.gov (United States)

    Schonewille, R. H.; O'Connell, G. J.; Toguri, J. M.

    1993-02-01

    In the smelting of copper and copper/nickel concentrates, the role of silica flux is to aid in the removal of iron by forming a slag phase. Alternatively, the role of flux may be regarded as a means of controlling the formation of magnetite, which can severely hinder the operation of a furnace. To adequately control the magnetite level, the flux must react rapidly with all of the FeO within the bath. In the present study, a rapid method for silica flux evaluation that can be used directly in the smelter has been developed. Samples of flux are mixed with iron sulfide and magnetite and then smelted at a temperature of 1250 °C. Argon was swept over the reaction mixture and analyzed continuously for sulfur dioxide. The sulfur dioxide concentration with time was found to contain two peaks, the first one being independent of the flux content of the sample. A flux quality parameter has been defined as the height-to-time ratio of the second peak. The value of this parameter for pure silica is 5100 ppm/min. The effects of silica content, silica particle size, and silicate mineralogy were investigated. It was found that a limiting flux quality is achieved for particle sizes less than 0.1 mm in diameter and that fluxes containing feldspar are generally of a poorer quality. The relative importance of free silica and melting point was also studied using synthetic flux mixtures, with free silica displaying the strongest effect.

  5. DESY. Scientific annual report 2003

    International Nuclear Information System (INIS)

    In the following the main progresses at DESY in the fields accelerator development, elementary-particle physics, research with photons and particle astrophysics, as well as the accelerator development are briefly presented. More detailed descriptions of the events and important developments of the year 2003 are found in the following chapters of the present annual report

  6. Paul Scherrer Institut annual report 1995. Annex I: PSI-F1-Newsletter 1995. Nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D.; Kettle, P.R. [eds.

    1996-09-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, - applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1995, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1995. (author) figs., tabs., refs.

  7. Paul Scherrer Institut annual report 1996. Annex I. PSI-F1-Newsletter 1996 nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D.; Kettle, P.R.; Buechli, C. [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, -applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1996, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1996. (author) figs., tabs., refs.

  8. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  9. Development of methodics for the characterization of the composition of the ion-collision-induced secondary-particle flux by comparison of the yield contributions of photoinduced ion formation processes; Entwicklung einer Methodik zur Charakterisierung der Zusammensetzung des ionenbeschussinduzierten Sekundaerteilchenflusses durch Vergleich der Ausbeuteanteile photoinduzierter Ionenbildungsprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Vering, Guido

    2008-10-13

    The aim of this work was to develop a method to distinguish between different ion formation processes and to determine the influence of these processes on the total number of detected monatomic ions of a certain element. A vector/matrix-formalism was developed, which describes the physical processes of sputtering, ion formation, mass separation and detection in laser-SNMS. In the framework of the method developed, based on this theoretic formalism, changes in the secondary flux contribution of the respective element were observed by comparing the detected monatomic ion yield obtained in specifically aligned (SIMS and) laser-SNMS experiments. The yields resulting from these experiments were used to calculate characteristic numbers to compare the flux composition from different surfaces. The potential of the method was demonstrated for the elements boron, iron and gadolinium by investigating the changes in the flux composition of secondary particles sputtered from metallic surfaces, as a function of the oxygen concentration at the surface. Finally, combined laser-SNMS depth profiles and images, obtained with both laser systems, were presented to demonstrate how the parallel detection of the three differently originated ion signals of the same element can be used to get additional information about the composition of the flux of secondary particles synchronously during the analysis of elemental distributions. In this respect the presented method can be a very helpful tool to prevent misleading interpretations of SIMS or laser-SNMS data. (orig.)

  10. Biogeochemical characteristics of sedimenting particles in Dona Paula Bay, India

    Science.gov (United States)

    D'souza, Fraddry; Garg, Anita; Bhosle, Narayan B.

    2003-10-01

    Sedimenting particles were collected at weekly intervals from October to May during 1995-1997 at a station in the coastal waters of Dona Paula Bay on the west coast of India. Sedimenting particles were analysed for concentration and composition of total sedimented particulate matter (TPM), biogenic silica (BSi) and total neutral carbohydrates (TCHO). TPM, BSi and TCHO fluxes showed seasonal and annual variations. Fluxes of BSi showed significant correlations with the fluxes of TCHO and fucose indicating that at the study site diatoms were associated with the production of carbohydrates. However, a high content of arabinose plus xylose (˜56% of TCHO without glucose) in some samples and their negative correlations with fucose may suggest terrestrial inputs. Sedimenting particles depleted in glucose content were enriched in rhamnose, fucose, xylose, mannose and galactose. A principal component analysis based on log-normalized wt% of monosaccharides established three factors that contributed 78% of total variance. The first factor was mostly controlled by the abundance of arabinose and xylose while the second and third factors were dependent on fucose, galactose, mannose and rhamnose. Carbohydrate composition data suggest that the nature and sources of organic matter at the study site varied over the period of study.

  11. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  12. Annual report 1982

    International Nuclear Information System (INIS)

    This annual report gives a survey of the activities of ECN at The Hague and Petten, Netherlands, in 1982. These activities are concerned with energy generation and development and with scientific and technical applications of thermal neutrons, which are available from the High Flux Reactor and the Low Flux Reactor at Petten. The Energy Study Centre (ESC), a special department of ECN, is engaged with social-economic studies on energy generation and utilization. ESC also investigates the consequences of energy scenarios. The Bureau Energy Research Projects (BEOP) coordinates and administers all national research projects, especially on flywheels, solar energy, wind power and coal combustion. After a survey of staffing and finances the report ends with a list of ECN publications

  13. GKSS 1978 annual report

    International Nuclear Information System (INIS)

    In its annual reports, the GKSS gives a detailed survey of its R+D activities in the year under report as well as of its organisation and social situation. These sections are supplemented by some detailed reports on selected research activities. In the year under report, techniques for the irradiation of pressure vessel steels in research reactors, the determination of the critical heat flux on LWR fuel rods, a GKSS contribution to the production of manganese modules in the Pacific Ocean, the corrosion behaviour of structural steels under seawater conditions, and remote aerosol monitoring by means of laser technology are dealt with. (orig.)

  14. Heat flux viscosity in collisional magnetized plasmas

    Science.gov (United States)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  15. Heat flux viscosity in collisional magnetized plasmas

    International Nuclear Information System (INIS)

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application

  16. Ciclo anual de precipitação como função de índices de instabilidade termodinâmica e fluxos de energia estática: análises em Maxaranguape-RN Annual rainfall cycle as a function of thermodynamic instability indexes, and static energy fluxes: analysis in Maxaranguape-RN

    Directory of Open Access Journals (Sweden)

    Cláudio Moisés Santos e Silva

    2011-06-01

    Full Text Available Estudaram-se índices de instabilidade termodinâmica, conteúdo de água precipitável e fluxos de energia estática associados ao ciclo anual de precipitação sobre Maxaranguape, situada no litoral do Rio Grande do Norte. O período de coleta de dados através de radiossondagens foi de janeiro de 2002 a dezembro de 2009 no âmbito do projeto South Hemisphere ADditional OZonesondes (SHADOZ. Os índices termodinâmicos não explicam o máximo de precipitação observado em julho, porém apresentam-se em fase com um máximo secundário em abril. Os fluxos de energia estática úmida e saturada mostram que o ciclo anual da precipitação é modulado pelos mecanismos que geram instabilidade termodinâmica associados à convergência de umidade em baixos níveis.The relation between thermodynamic instability indexes, precipitable water content, static energy flux, and rainfall annual cycle over Maxaranguape (coastland site, Rio Grande do Norte, Northeast of Brazil was investigated. The radiosonde dataset covered the period from January 2002 to December 2009 within the South Hemisphere ADditional OZonesondes (SHADOZ project. The thermodynamics indexes variability do not explain the maximum rainfall in July, however they are in phase with the secondary maximum in April. The annual cycle of the moist and saturated static energy fluxes showed that rainfall cycle is modulated by both thermodynamics and low level moisture convergence mechanisms.

  17. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  18. Canopy processes, fluxes and microclimate in a pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Launiainen, S.

    2011-07-01

    conductance (g{sub s}) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO{sub 2}) and water vapor (H{sub 2}O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO{sub 2} fluxes can vary as much as 15 % and H{sub 2}O fluxes 30 % even if the g{sub s} models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10-30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July-August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO{sub 2} uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests. (orig.)

  19. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  20. 1997 annual report

    International Nuclear Information System (INIS)

    This 1997 issue of the annual report of the French Commissariat a l'Energie Atomique (CEA) gives a general overview of the CEA organization, activities, human resources, international relations and communication with some budgetary information. The main activities described concern the national defence, the fuel cycle, the nuclear reactors, the nuclear protection and safety, the advanced technologies, the quasi-particles, the effects of ionizing radiations on humans, the medical imagery, the transfer of technology, the protection and valorization of knowledge, the radioactive wastes and spent fuels management, the training and teaching, the scientific prizes, the committees, councils and commissions. (O.M.)

  1. Annual report 1980

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI)

  2. Annual report 1979

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI)

  3. Annual report 1981

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies of in medium and high energy physics, the theoretical studies of nuclear structure and the research in cosmophysics. Furthermore a list of publications is added. (orig./HSI)

  4. 1992 Annual report

    International Nuclear Information System (INIS)

    Annual report of the Institut de Physique Nucleaire at Orsay (France). The main themes are presented. Concerning experimental research: nuclear structure, ground states and low energy excited states, high excitation energy nuclear states, nuclear matter and nucleus-nucleus collision, intermediate energy nuclear physics, radiochemistry, inter-disciplinary research, scientific information and communication; concerning theoretical physics: particles and fields (formal aspects and hadronic physics), chaotic systems and semi-classical methods, few body problems, nucleus-nucleus scattering, nucleus spectroscopy and clusters, statistical physics and condensed matter; concerning general activities and technological research: accelerators, detectors, applications in cryogenics, data processing, Isolde and Orion equipment

  5. Patterns of Flux Emergence

    Science.gov (United States)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  6. A punctual flux estimator and reactions rates optimization in neutral particles transport calculus by the Monte Carlo method; Mise au point d'un estimateur ponctuel du flux et des taux de reactions dans les calculs de transport de particules neutres par la methode de monte carlo

    Energy Technology Data Exchange (ETDEWEB)

    Authier, N

    1998-12-01

    One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)

  7. Study on the processing method of nighttime CO2 eddy covariance flux data in ChinaFLUX

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>At present, using Eddy Covariance (EC) method to estimate the "true value" of carbon sequestration in terrestrial ecosystem arrests more attention. However, one issue is how to solve the uncertainty of observations (especially the nighttime CO2 flux data) appearing in post-processing CO2 flux data. The ratio of effective and reliable nighttime EC CO2 flux data to all nighttime data is relatively low (commonly, less than 50%) for all the long-term and continuous observation stations in the world. Thus, the processing method of nighttime CO2 flux data and its effect analysis on estimating CO2 flux annual sums are very important. In this paper, the authors analyze and discuss the reasons for underestimating nighttime CO2 flux using EC method, and introduce the general theory and method for processing nighttime CO2 flux data. By analyzing the relationship between nighttime CO2 flux and air fraction velocity u., we present an alternate method, Average Values Test (AVT), to determine the thresholds of fraction velocity (u.c) for screening the effective nighttime CO2 flux data. Meanwhile, taking the data observed in Yucheng and Changbai Mountains stations for an example, we analyze and discuss the effects of different methods or parameters on nighttime CO2 flux estimations. Finally, based on the data of part ChinaFLUX stations and related literatures, empirical models of nighttime respiration at different sites in ChinaFLUX are summarized.

  8. A sea spray aerosol flux parameterization encapsulating wave state

    OpenAIRE

    J. Ovadnevaite; A. Manders; De Leeuw, G.; D. Ceburnis; MONAHAN C; A.-I. Partanen; Korhonen, H.; C. D. O' Dowd

    2014-01-01

    A new sea spray source function (SSSF), termed Oceanflux Sea Spray Aerosol or OSSA, was derived based on in-situ sea spray aerosol measurements along with meteorological/physical parameters. Submicron sea spray aerosol fluxes derived from particle number concentration measurements at the Mace Head coastal station, on the west coast of Ireland, were used together with open-ocean eddy correlation flux measurements from the Eastern Atlantic Sea Spray, Gas Flux, and Whitecap (SEASAW) project crui...

  9. Leading nucleon and the hadronic flux in the atmosphere

    CERN Document Server

    Bellandi, J; Dias de Deus, J

    1999-01-01

    We present in this paper a calculation of the hadronic flux in the atmosphere. Using an iterative leading particle model and the Glauber model, we relate the moment of the leading particle distribution in nucleon-air collisions with the respective one in nucleon-proton collisions. In this way, we obtain a description of the nucleonic and hadronic fluxes in the atmosphere. Contribution to the 26th International Cosmic Ray Conference, Salt Lake City - Utah, August 1999 (HE 1.2.20).

  10. Source, flux and balance of atmospheric deposition of metals at Ile-de-France; Source, flux et bilan des retombees atmospheriques de metaux en Ile de France

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.

    2004-07-15

    evidenced. At the Seine River catchment scale, the atmospheric deposition levels were of the same order of magnitude as Seine River particle contents measured at the catchment estuary (Poses). The flux ratio between atmospheric inputs and Seine particles ranged between 0.8 and 4.8 for Al, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn. The importance of atmospheric deposition of metals was estimated on agricultural and urban areas. In the first case, the atmospheric fallout appears as the main input way of Cu, Ni and Pb to agro-systems while Cd is mainly introduced by fertilizers. These two input ways induced an increase of Cd, Ni and Pb in the cultivated horizon with an annual balance reaching 0.33, 0.014 and 0.014 %, respectively, of actual stocks while the Cu showed a decrease with an annual balance reaching 0.024 %. In the second case, atmospheric deposition was compared to roof and street runoff. The atmospheric deposition is the main introducing way of most of considered elements, compared to roof runoff excepting Cu, Pb, Ti and Zn which are mainly emitted by the latter. Nevertheless, compared to street runoff, atmospheric deposition levels are 1.5 to 27 times lower than street cleaning ones showing that atmospheric introducing way is not the main introducing way of metals in urban areas. The source investigation on atmospheric deposition was performed using several tools developed during this study. The results allow the characterisation of the anthropogenic sources considered using specific elements or ratios. These tools were applied to the atmospheric deposition data but they did not allowed the determination of anthropogenic activities because of the atmospheric mixture. (author)

  11. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  12. Concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers in sinking particles south of Java

    Science.gov (United States)

    Chen, Wenwen; Mohtadi, Mahyar; Schefuß, Enno; Mollenhauer, Gesine

    2016-06-01

    In this study, we obtained concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in a one-year time-series of sinking particles collected with a sediment trap moored from December 2001 to November 2002 at 2200 m water depth south of Java in the eastern Indian Ocean. We investigate the seasonality of alkenone and GDGT fluxes as well as the potential habitat depth of the Thaumarchaeota producing the GDGTs entrained in sinking particles. The alkenone flux shows a pronounced seasonality and ranges from 1 μg m-2 d-1 to 35 μg m-2 d-1. The highest alkenone flux is observed in late September during the Southeast monsoon, coincident with high total organic carbon fluxes as well as high net primary productivity. Flux-weighted mean temperature for the high flux period using the alkenone-based sea-surface temperature (SST) index U37K‧ is 26.7 °C, which is similar to satellite-derived Southeast (SE) monsoon SST (26.4 °C). The GDGT flux displays a weaker seasonality than that of the alkenones. It is elevated during the SE monsoon period compared to the Northwest (NW) monsoon and intermonsoon periods (approximately 2.5 times), which is probably related to seasonal variation of the abundance of Thaumarchaeota, or to enhanced export of GDGTs by aggregation with sinking phytoplankton detritus. Flux-weighted mean temperature inferred from the GDGT-based TEX86H index is 26.2 °C, which is 1.8 °C lower than mean annual (ma) SST but similar to SE monsoon SST. As the time series of TEX86H temperature estimates, however, does not record a strong seasonal amplitude, we infer that TEX86H reflects ma upper thermocline temperature at approximately 50 m water depth.

  13. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations

    OpenAIRE

    Palmer, P.I.; Shaw, S. L.

    2005-01-01

    We report global distributions of marine isoprene flux, whose source is estimated by combining an empirical relationship for isoprene production rate with MODIS satellite chlorophyll observations from 2001. We use a steady-state water column model including losses to chemistry, bacteria, and air-sea exchange. Physical mixing is a negligible sink. Flux estimates range from 107–109 molecules cm−2s−1, with considerable spatial and temporal variability, resulting in a global annual total of 0.1 T...

  14. Z p charged branes in flux compactifications

    Science.gov (United States)

    Berasaluce-González, M.; Cámara, P. G.; Marchesano, F.; Uranga, A. M.

    2013-04-01

    We consider 4d string compactifications in the presence of fluxes, and classify particles, strings and domain walls arising from wrapped branes which have charges conserved modulo an integer p, and whose annihilation is catalized by fluxes, through the Freed-Witten anomaly or its dual versions. The Z p -valued strings and particles are associated to Z p discrete gauge symmetries, which we show are realized as discrete subgroups of 4d U(1) symmetries broken by their Chern-Simons couplings to the background fluxes. We also describe examples where the discrete gauge symmetry group is actually non-Abelian. The Z p -valued domain walls separate vacua which have different flux quanta, yet are actually equivalent by an integer shift of axion fields (or further string duality symmetries). We argue that certain examples are related by T-duality to the realization of discrete gauge symmetries and Z p charges from torsion (co)homology. At a formal level, the groups classifying these discrete charges should correspond to a generalization of K-theory in the presence of general fluxes (and including fundamental strings and NS5-branes).

  15. Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone – Part 1: Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota

    International Nuclear Information System (INIS)

    This review article introduces an experimental site located within the Chernobyl exclusion zone that is equipped to study radionuclide behavior in the environment after disposal of radioactive waste into shallow subsurface storage (trenches). This paper presents how the site is equipped and the methodology that was followed in order to understand and reproduce the observed 90Sr contaminant plume downstream from a shallow waste trench in an area about 2.5 km west of the Chernobyl Nuclear Power Plant (ChNPP), called the Red Forest. The main results include identification of the radionuclide source term (the distribution and inventories of radionuclides in the trench, the description of the physical and chemical properties of the fuel particles encountered in the waste trench) and a model of fuel particle dissolution and subsequent radionuclide leaching into the soil solution. The biogenic migration of radionuclides from the trench to, and effects of radiation on, plants (Scots pine) are also described.

  16. Analysis of NOAA particle data and correlations to seismic activity

    OpenAIRE

    C. Fidani; Battiston, R.

    2008-01-01

    A decade of NOAA-15 particle flux data offers an opportunity to test claims of correlations between seismic activity and effects on the ionosphere. Over the last two decades, potentially interesting observations in the ionosphere-magnetosphere transition region have been investigated. Specifically these consists of anomalous particle fluxes detected by several space experiments and correlated with the earthquake occurrence. These particle fluxes are characterised by anomalous short-term and s...

  17. Plasma momentum meter for momentum flux measurements

    Science.gov (United States)

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  18. Predicting cosmic ray fluxes for the interplanetary space missions needs.

    Science.gov (United States)

    Nymmik, Rikho

    One of the main claims for the planning forthcoming interplanetary missions is the prediction of radiation threatening that effects on both astronauts and onboard instrumentation. It is caused by the SEP and GCR particle fluxes which always present in space and depend on solar activity level. The GCR and SEP fluxes' quantitative models developed at moment in Moscow University are based on the analysis of experimental data set for the four previous solar cycles, and establish a connection between particle fluxes and solar activity (Wolf numbers) for noted radiation fields. The GCR fluxes model (see for example, International Standard ISO 15390, Space environment (natural and artificial) - Galactic cosmic ray model) establishes an accordance between GCR fluxes and smoothed (over 13 months) month-averaged Wolf numbers. For the SEP fluxes which subordinates to quite defined statistical laws, the model developed enables to calculate a total fluxes that to be occurred probably with some given probability during a long time period under any solar activity level. This report presents examples of GCR and SEP fluxes occurred under different solar activity levels as well as energy spectra calculated for various probabilities of SEP flux occurrences. The data presented shows that SEP fluxes observed and their spectra are never exceed the bounds of probabilities, set by the model input. Thus, the MSU's models of GCR and SEP fluxes allows one to take account of solar activity effect on the probable value of fluxes that formed by radiation environment particles for an interplanetary mission of any period. The accuracy of such a prediction depends above all on the solar activity's (e.g., Wolf numbers)prediction reliability.

  19. Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    Directory of Open Access Journals (Sweden)

    K. Osada

    2013-08-01

    Full Text Available Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1 and at Cape Hedo (1.7 g m−2 yr−1 as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1 and at Cape Hedo (2.0 g m−2 yr−1 as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction were higher than 50% for most of the event samples. Irrespective of the deposition type

  20. A probabilistic description of the bed load sediment flux: 1. Theory

    Science.gov (United States)

    Furbish, David Jon; Haff, Peter K.; Roseberry, John C.; Schmeeckle, Mark W.

    2012-09-01

    We provide a probabilistic definition of the bed load sediment flux. In treating particle positions and motions as stochastic quantities, a flux form of the Master equation (a general expression of conservation) reveals that the volumetric flux involves an advective part equal to the product of an average particle velocity and the particle activity (the solid volume of particles in motion per unit streambed area), and a diffusive part involving the gradient of the product of the particle activity and a diffusivity that arises from the second moment of the probability density function of particle displacements. Gradients in the activity, instantaneous or time-averaged, therefore effect a particle flux. Time-averaged descriptions of the flux involve averaged products of the particle activity, the particle velocity and the diffusivity; the significance of these products depends on the scale of averaging. The flux form of the Exner equation looks like a Fokker-Planck equation (an advection-diffusion form of the Master equation). The entrainment form of the Exner equation similarly involves advective and diffusive terms, but because it is based on the joint probability density function of particle hop distances and associated travel times, this form involves a time derivative term that represents a lag effect associated with the exchange of particles between the static and active states. The formulation is consistent with experimental measurements and simulations of particle motions reported in companion papers.

  1. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  2. Annual report

    International Nuclear Information System (INIS)

    This is the thirty-ninth annual report of the Atomic Energy Control Board. The period covered by this report is the year ending March 31, 1986. The Atomic Energy Control Board (AECB) was established in 1946, by the Atomic Energy Control Act (AEC Act), (Revised Statues of Canada (R.S.C.) 1970 cA19). It is a departmental corporation (Schedule B) within the meaning and purpose of the Financial Administration Act. The AECB controls the development, application and use of atomic energy in Canada, and participates on behalf of Canada in international measures of control. The AECB is also repsonsible for the administration of the Nuclear Liability Act, (R.S.C. 1970 c29 1st Supp) as amended, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. The AECB reports to Parliament through a designated Minister, currently the Minister of Energy, Mines and Resources

  3. DESY scientific annual report 1987

    International Nuclear Information System (INIS)

    This annual report contains a short description of the organization of DESY, extended abstracts concerning the experimental studies at the PETRA and DORIS storage rings, the development of the ZEUS detector, synchrotron-radiation experiments, theory of elementary particles, development of counting electronics, technical developments of the HERA, DORIS II and PETRA II storage rings and the DESY II respectively DESY I/III synchrotron, radiation protection, as well as data processing, and a list of speeches, publications, and theses. (HSI)

  4. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  5. Lacustrine particle dynamics in high-altitude Estany Redó (Spain - a high resolution sediment trap study

    Directory of Open Access Journals (Sweden)

    Michael STURM

    2006-08-01

    Full Text Available Particle fluxes were measured from 2000 to 2001 with 3 integrating open traps (O-traps and a sequencing trap (S-trap in the 73-m deep, oligotrophic, high-mountain Estany (Lake Redó (2240 m a.s.l. over a period of 558 days. O-traps were deployed at 26, 46, and 66 m water depth to measure overall sedimentation rates, while the S-trap was deployed at 66 m water depth to detect dynamics of seasonal particle fluxes with a resolution of 4 days (during ice break-up, summer, ice formation to 21 days (during ice cover. Our results show a high degree of seasonal variability in particle dynamics. Total particle fluxes vary from almost zero to more than 600 mg m-2 d-1. The highest fluxes occur during short time windows after ice-break-up (minerogenic particles, during spring (planktonic biomass, and during fall overturn (chrysophycean cysts. Particle fluxes also differed markedly from year to year in absolute values (2000: 644 mg m-2 d-1, 2001: 370 mg m-2 d-1 as well as in average values (2000: 76 mg m-2 d-1, 2001: 44 mg m-2 d-1. Annual and seasonal meteorological changes and events have a clear influence on the lake system and on the amount and composition of particles. C/N ratios during April and May increased significantly from 2000 (6-14 to 2001 (>28, reflecting the more intense soil erosion and transport of terrestrial plant remains into the lake caused by heavy precipitation in 2001. Air temperature strongly influences the timing of the occurrence of the main bio-productivity peak. Strong wind events shorten the period of ice cover. Our investigation shows that sediment trap studies lasting more than one limnological cycle are useful in studying the effects of short-term meteorological changes and weather events on high mountain lakes. However, long-term particle flux measurements would be necessary to determine amplitudes of natural seasonal cycles and for the interpretation of the decadal-scale environmental changes occurring in such lakes.

  6. Annual-scale Variations in Runoff and Streamwater Chemistry

    Science.gov (United States)

    Clow, D. W.; Hill, K. R.

    2008-12-01

    Climate variables, such as precipitation amount and temperature, may exert a strong influence on solute concentrations and fluxes. The relation between solute concentrations, fluxes, and hydroclimate variables were examined for eight catchments in the western U.S ranging in size from 0.04 to 469 km2. Although runoff increased in nearly direct proportion to annual precipitation, annual volume-weighted mean concentrations of most solutes exhibited much less variation. As a result, net fluxes of solutes, including weathering products, exhibited a strong, positive relation to annual precipitation amount. The positive relation between precipitation and fluxes of weathering products has implications for carbon cycling and sequestration. Carbonic acid weathering of silicate minerals is an important type of weathering reaction, and it consumes CO2. If precipitation amount increases, more CO2 will be consumed via carbonic acid weathering reactions, and more carbon will be transported to the ocean as bicarbonate where it may be incorporated into marine sediments.

  7. Annual modulation of the muon flux in the GERDA experiment

    International Nuclear Information System (INIS)

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of 76Ge. In Phase I, the experimental background was reduced to 10-2 cts/(keV.kg.yr) in the region around Qββ. For Phase II we want to reduce the background contribution by one order of magnitude. Cosmic muons induce part of this dangerous background and must be vetoed. The muon veto consists of a water Cherenkov detector with 66 PMTs in the water tank surrounding the Gerda cryostat which contains the germanium crystals. The muon veto operated stably for 806 days where only 2 PMTs were lost. The rate however is modulated by the Cngs neutrino beam and the atmospheric temperature effect, both will be presented in this talk.

  8. Annual modulation of the muon flux in the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. In Phase I, the experimental background was reduced to 10{sup -2} cts/(keV.kg.yr) in the region around Q{sub ββ}. For Phase II we want to reduce the background contribution by one order of magnitude. Cosmic muons induce part of this dangerous background and must be vetoed. The muon veto consists of a water Cherenkov detector with 66 PMTs in the water tank surrounding the Gerda cryostat which contains the germanium crystals. The muon veto operated stably for 806 days where only 2 PMTs were lost. The rate however is modulated by the Cngs neutrino beam and the atmospheric temperature effect, both will be presented in this talk.

  9. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  10. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  11. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  12. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  13. Flux Emergence (Theory

    Directory of Open Access Journals (Sweden)

    Mark C. M. Cheung

    2014-07-01

    Full Text Available Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field in models impact the evolution of the emerging field and plasma.

  14. One-sided flux of fermions

    International Nuclear Information System (INIS)

    In the one-body window-friction pricture for inelastic heavy-ion collisions the one-sided flux of nucleons passing the window in the mean potential plays the role of the frictional form factor. In this paper a quantum mechanical operator for the one-sided flux is defined. Its expectation value calculated with any given many-body wave function yields the number of particles crossing an area element dA vector per unit time in one direction. The quantum one-sided flux is compared to the classical one calculated with a uniform momentum distribution up to the Fermi momentum. The wave function was taken from a model calculation for a fermion gas in a one-dimensional box. 1 figure

  15. Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems

    OpenAIRE

    Azimi, Sam; Cambier, Philippe; Lecuyer, Isabelle; Thevenot, Daniel,

    2004-01-01

    International audience The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other ...

  16. Annual report for 1980

    International Nuclear Information System (INIS)

    This annual report contains extended abstracts of the work done in the named Laboratory together with a list of publications and reports. The abstracts concern deep-inelastic and transfer reactions, compound-nucleus reactions including fusion and fission, reactions with light and with polarized particles, gamma-ray spectroscopy, and coulomb excitation, atomic physics, the irradiation of biological systems, nuclear structure, nuclear reaction theory, dissipative reactions, accelerator developments, the superconducting sector-cyclotron SuSe, the synchrotron-radiation source Little Erna, detectors, technology, the on-line computer system, the online-offline programming system GOOPSY, the megachannel analyzer for the acquisition of multidimensional events MADAME, and the central monitoring and control system ZUeSS. (HSI)

  17. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  18. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  19. Test particle transport in the electric potential generated by edge turbulence; Transport des particules-test dans le potentiel electrique genere par un modele de turbulence de bord. Cas d'un forcage par le flux

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X.; Ghendrih, Ph.; Sarazin, Y. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Grandgirard, V.; Agullo, O.; Benkadda, S. [CNRS-Universite de Provence, Equipe de Dynamique des Systemes Complexes, Aix-Marseille 1, 13 (France)

    2000-09-01

    Numerous experimental data show the existence of non-diffusive transport in tokamak plasmas. This article deals with the trajectories of test particles going through edge turbulence in scrape off layer (that is in the region where magnetic field lines are open). The interchange mechanism of the turbulence tends to generate convective cells by electrical shift, the radial extension is comparable to the size of the system. The resulting transport is mainly a ballistic-type transport whose time features are very short. Whenever the transport is directed towards outside, it appears profitable because it produces a broadening of the scrape off layer. On the contrary, the existence of ballistic trajectories directed towards the inside of the discharge implies an important contamination of the plasma by impurities coming from the wall. (A.C.)

  20. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  1. Energy release and seismic flux

    Directory of Open Access Journals (Sweden)

    J. M. Munuera

    1965-06-01

    Full Text Available From the basic data and tlie previous results of priorpapers, we have made evaluations of the energy released and studied itsvariation. Its pulsative form is confirmed, which suggests several superposedperiods, perhaps of simple multiples of tlie undecenal of solar activity.For steps of a whole unity of m, the total approximated energy is computed.EN and Et may be compared, it being possible to replace one by the other,indifferently, from m = 5 up to m = 7.5. The compared variation of logEN with N demostrates they are not proportional.The tectonic flux is evaluated and we have the graphs for 5 and 15year lapses, from 1901 to I960, as well as another graph which correspondsto the representative average of these 60 years. A reduction of the mapof seismic activity attained through log (2 Eli2-. 60 x 2.5 is attached, whichrefers the annual flux for every 1000 sq km. This map is analyzed and thecomparative results with the zones of the first seismotectonic sketch publishedby Rey Pastor (1927 are considered. The conformity is checked andthe differences are shown.With Benioff's curve, expressed by 10u (ergV2, we show the accumulationand release of the total elastic strain, S60 (S Exh and (S JB1/2 for everyyear of the instrumental period (1901-1960. The cumulative interval (halfa Century coincides with the return period of the destructive earthquakes,which was estimated through other considerations.We have made a comparative sketch between seismic activity andthe admitted drawing of the Alpine Geosyncline on the Western Mediterreaneanand we suggest a possible rough-draft of the Oval regression at itsWestern end. The alignments of the intermediate shocks, in the AlboranSea and the Betican region, indicate active faults which might associated,perhaps, in a half-close as another oval connected to the Guadalquivir Faultand Southwards.

  2. Dark matter particles in the galactic halo

    Science.gov (United States)

    Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-01

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  3. GOES Space Environment Monitor, Energetic Particles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solid state detectors with pulse height discrimination measure proton, alpha-particle, and electron fluxes. E1 and I1 channels are responding primarily to trapped...

  4. A novel second-order flux splitting for ideal magnetohydrodynamics

    Science.gov (United States)

    Borah, Kalpajyoti; Natarajan, Ganesh; Dass, Anoop K.

    2016-05-01

    A new flux splitting scheme based on wave-particle behaviour is developed for one-dimensional ideal magnetohydrodynamics. We exploit the idea that while ideal magnetohydrodynamics equations are non-convex with non-homogeneous fluxes as opposed to their hydrodynamic counterparts, they exhibit an overall wave-like structure. The proposed approach splits the flux vector into three distinct parts: the particle-like transport part and the wave-like pressure and magnetic parts, with the latter vanishing for pure hydrodynamics. The pressure part of the fluxes satisfy homogeneity property and the split flux Jacobians are constructed with a provision to regulate the numerical dissipation. The magnetic part of the fluxes however is non-homogeneous and is treated using a central scheme with artificial viscosity. This disparate treatment of the individual components of the total flux vector results in a scheme with a central-upwind character that can be implemented with low computational effort. Referred to as Magneto-acoustic Wave Particle Splitting (MWPS) scheme, it is extended to second-order accuracy by using slope limiters incorporated through the solution-dependent weighted least squares approach for gradient calculations. Several one-dimensional MHD problems are numerically solved to highlight the accuracy, positivity preservation and robustness of the MWPS scheme and comparative studies show that MWPS performs at least as well as the Advection Upstream Splitting Method (AUSM) and even outperforms it for some test cases.

  5. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5\\% of total neutron flux flux.

  6. The Mini-SPT (Space Particle Telescope) for dual use: Precision flux measurement of low energy proton electron and heavy ion with tracking capability and A compact, low-cost realtime local radiation hazard/alarm detector to be used on board a satellite

    Science.gov (United States)

    Alpat, Behcet; Ergin, Tulun; Kalemci, Emrah

    2016-07-01

    The Mini-SPT project is the first, and most important, step towards the ambitious goal of creating a low-cost, compact, radiation hardened and high performance space particle telescope that can be mounted, in the near future, as standard particle detector on any satellite. Mini-SPT will be capable of providing high quality physics data on local space environment. In particular high precision flux measurement and tracking of low energy protons and electrons on different orbits with same instrumentation is of paramount importance for studies as geomagnetically trapped fluxes and space weather dynamics, dark matter search, low energy proton anisotropy and its effects on ICs as well as the solar protons studies. In addition, it will provide real-time "differentiable warnings" about the local space radiation hazard to other electronics systems on board the hosting satellite, including different criticality levels and alarm signals to activate mitigation techniques whenever this is strictly necessary to protect them from temporary/permanent failures. A real-time warning system will help satellite subsystems to save significant amount of power and memory with respect to other conventional techniques where the "mitigation" solutions are required to be active during entire mission life. The Mini-SPT will combine the use of technologies developed in cutting-edge high energy physics experiments (including technology from CMS experiments at CERN) and the development of new charged particle detecting systems for their use for the first time in space. The Mini-SPT essential objective is, by using for the first time in space SIPMs (Silicon Photomultipliers) technology for TOF and energy measurements, the production of high quality data with a good time, position and energy resolutions. The mini-SPT will consists of three main sub-units: a- A tracking and dE/dX measuring sub-detector which will be based on silicon pixel detectors (SPD) coupled to the rad-hard chip ROC-DIG (Read

  7. Physics and astrophysics with dark matter particles

    International Nuclear Information System (INIS)

    The DAMA/Nal set-up has investigated the annual modulation signature over seven annual cycles achieving 6.3 σ C.L. model independent evidence for the presence of a Dark Matter particle component in the galactic halo. Some of the Physics and Astrophysics topics which can be addressed by DAMA/LIBRA are also introduced

  8. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  9. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  10. Quantifying the "chamber effect" in CO2 flux measurements

    Science.gov (United States)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  11. Superradiance and flux conservation

    Science.gov (United States)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2014-09-01

    The theoretical foundations of the phenomenon known as superradiance still continue to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of superradiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and damping.

  12. Flux amplification in SSPX

    Science.gov (United States)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  13. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    Boris Filippov; Olesya Martsenyuk; Abhishek K. Srivastava; Wahab Uddin

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  14. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    OpenAIRE

    Huang Shengli; Crabtree Robert; Klooster Steven; Potter Christopher; Gross Peggy; Genovese Vanessa

    2011-01-01

    Abstract Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources ove...

  15. Particle-Particle-String Vertex

    OpenAIRE

    Ishibashi, Nobuyuki

    1996-01-01

    We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.

  16. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    Science.gov (United States)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    . The first one is the fact that most of the k functions intersect close to 9 m/s, the typical North Atlantic wind speeds. The squared and cubed function need to intersect in order to have similar global averages. This way the higher values of cubic functions for strong winds are offset by higher values of squared ones for weak ones. The wind speed of the intersection has to be higher than global wind speed average because discrepancies between different parameterizations increase with the wind speed. The North Atlantic region seem to have by chance just the right average wind speeds to make all the parameterizations resulting in similar annual fluxes. However there is a second reason for smaller inter-parameterization discrepancies in the North Atlantic than many other ocean basins. The North Atlantic CO2 fluxes are downward in every month. In many regions of the world, the direction of the flux changes between the winter and summer with wind speeds much stronger in the cold season. We show, using the actual formulas that in such a case the differences between the parameterizations partly cancel out which is not the case when the flux never changes its direction. Both the mechanisms accidentally make the North Atlantic an area where the choice of k parameterizations causes very small flux uncertainty in annual fluxes. On the other hand, it makes the North Atlantic data not very useful for choosing the parameterizations most closely representing real fluxes.

  17. Neutrino Flux Predictions for the NuMI Beam

    CERN Document Server

    Aliaga, L; Golan, T; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bravar, A; Budd, H; Carneiro, M F; Diaz, G A; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Le, T; Maher, E; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Falero, S Sanchez; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement.

  18. Disconnecting Solar Magnetic Flux

    CERN Document Server

    DeForest, C E; McComas, D J

    2011-01-01

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by CMEs and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctie shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly-disconnected flux takes the form of a "U"-shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m/s^2 to 320 km/s, expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8uT, 6 Rs above the photosphere, and the entrained flux to be 1.6x10^11 Wb (1.6x10^19 Mx). We mod...

  19. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  20. Insects, infestations and nutrient fluxes

    Science.gov (United States)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  1. Particle tracking around surface nanobubbles

    CERN Document Server

    Dietrich, Erik; Lohse, Detlef; Seddon, James R T

    2016-01-01

    The exceptionally long lifetime of surface nanobubbles remains one of the biggest questions in the field. One of the proposed mechanisms for the stability is the \\emph{dynamic equilibrium} model, which describes a constant flux of gas in and out of the bubble. Here, we describe results from particle tracking experiments to measure this flow. The results are analysed by measuring the Vorono\\"i cell size distribution, the diffusion, and speed of the tracer particles. We show that there is no detectable difference in the movement of particles above nanobubble-laden surfaces, as compared to nanobubble-free surfaces.

  2. On the Charm Contribution to the Atmospheric Neutrino Flux

    CERN Document Server

    Halzen, Francis

    2016-01-01

    We revisit the estimate of the charm particle contribution to the atmospheric neutrino flux that is expected to dominate at high energies because long-lived high-energy pions and kaons interact in the atmosphere before decaying into neutrinos. We focus on the production of forward charm particles which carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of $K^{+} \\Lambda$ pairs. These forward charm particles can dominate the high-energy atmospheric neutrino flux in underground experiments. Modern collider experiments have no coverage in the very large rapidity region where charm forward pair production dominates. Using archival accelerator data as well as IceCube measurements of atmospheric electron and muon neutrino fluxes, we obtain an upper limit on forward $\\bar{D}^0 \\Lambda_c$ pair production and on the associated flux of high-energy atmospheric neutrinos. We conclude that the prompt flux may dominate t...

  3. Annual Report of CARR in 2013

    Institute of Scientific and Technical Information of China (English)

    ZHU; Ji-yin; JIAO; Di-nan

    2013-01-01

    1 Reactor operation Operation data of CARR in this year:reactor start-up times are 9;operation duration in different power levels is about 118 hours;the maximum stable operation power is 56 MW,the released energy is31.44 MW·d,following the 2013 annual working plan of CARR.Refueling operation is not carried out in this year.Flux measurement of water cooling isotope system remake project and test of in-pile

  4. GEANT4 and CREME96 compare using only protons fluxes

    CERN Document Server

    Falzetta, Giuseppe; Zanini, Alba

    2007-01-01

    CREME96 and GEANT4 are two well known particles transport codes through matter. In this work, we present a comparison between the protons fluxes outgoing from an aluminium target, obtained by using both tools. The primary proton flux is obtained by CREME96 only and it is the same for both cases. We study different thickness targets and two different GEANT4 physics lists in order to show how the spectra of the outgoing proton fluxes are modified. Our results show good agreement of simulation data for both tools, for both GEANT4 physics lists and for every thickness target analysed.

  5. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  6. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  7. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  8. Fusion Neutron Flux Monitor for ITER

    Institute of Scientific and Technical Information of China (English)

    YANG Jinwei; YANG Qingwei; XIAO Gongshan; ZHANG Wei; SONG Xianying; LI Xu

    2008-01-01

    Neutron flux monitor (NFM) as an important diagnostic sub-system in ITER (international thermonuclear experimental reactor) provides a global neutron source intensity, fusion power and neutron flux in real time. Three types of neutron flux monitor assemblies with different sensitivities and shielding materials have been designed. Through MCNP (Mante-Carlo neutral particle transport code) calculations, this extended system of NFM can detect the neutron flux in a range of 104 n/(cm2·s) to 1014 n/(cm2·s). It is capable of providing accurate neutron yield measurements for all operational modes encountered in the ITER experiments including the in-situ calibration. Combining both the counting mode and Campbelling (MSV; Mean Square Voltage) mode in the signal processing units, the requirement of the dynamic range (107) for these NFMs and time resolution (1 ms) can be met. Based on a uncertainty analysis, the estimated absolute measurement accuracies of the total fusion neutron yield can reach the required 10% level in both the early stage of the DD-phase and the full power DT operation mode. In the advanced DD-phase, the absolute measurement accuracy would be better than 20%.

  9. Large Particle Titanate Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  10. Turbulent flux and the diffusion of passive tracers in electrostatic turbulence

    DEFF Research Database (Denmark)

    Basu, R.; Jessen, T.; Naulin, V.;

    2003-01-01

    The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...... averaged turbulent particle flux are measured and compare well to a folded Gaussian, respectively a log-normal distribution. By following a large number of passive tracer particles we evaluate the diffusion coefficient based on the particle dispersion. It is found that the particle diffusion coefficient...... is in good agreement with the one derived from the turbulent ExB-flux by using Fick's law. Employing the Lagrangian conservation of the "Potential Vorticity'' in the Hasegawa-Wakatani equations, the analytical support for this result is obtained. The transport estimated by passive tracer dispersion...

  11. Carbon dioxide fluxes from an urban area in Beijing

    Science.gov (United States)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  12. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    Science.gov (United States)

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-11-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  13. Annual report 1986-1987

    International Nuclear Information System (INIS)

    The paper presents the Scottish Universities Research and Reactor Centre Annual Report 1986-7. The contents contain the Director's Report, Reactor and Associated activities, and research activities. The reactor studies are described with respect to the reactor operations, isotope production and computing. The research work includes: environmental radioactivity, neutron activation analysis, particle track analysis, body composition studies, isotope traces in biology, nuclear physics, thermoluminescence dosimetry, gamma-ray irradiation processing, radiation effects on electrical insulation, isotopic geology, and NERC Radiocarbon Laboratory. (U.K.)

  14. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  15. Annual Report, 1998

    International Nuclear Information System (INIS)

    In this Annual Report a selection of about 30 scientific achievements are highlighted. These are intended to represent the huge range of high quality research carried out at ILL. In 1998 about 750 experiments were performed in the 225 days of reactor operation. The fields of magnetism and strongly correlated electron systems continue to be fertile and to throw up strong new growth. Remarkable new advances are coming from the applications of both existing and new neutron techniques and the development of new materials. These highlights concern superconductors, nano-magnetic particles, colossal magneto-resistance, magnetic-nuclear correlations, quantum spin systems and more. Novel magnetic measurements are also reported for a quasicrystal and on thin films of both normal and superconducting materials. Thanks to special abilities of neutrons to penetrate matter new results were obtained: following the production of novel intermetallic compounds, pressure dependence of phonon frequencies, the structure of glasses, solutions (in both bulk and thin films) and adsorbed phases; dynamics and relaxation in liquids; the confirmation of reptant motion in linear polymers, self-assembly and shear phenomena in liquid crystals. Three important results from nuclear physics are also included. These involve: fission-produced neutron-rich nuclei, weighing gamma photons in connection with the determination of fundamental constants and the determination of interatomic potentials from the slowing down process of atoms recoiling from gamma-ray emission - a direct link between nuclear and solid-state physics. The neutron experiments of importance for particle physics and biology will be reported next year

  16. Annual Report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Herma G.; Leadbetter, Alan J. [eds.] [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1999-11-01

    In this Annual Report a selection of about 30 scientific achievements are highlighted. These are intended to represent the huge range of high quality research carried out at ILL. In 1998 about 750 experiments were performed in the 225 days of reactor operation. The fields of magnetism and strongly correlated electron systems continue to be fertile and to throw up strong new growth. Remarkable new advances are coming from the applications of both existing and new neutron techniques and the development of new materials. These highlights concern superconductors, nano-magnetic particles, colossal magneto-resistance, magnetic-nuclear correlations, quantum spin systems and more. Novel magnetic measurements are also reported for a quasicrystal and on thin films of both normal and superconducting materials. Thanks to special abilities of neutrons to penetrate matter new results were obtained: following the production of novel intermetallic compounds, pressure dependence of phonon frequencies, the structure of glasses, solutions (in both bulk and thin films) and adsorbed phases; dynamics and relaxation in liquids; the confirmation of reptant motion in linear polymers, self-assembly and shear phenomena in liquid crystals. Three important results from nuclear physics are also included. These involve: fission-produced neutron-rich nuclei, weighing gamma photons in connection with the determination of fundamental constants and the determination of interatomic potentials from the slowing down process of atoms recoiling from gamma-ray emission - a direct link between nuclear and solid-state physics. The neutron experiments of importance for particle physics and biology will be reported next year

  17. Annual Check-up

    Science.gov (United States)

    ... Medical Conditions Nutrition & Fitness Emotional Health Annual Check-Up Posted under Health Guides . Updated 7 January 2015. + ... I get ready for my annual medical check-up? If this is your first visit to your ...

  18. From particle segregation to the granular clock

    Energy Technology Data Exchange (ETDEWEB)

    Lambiotte, R. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: rlambiot@ulb.ac.be; Salazar, J.M. [Universite De Bougogne-LRRS UMR-5613 CNRS, Faculte des Sciences Mirande, 9 Av. Alain Savary, 21078 Dijon Cedex (France)]. E-mail: jmarcos@u-bourgogne.fr; Brenig, L. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: lbrenig@ulb.ac.be

    2005-08-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations.

  19. From particle segregation to the granular clock

    International Nuclear Information System (INIS)

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations

  20. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  1. Freshwater flux to Sermilik Fjord, SE Greenland

    Directory of Open Access Journals (Sweden)

    S. H. Mernild

    2010-07-01

    Full Text Available Fluctuations in terrestrial surface freshwater flux to Sermilik Fjord, SE Greenland, were simulated and analyzed. SnowModel, a state-of-the-art snow-evolution, snow and ice melt, and runoff modeling system, was used to simulate the temporal and spatial terrestrial runoff distribution to the fjord based on observed meteorological data (1999–2008 from stations located on and around the Greenland Ice Sheet (GrIS. Simulated runoff was compared and verified against independent glacier catchment runoff observations (1999–2005. Modeled runoff to Sermilik Fjord was highly variable, ranging from 2.9×109 m3 y−1 in 1999 to 5.9×109 m3 y−1 in 2005. The uneven spatial runoff distribution produced an areally-averaged annual maximum runoff at the Helheim glacier terminus of more than 3.8 m w.eq. The sub-catchment runoff of the Helheim glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage. To assess the Sermilik Fjord freshwater flux, simulated terrestrial runoff and net precipitation (precipitation minus evaporation and sublimation for the fjord area were combined with satellite-derived ice discharge and subglacial geothermal and frictional melting due to basal ice motion. A terrestrial freshwater flux of ~40.4×109 m3 y−1 was found for Sermilik Fjord, with an 11% contribution originated from surface runoff. For the Helheim glacier sub-catchment only 4% of the flux originated from terrestrial surface runoff.

  2. Discrete particle simulation of mixed sand transport

    Institute of Scientific and Technical Information of China (English)

    Fengjun Xiao; Liejin Guo; Debiao Li; Yueshe Wang

    2012-01-01

    An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport.Volume averaged Navier-Stokes equations are solved to calculate gas motion,and particle motion is calculated using Newton's equation,involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions.The influence of wall characteristics,size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed,suggesting that all these three factors affect sand transport at different levels.In all cases,for small size groups,sand mass flux first increases with height and then decreases while for large size groups,it decreases exponentially with height and for middle size groups the behavior is in-between.The mean horizontal velocity for all size groups well fits experimental data,that is,increasing logarithmically with height in the middle height region.Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface.Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.

  3. Hydrogen recycling in graphite at higher fluxes

    Science.gov (United States)

    Larsson, D.; Bergsåker, H.; Hedqvist, A.

    Understanding hydrogen recycling is essential for particle control in fusion devices with a graphite wall. At Extrap T2 three different models have been used. A zero-dimensional (0D) recycling model reproduces the density behavior in plasma discharges as well as in helium glow discharge. A more sophisticated one-dimensional (1D) model is used along with a simple mixing model to explain the results in isotopic exchange experiments. Due to high fluxes some changes in the models were needed. In the paper, the three models are discussed and the results are compared with experimental data.

  4. MCNP6 Cosmic & Terrestrial Background Particle Fluxes -- Release 4

    Energy Technology Data Exchange (ETDEWEB)

    McMath, Garrett E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Div.; McKinney, Gregg W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Div.; Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Div.

    2015-01-23

    Essentially a set of slides, the presentation begins with the MCNP6 cosmic-source option, then continues with the MCNP6 transport model (atmospheric, terrestrial) and elevation scaling. It concludes with a few slides on results, conclusions, and suggestions for future work.

  5. Particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Anwar

    2014-09-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  6. Particle physics

    International Nuclear Information System (INIS)

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  7. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  8. Regional nitrous oxide flux in Amazon basin

    International Nuclear Information System (INIS)

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rain forest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajos National Forest (2000-2009) and Cuieiras Biologic Reserve (2004-2007), and the estimation of N2O fluxes for regions upwind of these sites using two methods: Column Integration Technique and Inversion Model - FLEXPART. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. For the both methods, the fluxes upwind of Cuieiras Biologic Reserve exhibited little seasonality, and the annual mean was 1.9 ±1.6 mgN2Om-2day-1 for the Column Integration Technique and 2.3±0.9 mgN2Om-2day-1 for Inversion Model - FLEXPART. For fluxes upwind of Tapajos Nacional Forest, the Inversion Model - FLEXPART presented about half (0.9±1.7 mgN2Om-2day-1) of the Column Integration Technique (2.0±1.1 mgN2Om-2day-1) for the same period (2004-2008). One reason could be because the inversion model does not consider anthropic activities, once it had a good representation for less impacted area. Both regions presented similar emission during wet season. By Column Integration Technique, fluxes upwind Tapajos Nacional Forest were similar for dry and wet seasons. The dry season N2O fluxes exhibit significant correlations with CO fluxes, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all 38 profiles sampled during the dry season was 82±69 mol CO:molN2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported. (author)

  9. Simulation of atmospheric temperature effects on cosmic ray muon flux

    Energy Technology Data Exchange (ETDEWEB)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino [Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970, Goiânia, GO (Brazil)

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  10. On standard forms for transport equations and fluxes: Part 2

    International Nuclear Information System (INIS)

    Quasilinear expressions for anomalous particle and energy fluxes arising from electrostatic plasma turbulence in a tokamak are reviewed yet again. Further clarifications are made, and the position taken in a previous report is modified. There, the total energy flux, Qj, and the conductive heat flux, qj, were correctly defined, and the anomalous Qj was correctly calculated. It was shown that the anomalous energy transport can be correctly described by ∇·Q*j, where Q*j = 3/5 Qj, with all remaining source terms such as left-angle pj∇·Vj} cancelling. Here, a revised discussion is given of the identification of the anomalous conductive flux, qj, in which the distinction between Qj and Q*j is reconsidered. It is shown that there is more than one consistent way to define qj. Transport calculations involving only theoretical electrostatic turbulent fluxes are unaffected by these distinctions since Qj or Q*j, rather than qj, is the quantity naturally calculated in the theory. However, an ambiguity remains in experimental transport analysis if the measured particle flux Γj = njVj is to be used in the energy equation. This is because we cannot be sure how properly to treat the source terms pj ∇·Vj or { pj ∇·Vj}. 17 refs

  11. Computing the Flux Footprint

    Science.gov (United States)

    Wilson, J. D.

    2015-07-01

    We address the flux footprint for measurement heights in the atmospheric surface layer, comparing eddy diffusion solutions with those furnished by the first-order Lagrangian stochastic (or "generalized Langevin") paradigm. The footprint given by Langevin models differs distinctly from that given by the random displacement model (i.e. zeroth-order Lagrangian stochastic model) corresponding to its "diffusion limit," which implies that a well-founded theory of the flux footprint must incorporate the turbulent velocity autocovariance. But irrespective of the choice of the eddy diffusion or Langevin class of model as basis for the footprint, tuning relative to observations is ultimately necessary. Some earlier treatments assume Monin-Obukhov profiles for the mean wind and eddy diffusivity and that the effective Schmidt number (ratio of eddy viscosity to the tracer eddy diffusivity) in the neutral limit , while others calibrate the model to the Project Prairie Grass dispersion trials. Because there remains uncertainty as to the optimal specification of (or a related parameter in alternative theories, e.g. the Kolmogorov coefficient in Langevin models) it is recommended that footprint models should be explicit in this regard.

  12. Critical heat flux thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. E-mail: fjk@posta.unizar.es

    2002-11-01

    Convective boiling in subcooled water flowing through a heated channel is essential in many engineering applications where high heat flux need to be accommodated, such as in the divertor plates of fusion reactors. There are many available correlations for predicting heat transfer in the individual regimes of the empirical Nukiyama boiling curve, although unfortunately there is no physical fundamentals of such curve. Recently, the author has shown that the classical entropy balance could contain key information about boiling heat transfer. So, it was found that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant fluid) was strongly correlated with the efficiency of a theoretical reversible engine placed in this thermal gap. In this work and from the new proposed correlation, a new expression of the wall temperature in function of the average fluid temperature is derived and successfully checked against experimental data from General Electric. This expression suggests a new and simple definition of the critical heat flux (CHF), a key parameter of the thermal-hydraulic design of fusion reactors. Finally, based on the new definition, the CHF trends are commented.

  13. Particle-Vortex Duality from 3d Bosonization

    CERN Document Server

    Karch, Andreas

    2016-01-01

    We provide a simple derivation of particle-vortex duality in d=2+1 dimensions. Our starting point is a relativistic form of flux attachment, designed to transmute the statistics of particles. From this seed, we derive a web of new dualities. These include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  14. D branes in background fluxes and Nielsen-Olesen instabilities

    CERN Document Server

    Russo, Jorge G

    2016-01-01

    In quantum field theory, charged particles with spin $\\geq 1$ may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes $F_{p+2}$, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.

  15. D branes in background fluxes and Nielsen-Olesen instabilities

    Science.gov (United States)

    Russo, Jorge G.

    2016-06-01

    In quantum field theory, charged particles with spin ≥ 1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F p+2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are D p branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic D p brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin D p quantum states which become very light at critical fields.

  16. Diffuse flux of galactic neutrinos and gamma rays

    CERN Document Server

    Carceller, J M

    2016-01-01

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to obtain the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 10^8 GeV. We find that at E>1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1-5 GeV the main source of uncertainty is the cosmic-ray spectrum out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E>1 PeV, but that at all IceCube energies it is up to 5 times smaller than the atmospheric flux from forward-charm decays.

  17. On the dynamics created by a time--dependent Aharonov-Bohm flux

    CERN Document Server

    Asch, J

    2007-01-01

    We study the dynamics of classical and quantum particles moving in a punctured plane under the influence of a homogeneous magnetic field and driven by a time-dependent singular flux tube through the hole.

  18. Quantitative Flux Ecoregions for AmeriFlux Using MODIS

    Science.gov (United States)

    Hoffman, F. M.; Hargrove, W. W.

    2004-12-01

    Multivariate Geographic Clustering was used with maps of climate, soils, and physiography and MODIS remotely sensed data products to statistically produce a series of the 90 most-different homogeneous flux-relevant ecoregions in the conterminous United States using a parallel supercomputer. Nine separate sets of flux ecoregions were produced; only two will be discussed here. Both the IB and IIIB maps were quantitatively constructed from subsets of the input data integrated during the local growing season (frost-free period) in every 1 km cell. Each map is shown two ways --- once with the 90 flux ecoregions colored randomly, and once using color combinations derived statistically from the first three Principal Component Axes. Although the underlying flux ecoregion polygons are the same in both cases, the statistically derived colors show the similarity of conditions within each flux ecoregion. Coloring the same map in this way shows the continuous gradient of changing flux environments across the US. The IB map, since it considers only abiotic environmental factors, represents flux-ecoregions based on potential vegetation. The IIIB map, since it contains remotely sensed MODIS information about existing vegetation, includes the effects of natural and anthropogenic disturbance, and represents actual or realized flux ecoregions. Thus, differences between the maps are attributable to human activity and natural disturbances. The addition of information on existing vegetation exerts a unifying effect on abiotic-only flux ecoregions. The Mississippi Valley and Corn Belt areas show large differences between the two maps. Map IIIB shows a mosaic of ``speckles'' in areas of intense human land use, ostensibly from disturbances like agriculture, irrigation, fertilization, and clearing. Such ``speckles'' are absent from areas devoid of intense human land use. Major cities are also evident in the IIIB map. We will use the quantitative similarity of the suite of flux

  19. Photospheric flux cancellation and associated flux rope formation and eruption

    CERN Document Server

    Green, L M; Wallace, A J; 10.1051/0004-6361/201015146

    2010-01-01

    We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5~days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux...

  20. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    Science.gov (United States)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash <100 micrometer] and bio-inoculant of filamentous cyanobacteria, isolated from nearby natural stabilized sand dunes, on the soil surface of active sands for increasing resistance to wind erosion. Boundary-layer wind tunnel experiments were conducted in experimental plots within a greenhouse for examining the effects of adding coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  1. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    Science.gov (United States)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  2. Large Area Lunar Dust Flux Measurement Instrument

    Science.gov (United States)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  3. Optimal fluxes and Reynolds stresses

    CERN Document Server

    Jimenez, Javier

    2016-01-01

    It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in isotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux `circuits'. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different.

  4. Vorticity flux from active dimples

    Science.gov (United States)

    McKeon, Beverley; Sherwin, Spencer; Morrison, Jonathan

    2004-11-01

    The effect of surface depressions, or dimples, in reducing drag on golf balls is well-known. Here this concept is extended to using ``active" dimples to manipulate vorticity flux at the wall. Surface vorticity flux is governed by surface accelerations, pressure and shear stress gradients, and surface curvature. ``Active" (or vibrating) dimples may generate vorticity flux by each of these terms, making them an excellent candidate for a basic study of flux manipulation, by which flow control may be achieved. Flow over an active dimple in fully-developed laminar channel flow is simulated with velocity boundary conditions developed from a linearized perturbation method imposed at the wall. This simple model cannot capture flow separation, but gives insight into the most straightforward means of flux generation from the concave surface. Vorticity flux due to dimple geometry and motion is quantified, and enhancements of two to three orders of magnitude in peak vorticity over the static dimple case are observed.

  5. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  6. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R.

    Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during the summer-monsoon period of 1988 using time-series sediment traps deployed at two depths (809 and 1750 m) in the northern Bay...

  7. Measuring Flux Distributions for Diffusion in the Small-Numbers Limit

    OpenAIRE

    Seitaridou, Effrosyni; Inamdar, Mandar M.; Phillips, Rob; Ghosh, Kingshuk; Dill, Ken

    2007-01-01

    For the classical diffusion of independent particles, Fick's law gives a well-known relationship between the average flux and the average concentration gradient. What has not yet been explored experimentally, however, is the dynamical distribution of diffusion rates in the limit of small particle numbers. Here, we measure the distribution of diffusional fluxes using a microfluidics device filled with a colloidal suspension of a small number of microspheres. Our experiments show that (1) the f...

  8. The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    OpenAIRE

    Thomas, S. R.; Owens, M. J.; Lockwood, Mike

    2014-01-01

    Abstract The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when...

  9. Heat Flux Apportionment to Heterogeneous Surfaces Using Flux Footprint Analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Heat flux data collected from the Baiyangdian Heterogeneous Field Experiment were analyzed using the footprint method. High resolution (25 m) Landsat-5 satellite imaging was used to determine the land cover as one of four surface types: farmland, lake, wetland, or village. Data from two observation sites in September 2005 were used. One site (Wangjiazhai) was characterized by highly heterogeneous surfaces in the central area of the Baiyangdian: lake/wetland. The other site (Xiongxian) was on land with more uniform surface cover. An improved Eulerian analytical flux footprint model was used to determine "source areas" of the heat fluxes measured at towers located at each site from surrounding landscapes of mixed surface types.In relative terms results show that wetland and lake areas generally contributed most to the observed heat flux at Wangjiazhai, while farmland contributed most at Xiongxian. Given the areal distribution of surface type contributions, calculations were made to obtain the magnitudes of the heat flux from lake, wetland and farmland to the total observed flux and apportioned contributions of each surface type to the sensible and latent heat fluxes. Results show that on average the sensible heat flux from wetland and farmland were comparable over the diurnal cycle, while the latent heat flux from farmland was somewhat larger by about 30-50 W m-2 during daytime. The latent and sensible fluxes from the lake source in daytime were about 50 W m-2 and 100 W m-2 less, respectively, than from wetland and farmland. The results are judged reasonable and serve to demonstrate the potential for flux apportionment over heterogeneous surfaces.

  10. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    Science.gov (United States)

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  11. Particle Dark Matter in DAMA/LIBRA

    CERN Document Server

    Bernabei, R; Cappella, F; Cerulli, R; Dai, C J; d'Angelo, A; He, H L; Incicchitti, A; Ma, X H; Montecchia, F; Nozzoli, F; Prosperi, D; Sheng, X D; Ye, Z P; Wang, R G

    2010-01-01

    The present DAMA/LIBRA experiment and the former DAMA/NaI have cumulatively released so far the results obtained with the data collected over 13 annual cycles (total exposure: 1.17 ton $\\times$ yr). They give a model independent evidence of the presence of DM particles in the galactic halo on the basis of the DM annual modulation signature at 8.9 $\\sigma$ C.L. for the cumulative exposure.

  12. Annual Report 1992

    International Nuclear Information System (INIS)

    This annual report presents research programmes and basic investigations of the Institute for Transuranium Elements. In Basic Safety Research on Nuclear Fuels, studies of the fracture and evaporation behaviour of UO2, simulating different degrees of burn-up, were continued. The Study of Safety Aspects of Fuel Operation and Handling dealt with an investigation of the operational limits of advanced fuels and with the transport and dispersion of radioactive aerosol particles in nuclear facilities. Actinide Determination and Recycling activities were mainly concerned with an evaluation of the technical possibilities to transmute long-lived nuclear waste constituents into shorter-lived fission products. The results of an earlier irradiation test were evaluated, and minor-actinide containing oxide fuel pins which had been irradiated in the PHENIX reactor were analysed. Progress was made in the Characterization of Waste Forms and of High Burn-Up Fuel. In the context of efforts to model the consequences of water intrusion into an underground fuel deposit (Project COCAIN), existing models (FUTURE, MITRA, CHEMIF) were adapted and used to characterize the initial state of an LWR fuel which had been subject to several irradiation cycles. In Actinide Research the accent was on the preparation and on structural and physical studies of actinide compounds with heavy fermion properties and with a particular magnetic behaviour. Experimental investigations on the attenuation of sound waves by aerosols and theoretical studies concerning the optimization of acoustic cavities for aerosol conditioning were carried out during the reporting period under the heading Exploratory Research. Support to the Directorate General XVII (Energy) on safeguarding fissile materials concentrated on the preparation of work in on-site analytical laboratories in Sellafield and La Hague. In this context, a portable compact K-edge absorption spectrometer was constructed and an expert system for the evaluation

  13. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  14. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B;

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  15. Methane flux from wetlands areas

    OpenAIRE

    BAKER-BLOCKER, ANITA; Donahue, Thomas M.; MANCY, KHALIL H.

    2011-01-01

    Ebullient gases from Michigan wetlands have been collected and analyzed to deduce in situ methane fluxes. Methane flux has been found to be a function of mean air temperature. This relationship has been utilized to extrapolate observed methane fluxes to estimates of fluxes from the Pripet marshes, Sudd, Everglades, and Ugandan swamps. These four wetlands together provide a yearly source of 6.8 × 1013 g of methane to the atmosphere.DOI: 10.1111/j.2153-3490.1977.tb00731.x

  16. New Examples of Flux Vacua

    CERN Document Server

    Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep

    2013-01-01

    Type IIB toroidal orientifolds are among the earliest examples of flux vacua. By applying T-duality, we construct the first examples of massive IIA flux vacua with Minkowski space-times, along with new examples of type IIA flux vacua. The backgrounds are surprisingly simple with no four-form flux at all. They serve as illustrations of the ingredients needed to build type IIA and massive IIA solutions with scale separation. To check that these backgrounds are actually solutions, we formulate the complete set of type II supergravity equations of motion in a very useful form that treats the R-R fields democratically.

  17. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    Science.gov (United States)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  18. Elementary Particles

    Science.gov (United States)

    Parham, R.

    1974-01-01

    Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)

  19. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holladay, S. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cook, R. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Falge, E. [Univ. Bayreuth, Bayreuth (Germany); Baldocchi, D. [Univ. of California, Berkeley, CA (United States); Gu, L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  20. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  1. Annual Statistical Supplement, 2014

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2014 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  2. Annual Statistical Supplement, 2015

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2015 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  3. Annual Statistical Supplement, 2010

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2010 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  4. Annual Statistical Supplement, 2000

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2000 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  5. Annual Statistical Supplement, 2004

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2004 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  6. Annual Statistical Supplement, 2001

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2001 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  7. Annual Statistical Supplement, 2003

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2003 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  8. Annual Statistical Supplement, 2005

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2005 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  9. Annual Statistical Supplement, 2007

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2007 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  10. Annual Statistical Supplement, 2008

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2008 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  11. Annual Statistical Supplement, 2009

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2009 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  12. Annual Statistical Supplement, 2002

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2002 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  13. Annual Statistical Supplement, 2006

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2006 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  14. Annual Statistical Supplement, 2011

    Data.gov (United States)

    Social Security Administration — The Annual Statistical Supplement, 2011 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  15. Higgs particles

    International Nuclear Information System (INIS)

    The theoretical work on models of the electroweak interaction and simple grand unified models with a nonstandard set of Higgs particles is reviewed. Emphasis is placed on light and even strictly massless Higgs particles: Goldstone and pseudo-Goldstone bosons. It is shown that such bosons arise in a natural way in the theory if the Higgs particles are in fact composite. The low-energy effective Lagrangian of these particles is studied. A detailed study is made of the problem of CP breaking in a strong interaction and of a natural solution of this problem through the introduction of a pseudo-Goldstone particle: an axion. The theory of the ''standard'' axion and its experimental status are reviewed. Possible ''invisible'' and ''visualized'' axions are discussed, as are certain astrophysical aspects of the existence of an axion. By analogy with the axion, an analysis is made of another hypothetical particle: the strictly massless Goldstone boson or arion. Model-independent properties of the arion are determined. The similarity between the arion fields and magnetic fields and the differences between these fields are shown. Possible methods for detecting an arion field are discussed. An experiment which has set a limit on the strength of the arion interaction is described. Neutral Goldstone bosons whose emission is accompanied by changes in fermion flavors (''familons'') are discussed. Two versions of the theory with a Goldstone boson (a majoron) which arises upon a spontaneous breaking of lepton number are described

  16. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  17. High Energy Particles in the Solar Corona

    CERN Document Server

    Widom, A; Larsen, L

    2008-01-01

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  18. Estimating Radon Flux and Environmental Radiation Dose from Decommissioning Uranium Mill Tailings and Mining Debris

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively evaluates radon fluxes and doses to man of gaseous airborne pathway from mill tailings and mining debris before and after decommissioning, including annual individual effective dose to critical groups and annual collective effective dose to the population within 80 km region of the facilities.

  19. Copper in the sea: a physical--chemical study of reservoirs, fluxes, and pathways in an Alaskan fjord

    Energy Technology Data Exchange (ETDEWEB)

    Heggie, D.T.

    1978-05-01

    Copper in the sea is derived principally from continental weathered products added to the oceans at continental boundaries; hence processes, fluxes, and pathways in estuaries control the supply of copper to the marine biosphere. From mass balances, the fluxes, sources, and sinks of copper in an Alaskan fjord were examined by utilizing fjord deep waters as an approximation to a closed chemical system. Copper was measured in the water columns and interstitial waters electroanalytically. Concentrations of soluble copper ranged between 0.14 ..mu..g l/sup -1/ and 3.13 ..mu..g l/sup -1/. Approximately 40% of total copper was associated with particulate matter in the water column. Concentrations of copper in interstitial waters varied between 1.02 and 9.98 ..mu..g l/sup -1/; maximum concentrations were always found in surface segments. Concentrations of copper on sediments were about 20 mg kg /sup -1/. Copper was removed from the water column and transported to the sediments by particulate matter; net annual removal was estimated to be between 9.6 and 14.2 ..mu..g Cu cm/sup -2/. Copper was remobilized from the solid phase(s) in surface sediments and subsequently returned to the overlying water; net annual transport across the sediment-seawater interface was estimated to be 1.9 ..mu..g Cu cm/sup -/2. Therefore, between 13 and 20% of copper removed from the water column to the sediments was returned to the water column. Remobilized copper not returned to the water column was removed from interstitial waters in the anoxic zone of sediments. Remobilization and removal processes in sediments take place in thin approx. 10 cm zone and effective rates of reactions in sediments may be one of three orders of magnitude greater than reaction rates in the water column. A hypothesis is presented for transport of copper to the sediments predominately on biogenic particles.

  20. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  1. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2009-11-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  2. Errors in airborne flux measurements

    Science.gov (United States)

    Mann, Jakob; Lenschow, Donald H.

    1994-07-01

    We present a general approach for estimating systematic and random errors in eddy correlation fluxes and flux gradients measured by aircraft in the convective boundary layer as a function of the length of the flight leg, or of the cutoff wavelength of a highpass filter. The estimates are obtained from empirical expressions for various length scales in the convective boundary layer and they are experimentally verified using data from the First ISLSCP (International Satellite Land Surface Climatology Experiment) Field Experiment (FIFE), the Air Mass Transformation Experiment (AMTEX), and the Electra Radome Experiment (ELDOME). We show that the systematic flux and flux gradient errors can be important if fluxes are calculated from a set of several short flight legs or if the vertical velocity and scalar time series are high-pass filtered. While the systematic error of the flux is usually negative, that of the flux gradient can change sign. For example, for temperature flux divergence the systematic error changes from negative to positive about a quarter of the way up in the convective boundary layer.

  3. Colloquium: Annual modulation of dark matter

    Science.gov (United States)

    Freese, Katherine; Lisanti, Mariangela; Savage, Christopher

    2013-10-01

    Direct detection experiments, which are designed to detect the scattering of dark matter off nuclei in detectors, are a critical component in the search for the Universe’s missing matter. This Colloquium begins with a review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals. The count rate in these experiments should experience an annual modulation due to the relative motion of the Earth around the Sun. This modulation, not present for most known background sources, is critical for solidifying the origin of a potential signal as dark matter. The focus is on the physics of annual modulation, discussing the practical formulas needed to interpret a modulating signal. The dependence of the modulation spectrum on the particle and astrophysics models for the dark matter is illustrated. For standard assumptions, the count rate has a cosine dependence with time, with a maximum in June and a minimum in December. Well-motivated generalizations of these models, however, can affect both the phase and amplitude of the modulation. Shown is how a measurement of an annually modulating signal could teach us about the presence of substructure in the galactic halo or about the interactions between dark and baryonic matter. Although primarily a theoretical review, the current experimental situation for annual modulation and future experimental directions is briefly discussed.

  4. Seasonal cycle of solar energy fluxes through Arctic sea ice

    Directory of Open Access Journals (Sweden)

    S. Arndt

    2014-06-01

    Full Text Available Arctic sea ice has not only decreased considerably during the last decades, but also changed its physical properties towards a thinner and more seasonal cover. These changes strongly impact the energy budget and might affect the ice-associated ecosystem of the Arctic. But until now, it is not possible to quantify shortwave energy fluxes through sea ice sufficiently well over large regions and during different seasons. Here, we present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The annual maximum solar heat flux of 30 × 105 J m−2 occurs in June, then also matching the under ice ocean heat flux. Furthermore, our results suggest that 96% of the total annual solar heat input occurs from May to August, during four months only. Applying the new parameterization on remote sensing and reanalysis data from 1979 to 2011, we find an increase in light transmission of 1.5% a−1 for all regions. Sensitivity studies reveal that the results strongly depend on the timing of melt onset and the correct classification of ice types. Hence, these parameters are of great importance for quantifying under-ice radiation fluxes and the uncertainty of this parameterization. Assuming a two weeks earlier melt onset, the annual budget increases by 20%. Continuing the observed transition from Arctic multi- to first year sea ice could increase light transmittance by another 18%. Furthermore, the increase in light transmission directly contributes to an increase in internal and bottom melt of sea ice, resulting in a positive transmittance-melt feedback process.

  5. Interpreting Flux from Broadband Photometry

    CERN Document Server

    Brown, Peter J; Roming, Peter W A; Siegel, Michael

    2016-01-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broad-band photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by comparing in the natural units of the observations. We recommend that integrated flux measurements be made using a spectrum or spectral energy distribution whic...

  6. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N.; Mika, J.R.; Wieteska, K. [eds.

    1998-12-31

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  7. Annual Report 2001

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 2001. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  8. Annual Energy Review, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  9. Natural gas annual 1991

    International Nuclear Information System (INIS)

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  10. Annual Report 1997

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  11. Estimating the amount and distribution of radon flux density from the soil surface in China.

    Science.gov (United States)

    Zhuo, Weihai; Guo, Qiuju; Chen, Bo; Cheng, Guan

    2008-07-01

    Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.

  12. The impacts of '05.6' extreme flood event on riverine carbon fluxes in Xijiang River

    Institute of Scientific and Technical Information of China (English)

    SUN HuiGuo; HAN JingTai; ZHANG ShuRong; LU XiXi

    2007-01-01

    An extreme flood event with a frequency of nearly 200 year occurred in June of 2005 in the Xijiang River,the main trunk stream of the Zhujiang River. Samples were systematically collected during the flood event, and water quality parameters, including total suspended sediment (TSS), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were analyzed,and riverine carbon concentrations associated with its changing pattern through the flood process were discussed. These parameters reflect the changes in basin surface flow and subsurface flow during the flood. This flood event influenced annual flux estimations of POC, DOC, and DIC to great extents.Based on carbon flux estimations for the year 2005 and the flood event (June 21-28) in the Xijiang River, it was found that DIC, DOC, and POC fluxes during '05.6' flood event are 1.52x106 g.km-2.a-1,0.24x106 g.km-2.a-1, and 0.54x106 g.km-2.a-1, and account for 14.87%, 24.75% and 44.89% of the annual fluxes in 2005, respectively. The results suggested that carbon exports during extreme flood events had great contributions to the total carbon fluxes and composition of various carbon components, being important for accurate estimates of annual carbon fluxes in rivers with frequent floods.

  13. Application of the Gillespie algorithm to a granular intruder particle

    OpenAIRE

    Talbot, J.; Viot, P.

    2006-01-01

    We show how the Gillespie algorithm, originally developed to describe coupled chemical reactions, can be used to perform numerical simulations of a granular intruder particle colliding with thermalized bath particles. The algorithm generates a sequence of collision ``events'' separated by variable time intervals. As input, it requires the position-dependent flux of bath particles at each point on the surface of the intruder particle. We validate the method by applying it to a one-dimensional ...

  14. Subcooled boiling of nano-particle suspensions on Pt wires

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  15. Fluxes and fluences of SEP events derived from SOLPENCO

    Energy Technology Data Exchange (ETDEWEB)

    Aran, A. [Dept. d' Astronomia i Meteorologia, Univ. de Barcelona, Barcelona (Spain); Sanahuja, B. [Dept. d' Astronomia i Meteorologia, Univ. de Barcelona, Barcelona (Spain); CER d' Astrofisica, Fisica de Particules i Cosmologia, Unitat Associada al CSIC, Barcelona (Spain); Lario, D. [Applied Physics Lab., The Johns Hopkins Univ., MD (United States)

    2005-07-01

    We have developed (Aran et al., 2004) a tool for rapid predictions of proton flux and fluence profiles observed during gradual solar energetic particle (SEP) events and upstream of the associated traveling interplanetary shocks. This code, named SOLPENCO (for SOLar Particle ENgineering COde), contains a data base with a large set of interplanetary scenarios under which SEP events develop. These scenarios are basically defined by the solar longitude of the parent solar activity, ranging from E76 to W90, and by the position of the observer, located at 0.4 AU or at 1.0 AU, from the Sun. We are now analyzing the performance and reliability of SOLPENCO. We address here two features of SEP events especially relevant to space weather purposes: the peak flux and the fluence. We analyze how the peak flux and the fluence of the synthetic profiles generated by SOLPENCO vary as a function of the strength of the CME-driven shock, the heliolongitude of the solar parent activity and the particle energy considered. In particular, we comment on the dependence of the fluence on the radial distance of the observer (which does not follow an inverse square law) and we draw conclusions about the influence of the sock as a particle accelerator in terms of its evolving strength and the heliolongitude of the solar site where the SEP event originated. (orig.)

  16. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  17. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  18. A sea spray aerosol flux parameterization encapsulating wave state

    Science.gov (United States)

    Ovadnevaite, J.; Manders, A.; de Leeuw, G.; Ceburnis, D.; Monahan, C.; Partanen, A.-I.; Korhonen, H.; O'Dowd, C. D.

    2014-02-01

    A new sea spray source function (SSSF), termed Oceanflux Sea Spray Aerosol or OSSA, was derived based on in-situ sea spray aerosol measurements along with meteorological/physical parameters. Submicron sea spray aerosol fluxes derived from particle number concentration measurements at the Mace Head coastal station, on the west coast of Ireland, were used together with open-ocean eddy correlation flux measurements from the Eastern Atlantic Sea Spray, Gas Flux, and Whitecap (SEASAW) project cruise. In the overlapping size range, the data for Mace Head and SEASAW were found to be in a good agreement, which allowed deriving the new SSSF from the combined dataset spanning the dry diameter range from 15 nm to 6 μm. The OSSA source function has been parameterized in terms of five lognormal modes and the Reynolds number instead of the more commonly used wind speed, thereby encapsulating important influences of wave height, wind history, friction velocity, and viscosity. This formulation accounts for the different flux relationships associated with rising and waning wind speeds since these are included in the Reynolds number. Furthermore, the Reynolds number incorporates the kinematic viscosity of water, thus the SSSF inherently includes dependences on sea surface temperature and salinity. The temperature dependence of the resulting SSSF is similar to that of other in-situ derived source functions and results in lower production fluxes for cold waters and enhanced fluxes from warm waters as compared with SSSF formulations that do not include temperature effects.

  19. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  20. Soil CO2 Flux in the Amargosa Desert, Nevada, during El Nino 1998 and La Nina 1999

    Science.gov (United States)

    Riggs, Alan C.; Stannard, David I.; Maestas, Florentino B.; Karlinger, Michael R.; Striegl, Robert G.

    2009-01-01

    Mean annual soil CO2 fluxes from normally bare mineral soil in the Amargosa Desert in southern Nevada, United States, measured with clear and opaque soil CO2-flux chambers (autochambers) were small - Nino 1998 and La Nina 1999. The 1998 opaque-chamber flux exceeded 1999 opaque-chamber flux by an order of magnitude, whereas the 1998 clear-chamber flux exceeded 1999 clear-chamber flux by less than a factor of two. These data suggest that above-normal soil moisture stimulated increased metabolic activity, but that much of the extra CO2 produced was recaptured by plants. Fluxes from warm moist soil were the largest sustained fluxes measured, and their hourly pattern is consistent with enhanced soil metabolic activity at some depth in the soil and photosynthetic uptake of a substantial portion of the CO2 released. Flux from cool moist soil was smaller than flux from warm moist soil. Flux from hot dry soil was intermediate between warm-moist and cool-moist fluxes, and clear-chamber flux was more than double the opaque-chamber flux, apparently due to a chamber artifact stemming from a thermally controlled CO2 reservoir near the soil surface. There was no demonstrable metabolic contribution to the very small flux from cool dry soil, which was dominated by diffusive up-flux of CO2 from the water table and temperature-controlled CO2-reservoir up- and down-fluxes. These flux patterns suggest that transfer of CO2 across the land surface is a complex process that is difficult to accurately measure.

  1. Inverse carbon dioxide flux estimates for the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Meesters, A.G.C.A.; Tolk, L.F.; Dolman, A.J. [Faculty of Earth and Life Sciences, VU University, Amsterdam (Netherlands); Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A. [Department Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen (Netherlands); Vermeulen, A.T. [Biomass, Coal and Environmental Research, Energy research Center of the Netherlands ECN, Petten (Netherlands); Van der Laan, S.; Neubert, R.E.M.; Meijer, H.A.J. [Centre for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen (Netherlands)

    2012-10-26

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2 uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  2. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    Science.gov (United States)

    Crawford, John T.; Emily H. Stanley,

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  3. Interpreting Flux from Broadband Photometry

    Science.gov (United States)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  4. Normal mode acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing

    Institute of Scientific and Technical Information of China (English)

    HUI Junying; SUN Guocang; ZHAO Anbang

    2009-01-01

    The layered media normal mode theory has been well established in the middle of the last century, but few attentions have been paid to the particle velocity field. The combined descriptions of the pressure field and particle velocity field in Pekeris waveguide, especially the vertical acoustic intensity flux are proposed in this paper. The result of the study shows that both the horizontal and the vertical acoustic intensity flux have active and reactive component because of the interference between the normal modes. When an acoustic vector sensor is placed appropriately, the reactive component of the vertical acoustic intensity flux in low frequency acoustic field can be used to tell the source's specified depth, although it can't transport energy.Then the reactive component of the vertical acoustic intensity flux is of importance for vector signal processing. The pressure and particle velocity cross spectra signal processing algorithm is proposed to distinguish the targets.

  5. Field-based observations confirm linear scaling of sand flux with wind stress

    CERN Document Server

    Martin, Raleigh L

    2016-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the sand flux scales with wind speed, largely because models do not agree on how particle speed changes with wind shear velocity. Here, we present comprehensive measurements from three new field sites and three published studies, showing that characteristic saltation layer heights, and thus particle speeds, remain approximately constant with shear velocity. This result implies a linear dependence of saltation flux on wind shear stress, which contrasts with the nonlinear 3/2 scaling used in most aeolian process predictions. We confirm the linear flux law with direct measurements of the stress-flux relationship occurring at each site. Models for dust generation, dune migration, and other processes driven by wind-blown sand on Earth, Mars, and several other planetary surfaces should be modified to account for linear stress-flux scaling.

  6. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  7. Small helical flux compression amplifiers

    International Nuclear Information System (INIS)

    Small, explosively compressed, magnetic flux transducers with many closely spaced helical turns are investigated theoretically and experimentally. The analysis is limited to linear operation, but takes into account load influence, proximity effects, and switching delays. The latter are due to retarded breakdown in the wire insulation and to the finite decay time of the magnetic field in the wire. More than 150 experiments showed considerable data scatter. Shots which exhibited low clocking and high amplification were in good agreement with the theory. The main conclusion is that device performance is limited not only by flux loss, but by flux remaining in the generator after compression

  8. The Solar Wind Energy Flux

    OpenAIRE

    Chat, G. Le; Issautier, K.; Meyer-Vernet, N.

    2012-01-01

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) ...

  9. Annual Report 2000

    International Nuclear Information System (INIS)

    The Annual Report 2000 of the Technological Research Direction at the National Institute of Nuclear Research (ININ) of Mexico presents its activities during year 2000. It is described a work plan and budget for the exercise in 2001. The projects, services and work programs of those different management offices adscripted to this Direction were revised and evaluated. The Technological Innovation Management office is formed by two departments, the one of Control and the one Evaluation and Linking. The projects which form the Management office comprise: Neutron activation analysis, Environmental radiation surveillance, gamma spectroscopy, archaeometry, nuclear application studies and support to priority projects. The Radiological Safety management office provides internal and external services in matter of radiation protection and radioactive waste negotiation to fulfil with the applicable standardization. This management office realizes the link function with the National Commission of Nuclear Safety and Safeguards (CNSNS) as for the licenses, authorizations and permissions for nuclear and radioactive facilities and for those activities which are involucrated with the use of radioactive material and devices generators of ionizing radiation in the National Institute of Nuclear Research. The Nuclear Technology management office is composed of two departments: Chemical Analysis wherever analytical studies are realized to fulfil with national standards and international codes to providing services at different enterprises and the Reactor wherever an aging negotiation program is established for him (thirty operation years) which allows to mitigate or to correct those effects by aging in facilities. The Health Nuclear applications management office consists of two departments: Metrology which obtains the authorization from the Commerce and Industrial Fomentation Secretary (SECOFI) of the national standards of beta particles, neutrons and coincidences, as well as the

  10. Annual report 99

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This volume of the Annual Report for the year 1999 provides the best illustration of this attempt: 30 highlights are presented covering a remarkable range of science and technique. As with last year's report, a wide spectrum of neutron science is embraced from biology, through to studies in chemistry, materials science and magnetism, to particle physics. To maintain this excellence, important efforts have been made in instrumentation; they are described in the technical section together with the Millennium Programme. This report is an appropriate illustration of the unique value of neutron methods for the study of a wide range of materials proving the usefulness of large-scale facilities such as the ILL. In 1999, the reactor operated for 208 days and more than 700 experiments were carried out in over 4400 days of scheduled beam time. Unfortunately, there was a failure of the hot source in December 1999 leading to a loss of about 20 days of beam time. Therefore, in 2000 the reactor will operate without the hot source. However, this will only affect 10 % of ILL's instruments. As in previous years, a large number of high-quality experiments was proposed and performed to tackle a broad range of scientific questions. For example in biology, the results presented here demonstrate that the contrast-variation method combined with small-angle scattering and neutron reflectivity techniques is a remarkable and unique tool for the investigation of biological materials. In the field of soft matter and liquids, it is known that confined geometry substantially modifies the properties of systems as diverse as simple water, polymers and quantum fluids. Neutron scattering experiments, presented here, have revealed the static and dynamic characteristics of these materials under conditions of confinement. In materials sciences, the penetration and contrast properties of neutrons are exploited, particularly in the case of small-angle scattering applied to alloys. Finally, the

  11. Annual report 99

    International Nuclear Information System (INIS)

    This volume of the Annual Report for the year 1999 provides the best illustration of this attempt: 30 highlights are presented covering a remarkable range of science and technique. As with last year's report, a wide spectrum of neutron science is embraced from biology, through to studies in chemistry, materials science and magnetism, to particle physics. To maintain this excellence, important efforts have been made in instrumentation; they are described in the technical section together with the Millennium Programme. This report is an appropriate illustration of the unique value of neutron methods for the study of a wide range of materials proving the usefulness of large-scale facilities such as the ILL. In 1999, the reactor operated for 208 days and more than 700 experiments were carried out in over 4400 days of scheduled beam time. Unfortunately, there was a failure of the hot source in December 1999 leading to a loss of about 20 days of beam time. Therefore, in 2000 the reactor will operate without the hot source. However, this will only affect 10 % of ILL's instruments. As in previous years, a large number of high-quality experiments was proposed and performed to tackle a broad range of scientific questions. For example in biology, the results presented here demonstrate that the contrast-variation method combined with small-angle scattering and neutron reflectivity techniques is a remarkable and unique tool for the investigation of biological materials. In the field of soft matter and liquids, it is known that confined geometry substantially modifies the properties of systems as diverse as simple water, polymers and quantum fluids. Neutron scattering experiments, presented here, have revealed the static and dynamic characteristics of these materials under conditions of confinement. In materials sciences, the penetration and contrast properties of neutrons are exploited, particularly in the case of small-angle scattering applied to alloys. Finally, the

  12. 31st Annual conference and the 21st annual theoretical seminar of the South African Institute of Physics

    International Nuclear Information System (INIS)

    The 31st annual conference and the 21st annual theoretical seminar of the South African Institute of Physics was held from 7-11 July 1986 at the Rand Afrikaans University, Johannesburg. This publication contains only the abstracts of seminars delivered on the conference. The topics that were covered include the various facets of physics such as solid state physics, nuclear and particle physics, optics and spectroscopy, solar-terrestrial physics, education, and applied and industrial physics

  13. 33rd Annual conference and the 23rd annual theoretical seminar of the South African Institute of Physics

    International Nuclear Information System (INIS)

    The 33rd annual conference and the 23rd annual theoretical seminar of the South African Institute of Physics was held from 4-8 July 1988 at Rhodes University, Grahamstown. This publication contains only the abstracts of seminars delivered on the conference. The topics that were covered include the various facets of physics such as solid state physics, nuclear and particle physics, optics and spectroscopy, solar-terrestrial physics, eduction, and applied and industrial physics

  14. 32nd Annual conference and the 22nd annual theoretical seminar of the South African Institute of Physics

    International Nuclear Information System (INIS)

    The 32nd annual conference and the 22nd annual theoretical seminar of the South African Institute of Physics was held from 13-17 July 1987 at the University of Natal, Durban. This publication contains only the abstracts of seminars delivered on the conference. The topics that were covered include the various facets of physics such as solid state physics, nuclear and particle physics, optics and spectroscopy, solar-terrestrial physics, education, and applied and industial physics

  15. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    Science.gov (United States)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; Eldering, Annmarie; Gunson, Michael; Kawa, Stephan R.

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  16. Trapped proton fluxes at low Earth orbits measured by the PAMELA experiment

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Danilchenko, I A; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2014-01-01

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above > 70 MeV performed by the PAMELA mission at low Earth orbits (350-610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  17. DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?

    Energy Technology Data Exchange (ETDEWEB)

    Owens, M. J. [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2016-02-20

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  18. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  19. Avalanche of particles in evaporating coffee drops

    CERN Document Server

    Marin, Alvaro G; Snoeijer, Jacco; Lohse, Detlef

    2010-01-01

    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.

  20. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    Science.gov (United States)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  1. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  2. Measuring temperature and thermal flux

    International Nuclear Information System (INIS)

    A sensitive temperature measuring device is described for detecting small temperature differences and associated thermal fluxes. Highly-doped silicon diodes operated at constant current are used in conjunction with suitable circuitry. (U.K.)

  3. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  4. Periodicities in photospheric magnetic flux

    Institute of Scientific and Technical Information of China (English)

    SONG; Wenbin; WANG; Jingxiu

    2006-01-01

    Magnetic field plays an important role in solar structure and activity. In principle, the determination of magnetic flux would provide the best general-purpose index of solar activity. Currently, the periodicity studies corresponding to photospheric magnetic flux (PMF) are very few possibly due to the absence of a uniform flux sequence. In this paper, by using 383 NSO/Kitt Peak magnetic synoptic charts we reconstruct a flux sequence from February 1975 to August 2003 and perform a relatively systemic periodicity analysis with two methods of the Scargle periodogram and the Morlet wavelet transform. As a result, four periods are found at around 1050, 500, 300 and 160 days. We analyze these periods' temporal variabilities in detail and discuss their respective origins briefly.

  5. Flux Emergence at the Photosphere

    Science.gov (United States)

    Cheung, M. C. M.; Schüssler, M.; Moreno-Insertis, F.

    2006-12-01

    To model the emergence of magnetic fields at the photosphere, we carried out 3D magneto-hydrodynamics (MHD) simulations using the MURaM code. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer and partial ionization in the equation of state. All these physical ingredients are essential for a proper treatment of the problem. In the simulations, an initially buoyant magnetic flux tube is embedded in the upper layers of the convection zone. We find that the interaction between the flux tube and the external flow field has an important influence on the emergent morphology of the magnetic field. Depending on the initial properties of the flux tube (e.g. field strength, twist, entropy etc.), the emergence process can also modify the local granulation pattern. The inclusion of radiative transfer allows us to directly compare the simulation results with real observations of emerging flux.

  6. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  7. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  8. Fractional flux and non-normal diffusion

    Directory of Open Access Journals (Sweden)

    Ali Abdennadher

    2007-05-01

    Full Text Available Fractional diffusion equations are widely used for mass spreading in heterogeneous media. The correspondence between fractional equations and random walks based upon stable Levy laws, keeps in analogy with that between heat equation and Brownian motion. Several definitions of fractional derivatives yield operators, which coincide on a wide domain and can be used in fractional partial differential equations. Then, the various definitions are useful in different purposes: they may be very close to some physics, or to numerical schemes, or be based upon important mathematical properties. Here we present a definition, which enables us to describe the flux of particles, performing a random walk. We show that it is a left inverse to fractional integrals. Hence it coincides with Riemann-Liouville and Marchaud's derivatives when applied to functions, belonging to suitable domains.

  9. Particle astronomy and particle physics from the moon - The particle observatory

    Science.gov (United States)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  10. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model

    Directory of Open Access Journals (Sweden)

    M. Gehlen

    2006-01-01

    Full Text Available This study focuses on an improved representation of the biological soft tissue pump in the global three-dimensional biogeochemical ocean model PISCES. We compare three parameterizations of particle dynamics: (1 the model standard version including two particle size classes, aggregation-disaggregation and prescribed sinking speed; (2 an aggregation-disaggregation model with a particle size spectrum and prognostic sinking speed; (3 a mineral ballast parameterization with no size classes, but prognostic sinking speed. In addition, the model includes a description of surface sediments and organic carbon early diagenesis. Model output is compared to data or data based estimates of ocean productivity, pe-ratios, particle fluxes, surface sediment bulk composition and benthic O2 fluxes. Model results suggest that different processes control POC fluxes at different depths. In the wind mixed layer turbulent particle coagulation appears as key process in controlling pe-ratios. Parameterization (2 yields simulated pe-ratios that compare well to observations. Below the wind mixed layer, POC fluxes are most sensitive to the intensity of zooplankton flux feeding, indicating the importance of zooplankton community composition. All model parameters being kept constant, the capability of the model to reproduce yearly mean POC fluxes below 2000 m and benthic oxygen demand does at first order not dependent on the resolution of the particle size spectrum. Aggregate formation appears essential to initiate an intense biological pump. At great depth the reported close to constant particle fluxes are most likely the result of the combined effect of aggregate formation and mineral ballasting.

  11. Annual report 1980

    International Nuclear Information System (INIS)

    This annual report contains a description of the named institute, the research programm, reports from the scientific establishments, a description of different cooperations, and a list of scientific publications. (HSI)

  12. 2002 Annual report: synthesis

    International Nuclear Information System (INIS)

    This synthesis of the Annual Report 2002 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2002

  13. 2000 Annual report: synthesis

    International Nuclear Information System (INIS)

    This synthesis of the Annual Report 2000 present information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (NRA) of the Argentina during 2000

  14. 2001 Annual report: synthesis

    International Nuclear Information System (INIS)

    This synthesis of the Annual Report 2001 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2001

  15. Annual General Meeting

    CERN Multimedia

    Staff Association

    2014-01-01

      STAFF ASSOCIATION Our next annual general meeting will take place on : Thursday 22 May 2014 at 11:00 AM Building 40-S2-D01 For further information visit our website : https://indico.cern.ch/event/313124/

  16. Annual report 1990

    International Nuclear Information System (INIS)

    This annual report of the chemistry laboratory gives an overview of research performed during 1990 in the field of geochemistry, trace analysis, aerosol chemistry, heavy elements, cement chemistry and analytical chemistry. figs., tabs., refs

  17. Annual Adjustment Factors

    Data.gov (United States)

    Department of Housing and Urban Development — The Department of Housing and Urban Development establishes the rent adjustment factors - called Annual Adjustment Factors (AAFs) - on the basis of Consumer Price...

  18. Annual report 2006

    International Nuclear Information System (INIS)

    In this Annual report the operating of the Slovak Environmental Agency in 2006 is reported. The structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  19. SIS - Annual Catch Limit

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Annual Catch Limit (ACL) dataset within the Species Information System (SIS) contains information and data related to management reference points and catch data.

  20. USRDS - Annual Data Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — United States Renal Data System (USRDS) Annual Data Report Comprehensive statistics on chronic kidney disease and end-stage renal diseases in the United States...