WorldWideScience

Sample records for annihilating dark matter

  1. Muon Fluxes From Dark Matter Annihilation

    CERN Document Server

    Erkoca, Arif Emre; Sarcevic, Ina

    2009-01-01

    We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We illustrate how muon energy distribution from dark matter annihilation has a very different shape than muon flux from atmospheric neutrinos. We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We contrast our results to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss. We comment on neutrino flavor dependence and their detection.

  2. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  3. Vector dark matter annihilation with internal bremsstrahlung

    Science.gov (United States)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2017-03-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  4. Vector dark matter annihilation with internal bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Gulab Bambhaniya

    2017-03-01

    Full Text Available We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion–antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  5. Vector dark matter annihilation with internal bremsstrahlung

    CERN Document Server

    Bambhaniya, Gulab; Marfatia, Danny; Nayak, Alekha C; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  6. Vector dark matter annihilation with internal bremsstrahlung

    OpenAIRE

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound st...

  7. Dark matter annihilation near a naked singularity

    CERN Document Server

    Patil, Mandar

    2011-01-01

    We investigate here the dark matter annihilation near a Kerr naked singularity. We show that when dark matter particles collide and annihilate in vicinity of the singularity, the escape fraction to infinity of particles produced is much larger, at least 10^2 - 10^3 times the corresponding black hole values. As high energy collisions are generically possible near a naked singularity, this provides an excellent environment for efficient conversion of dark matter into ordinary standard model particles. If the center of galaxy harbored such a naked singularity, it follows that the observed emergent flux of particles with energy comparable to mass of the dark matter particles is much larger compared to the blackhole case, thus providing an intriguing observational test on the nature of the galactic center

  8. Shocking Signals of Dark Matter Annihilation

    CERN Document Server

    Davis, Jonathan H; Boehm, Celine; Kotera, Kumiko; Norman, Colin

    2015-01-01

    We examine whether charged particles injected by self-annihilating Dark Matter into regions undergoing Diffuse Shock Acceleration (DSA) can be accelerated to high energies. We consider three astrophysical sites where shock acceleration is supposed to occur, namely the Galactic Centre, galaxy clusters and Active Galactic Nuclei (AGN). For the Milky Way, we find that the acceleration of cosmic rays injected by dark matter could lead to a bump in the cosmic ray spectrum provided that the product of the efficiency of the acceleration mechanism and the concentration of DM particles is high enough. Among the various acceleration sources that we consider (namely supernova remnants (SNRs), Fermi bubbles and AGN jets), we find that the Fermi bubbles are a potentially more efficient accelerator than SNRs. However both could in principle accelerate electrons and protons injected by dark matter to very high energies. At the extragalactic level, the acceleration of dark matter annihilation products could be responsible fo...

  9. Magnetic Enhancements to Dark Matter Annihilation

    Science.gov (United States)

    Gardner, William G.; Tinsley, Todd

    2017-01-01

    The rate of dark matter annihilation should be greatest where the dark matter density is maximal. This is typically in the gravity wells of large stars where it also happens to be true that magnetic fields can be very large. In this poster we present an examination of how these intense magnetic fields can alter the cross section for dark matter annihilation into electron-positron pairs. We work within the framework of the minimally supersymmetric extension to the Standard Model (MSSM), and we choose its lightest neutralino as our dark matter candidate. Within this theory, dark matter can annihilate into many different final-state particles through several channels. We restrict our analysis to an electron-positron pair final state because of the low mass and reasonable detection signature. Since strong magnetic fields change how momentum is conserved for charged particles, this calculation investigates the relationship between the annihilation cross section and the electron's and positron's landau level. This is work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix College Odyssey Program.

  10. On baryogenesis from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, SP 01140-070 (Brazil); Colucci, Stefano; Ubaldi, Lorenzo [Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Josse-Michaux, François-Xavier [Centro de Física Teórica de Partículas CFTP, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon (Portugal); Racker, J., E-mail: nicolas@ift.unesp.br, E-mail: colucci@th.physik.uni-bonn.de, E-mail: fxjossemichaux@gmail.com, E-mail: racker@ific.uv.es, E-mail: ubaldi@th.physik.uni-bonn.de [Instituto de Física corpuscular (IFIC), Universidad de Valencia-CSIC Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)

    2013-10-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses.

  11. Dark Matter Annihilation Decay at The LHC

    CERN Document Server

    Tsai, Yuhsin; Zhao, Yue

    2015-01-01

    Collider experiments provide an opportunity to shed light on dark matter (DM) self-interactions. In this work, we study the possibility of generating DM bound states -- the Darkonium -- at the LHC and discuss how the annihilation decay of the Darkonium produces force carriers. We focus on two popular scenarios that contain large DM self-couplings: the Higgsinos in the $\\lambda$-SUSY model, and self-interacting DM (SIDM) framework. After forming bound states, the DM particles annihilate into force mediators, which decay into the standard model particles either through a prompt or displaced process. This generates interesting signals for the heavy resonance search. We calculate the production rate of bound states and study the projected future constraints from the existing heavy resonance searches.

  12. Searching for Dark Matter Annihilation in M87

    CERN Document Server

    Saxena, Sheetal; Rüger, Michael; Summa, Alexander; Mannheim, Karl

    2011-01-01

    Clusters of galaxies, such as the Virgo cluster, host enormous quantities of dark matter, making them prime targets for efforts in indirect dark matter detection via potential radiative signatures from annihilation of dark matter particles and subsequent radiative losses of annihilation products. However, a careful study of ubiquitous astrophysical backgrounds is mandatory to single out potential evidence for dark matter annihilation. Here, we construct a multiwavelength spectral energy distribution for the central radio galaxy in the Virgo cluster, M87, using a state-of-the-art numerical Synchrotron Self Compton approach. Fitting recent Chandra, Fermi-LAT and Cherenkov observations, we probe different dark matter annihilation scenarios including a full treatment of the inverse Compton losses from electrons and positrons produced in the annihilation. It is shown that such a template can substantially improve upon existing dark matter detection limits.

  13. CMB constraint on dark matter annihilation after Planck 2015

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2016-05-01

    Full Text Available We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  14. Dark Stars and Boosted Dark Matter Annihilation Rates

    CERN Document Server

    Ilie, Cosmin; Spolyar, Douglas

    2010-01-01

    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate depend...

  15. Initial State Radiation in Majorana Dark Matter Annihilations

    CERN Document Server

    Ciafaloni, Paolo; Comelli, Denis; De Simone, Andrea; Riotto, Antonio; Urbano, Alfredo

    2011-01-01

    The cross section for a Majorana Dark Matter particle annihilating into light fermions is helicity suppressed. We show that, if the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, the emission of gauge bosons from the initial state lifts the suppression and allows an s-wave annihilation. The resulting energy spectra of stable Standard Model particles are importantly affected. This has an impact on indirect searches for Dark Matter.

  16. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  17. AMS-02 antiprotons from annihilating or decaying dark matter

    Directory of Open Access Journals (Sweden)

    Koichi Hamaguchi

    2015-07-01

    Full Text Available Recently the AMS-02 experiment reported an excess of cosmic ray antiprotons over the expected astrophysical background. We interpret the excess as a signal from annihilating or decaying dark matter and find that the observed spectrum is well fitted by adding contributions from the annihilation or decay of dark matter with mass of O(TeV or larger. Interestingly, Wino dark matter with mass of around 3 TeV, whose thermal relic abundance is consistent with present dark matter abundance, can explain the antiproton excess. We also discuss the implications for the decaying gravitino dark matter with R-parity violation.

  18. Constraints on dark matter annihilation to fermions and a photon

    CERN Document Server

    Chowdhury, Debtosh; Laha, Ranjan

    2016-01-01

    We consider Majorana dark matter annihilation to fermion - anti-fermion pair and a photon in the effective field theory paradigm, by introducing dimension 6 and dimension 8 operators in the Lagrangian. For a given value of the cut-off scale, the latter dominates the annihilation process for heavier dark matter masses. We find a cancellation in the dark matter annihilation to a fermion - anti-fermion pair when considering the interference of the dimension 6 and the dimension 8 operators. Constraints on the effective scale cut-off is derived while considering indirect detection experiments and the relic density requirements and then comparing them to the bound coming from collider experiments.

  19. Sensitivity of HAWC to high-mass dark matter annihilations

    Science.gov (United States)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ryan, J.; Salazar, H.; Salesa, F.; Sanchez, F. E.; Sandoval, A.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; Abazajian, K. N.; Milagro Collaboration

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  20. The HAWC Sensitivity to Dark Matter Annihilation and Decay

    Science.gov (United States)

    Yapici, Tolga; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is an extensive air shower array in the state of Puebla, Mexico at an altitude of 4100m. The HAWC observatory will perform an indirect search for dark matter via GeV-TeV photons resulting from dark matter annihilation and decay, including annihilation from extended dark matter sources. We consider the HAWC sensitivity to a subset of the sources, including the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from the sources in well-motivated dark matter annihilation channels. We show the limits HAWC can place on the dark matter cross-section or lifetime from these sources if gamma-ray excess is not observed. In particular, for dark matter annihilating into gauge bosons, HAWC will be able to measure a narrow range of dark matter masses to cross-sections below that expected for a thermal relic. HAWC should also be sensitive to cross-sections higher than thermal for masses up to nearly 1000 TeV. HAWC will be sensitive to decaying dark matter for these masses as well. HAWC can explore higher dark matter masses than are currently constrained.

  1. Electroweak bremsstrahlung for wino-like Dark Matter annihilations

    CERN Document Server

    Ciafaloni, Paolo; De Simone, Andrea; Riotto, Antonio; Urbano, Alfredo

    2012-01-01

    If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.

  2. Selective Sommerfeld Enhancement of p-wave Dark Matter Annihilation

    CERN Document Server

    Das, Anirban

    2016-01-01

    We point out a mechanism for selective Sommerfeld enhancement (suppression) of odd (even) partial waves of dark matter co/annihilation. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilation signals in the present Universe. The selection mechanism is a manifestation of an exchange symmetry, and generic for DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.

  3. Contributions to cosmic reionization from dark matter annihilation and decay

    Science.gov (United States)

    Liu, Hongwan; Slatyer, Tracy R.; Zavala, Jesús

    2016-09-01

    Dark matter annihilation or decay could have a significant impact on the ionization and thermal history of the universe. In this paper, we study the potential contribution of dark matter annihilation (s -wave- or p -wave-dominated) or decay to cosmic reionization, via the production of electrons, positrons and photons. We map out the possible perturbations to the ionization and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross sections/decay lifetimes and dark matter masses. We have employed recent numerical studies of the efficiency with which annihilation/decay products induce heating and ionization in the intergalactic medium, and in this work extended them down to a redshift of 1 +z =4 for two different reionization scenarios. We also improve on earlier studies by using the results of detailed structure formation models of dark matter haloes and subhaloes that are consistent with up-to-date N -body simulations, with estimates on the uncertainties that originate from the smallest scales. We find that for dark matter models that are consistent with experimental constraints, a contribution of more than 10% to the ionization fraction at reionization is disallowed for all annihilation scenarios. Such a contribution is possible only for decays into electron/positron pairs, for light dark matter with mass mχ≲100 MeV , and a decay lifetime τχ˜1 024- 1 025 s .

  4. Impact of dark matter decays and annihilations on structure formation

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that a

  5. Significant enhancement of neutralino dark matter annihilation from electroweak bremsstrahlung.

    Science.gov (United States)

    Bringmann, Torsten; Calore, Francesca

    2014-02-21

    Indirect searches for the cosmological dark matter have become ever more competitive during the past years. Here, we report the first full calculation of leading electroweak corrections to the annihilation rate of supersymmetric neutralino dark matter. We find that these corrections can be huge, partially due to contributions that have been overlooked so far. Our results imply a significantly enhanced discovery potential of this well motivated dark matter candidate with current and upcoming cosmic ray experiments, in particular for gamma rays and models with somewhat small annihilation rates at the tree level.

  6. Heavy dark matter annihilation from effective field theory.

    Science.gov (United States)

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  7. Semi-Annihilating Wino-Like Dark Matter

    CERN Document Server

    Spray, Andrew P

    2015-01-01

    Semi-annihilation is a generic feature of dark matter theories with symmetries larger than Z_2. We explore a model based on a Z_4-symmetric dark sector comprised of a scalar singlet and a "wino"-like fermion SU(2)_L triplet. This is the minimal example of semi-annihilation with a gauge-charged fermion. We study the interplay of the Sommerfeld effect in both annihilation and semi-annihilation channels. The modifications to the relic density allow otherwise-forbidden regions of parameter space and can substantially weaken indirect detection constraints. We perform a parameter scan and find that the entire region where the model comprises all the observed dark matter is accessible to current and planned direct and indirect searches.

  8. Upper Bounds on Asymmetric Dark Matter Self Annihilation Cross Sections

    CERN Document Server

    Ellwanger, Ulrich

    2012-01-01

    Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.

  9. New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes

    CERN Document Server

    Lopes, José

    2016-01-01

    We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as Ice- Cube and Super-Kamiokande, on the Dark Matter-nucleon scattering cross-section, for a general model of Dark Matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the Dark Matter abundance is numerically solved satisfying the Dark Matter density measured from the Cosmic Microwave Background (CMB). We show that for lower cross-sections and higher masses, the Dark Matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from Dark Matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating a maximum of 20 % depending on the annihilation channel.

  10. New Limits on Thermally Annihilating Dark Matter from Neutrino Telescopes

    Science.gov (United States)

    Lopes, J.; Lopes, I.

    2016-08-01

    We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as IceCube and Super-Kamiokande, on the dark matter-nucleon scattering cross-section, for a general model of dark matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the dark matter abundance is numerically solved, satisfying the dark matter density measured from the cosmic microwave background. We show that for lower cross-sections and higher masses, the dark matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section that are one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from dark matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating by a maximum of 20% depending on the annihilation channel.

  11. A critical reevaluation of radio constraints on annihilating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2015-04-01

    A number of groups have employed radio observations of the Galactic center to derive stringent constraints on the annihilation cross section of weakly interacting dark matter. In this paper, we show that electron energy losses in this region are likely to be dominated by inverse Compton scattering on the interstellar radiation field, rather than by synchrotron, considerably relaxing the constraints on the dark matter annihilation cross section compared to previous works. Strong convective winds, which are well motivated by recent observations, may also significantly weaken synchrotron constraints. After taking these factors into account, we find that radio constraints on annihilating dark matter are orders of magnitude less stringent than previously reported, and are generally weaker than those derived from current gamma-ray observations.

  12. A Critical Reevaluation of Radio Constraints on Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias [Fermilab; Hooper, Dan [Fermilab; Linden, Tim [Chicago U., KICP

    2015-04-03

    A number of groups have employed radio observations of the Galactic center to derive stringent constraints on the annihilation cross section of weakly interacting dark matter. In this paper, we show that electron energy losses in this region are likely to be dominated by inverse Compton scattering on the interstellar radiation field, rather than by synchrotron, considerably relaxing the constraints on the dark matter annihilation cross section compared to previous works. Strong convective winds, which are well motivated by recent observations, may also significantly weaken synchrotron constraints. After taking these factors into account, we find that radio constraints on annihilating dark matter are orders of magnitude less stringent than previously reported, and are generally weaker than those derived from current gamma-ray observations.

  13. Bremsstrahlung signatures of dark matter annihilation in the Sun

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Marfatia, Danny

    2012-01-01

    The nonrelativistic annihilation of Majorana dark matter in the Sun to a pair of light fermions is chirality-suppressed. Annihilation to 3-body final states $\\ell^+f^-V$, where $V=W,Z,\\gamma$, and $\\ell$ and $f$ are light fermions (that may be the same), becomes dominant since bremsstrahlung relaxes the chirality suppression. We evaluate the neutrino spectra at the source, including spin and helicity dependent effects, and assess the detectability of each significant bremsstrahlung channel at IceCube/DeepCore. We also show how to combine the sensitivities to the dark matter-nucleon scattering cross section in individual channels, since typically several channels contribute in models.

  14. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  15. On Sommerfeld enhancement of Dark Matter Annihilation

    CERN Document Server

    Hannestad, Steen

    2010-01-01

    In the last few years there has been some interest in WIMP Dark Matter models featuring a velocity dependent cross section through the Sommerfeld enhancement mechanism. The idea is to have light bosons mediate a force between the WIMPs, which gives rise to a Yukawa-potential. In the first part of this article, we analyse the Sommerfeld enhancement in detail. We find analytic expressions for the boost factor for three different modelpotentials, Coulomb, the spherical well and the spherical cone well and compare with the numerical solution in the Yukawa case. In the second part of the article, we perform a detailed computation of the Dark Matter relic density for models having Sommerfeld enhancement by solving the Boltzmann equation numerically. As an application we compare the expected distortions of the CMB blackbody spectrum to the bounds set by FIRAS.

  16. The Dark Matter Annihilation Boost from Low-Temperature Reheating

    CERN Document Server

    Erickcek, Adrienne L

    2015-01-01

    The evolution of the Universe between inflation and the onset of Big Bang Nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations...

  17. Consequences of dark matter self-annihilation for galaxy formation

    CERN Document Server

    Natarajan, Priyamvada; Bertone, Gianfranco

    2007-01-01

    Galaxy formation requires a process that continually heats gas and quenches star formation in order to reproduce the observed shape of the luminosity function of bright galaxies. To accomplish this, current models invoke heating from supernovae, and energy injection from active galactic nuclei. However, observations of radio-loud active galactic nuclei suggest that their feedback is likely to not be as efficient as required, signaling the need for additional heating processes. We propose the self-annihilation of weakly interacting massive particles that constitute dark matter as a steady source of heating. In this paper, we explore the circumstances under which this process may provide the required energy input. To do so, dark matter annihilations are incorporated into a galaxy formation model within the Millennium cosmological simulation. Energy input from self-annihilation can compensate for all the required gas cooling and reproduce the observed galaxy luminosity function only for what appear to be extreme...

  18. Dark matter annihilation with s-channel internal Higgsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jason; Liao, Jiajun, E-mail: liaoj@hawaii.edu; Marfatia, Danny

    2016-08-10

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  19. Directional Dependence for Dark Matter Annihilation in Extreme Astrophysical Environments

    Science.gov (United States)

    Valadie, O. Grahm; Tinsley, Todd

    2017-01-01

    This research explores the directional dependence that extreme magnetic fields have on the annihilation of dark matter into electron-positron pairs. We take the neutralino of the Minimally Supersymmetric Standard Model (MSSM) as our dark matter candidate and assume magnetic field strengths on the order of the critical field (Bc 1013 G). This is characteristic of extreme astrophysical environments in which dark matter may accumulate. We will present the results for the annihilation cross section at varying incoming particle direction. In addition, we will present how these results differ with neutralino mass and energy, as well as with the magnetic field strength. Our goal is to demonstrate the ways that the direction of the magnetic field affects the states of the final electron and positron. This work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix Odyssey Program.

  20. Black Hole Window into p-Wave Dark Matter Annihilation.

    Science.gov (United States)

    Shelton, Jessie; Shapiro, Stuart L; Fields, Brian D

    2015-12-01

    We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross sections potentially visible in γ-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC.

  1. Dark matter annihilation via Higgs and gamma-ray channels

    Science.gov (United States)

    Chan, Man Ho

    2016-09-01

    Recent studies show that the GeV gamma-ray excess signal from the Milky Way center can be best explained by ˜ 40 GeV dark matter annihilating via bbar{b} channel. However, the recent observations of the nearby Milky Way dwarf spheroidal satellite galaxies by Fermi-LAT and the radio observations of the Milky Way center and the M31 galaxy tend to rule out this proposal. In this article, we discuss the possibility of the dark matter interpretation of the GeV gamma-ray excess by proposing 130 GeV dark matter annihilating via both Higgs and gamma-ray channels. Recent analyses show that dark matter annihilating via Higgs channel can satisfactorily explain the Milky Way GeV gamma-ray excess observed. We show that this model can satisfy the upper limits of the gamma-ray constraint of the Milky Way dwarf spheroidal satellite galaxies and the constraint from the radio observations of the M31 galaxy.

  2. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    Science.gov (United States)

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S.

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 105 and an aperture of 1200 cm2· sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e+ + e-, such as the LKP (Lightest Kaluza-Klein particle).

  3. The Effects of Dark Matter Annihilation on Cosmic Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kaurov, Alexander A. [Chicago U., Astron. Astrophys. Ctr.; Hooper, Dan [Chicago U., EFI; Gnedin, Nickolay Y. [Chicago U., KICP

    2015-12-01

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos at $z\\sim100-200$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $z \\sim 20-100$, it can leave a significant imprint on the global optical depth, $\\tau$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. We show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.

  4. On the effective operators for Dark Matter annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Andrea De; Thamm, Andrea [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Monin, Alexander [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Urbano, Alfredo, E-mail: andrea.desimone@sissa.it, E-mail: alexander.monin@epfl.ch, E-mail: andrea.thamm@cern.ch, E-mail: alfredo.urbano@sissa.it [SISSA, via Bonomea 265, I-34136 Trieste (Italy)

    2013-02-01

    We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.

  5. On the effective operators for Dark Matter annihilations

    CERN Document Server

    De Simone, Andrea; Thamm, Andrea; Urbano, Alfredo

    2013-01-01

    We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.

  6. Positrons from dark matter annihilation in the galactic halo: uncertainties

    CERN Document Server

    Fornengo, N; Lineros, R; Donato, F; Salati, P

    2007-01-01

    Indirect detection signals from dark matter annihilation are studied in the positron channel. We discuss in detail the positron propagation inside the galactic medium: we present novel solutions of the diffusion and propagation equations and we focus on the determination of the astrophysical uncertainties which affect the positron dark matter signal. We show that, especially in the low energy tail of the positron spectra at Earth, the uncertainty is sizeable and we quantify the effect. Comparison of our predictions with current available and foreseen experimental data are derived.

  7. Search for Dark Matter Annihilation in Draco with STACEE

    CERN Document Server

    Driscoll, D D; Carson, J E; Covault, C E; Fortin, P; Gingrich, D M; Hanna, D S; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2007-01-01

    For some time, the Draco dwarf spheroidal galaxy has garnered interest as a possible source for the indirect detection of dark matter. Its large mass-to-light ratio and relative proximity to the Earth provide favorable conditions for the production of detectable gamma rays from dark matter self-annihilation in its core. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an air-shower Cherenkov telescope located in Albuquerque, NM capable of detecting gamma rays at energies above 100 GeV. We present the results of the STACEE observations of Draco during the 2005-2006 observing season totaling 10 hours of livetime after cuts.

  8. Generating X-ray lines from annihilating dark matter

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann

    2014-01-01

    We propose different scenarios where a keV dark matter annihilates to produce a monochromatic signal. The process is generated through the exchange of a light scalar of mass of order 300 keV - 50 MeV coupling to photon through loops or higher dimensional operators. For natural values of the couplings and scales, the model can generate a gamma-ray line which can fit with the recently identified 3.5 keV X-ray line.

  9. The Isotropic Radio Background and Annihilating Dark Matter

    CERN Document Server

    Hooper, Dan; Jeltema, Tesla E; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R

    2012-01-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, sim...

  10. On the Direct Detection of Dark Matter Annihilation

    CERN Document Server

    Cherry, John F; Shoemaker, Ian M

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even {\\it absent} annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation cross sections has already been reached in a class of models. Moreover, the compatibility of dark matter direct detection experiments can be compared directly in $E_{min}$ space without making assumptions about DM astrophysics. Lastly, when DM has direct couplings to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detect...

  11. Dark Matter Annihilation and Decay limits with HAWC

    Science.gov (United States)

    Yapici, Tolga; HAWC Collaboration

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 100 GeV - 100 TeV gamma-rays and cosmic-rays in the state of Puebla, Mexico at an altitude of 4100m. The HAWC observatory performed an indirect search for dark matter via GeV-TeV photons resulting from dark matter annihilation and decay. We considered the HAWC sensitivity to a set of sources, including 15 individual dwarf spheroidal galaxies (dSphs), the M31 galaxy and the Virgo cluster, as well as a combined limit using 15 dSphs. HAWC has not seen statistically significant excess from these sources. Being a survey experiment, HAWC will include any newly found dark matter rich sources, such as recently discovered TriangulumII dwarf galaxy. We explored dark matter masses above 1 TeV, including masses higher than 70 TeV that are currently unconstrained. We will present the annihilation cross-section and decay lifetime limits.

  12. Dark matter annihilation through a lepton-specific Higgs

    CERN Document Server

    Logan, Heather E

    2010-01-01

    It was recently shown by Hooper and Goodenough [arXiv:1010.2752] that the excess gamma ray emission from within 1-2 degrees of the galactic center can be well-described by annihilation of ~8 GeV dark matter particles into tau pairs. I show that such a dark matter signal can be obtained naturally in the lepton-specific two-Higgs-doublet model extended by a stable singlet scalar dark matter candidate. The favored parameter region prefers a light Higgs state (below 200 GeV) with enhanced couplings to leptons and sizable invisible branching fraction. Part of the favored region leads to invisible decays of both of the CP-even neutral Higgs states.

  13. The dark matter annihilation boost from low-temperature reheating

    Science.gov (United States)

    Erickcek, Adrienne L.

    2015-11-01

    The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.

  14. Clustering in the Phase Space of Dark Matter Haloes. II. Stable Clustering and Dark Matter Annihilation

    CERN Document Server

    Zavala, Jesus

    2013-01-01

    We present a model for the structure of the two-dimensional particle phase space average density ($P^2SAD$) in galactic haloes, introduced recently as a novel measure of the clustering of dark matter (arXiv:1308.1098). Our model is based on the stable clustering hypothesis in phase space, the spherical collapse model, and tidal disruption of substructures, which is calibrated against the high resolution Aquarius simulations. Using this physically motivated model, we are able to predict the behaviour of ($P^2SAD$) in the numerically unresolved regime, down to the decoupling mass limit of generic WIMP models. This prediction can be used to estimate signals sensitive to the small scale structure of dark matter distributions. For example, the dark matter annihilation rate is an integral over relative velocities of the product of a limit of $P^2SAD$ to zero separation in physical space, and the annihilation cross section times the relative velocity. This provides a convenient way to estimate the annihilation rate ...

  15. Annihilating dark matter and the galactic positron excess

    CERN Document Server

    Maor, I

    2006-01-01

    The possibility that the Galactic dark matter is composed of neutralinos that are just above half the $Z^o$ mass is examined, in the context of the Galactic positron excess. In particular, we check if the anomalous bump in the cosmic ray positron to electron ratio at $10~GeV$ can be explained with the ``decay'' of virtual $Z^o$ bosons produced when the neutralinos annihilate. We find that the low energy behaviour of our prediction fits well the existing data. Assuming the neutralinos annihilate primarily in the distant density concentration in the Galaxy and allowing combination of older, diffused positrons with young free-streaming ones, produces a fit which is not satisfactory on its own but is significantly better than the one obtained with homogeneous injection.

  16. Dark matter annihilation bound from the diffuse gamma ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Kachelriess, M.; /Norwegian U. Sci. Tech.; Serpico, P.D.; /Fermilab

    2007-07-01

    An upper limit on the total annihilation rate of dark matter (DM) has been recently derived from the observed atmospheric neutrino background. It is a very conservative upper bound based on the sole hypothesis that the DM annihilation products are the least detectable final states in the Standard Model (SM), neutrinos. Any other decay channel into SM particles would lead to stronger constraints. We show that comparable bounds are obtained for DM masses around the TeV scale by observations of the diffuse gamma ray flux by EGRET, because electroweak bremsstrahlung leads to non-negligible electromagnetic branching ratios, even if DM particles only couple to neutrinos at tree level. A better mapping and the partial resolution of the diffuse gamma-ray background into astrophysical sources by the GLAST satellite will improve this bound in the near future.

  17. Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties

    CERN Document Server

    Evoli, Carmelo; Grasso, Dario; Maccione, Luca; Ullio, Piero

    2011-01-01

    The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date ap measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different as...

  18. Decaying vs annihilating dark matter in light of a tentative gamma-ray line

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Garny, Mathias

    2012-06-15

    Recently reported tentative evidence for a gamma-ray line in the Fermi-LAT data is of great potential interest for identifying the nature of dark matter. We compare the implications for decaying and annihilating dark matter taking the constraints from continuum gamma-rays, antiproton flux and morphology of the excess into account. We find that higgsino and wino dark matter are excluded, also for nonthermal production. Generically, the continuum gamma-ray ux severely constrains annihilating dark matter. Consistency of decaying dark matter with the spatial distribution of the Fermi-LAT excess would require an enhancement of the dark matter density near the Galactic center.

  19. Spectral Gamma-ray Signatures of Cosmological Dark Matter Annihilation

    CERN Document Server

    Bergström, L; Ullio, P; Bergstrom, Lars; Edsjo, Joakim; Ullio, Piero

    2001-01-01

    We propose a new signature for weakly interacting massive particle (WIMP) dark matter, a spectral feature in the diffuse extragalactic gamma-ray radiation. This feature, a sudden drop of the gamma-ray intensity at an energy corresponding to the WIMP mass, comes from the asymmetric distortion of the line due to WIMP annihilation into two gamma-rays caused by the cosmological redshift. Unlike other proposed searches for a line signal, this method is not very sensitive to the exact dark matter density distribution in halos and subhalos. The only requirement is that the mass distribution of substructure on small scales follows approximately the Press-Schechter law, and that smaller halos are on the average denser than large halos, which is a generic outcome of N-body simulations of Cold Dark Matter, and which has observational support. The upcoming Gamma-ray Large Area Space Telescope (GLAST) will be eminently suited to search for these spectral features. For numerical examples, we use rates computed for supersym...

  20. CMB bounds on dark matter annihilation: Nucleon energy losses after recombination

    NARCIS (Netherlands)

    Weniger, C.; Serpico, P.D.; Iocco, F.; Bertone, G.

    2013-01-01

    We consider the propagation and energy losses of protons and antiprotons produced by dark matter annihilation at redshifts 100dark matter annihilations into quarks, gluons and weak gauge bosons, protons and antiprotons carry about 20% of the energy injected into e± and γ’s, b

  1. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites

    Science.gov (United States)

    Hayashi, Kohei; Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N.; Sugai, Hajime

    2016-09-01

    The dwarf spheroidal galaxies (dSphs) in the Milky Way are the primary targets in the indirect searches for particle dark matter. To set robust constraints on candidate dark matter particles, understanding the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factors for dark matter annihilation and decay for 24 dSphs, taking into account a non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from a fitting analysis of the most recent kinematic data available, our axisymmetric mass models are a much better fit than previous spherical ones, thus, our work should be the most realistic and reliable estimator for astrophysical factors. Secondly, we find that among analysed dSphs, the ultra-faint dwarf galaxies Triangulum II and Ursa Major II are the most promising but large uncertain targets for dark matter annihilation while the classical dSph Draco is the most robust and detectable target for dark matter decay. It is also found that the non-sphericity of luminous and dark components influences the estimate of astrophysical factors, even though these factors largely depend on the sample size, the prior range of parameters and the spatial extent of the dark halo. Moreover, owing to these effects, the constraints on the dark matter annihilation cross-section are more conservative than those of previous spherical works. These results are important for optimizing and designing dark matter searches in current and future multi-messenger observations by space and ground-based telescopes.

  2. Contributions of dark matter annihilation within ultracompact minihalos to the 21 cm background signal

    Science.gov (United States)

    Yang, Yupeng

    2016-12-01

    In the dark age of the Universe, any exotic sources, e.g. the dark matter annihilation, which inject the energy into the intergalactic medium (IGM) will left some imprint on the 21cm background signal. Recently, one new kind of dark matter structure named ultracompact dark matter minihalos (UCMHs) was proposed. Near the inner part of UCMHs, the distribution of dark matter particles is steeper than that of the general dark matter halos, ρ_{UCMHs}(r) ˜ r^{-2.25}, and the formation time of UCMHs is earlier, zc ˜ 1000. Therefore, it is excepted that the dark matter annihilation within UCMHs can effect the 21cm background signal. In this paper, we investigated the contributions of the dark matter annihilation within UCMHs to the 21cm background signal.

  3. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wan-Lei [Institute of High Energy Physics, Chinese Academy of Sciences,P.O. Box 918, Beijing 100049 (China)

    2016-01-21

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ→νν-bar,τ{sup +}τ{sup −},bb-bar, we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ{sup +}τ{sup −} channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV. If the νν-bar or τ{sup +}τ{sup −} channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions.

  4. Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios

    Science.gov (United States)

    Moliné, Ángeles; Schewtschenko, Jascha A.; Palomares-Ruiz, Sergio; Bœhm, Céline; Baugh, Carlton M.

    2016-08-01

    The extragalactic γ-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ΛCDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the γ-ray and neutrino emission in these models may differ from ΛCDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ΛCDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ΛCDM as being due to CDM particles annihilating with a much weaker cross section than expected.

  5. Sommerfeld enhancement of invisible dark matter annihilation in galaxies and galaxy clusters

    CERN Document Server

    Chan, Man Ho

    2016-01-01

    Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation generally agree with recent empirical fits from observations. Also, this model predicts that the resultant core-like structures in dwarf galaxies can be easily observed, but not for large normal galaxies and galaxy clusters.

  6. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2015-12-01

    Full Text Available We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  7. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa 277-8583 (Japan); Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801 (Japan); Sokendai, Tsukuba 305-0801 (Japan); Moroi, Takeo [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa 277-8583 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Takaesu, Yoshitaro, E-mail: takaesu@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2015-12-17

    We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  8. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Science.gov (United States)

    Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro

    2015-12-01

    We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  9. Dark matter annihilation and decay from non-spherical dark halos in the Galactic dwarf satellites

    CERN Document Server

    Hayashi, Kohei; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N; Sugai, Hajime

    2016-01-01

    The dwarf spheroidal (dSph) galaxies in the Milky Way are the primary targets for the indirect searches for particle dark matter. In order to set robust constraints on candidates of dark matter particle, understanding of the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factor for dark matter annihilation and decay in 24 dSphs with taking into account non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from fitting analysis of the most recent kinematic data available, our axisymmetric mass models are so much better fit than previous spherical ones, thus our work should be the most realistic and reliable estimator for astrophysical factors. Second, we find that among analyzed dSphs, Triangulum 2 and Ursa Major II ultra faint dwarf galaxies are the most promising but large uncertain targets for dark matter annihilation while Draco classical dSph is the most robust and detectable ...

  10. Antiprotons from dark matter annihilation in the Galaxy. Astrophysical uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Cholis, Ilias; Ullio, Piero [SISSA, Sezione di Trieste (Italy); INFN, Sezione di Trieste (Italy); Grasso, Dario [INFN, Sezione di Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date anti p measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different assumptions for the propagation of CRs and for the DM distribution in the Galaxy. We find that the impact of the astrophysical uncertainties on constraining the DM properties can be much stronger, up to a factor of {proportional_to}50, than the one due to uncertainties on the DM distribution ({proportional_to}2-6). Remarkably, even reducing the uncertainties on the propagation parameters derived by local observables, non-local effects can still change DM model constraints even by 50%. Nevertheless, current anti p data place tight constraints on DM models, excluding some of those suggested in connection with indirect and direct searches. Finally we discuss the power of upcoming CR spectral data from the AMS-02 observatory to drastically reduce the uncertainties discussed in this paper and estimate the expected sensitivity of this instrument to some sets of DM models. (orig.)

  11. A systematic effective operator analysis of semi-annihilating dark matter

    Science.gov (United States)

    Cai, Yi; Spray, Andrew

    2017-02-01

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ 2. It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2 → 2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable "dark partner" states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  12. Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios

    CERN Document Server

    Moliné, Ángeles; Palomares-Ruiz, Sergio; Boehm, Celine; Baugh, Carlton M

    2016-01-01

    The extragalactic gamma-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (LambdaCDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the gamma-ray and neutrino emission in these models may differ from LambdaCDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in LambdaCDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond LambdaCDM as being due to CD...

  13. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Science.gov (United States)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  14. Electroweak supersymmetric dark matter annihilation in DM rate at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Schmiemann, Saskia; Klasen, Michael; Kovarik, Karol; Steppeler, Patrick [Institut fuer Theoretische Physik, Universitaet Muenster (Germany); Herrmann, Bjoern [LAPTh, Universite Savoie Mont Blanc, CNRS (France); Harz, Julia [CNRS, UMR 7589, LPTHE, Paris (France); Sorbonne Universites, Institut Lagrange de Paris (ILP) (France); Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE (France)

    2016-07-01

    Today there are several pieces of evidence for dark matter. One well-known experiment is the measurement of the Dark Matter relic density by the Planck satellite. The talk introduces the 'Dark Matter at next-to-leading order' (DM rate at NLO) project which provides predictions for the dark matter relic density in the MSSM including higher-order corrections. After an introduction of the project DM rate at NLO, I shortly speak about the calculation of the electroweak processes. The main focus lies on the effects of the electroweak tree-level processes on the relic density of neutralinos within selected scenarios.

  15. General calculation of the cross section for dark matter annihilations into two photons

    CERN Document Server

    Garcia-Cely, Camilo

    2016-01-01

    Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.

  16. On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays

    Institute of Scientific and Technical Information of China (English)

    唐志成; 袁强; 毕效军; 陈国明

    2011-01-01

    Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with

  17. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is pe

  18. Search for Dark Matter Annihilation in the Galactic Halo using IceCube

    DEFF Research Database (Denmark)

    Medici, Morten Ankersen

    , and with the right properties of this hypothesized particle, it is possible to look for a signal from dark matter annihilation. In this work, the dark matter particle candidate of weakly interacting massive particles shall be presented, and the possibilities of observing it’s self-annihilation to neutrinos shall...... detector for atmospheric muons it is possible to search for a neutrino signals form the center of the Milky Way located on the souther hemisphere. In this thesis, a complete analysis is carried out on data from 1004 days of IceCube data, looking for an excess of neutrinos consistent with the dark matter...

  19. Lower limits on the strengths of gamma ray lines from WIMP dark matter annihilation

    Science.gov (United States)

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can

    2012-06-01

    We study the spectra of gamma ray signals that arise from dark matter annihilation in the Universe. We focus on the large class of theories where the photon spectrum includes both continuum spectrum of gamma rays that arise from annihilation into standard model states at tree level, as well as monochromatic gamma rays arising from annihilation directly into two photons at the one-loop level. In this class of theories we obtain lower bounds on the ratio of the strength of the gamma ray line relative to the gamma ray continuum as a function of the dark matter mass and spin. These limits are obtained from the unitarity relation between the tree-level amplitude of the primary annihilation channel and the imaginary part of the loop-level amplitude for annihilation directly into photons, with the primary decay products running in the loop. These results are exact in the limit that dark matter annihilation at tree level is exclusively to a single standard model species, occurs through the lowest partial wave and respects CP. Away from this limit the bounds are approximate. Our conclusions agree with known results in the literature for the cases of the minimal supersymmetric standard model, universal extra dimensions and the littlest Higgs with T parity. We use the Fermi-LAT observations to translate these limits into upper bounds on the dark matter annihilation cross section into any specific standard model state.

  20. Searching for neutrinos from dark matter annihilations in (dwarf) galaxies and clusters with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    With, Meike de [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-12489 Berlin (Germany); Bernardini, Elisa [DESY, D-15735 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    In many models, the self-annihilation of dark matter particles will create neutrinos which can be detected on Earth. An excess flux of these neutrinos is expected from regions of increased dark matter density, like (dwarf) galaxies and galaxy clusters. The IceCube neutrino observatory, a cubic-kilometer neutrino detector at the South Pole, is capable of detecting neutrinos down to energies of few 10 GeV and is therefore able to constrain the self-annihilation cross section as a function of the mass of the dark matter particle. In this talk, the current status of the search for neutrinos from dark matter annihilations in (dwarf) galaxies and galaxy clusters with IceCube is discussed.

  1. Interacting dark matter and q-deformed dark energy with particle creation and annihilation

    CERN Document Server

    Kolay, Erdinc

    2016-01-01

    We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum field theoretically, then construct the action and the dynamical structure of these interacting dark sector, in order to study the dynamics of the model. In the following section, we perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation of state parameter of the dark matter evolves from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.

  2. Annihilation cross section of Kaluza Klien dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rakesh-sharma-ujn@yahoo.co.in [Northern India Textile Research Association Technical Campus Ghaziabad U.P. 201002 (India); Upadhyaya, G. K., E-mail: gopalujjain@yahoo.co.in; Sharma, S. [School of Studies in Physics, Vikram University Ujjain, M.P. 456010 India (India)

    2015-07-31

    The question as to how this universe came into being and as to how it has evolved to its present stage, is an old question. The answer to this question unfolds many secrets regarding fundamental particles and forces between them. Theodor Kaluza proposed the concept that the universe is composed of more than four space-time dimensions. In his work, electromagnetism is united with gravity. Various extra dimension formulations have been proposed to solve a variety of problems. Recently, the idea of more than four space time dimensions is applied to the search for particle identity of dark matter (DM). Signature of dark matter can be revealed by analysis of very high energy electrons which are coming from outer space. We investigate recent advancement in the field of dark matter search with reference to very high energy electrons from outer space [1-8].

  3. Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoyuan [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Max-Planck-Institut fuer Physik, Muenchen (Germany); Vertongen, Gilles [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institut d' Astrophysique de Paris, 75 - Paris (France); Weniger, Christoph [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2011-09-15

    Galaxy clusters are promising targets for indirect dark matter searches. Gamma-ray signatures from the decay or annihilation of dark matter particles inside these clusters could be observable with the Fermi Large Area Telescope (LAT). Based on three years of Fermi LAT gamma-ray data, we analyze the flux coming from eight nearby clusters individually as well as in a combined likelihood analysis. Concentrating mostly on signals from dark matter decay, we take into account uncertainties of the cluster masses as determined by X-ray observations and model the cluster emission with extended sources. We do not find significant emission from any of the considered clusters and present limits on the dark matter lifetime and annihilation cross-section. We compare our lifetime limits derived from cluster observations with the limits that can be obtained from the extragalactic gamma-ray background, and find that in case of hadronic decay the cluster limits become competitive at dark matter masses below a few hundred GeV. Finally, we show that in presence of dark matter substructures down to 10{sup -6} solar masses the limits on the dark matter annihilation cross-section could improve by a factor of a few hundred, possibly going down to the thermal cross-section of 3 x 10{sup -26} cm{sup 3}s{sup -1} for dark matter masses annihilation into b anti b. As a direct application of our results, we derive limits on the lifetime of gravitino dark matter in scenarios with R-parity violation. Implications of these limits for the possible observation of long-lived superparticles at the LHC are discussed. (orig.)

  4. High Energy Electron Signals from Dark Matter Annihilation in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP; Weiner, Neal; Yavin, Itay; /New York U., CCPP

    2012-04-09

    In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.

  5. Constraints on Dark Matter Annihilation in Clusters of Galaxies from Diffuse Radio Emission

    CERN Document Server

    Storm, Emma; Profumo, Stefano; Rudnick, Lawrence

    2012-01-01

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-haloes. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of approximately 3 or more when the same annihilation channel and subtructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as 2 orders of...

  6. The Darkest Hour Before Dawn: Contributions to Cosmic Reionisation from Dark Matter Annihilation and Decay

    CERN Document Server

    Liu, Hongwan; Zavala, Jesús

    2016-01-01

    Dark matter annihilation or decay could have a significant impact on the ionisation and thermal history of the universe. In this paper, we study the potential contribution of dark matter annihilation ($s$-wave- or $p$-wave-dominated) or decay to cosmic reionisation, via the production of electrons, positrons and photons. We map out the possible perturbations to the ionisation and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross-sections/decay lifetimes and dark matter masses. We have employed recent numerical studies of the efficiency with which annihilation/decay products induce heating and ionization in the intergalactic medium, and in this work extended them down to a redshift of $1+z = 4$ for two different reionisation scenarios. We also improve on earlier studies by using the results of detailed structure formation models of dark matter haloes and subhaloes that are consistent with up-to-date $N$-body simulations, with estimates on...

  7. The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Gonzalez, J Becerra; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Diaz-Cruz, L; D\\'\\iaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; E., S F; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Harding, J P; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-Garcia, R; Marinelli, A; Martinez, H; Martinez, O; Mart\\'\\inez-Castro, J; Matthews, J A J; McEnery, J; Torres, E Mendoza; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Ryan, J; Salazar, H; Salesa, F; Sandoval, A; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Woodle, K Sparks; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H; Abazajian, K N

    2014-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Summer 2014. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dar...

  8. A Systematic Effective Operator Analysis of Semi-Annihilating Dark Matter

    CERN Document Server

    Cai, Yi

    2016-01-01

    Semi-annihilation is a generic feature of dark matter theories stabilised by symmetries larger than a $Z_2$. It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to $2\\to2$ semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable "dark partner" states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray...

  9. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); Rudnick, Lawrence [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  10. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    CERN Document Server

    Lopez-Honorez, Laura; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C

    2016-01-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-$\\alpha$ pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time s...

  11. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    Indian Academy of Sciences (India)

    Jayashri Medhi; H. L. Duorah; A. G. Barua; K. Duorah

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino(neutral $\\chi$ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from $e^+e^−-$ pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the $e^+e^−-$ energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  12. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    Science.gov (United States)

    Medhi, Jayashri; Duorah, H. L.; Barua, A. G.; Duorah, K.

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e - pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e - energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  13. Heating of galactic gas by dark matter annihilation in ultracompact minihalos

    CERN Document Server

    Clark, Hamish A; Elahi, Pascal J; Lewis, Geraint F; Scott, Pat

    2016-01-01

    The existence of substructure in halos of annihilating dark matter would be expected to substantially boost the rate at which annihilation occurs. Ultracompact minihalos of dark matter (UCMHs) are one of the more extreme examples of this. The boosted annihilation can inject significant amounts of energy into the gas of a galaxy over its lifetime. Here we determine the impact of the boost factor from UCMH substructure on the heating of galactic gas in a Milky Way-type galaxy, by means of N-body simulation. If $1\\%$ of the dark matter exists as UCMHs, the corresponding boost factor can be of order $10^5$. For reasonable values of the relevant parameters (annihilation cross section $3\\times10^{-26} ~\\textrm{cm}^3~ \\textrm{s}^{-1}$, dark matter mass 100 GeV, 10% heating efficiency), we show that the presence of UCMHs at the 0.1% level would inject enough energy to eject significant amounts of gas from the halo, potentially preventing star formation within $\\sim$1 kpc of the halo centre.

  14. Search for dark matter annihilation in the Galactic Center with IceCube-79

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2015-10-01

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, , for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ˜eq 4 \\cdot 10^{-24} cm^3 s^{-1}, and ˜eq 2.6 \\cdot 10^{-23} cm^3 s^{-1} for the ν overline{ν } channel, respectively.

  15. Search for dark matter annihilation in the Galactic Center with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L. [Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Department of Physics, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Oskar Klein Centre, Stockholm University, Department of Physics, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Collaboration: IceCube Collaboration; and others

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, left angle σ{sub A} right angle, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≅ 4 . 10{sup -24} cm{sup 3}s{sup -1}, and ≅ 2.6 . 10{sup -23} cm{sup 3}s{sup -1} for the νanti ν channel, respectively. (orig.)

  16. Constraining the monochromatic gamma-rays from dark matter annihilation by the LHC

    CERN Document Server

    Esmaili, Arman; Najafabadi, Mojtaba Mohammadi

    2016-01-01

    The installation of forward detectors in CMS and ATLAS turn the LHC to an effective photon-photon collider. The elastic scattering of the beam-protons via the emission of photons, which can be identified by tagging the intact protons in the forward detectors, provides a powerful diagnostic of the central production of new particles through photon-photon annihilation. In this letter we study the central production of dark matter particles and the potential of LHC to constrain the cross section of this process. By virtue of the crossing symmetry, this limit can immediately be used to constrain the production of monochromatic gamma-rays in dark matter annihilation, a smoking gun signal under investigation in indirect dark matter searches. We show that with the integrated luminosity $\\mathcal{L}=30~{\\rm fb}^{-1}$ in LHC at center-of-mass energy $\\sqrt{s}=$ 13 TeV, for dark matter masses $\\sim (50-600)$ GeV, a model-independent constraint on the cross section of dark matter annihilation to monochromatic gamma-rays...

  17. Helium reionization in the presence of self-annihilating clumpy dark matter

    CERN Document Server

    Bandyopadhyay, Bidisha

    2015-01-01

    The reionization of helium describes the transition from its singly ionized state to a doubly-ionized state in the intergalactic medium (IGM). This process is important for the thermal evolution of the IGM and influences the mean free path of photons with energies above $54.4$~eV. While it is well-known that helium reionization is mostly driven by the contribution of energetic quasars at $z<6$, we study here how helium reionization proceeds if there is an additional contribution due to the annihilation of dark matter. We explore the effects of different dark matter profiles for the dark matter clumping factor, which can significantly enhance the annihilation rate at late times. We find that the presence of dark matter annihilation enhances the He$^{++}$ abundance at early stages where it would be zero within the standard model, and it can further increase during structure formation, reflecting the increase of the dark matter clumping factor. The latter is, however, degenerate with the build-up of the quasa...

  18. A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

    CERN Document Server

    Weniger, Christoph

    2012-01-01

    The observation of a gamma-ray line in the cosmic-ray fluxes would be a smoking-gun signature for dark matter annihilation or decay in the Universe. We present an improved search for such signatures in the data of the Fermi Large Area Telescope (LAT), concentrating on energies between 20 and 300 GeV. Besides updating to 43 months of data, we use a new data-driven technique to select optimized target regions depending on the profile of the Galactic dark matter halo. In regions close to the Galactic center, we find a 4.6 sigma indication for a gamma-ray line at 130 GeV. When taking into account the look-elsewhere effect the significance of the observed excess is 3.3 sigma. If interpreted in terms of dark matter particles annihilating into a photon pair, the observations imply a dark matter mass of 129.8\\pm2.4^{+7}_{-13} GeV and a partial annihilation cross-section of = 1.27\\pm0.32^{+0.18}_{-0.28} x 10^-27 cm^3 s^-1 when using the Einasto dark matter profile. The evidence for the signal is based on about 50 pho...

  19. Search for annihilating dark matter in the Sun with 3 years of IceCube data

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-03-01

    We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun's core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies >100 GeV while its low-energy infill array DeepCore extends this to >10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46× 10^{-5} pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ +τ -particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.

  20. Observational Constraints of 30–40 GeV Dark Matter Annihilation in Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Man Ho Chan

    2016-01-01

    Full Text Available Recently, it has been shown that the annihilation of 30–40 GeV dark matter particles through bb- channel can satisfactorily explain the excess GeV gamma-ray spectrum near the Galactic Center. In this paper, we apply the above model to galaxy clusters and use the latest upper limits of gamma-ray flux derived from Fermi-LAT data to obtain an upper bound of the annihilation cross section of dark matter. By considering the extended density profiles and the cosmic ray profile models of 49 galaxy clusters, the upper bound of the annihilation cross section can be further tightened to σv≤9×10-26 cm3 s−1. This result is consistent with the one obtained from the data near the Galactic Center.

  1. SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel

    CERN Document Server

    Herrmann, B

    2007-01-01

    We compute the full O(alpha_s) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large mu tan beta and A_b contributions and keeping all finite O(m_b,s,1/tan^2 beta) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as DarkSUSY or micrOMEGAs.

  2. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Bouvier, A.; Buehler, R. [W.W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T.J. [Centre d' Étude Spatiale des Rayonnements, CNRS/UPS, BP 44346, F-30128 Toulouse Cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: tesla@ucolick.org, E-mail: profumo@scipp.ucsc.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2010-05-01

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ∼ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ∼ 5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.

  3. Modeling dark matter subhalos in a constrained galaxy: Global mass and boosted annihilation profiles

    Science.gov (United States)

    Stref, Martin; Lavalle, Julien

    2017-03-01

    The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales much smaller than typical galaxies, potentially down to ˜10-10 M⊙ . This clustering translates into a very large population of subhalos in galaxies and affects the predictions for direct and indirect dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on previous analytic works to model the Galactic subhalo population, while keeping consistent with current observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent method to account for tidal effects induced by both dark matter and baryons. Our model does not strongly rely on cosmological simulations, as they can hardly be fully matched to the real Milky Way, apart from setting the initial subhalo mass fraction. Still, it allows us to recover the main qualitative features of simulated systems. It can further be easily adapted to any change in the dynamical constraints, and can be used to make predictions or derive constraints on dark matter candidates from indirect or direct searches. We compute the annihilation boost factor, including the subhalo-halo cross product. We confirm that tidal effects induced by the baryonic components of the Galaxy play a very important role, resulting in a local average subhalo mass density ≲1 % of the total local dark matter mass density, while selecting the most concentrated objects and leading to interesting features in the overall annihilation profile in the case of a sharp subhalo mass function. Values of global annihilation boost factors range from ˜2 to ˜20 , while the local annihilation rate is about boosted half as much.

  4. Dark Matter annihilations in halos and the reionization of the universe

    CERN Document Server

    Poulin, Vivian; Lesgourgues, Julien

    2015-01-01

    It is well known that annihilations in the homogeneous fluid of dark matter (DM) can leave substantial imprints in the cosmic microwave background (CMB) anisotropy power spectrum. However, the relevance of DM annihilations in halos is still subject to debate, with previous works reaching different conclusions on this point. Furthermore, models of DM annihilations in halos have been invoked to solve the tension between WMAP measurement of the reionization optical depth and astrophysical Gunn-Peterson bound, requiring a significantly smaller value of the optical depth to reionization. This tension, although smaller, still exists in the new Planck data. In this work, we revisit these problems and aim at clarifying the situation, thanks to the most accurate treatment of DM annihilations in halos to this day. We find that the ionization fraction does exhibit a very particular (and potentially constraining) pattern, but the currently measurable reionization optical depth is left almost unchanged: For plausible halo...

  5. Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    CERN Document Server

    Pinzke, Anders; Bergstrom, Lars

    2011-01-01

    We study the possibility for detecting gamma-ray emission in galaxy clusters. We consider 1) cosmic ray (CR) induced pion decay which is thought to dominate the astrophysical signal from clusters, 2) different representative benchmark models of supersymmetric dark matter (DM), and 3) leptophilic models of DM annihilation that include a Sommerfeld enhancement (SFE). To model DM annihilation, we consider hadronization of annihilating neutralinos, internal bremsstrahlung, and inverse Compton emission from the cosmic microwave background as well as from a realistic spatial and spectral distribution of dust and stellar light. We predict the Virgo and Fornax clusters to be the brightest DM sources and find a particularly low CR induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, we find a substructure boost factor of more than 1000. Since the annihilation flux of substructures is mostly contributed by the regions around the virial radius, the resulting surface bright...

  6. Self-annihilating dark matter and the CMB: reionizing the Universe and constraining cross sections

    CERN Document Server

    Iocco, Fabio

    2009-01-01

    I summarize the recent advances in determining the effects of self-annihilating WIMP dark matter on the modification of the recombination history, at times earlier than the formation of astrophysical objects. Depending on mass and self-annihilation cross section, WIMP DM can reproduce sizable amounts of the total free electron abundance at z > 6; as known, this affects the CMB temperature and polarization correlation spectra, and can be used to place stringent bounds in the particle mass vs cross-section plane. WMAP5 data already strongly disfavor the region capable to explain the recent cosmic positron and electrons anomalies in terms of DM annihilation, whereas in principle the Planck mission has the potential to see a signal produced by a candidate laying in that region, or from WIMPs with thermal annihilation cross-sections =3e-26 cm3/s and masses below 50 GeV.

  7. The surface brightness of dark matter unique signatures of neutralino annihilation in the Galactic halo

    CERN Document Server

    Calcaneo-Roldan, C; Calcaneo-Roldan, Carlos; Moore, Ben

    2000-01-01

    We use high resolution numerical simulations of the formation of cold dark matter halos to simulate the background of decay products from neutralino annihilation, such as gamma-rays or neutrinos. Halos are non-spherical, have steep singular density profiles and contain many thousands of surviving dark matter substructure clumps. This leads to several unique signatures in the gamma-ray background that may be confirmed or rejected by the next generation of gamma-ray experiments. Most importantly, the diffuse background is enhanced by over two orders of magnitude due to annihilation within substructure halos. The largest dark substructures are easily visibly above the background and may account for the unidentified EGRET sources. A deep strip survey of the gamma-ray background would allow the shape of the Galactic halo to be quantified.

  8. Extragalactic Inverse Compton Light from Dark Matter Annihilation and the Pamela Positron Excess

    CERN Document Server

    Profumo, Stefano

    2009-01-01

    We calculate the extragalactic diffuse emission originating from the up-scattering of cosmic microwave photons by energetic electrons and positrons produced in particle dark matter annihilation events at all redshifts and in all halos. We outline the observational constraints on this emission and we study its dependence on both the particle dark matter model (including the particle mass and its dominant annihilation final state) and on assumptions on structure formation and on the density profile of halos. We find that for low-mass dark matter models, data in the X-ray band provide the most stringent constraints, while the gamma-ray energy range probes models featuring large masses and pair-annihilation rates, and a hard spectrum for the injected electrons and positrons. Specifically, we point out that the all-redshift, all-halo inverse Compton emission from many dark matter models that might provide an explanation to the anomalous positron fraction measured by the Pamela payload severely overproduces the obs...

  9. Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess

    Energy Technology Data Exchange (ETDEWEB)

    Profumo, Stefano [Department of Physics, University of California, 1156 High St, Santa Cruz, CA 95064 (United States); Jeltema, Tesla E., E-mail: profumo@scipp.ucsc.edu, E-mail: tesla@ucolick.org [UCO/Lick Observatories, 1156 High St, Santa Cruz, CA 95064 (United States)

    2009-07-01

    We calculate the extragalactic diffuse emission originating from the up-scattering of cosmic microwave photons by energetic electrons and positrons produced in particle dark matter annihilation events at all redshifts and in all halos. We outline the observational constraints on this emission and we study its dependence on both the particle dark matter model (including the particle mass and its dominant annihilation final state) and on assumptions on structure formation and on the density profile of halos. We find that for low-mass dark matter models, data in the X-ray band provide the most stringent constraints, while the gamma-ray energy range probes models featuring large masses and pair-annihilation rates, and a hard spectrum for the injected electrons and positrons. Specifically, we point out that the all-redshift, all-halo inverse Compton emission from many dark matter models that might provide an explanation to the anomalous positron fraction measured by the Pamela payload severely overproduces the observed extragalactic gamma-ray background.

  10. Search for Dark Matter Annihilation in the Galactic Center with IceCube-79

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fuchs, T; Glagla, M; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfe, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Seckel, D; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2015-01-01

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $\\left$, for WIMP ma...

  11. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  12. On the Direct Detection of Dark Matter Annihilation

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  13. P-wave Annihilating Dark Matter from a Decaying Predecessor and the Galactic Center Excess

    CERN Document Server

    Choquette, Jeremie; Cornell, Jonathan M

    2016-01-01

    Dark matter (DM) annihilations have been widely studied as a possible explanation of excess gamma rays from the galactic center seen by Fermi/LAT. However most such models are in conflict with constraints from dwarf spheroidals. Motivated by this tension, we show that p-wave annihilating dark matter can easily accommodate both sets of observations due to the lower DM velocity dispersion in dwarf galaxies. Explaining the DM relic abundance is then challenging. We outline a scenario in which the usual thermal abundance is obtained through s-wave annihilations of a metastable particle, that eventually decays into the p-wave annihilating DM of the present epoch. The couplings and lifetime of the decaying particle are constrained by big bang nucleosynthesis, the cosmic microwave background and direct detection, but significant regions of parameter space are viable. A sufficiently large p-wave cross section can be found by annihilation into light mediators, that also give rise to Sommerfeld enhancement. A predictio...

  14. An IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; D'\\iaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanosk, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high energy neutrinos acquired in 339.8 days of livetime during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda galaxy and several dwarf galaxies. We obtain upper limits on the cross section as function of the WIMP mass between 300 GeV and 100 TeV for the annihilation into b bbar, W+W-, \\tau+\\tau-, \\mu+\\mu- and \

  15. Supersymmetric QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification

    Science.gov (United States)

    Herrmann, Björn; Klasen, Michael; Kovařík, Karol

    2009-10-01

    We describe in detail our calculation of the full supersymmetric QCD corrections to neutralino annihilation into heavy quarks and extend our numerical analysis of the resulting dark matter relic density to scenarios without scalar or gaugino mass unification. In these scenarios, the final state is often composed of top quarks and the annihilation proceeds through Z0-boson or scalar top-quark exchanges. The impact of the corrections is again shown to be sizable, so that they must be taken into account systematically in global analyses of the supersymmetry parameter space.

  16. SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification

    CERN Document Server

    Herrmann, Bjorn; Kovarik, Karol

    2009-01-01

    We describe in detail our calculation of the full supersymmetric (SUSY) QCD corrections to neutralino annihilation into heavy quarks and extend our numerical analysis of the resulting dark matter relic density to scenarios without scalar or gaugino mass unification. In these scenarios, the final state is often composed of top quarks and the annihilation proceeds through Z^0-boson or scalar top-quark exchanges. The impact of the corrections is again shown to be sizable, so that they must be taken into account systematically in global analyses of the supersymmetry parameter space.

  17. Dark Matter decay and annihilation in the Local Universe: CLUES from Fermi

    CERN Document Server

    Cuesta, A J; Zandanel, F; Profumo, S; Prada, F; Yepes, G; Klypin, A; Hoffman, Y; Gottloeber, S; Primack, J; Sanchez-Conde, M A; Pfrommer, C

    2010-01-01

    We present all-sky simulated Fermi maps of gamma-rays from dark matter decay and annihilation in the Local Universe. The dark matter distribution is obtained from a constrained cosmological simulation of the neighboring large-scale structure provided by the CLUES project. The dark matter fields of density and density squared are then taken as an input for the Fermi observation simulation tool to predict the gamma-ray photon counts that Fermi would detect in 5 years of all-sky survey for given dark matter models. Signal-to-noise sky maps have also been obtained by adopting the current Galactic and isotropic diffuse background models released by the Fermi collaboration. We point out the possibility for Fermi to detect a dark matter gamma-ray signal in extragalactic structures. In particular, we conclude here that Fermi observations of nearby clusters (e.g. Virgo and Coma) and filaments are expected to give stronger constraints on decaying dark matter compared to previous studies, especially for dark matter deca...

  18. Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes

    CERN Document Server

    Schaller, Matthieu; Theuns, Tom; Calore, Francesca; Bertone, Gianfranco; Bozorgnia, Nassim; Crain, Robert A; Fattahi, Azadeh; Navarro, Julio F; Sawala, Till; Schaye, Joop

    2015-01-01

    We obtain predictions for the properties of cold dark matter annihilation radiation using high resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies carried out as part of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) programme. Galactic halos in the simulation have significantly different properties from those assumed by the "standard halo model" often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White profile between $r\\approx1.5~\\rm{kpc}$ and $r\\approx10~\\rm{kpc}$, and a flatter slope at smaller radii. The inner regions of the halos are almost perfectly spherical (axis ratios $b/a > 0.96$ within $r=500~\\rm{pc}$) and there is no offset larger than $45~\\rm{pc}$ between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in...

  19. Cosmological and astrophysical signatures of dark matter annihilations into pseudo-Goldstone bosons

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cely, Camilo; Ibarra, Alejandro; Molinaro, Emiliano, E-mail: camilo.garcia@tum.de, E-mail: alejandro.ibarra@ph.tum.de, E-mail: emiliano.molinaro@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, Garching, 85748 (Germany)

    2014-02-01

    We investigate a model where the dark matter particle is a chiral fermion field charged under a global U(1) symmetry which is assumed to be spontaneously broken, leading to a pseudo-Goldstone boson (PGB). We argue that the dark matter annihilation into PGBs determine the dark matter relic abundance. Besides, we also note that experimental searches for PGBs allow either for a very long lived PGB, with a lifetime much longer than the age of the Universe, or a relatively short lived PGB, with a lifetime shorter than one minute. Hence, two different scenarios arise, producing very different signatures. In the long lived PGB scenario, the PGB might contribute significantly to the radiation energy density of the Universe. On the other hand, in the short lived PGB scenario, and since the decay length is shorter than one parsec, the s-wave annihilation into a PGB and a CP even dark scalar in the Galactic center might lead to an intense box feature in the gamma-ray energy spectrum, provided the PGB decay branching ratio into two photons is sizable. We also analyze the constraints on these two scenarios from thermal production, the Higgs invisible decay width and direct dark matter searches.

  20. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  1. Search for dark matter annihilations in the Sun with the 79-string IceCube detector

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stöß, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent spin-dependent WIMP-proton cross-sections limits to date above 35 GeV.

  2. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tönnis, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-08-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP + WIMP → b b bar ,W+W- and τ+τ-.

  3. Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèver, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldana, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tönnis, C; Trovato, A; Tselengidou, M; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and $90\\%$ C.L. upper limits on the neutrino flux, the spin--dependent and spin--independent WIMP-nucleon cross--sections are derived for WIMP masses ranging from $ \\rm 50$ GeV to $\\rm 5$ TeV for the annihilation channels $\\rm WIMP + WIMP \\to b \\bar b, W^+ W^-$ and $\\rm \\tau^+ \\tau^-$.

  4. Synchrotron Emission from Dark Matter Annihilation: Predictions for Constraints from Non-detections of Galaxy Clusters with New Radio Surveys

    CERN Document Server

    Storm, Emma; Splettstoesser, Megan; Profumo, Stefano

    2016-01-01

    The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host microGauss-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 and 2 surveys planned for the Low Frequency Array (LOFAR) at 120 MHz, the EMU survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP)...

  5. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Maryam; Evoli, Carmelo [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Cholis, Ilias [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Ullio, Piero, E-mail: maryam.tavakoli@desy.de, E-mail: cholis@fnal.gov, E-mail: carmelo.evoli@desy.de, E-mail: ullio@sissa.it [SISSA, Via Bonomea 265, 34136 Trieste (Italy)

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.

  6. Supersymmetric QCD corrections to dark matter annihilation in the Higgs funnel region

    Science.gov (United States)

    Herrmann, Björn; Klasen, Michael

    2007-12-01

    We compute the full O(αs) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large μtan⁡β and Ab contributions and keeping all finite O(mb,s,1/tan⁡2β) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as darksusy or micromegas.

  7. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Center for Particle Astrophysics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Linden, Tim [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics

    2015-03-01

    The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95σ local excess (p-value=0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS>8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2σ(p-value=0.027). We argue that these TS>8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1° of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS>8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies.

  8. gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis

    CERN Document Server

    Nezri, E; Combet, C; Maurin, D; Pointecouteau, E; Hinton, J A

    2012-01-01

    Clusters of galaxies are potentially important targets for indirect searches for dark matter annihilation. Here, we reassess the detection prospects for annihilation in massive halos, based on a statistical investigation of 1743 clusters from the recent MCXC meta-catalogue. We derive a new data-driven limit for the extra-galactic DM annihilation background Jextra-gal>JGal/5 and consider a source-stacking approach. The number of clusters scales with their brightness (boosted by DM substructures) to the power of -2 for an integration angle 0.1deg. It suggests that stacking may provide a significant improvement over a single target analysis for gamma-ray observations at high-energies where the angular resolution achievable is comparable to this angle. In our study the mean angle containing 80% of the dark-matter signal for the entire sample (assuming an NFW DM profile) is 0.15deg. It indicates that instruments with this angular resolution or better would be optimal for a cluster annihilation search based on stac...

  9. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    Science.gov (United States)

    Zavala, Jesús; Vogelsberger, Mark; White, Simon D. M.

    2010-04-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0×10-5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  10. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    CERN Document Server

    Zavala, Jesus; White, Simon D M

    2009-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the mu-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |mu|<9.0x10^(-5) found by the COBE/FIRAS experiment.

  11. First search for dark matter annihilations in the Earth with the IceCube Detector

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Bron, S; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glauch, T; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Peiffer, P; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Herrera, S E Sanchez; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Stettner, J; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vogel, E; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly Interacting Massive Particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/ 2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spi...

  12. First search for dark matter annihilations in the Earth with the IceCube detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-02-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.

  13. A possible dark matter annihilation signal in the AMS-02 antiproton data

    CERN Document Server

    Cui, Ming-Yang; Tsai, Yue-Lin Sming; Fan, Yi-Zhong

    2016-01-01

    A new approach has been adopted to probe the dark matter signal using the latest AMS-02 cosmic ray antiproton flux data. Different from previous studies, we do not assume specific propagation, injection, and solar modulation parameters when calculating the antiproton fluxes, but use the results inferred from the B/C ratio and proton data from the recent PAMELA/AMS-02 measurements instead. A joint likelihood method including the likelihood of these background parameters is established within the Bayesian framework. We find that a dark matter signal is favored with a high test statistic value of $\\sim 70$. The rest mass of the dark matter particles is $\\sim 30-70$ GeV and the velocity-averaged hadronic annihilation cross section is about $(1-6)\\times 10^{-26}$ cm$^{3}$s$^{-1}$, in agreement with that needed to account for the Galactic center GeV excess and/or the weak GeV emission from dwarf galaxies Reticulum 2 and Tucana III. Tight constraints on the dark matter annihilation models are also set in a wide mass...

  14. SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Moritz

    2015-06-15

    Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY

  15. Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter

    CERN Document Server

    Simet, Melanie

    2009-01-01

    In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.

  16. On the detectability of Galactic dark matter annihilation into monochromatic gamma-rays

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Cheng; YUAN Qiang; BI Xiao-Jun; CHEN Guo-Ming

    2011-01-01

    Monochromatic γ-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic γ-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with γ-rays directly. In this work, we study the detection strategy of the monochromatic γ-rays in a future space-based detector. The flux of monochromatic γ-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects γ-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic γ-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.

  17. Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    CERN Document Server

    Bonnivard, V; Maurin, D; Geringer-Sameth, A; Koushiappas, S M; Walker, M G; Mateo, M; Olszewski, E; Bailey, J I

    2015-01-01

    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum~II. This is done using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS). We find Reticulum~II to have one of the highest J-factor when compared to the other Milky Way dSphs. We have also checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum~II may provide a unique window on dark matter particle properties.

  18. Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation

    CERN Document Server

    Bringmann, Torsten; Ibarra, Alejandro; Vogl, Stefan; Weniger, Christoph

    2012-01-01

    A commonly encountered obstacle in indirect searches for galactic dark matter is how to disentangle possible signals from astrophysical backgrounds. Given that such signals are most likely subdominant, the search for pronounced spectral features plays a key role for indirect detection experiments; monochromatic gamma-ray lines or similar features related to internal bremsstrahlung, in particular, provide smoking gun signatures. We perform a dedicated search for the latter in the data taken by the Fermi gamma-ray space telescope during its first 43 months. To this end, we use a new adaptive procedure to select optimal target regions that takes into account both standard and contracted dark matter profiles. The behaviour of our statistical method is tested by a bootstrap analysis of the full sky data and found to reproduce the theoretical expectations very well. The limits on the dark matter annihilation cross-section that we derive are stronger than what can be obtained from the observation of dwarf galaxies a...

  19. On the Detectability of Galactic Dark Matter Annihilation into Monochromatic Gamma-rays

    CERN Document Server

    Tang, Zhi-Cheng; Bi, Xiao-Jun; Chen, Guo-Ming

    2010-01-01

    Monochromatic gamma-rays are thought to be the smoking gun signal for identifying the dark matter annihilation. However, the flux of monochromatic gamma-rays is usually suppressed by the virtual quantum effects since dark matter should be neutral and does not couple with gamma-rays directly. In the work we study the detection strategy of the monochromatic gamma-rays in a future space-based detector. The monochromatic gamma-ray flux is calculated by assuming supersymmetric neutralino as a typical dark matter candidate. We discuss both the detection focusing on the Galactic center and in a scan mode which detects gamma-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic gamma-rays detection, with different energy and angular resolution, field of view, background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo method.

  20. Dark Matter annihilation in Draco: new considerations of the expected gamma flux

    CERN Document Server

    Sanchez-Conde, M A; Lokas, E L; Gómez, M E; Wojtak, R; Moles, M

    2007-01-01

    A new revision of the gamma flux that we expect to detect in Imaging Atmospheric Cherenkov Telescopes (IACTs) from SUSY dark matter annihilation in the Draco dSph is presented using the dark matter density profiles compatible with the latest observations. This revision takes also into account the important effect of the Point Spread Function (PSF) of the telescope. We show that this effect is crucial in the way we will observe and interpret a possible signal detection. In particular, it could be impossible to discriminate between a cuspy and a cored dark matter density profile due to the fact that both density profiles may yield very similar flux profile observed by the telescope. Finally, we discuss the prospects to detect a possible gamma signal from Draco for current or planned experiments, i.e. MAGIC, GLAST and GAW.

  1. Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes

    Science.gov (United States)

    Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Calore, Francesca; Bertone, Gianfranco; Bozorgnia, Nassim; Crain, Robert A.; Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Schaye, Joop

    2016-02-01

    We obtain predictions for the properties of cold dark matter annihilation radiation using high-resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) programme. Galactic haloes in the simulation have significantly different properties from those assumed in the `standard halo model' often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between r ≈ 1.5 kpc and r ≈ 10 kpc. At smaller radii, r ≲ 1.5 kpc, the haloes develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30 per cent as the mass resolution is increased by a factor 150. The inner regions of the haloes are almost perfectly spherical (axis ratios b/a > 0.97 within r = 1 kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with γ-ray observations at large Galactic latitudes (b ≳ 3°). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.

  2. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Goodenough, Lisa; /New York U.

    2010-10-01

    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10{sup o} around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25{sup o} and 10{sup o} from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25{sup o} ({approx}175 parsecs) of the Galactic Center, in contrast, cannot be accounted for by these processes or known sources. We find that an additional component of gamma ray emission is clearly present which is highly concentrated around the Galactic Center, but is not point-like in nature. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution ({rho} {proportional_to} r{sup -1.34{+-}0.04}). The observed spectrum of this component, which peaks at energies between 2-4 GeV (in E{sup 2} units), is well fit by that predicted for a 7.3-9.2 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of <{sigma}{nu}> = 3.3 x 10{sup -27} to 1.5 x 10{sup -26} cm{sup 3}/s, depending on how the dark matter distribution is normalized. We discuss other possible sources for this component, but argue that they are unlikely to account for the observed emission.

  3. Dark matter annihilation and jet quenching phenomena in the early universe

    CERN Document Server

    Mishustin, Igor N

    2016-01-01

    Dark-matter particles like neutralinos should decouple from the hot cosmic plasma at temperatures of about 40 GeV. Later they can annihilate each other into standard-model particles, which are injected into the dense primordial plasma and quickly loose energy. This process is similar to jet quenching in ultrarelativistic heavy-ion collisions, actively studied in RHIC and LHC experiments. Using empirical information from heavy-ion experiments I show that the cosmological (anti)quark and gluon jets are damped very quickly until the plasma remains in the deconfined phase. The charged hadron and lepton jets are strongly damped until the recombination of electrons and protons. The consequences of energy transfer by the annihilation products to the cosmic matter are discussed.

  4. Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    CERN Document Server

    Bi, X J; Zhang, X; Bi, Xiao-Jun; Hu, Hong-Bo; Zhang, Xinmin

    2006-01-01

    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.

  5. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannasch, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh -A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konischev, K V; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, A V; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E R; Panfilov, A I; Pan'kov, L V; Pliskovsky, E N; Rozanov, M I; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Shelepov, M D; Shkurihin, A V; Smagina, A A; Suvorova, O V; Tabolenko, V A; Tarashansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2015-01-01

    We reanalyze dataset collected during 1998-2003 years by the low energy threshold (10 GeV) neutrino telescope NT200 in the lake Baikal in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels $b\\bar{b}$, $W^+W^-$, $\\tau^+\\tau^-$, $\\mu^+\\mu^-$ or $\

  6. Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data

    CERN Document Server

    Madhavacheril, Mathew S; Slatyer, Tracy R

    2013-01-01

    Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal' energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These cur...

  7. Indirect Probes of Dark Matter and Globular Cluster Properties From Dark Matter Annihilation within the Coolest White Dwarfs

    CERN Document Server

    Hurst, Travis J; Natarajan, Aravind; Badenes, Carles

    2014-01-01

    White Dwarfs (WD) capture Dark Matter (DM) as they orbit within their host halos. These captured particles may subsequently annihilate, heating the stellar core and preventing the WD from cooling. The potential wells of WDs are considerably deeper and core temperatures significantly cooler than those of main sequence stars. Consequently, DM evaporation is less important in WDs and DM with masses $M_{\\chi} \\gtrsim 100\\, \\kev$ and annihilation cross-sections orders of magnitude below the canonical thermal cross-section ($\\sigmav \\gtrsim 10^{-46}\\, \\cm^3$/s) can significantly alter WD cooling in particular astrophysical environments. We consider WDs in globular clusters (GCs) and dwarf galaxies. If the parameters of the DM particle are known, then the temperature of the coolest WD in a GC can be used to constrain the DM density of the cluster's halo (potentially even ruling out the presence of a halo if the inferred density is of order the ambient Galactic density). Recently several direct detection experiments ...

  8. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    Science.gov (United States)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannasch, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Ljashuk, V. I.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Skurihin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-08-01

    We reanalyze the dataset collected during the years 1998-2003 by the deep underwater neutrino telescope NT200 in the lake Baikal with the low energy threshold (10 GeV) in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels bbbar , W+W- , τ+τ- , μ+μ- or ννbar . No significant excess of events towards the Galactic Center over expected neutrino background of atmospheric origin is found and we derive 90% CL upper limits on the annihilation cross section of dark matter.

  9. Can the relic density of self-interacting dark matter be due to annihilations into Standard Model particles?

    CERN Document Server

    Chu, Xiaoyong; Hambye, Thomas

    2016-01-01

    Motivated by the hypothesis that dark matter self-interactions provide a solution to the small-scale structure formation problems, we investigate the possibilities that the relic density of a self-interacting dark matter candidate can proceed from the thermal freeze-out of annihilations into Standard Model particles. We find that scalar and Majorana dark matter in the mass range of $10-500$ MeV, coupled to a slightly heavier massive gauge boson, are the only possible candidates in agreement with multiple current experimental constraints. Here dark matter annihilations take place at a much slower rate than the self-interactions simply because the interaction connecting the Standard Model and the dark matter sectors is small. We also discuss prospects of establishing or excluding these two scenarios in future experiments.

  10. Finite-temperature modification of heavy particle decay and dark matter annihilation

    CERN Document Server

    Beneke, Martin; Hryczuk, Andrzej

    2016-01-01

    We apply the operator product expansion (OPE) technique to the decay and annihilation of heavy particles in a thermal medium with temperature below the heavy particle mass, m_chi. This allows us to explain two interesting observations made before: a) that the leading thermal correction to the decay width of a charged particle is the same multiplicative factor of the zero-temperature width for a two-body decay and muon decay, and b) that the leading thermal correction to fermionic dark matter annihilation arises only at order T^4/m_chi^4. The OPE further considerably simplifies the computation and factorizes it into model-independent matrix elements in the thermal background, and short-distance coefficients to be computed in zero-temperature field theory.

  11. Gamma ray signals of the annihilation of Higgs-portal singlet dark matter

    CERN Document Server

    Sage, Frederick S

    2016-01-01

    This article is an exploration of gamma ray signals of annihilating Higgs-portal singlet scalar and vector dark matter. Gamma ray signals are considered in the context of contributions from annihilations of singlets in the galactic halo to the Isotropic Gamma Ray Background (IGRB), in the context of the Galactic center excess, and in the context of observations of dwarf spheroidal galaxies. We find that Higgs-portal singlets of both species with a mass of $~$65 GeV can explain the Galactic center excess with reasonable accuracy, but that this mass range is in tension with current direct detection bounds. We also find that singlets in the mass range of 250-1000 GeV are consistent with both the Fermi-LAT IGRB observations and direct detection bounds. Additionally, bounds from gamma ray observations of the dwarf spheroidal galaxy Segue I are translated into bounds on the Higgs-portal couplings.

  12. New limits on dark matter annihilation from Alpha Magnetic Spectrometer cosmic ray positron data.

    Science.gov (United States)

    Bergström, Lars; Bringmann, Torsten; Cholis, Ilias; Hooper, Dan; Weniger, Christoph

    2013-10-25

    The Alpha Magnetic Spectrometer experiment onboard the International Space Station has recently provided cosmic ray electron and positron data with unprecedented precision in the range from 0.5 to 350 GeV. The observed rise in the positron fraction at energies above 10 GeV remains unexplained, with proposed solutions ranging from local pulsars to TeV-scale dark matter. Here, we make use of this high quality data to place stringent limits on dark matter with masses below ~300 GeV, annihilating or decaying to leptonic final states, essentially independent of the origin of this rise. We significantly improve on existing constraints, in some cases by up to 2 orders of magnitude.

  13. Dark matter annihilation in the milky way galaxy: effects of baryonic compression.

    Science.gov (United States)

    Prada, F; Klypin, A; Flix, J; Martínez, M; Simonneau, E

    2004-12-10

    If the dark matter (DM), which is considered to constitute most of the mass of galaxies, is made of supersymmetric particles, the central region of our Galaxy should emit gamma rays produced by their annihilation. We use detailed models of the Milky Way to make accurate estimates of continuum gamma-ray fluxes. We argue that the most important effect, which was previously neglected, is the compression of the dark matter due to the infall of baryons to the galactic center: it boosts the expected signal by a factor 1000. To illustrate this effect, we computed the expected gamma fluxes in the minimal supergravity scenario. Our models predict that the signal could be detected at high confidence levels by imaging atmospheric C erenkov telescopes assuming that neutralinos make up most of the DM in the Universe.

  14. Gamma-rays from dark matter annihilations strongly constrain the substructure in halos

    CERN Document Server

    Pinzke, Anders; Bergstrom, Lars

    2009-01-01

    Recently, it has been shown that electrons and positrons from dark matter (DM) annihilations provide an excellent fit to the Fermi, PAMELA, and HESS data. Using this DM model, which requires an enhancement of the annihilation cross section over its standard value to match the observations, we show that it immediately implies an observable level of gamma-ray emission for the Fermi telescope from nearby galaxy clusters such as Virgo and Fornax. We show that this DM model implies a peculiar feature from final state radiation that is a distinctive signature of DM. Using the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures within DM halos to be > 0.1 M_sol - five orders of magnitudes larger than the expectation for cold dark matter. This limits the cutoff scale in the linear matter power spectrum to k 10^4 M_sol: if the true substructure cutoff is much smaller than this, the DM interpretation of the Fermi/PAMELA/HESS data must be wrong. To address the problem ...

  15. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    CERN Document Server

    Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero

    2014-01-01

    Recent advances in gamma-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating gamma-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse gamma-ray emission. Our models are cross-checked to both the available CR and gamma-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse gamma-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived gamma-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ~10 GeV dark matter annihilating dominantly to hadrons is more s...

  16. Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background

    CERN Document Server

    Galli, Silvia; Valdes, Marcos; Iocco, Fabio

    2013-01-01

    Anisotropies of the cosmic microwave background (CMB) have proven to be a very powerful tool to constrain dark matter annihilation at the epoch of recombination. However, CMB constraints are currently derived using a number of reasonable but yet un-tested assumptions that could potentially lead to a misestimation of the true bounds. In this paper we examine the potential impact of these systematic effects. In particular, we separately study the propagation of the secondary particles produced by annihilation in two energy regimes; first following the shower from the initial particle energy to the keV scale, and then tracking the resulting secondary particles from this scale to the absorption of their energy as heat, ionization, or excitation of the medium. We improve both the high and low energy parts of the calculation, in particular finding that our more accurate treatment of losses to sub-10.2 eV photons produced by scattering of high-energy electrons weakens the constraints on particular DM annihilation mo...

  17. Weak annihilation cusp inside the dark matter spike about a black hole

    CERN Document Server

    Shapiro, Stuart L

    2016-01-01

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as $r^{-1/2}$ for $s$-wave annihilation, where $r$ is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for $s$-wave a...

  18. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT

    CERN Document Server

    Fermi-LAT, The; Anderson, B; Bechtol, K; Drlica-Wagner, A; Meyer, M; Sanchez-Conde, M; Strigari, L; Wood, M; Abbott, T M C; Abdalla, F B; Benoit-Levy, A; Bernstein, G M; Bernstein, R A; Bertin, E; Brooks, D; Burke, D L; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Neto, A Fausti; Finley, D A; Flaugher, B; Fosalba, P; Frieman, J; Gerdes, D W; Goldstein, D A; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Kent, S; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Maia, M A G; March, M; Marshall, J L; Martini, P; Miller, C J; Miquel, R; Neilsen, E; Nord, B; Ogando, R; Plazas, A A; Reil, K; Romer, A K; Rykoff, E S; Sanchez, E; Santiago, B; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Vikram, V; Walker, A R; Wechsler, R H

    2016-01-01

    We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using 6 years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are dark-matter-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~$2 \\sigma$ local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sk...

  19. Galactic center excess in γ rays from annihilation of self-interacting dark matter.

    Science.gov (United States)

    Kaplinghat, Manoj; Linden, Tim; Yu, Hai-Bo

    2015-05-29

    Observations by the Fermi Large-Area Telescope have uncovered a significant γ-ray excess directed toward the Milky Way Galactic Center. There has been no detection of a similar signal in the stacked population of Milky Way dwarf spheroidal galaxies. Additionally, astronomical observations indicate that dwarf galaxies and other faint galaxies are less dense than predicted by the simplest cold dark matter models. We show that a self-interacting dark matter model with a particle mass of roughly 50 GeV annihilating to the mediator responsible for the strong self-interaction can simultaneously explain all three observations. The mediator is necessarily unstable, and its mass must be below about 100 MeV in order to decrease the dark matter density of faint galaxies. If the mediator decays to electron-positron pairs with a cross section on the order of the thermal relic value, then we find that these pairs can up-scatter the interstellar radiation field in the Galactic center and produce the observed γ-ray excess.

  20. Consistent Scenarios for Cosmic-Ray Excesses from Sommerfeld-Enhanced Dark Matter Annihilation

    CERN Document Server

    Finkbeiner, Douglas P; Slatyer, Tracy R; Vogelsberger, Mark; Weiner, Neal

    2010-01-01

    Anomalies in direct and indirect detection have motivated models of dark matter consisting of a multiplet of nearly-degenerate state s, coupled by a new GeV-scale interaction. We perform a careful analysis of the thermal freezeout of dark matter annihilation in suc h a scenario. We compute the range of "boost factors" arising from Sommerfeld enhancement in the local halo for models which produc e the correct relic density, and show the effect of including constraints on the saturated enhancement from the cosmic microwave bac kground (CMB). We find that boost factors from Sommerfeld enhancement of up to ~800 are possible in the local halo. When the CMB bo unds on the saturated enhancement are applied, the maximal boost factor is reduced to ~400 for 1-2 TeV dark matter and sub-GeV force carriers, but remains large enough to explain the observed Fermi and PAMELA electronic signals. We describe regions in the DM mass -boost factor plane where the cosmic ray data is well fit for a range of final states, and show t...

  1. The Effect of Black Holes in Local Dwarf Spheroidal Galaxies on Gamma-Ray Constraints on Dark Matter Annihilation

    CERN Document Server

    Gonzalez-Morales, Alma X; Queiroz, Farinaldo S

    2014-01-01

    The recent evidence for black holes of intermediate mass in dwarf galaxies motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the non-observation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given dwarf galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to $10^6$, depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density ...

  2. A realistic assessment of the CTA sensitivity to dark matter annihilation

    CERN Document Server

    Silverwood, Hamish; Scott, Pat; Bertone, Gianfranco

    2014-01-01

    We estimate the sensitivity of the upcoming CTA gamma-ray telescope to DM annihilation at the Galactic centre, improving on previous analyses in a number of significant ways. First, we perform a detailed analyses of all backgrounds, including diffuse astrophysical emission for the first time in a study of this type. Second, we present a statistical framework for including systematic errors and estimate the consequent degradation in sensitivity. These errors may come from e.g. event reconstruction, Monte Carlo determination of the effective area or uncertainty in atmospheric conditions. Third, we show that performing the analysis on a set of suitably optimised regions of interest makes it possible to partially compensate for the degradation in sensitivity caused by systematics and diffuse emission. To probe dark matter with the canonical thermal annihilation cross-section, CTA systematics like non-uniform variations in acceptance over a single field of view must be kept below the 0.3% level, unless the dark ma...

  3. Dark matter density profiles of the halos embedding early-type galaxies: characterizing halo contraction and dark matter annihilation strength

    CERN Document Server

    Chae, Kyu-Hyun; Frieman, Joshua A; Bernardi, Mariangela

    2012-01-01

    Identifying dark matter and characterizing its distribution in the inner region of halos embedding galaxies are inter-related problems of broad importance. We devise a new procedure of determining dark matter distribution in halos. We first make a self-consistent bivariate statistical match of stellar mass and velocity dispersion with halo mass as demonstrated here for the first time. Then, selecting early-type galaxy-halo systems we perform Jeans dynamical modeling with the aid of observed statistical properties of stellar mass profiles and velocity dispersion profiles. Dark matter density profiles derived specifically using Sloan Digital Sky Survey galaxies and halos from up-to-date cosmological dissipationless simulations deviate significantly from the dissipationless profle of Navarro-Frenk-White or Einasto in terms of inner density slope and/or concentration. From these dark matter profiles we find that dark matter density is enhanced in the inner region of most early-type galactic halos providing an ind...

  4. Stringent constraints on the dark matter annihilation cross section from subhalo searches with the Fermi Gamma-Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher; Hooper, Dan

    2014-01-01

    The dark matter halo of the Milky Way is predicted to contain a very large number of smaller subhalos. As a result of the dark matter annihilations taking place within such objects, the most nearby and massive subhalos could appear as point-like or spatially extended gamma-ray sources, without observable counterparts at other wavelengths. In this paper, we use the results of the Aquarius simulation to predict the distribution of nearby subhalos, and compare this to the characteristics of the unidentified gamma-ray sources observed by the Fermi Gamma-Ray Space Telescope. Focusing on the brightest high latitude sources, we use this comparison to derive limits on the dark matter annihilation cross section. For dark matter particles lighter than ~200 GeV, the resulting limits are the strongest obtained to date, being modestly more stringent than those derived from observations of dwarf galaxies or the Galactic Center. We also derive independent limits based on the lack of unidentified gamma-ray sources with discernible spatial extension, but these limits are a factor of ~2-10 weaker than those based on point-like subhalos. Lastly, we note that four of the ten brightest high-latitude sources exhibit a similar spectral shape, consistent with 30-60 GeV dark matter particles annihilating to b quarks with an annihilation cross section on the order of sigma v ~ (5-10) x 10^-27 cm^3/s, or 8-10 GeV dark matter particles annihilating to taus with sigma v ~ (2.0-2.5) x 10^-27 cm^3/s.

  5. The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter

    CERN Document Server

    Daylan, Tansu; Hooper, Dan; Linden, Tim; Portillo, Stephen K N; Rodd, Nicholas L; Slatyer, Tracy R

    2014-01-01

    Past studies have identified a spatially extended excess of ~1-3 GeV gamma rays from the region surrounding the Galactic Center, consistent with the emission expected from annihilating dark matter. We revisit and scrutinize this signal with the intention of further constraining its characteristics and origin. By applying cuts to the Fermi event parameter CTBCORE, we suppress the tails of the point spread function and generate high resolution gamma-ray maps, enabling us to more easily separate the various gamma-ray components. Within these maps, we find the GeV excess to be robust and highly statistically significant, with a spectrum, angular distribution, and overall normalization that is in good agreement with that predicted by simple annihilating dark matter models. For example, the signal is very well fit by a 31-40 GeV dark matter particle annihilating to b quarks with an annihilation cross section of sigma v = (1.4-2.0) x 10^-26 cm^3/s (normalized to a local dark matter density of 0.3 GeV/cm^3). Furtherm...

  6. The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Daylan, Tansu [Harvard Univ., Cambridge, MA (United States); Finkbeiner, Douglas P. [Harvard-Smithsonian Center, Cambridge, MA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Linden, Tim [Univ. of Illinois at Chicago, Chicago, IL (United States); Portillo, Stephen K. N. [Harvard-Smithsonian Center, Cambridge, MA (United States); Rodd, Nicholas L. [Massachusetts Institute of Technology, Boston, MA (United States); Slatyer, Tracy R. [Institute for Advanced Study, Princeton, NJ (United States)

    2014-02-26

    Past studies have identified a spatially extended excess of ~1-3 GeV gamma rays from the region surrounding the Galactic Center, consistent with the emission expected from annihilating dark matter. We revisit and scrutinize this signal with the intention of further constraining its characteristics and origin. By applying cuts to the Fermi event parameter CTBCORE, we suppress the tails of the point spread function and generate high resolution gamma-ray maps, enabling us to more easily separate the various gamma-ray components. Within these maps, we find the GeV excess to be robust and highly statistically significant, with a spectrum, angular distribution, and overall normalization that is in good agreement with that predicted by simple annihilating dark matter models. For example, the signal is very well fit by a 31-40 GeV dark matter particle annihilating to b quarks with an annihilation cross section of sigma v = (1.4-2.0) x 10^-26 cm^3/s (normalized to a local dark matter density of 0.3 GeV/cm^3). Furthermore, we confirm that the angular distribution of the excess is approximately spherically symmetric and centered around the dynamical center of the Milky Way (within ~0.05 degrees of Sgr A*), showing no sign of elongation along or perpendicular to the Galactic Plane. The signal is observed to extend to at least 10 degrees from the Galactic Center, disfavoring the possibility that this emission originates from millisecond pulsars.

  7. Dark Matter Annihilation and Decay Profiles for the Reticulum II Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Bonnivard, Vincent; Combet, Céline; Maurin, David; Geringer-Sameth, Alex; Koushiappas, Savvas M.; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Bailey, John I., III

    2015-08-01

    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter (DM). In this work, we reconstruct the DM annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System, we find Reticulum II’s J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on DM particle properties.

  8. Searching for Dark Matter Annihilation into Neutrinos with Super-Kamiokande

    CERN Document Server

    Frankiewicz, Katarzyna

    2015-01-01

    This work presents indirect searches for dark matter (DM) as WIMPs (Weakly Interacting Massive Particles) using neutrino data recorded by the Super-Kamiokande detector from 1996 to 2014. The results of the search for WIMP-induced neutrinos from the Sun and the Milky Way are discussed. We looked for an excess of neutrinos from the Sun/Milky Way direction compared to the expected atmospheric neutrino background. Event samples including both electron and muon neutrinos covering a wide range of neutrino energies (GeV to TeV) were used, with sensitivity to WIMP masses down to tens of GeV. Various WIMP annihilation modes were taken into account in the analyses.

  9. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-Lat

    Science.gov (United States)

    Albert, A.; Anderson, B.; Bechtol, K.; Drlica-Wagner, A.; Meyer, M.; Sánchez-Conde, M.; Strigari, L.; Wood, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Fermi-LAT Collaboration; DES Collaboration

    2017-01-01

    We search for excess γ-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted γ-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ∼ 2σ local) for γ-ray emission in excess of the background. However, the ensemble of derived γ-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1σ ). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of ∼2 for large DM masses ({m}{DM,b\\bar{b}}≳ 1 {TeV} and {m}{DM,{τ }+{τ }-}≳ 70 {GeV}) and weakening by a factor of ∼1.5 at lower masses relative to previously observed limits.

  10. Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Slatyer, Tracy R.

    2013-09-01

    We study the variation of the spectrum of the Fermi Bubbles with Galactic latitude. Far from the Galactic plane (|b| > 30 degrees), the observed gamma-ray emission is nearly invariant with latitude, and is consistent with arising from inverse Compton scattering of the interstellar radiation field by cosmic-ray electrons with an approximately power-law spectrum. The same electrons in the presence of microgauss-scale magnetic fields can also generate the the observed microwave "haze". At lower latitudes (b < 20 degrees), in contrast, the spectrum of the emission correlated with the Bubbles possesses a pronounced spectral feature peaking at 1-4 GeV (in E^2 dN/dE) which cannot be generated by any realistic spectrum of electrons. Instead, we conclude that a second (non-inverse-Compton) emission mechanism must be responsible for the bulk of the low-energy, low-latitude emission. This second component is spectrally similar to the excess GeV emission previously reported from the Galactic Center (GC), and also appears spatially consistent with a luminosity per volume falling approximately as r^-2.4, where r is the distance from the GC. We argue that the spectral feature visible in the low-latitude Bubbles is the extended counterpart of the GC excess, now detected out to at least 2-3 kpc from the GC. The spectrum and angular distribution of the signal is consistent with that predicted from ~10 GeV dark matter particles annihilating to leptons, or from ~50 GeV dark matter particles annihilating to quarks, following a distribution similar to the canonical Navarro-Frenk-White (NFW) profile. We also consider millisecond pulsars as a possible astrophysical explanation for the signal, as observed millisecond pulsars possess a spectral cutoff at approximately the required energy. Any such scenario would require a large population of unresolved millisecond pulsars extending at least 2-3 kpc from the GC.

  11. Constraints on Cosmological Dark Matter Annihilation from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement

    CERN Document Server

    Ackermann, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Elik, O C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Horan, D; Hughes, R E; Johnson, A S; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kuss, M; Lande, J; Latronico, L; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Raino, S; Rando, R; Reimer, A; Reimer, O; Reposeur, T; Rodriguez, A Y; Roth, M; Sadrozinski, H F W; Sander, A; Parkinson, P M Saz; Scargle, J D; Sellerholm, A; Sgro, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Starck, J L; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Torres, D F; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Zaharijas, G; Ziegle, M

    2010-01-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. We use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and by using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models pro...

  12. A New Signature of Dark Matter Annihilations: Gamma-Rays from Intermediate-Mass Black Holes

    CERN Document Server

    Bertone, Gianfranco; Silk, J; Bertone, Gianfranco; Zentner, Andrew R.; Silk, Joseph

    2005-01-01

    We study the prospects for detecting gamma-rays from Dark Matter (DM) annihilations in enhancements of the DM density (mini-spikes) around intermediate-mass black holes with masses in the range $10^2 \\lsim M / \\msun \\lsim 10^6$. Focusing on two different IMBH formation scenarios, we show that, for typical values of mass and cross section of common DM candidates, mini-spikes, produced by the adiabatic growth of DM around pregalactic IMBHs, would be bright sources of gamma-rays, which could be easily detected with large field-of-view gamma-ray experiments such as GLAST, and further studied with smaller field-of-view, larger-area experiments like Air Cherenkov Telescopes CANGAROO, HESS, MAGIC and VERITAS. The detection of many gamma-ray sources not associated with a luminous component of the Local Group, and with identical cut-offs in their energy spectra at the mass of the DM particle, would provide a potential smoking-gun signature of DM annihilations and shed new light on the nature of intermediate and superm...

  13. Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S.

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-01-01

    Gamma-ray line signatures can be expected in the very-high-energy (Eγ>100GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.E.S.S. γ-ray instrument, upper limits on linelike emission are obtained in the energy range between ˜500GeV and ˜25TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic γ-ray line emission, flux limits of (2×10-7-2×10-5)m-2s-1sr-1 and (1×10-8-2×10-6)m-2s-1sr-1 are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section ⟨σv⟩χχ→γγ reach ˜10-27cm3s-1, based on the Einasto parametrization of the Galactic DM halo density profile.

  14. A Search for Dark Matter Annihilation with the Whipple 10m Telescope

    CERN Document Server

    Wood, M; Bradbury, S M; Buckley, J H; Byrum, K L; Chow, Y C K; Cui, W; Perez, I de la Calle; Falcone, A D; Fegan, S J; Finley, J P; Grube, J; Hall, J; Hanna, D; Holder, J; Horan, D; Humensky, T B; Kieda, D B; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Nagai, T; Ong, R A; Perkins, J S; Pohl, M; Quinn, J; Rose, H J; Sembroski, G H; Vasilev, V V; Wagner, R G; Wakely, S P; Weekes, T C; Weinstein, A

    2008-01-01

    We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, , are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain pred...

  15. Gamma rays and neutrinos from dark matter annihilation in galaxy clusters

    CERN Document Server

    Yuan, Qiang; Bi, Xiao-Jun; Zhang, Xin-Min; Zhu, Shou-Hua

    2010-01-01

    The $\\gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $\\gamma$-ray emission. We use the Fermi-LAT upper limits of these clusters to constrain the DM model parameters. We find that the DM model distributed with substructures predicted in cold DM (CDM) scenario is strongly constrained by Fermi-LAT $\\gamma$-ray data. Especially for the leptonic annihilation scenario which may account for the $e^{\\pm}$ excesses discovered by PAMELA/Fermi-LAT/HESS, the constraint on the minimum mass of substructures is of the level $10^3-10^4$ M$_{\\odot}$, which is much larger than that expected in CDM picture, but is consistent with a warm DM scenario. We further investigate the sensitivity of neutrino detections of the clusters by IceCube. It is found that neutrino detection is much more difficult than $\\gamma$-rays. Only for very heavy DM ($\\sim 10$ TeV) togeth...

  16. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    Science.gov (United States)

    Lefranc, Valentin; Mamon, Gary A.; Panci, Paolo

    2016-09-01

    We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising J-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: i) using, for each dSph, a recent determination of the J-factor and its statistical error; ii) considering the most up-to-date cosmic ray background; and iii) including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the γ-ray energy spectrum and for dSphs with steep J-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.

  17. Search for photon-linelike signatures from dark matter annihilations with H.E.S.S.

    Science.gov (United States)

    Abramowski, A; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chaves, R C G; Cheesebrough, A; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M-H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemoine-Goumard, M; Lenain, J-P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Niemiec, J; Nolan, S J; Ohm, S; de Oña Wilhelmi, E; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P-O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J-P; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Wouters, D; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H-S

    2013-01-25

    Gamma-ray line signatures can be expected in the very-high-energy (E(γ)>100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.E.S.S. γ-ray instrument, upper limits on linelike emission are obtained in the energy range between ∼ 500 GeV and ∼ 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic γ-ray line emission, flux limits of (2 × 10(-7) -2 × 10(-5)) m(-2) s(-1) sr(-1) and (1 × 10(-8) -2 × 10(-6)) m(-2) s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section ⟨σv⟩(χχ → γγ) reach ∼ 10(-27) cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile.

  18. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    CERN Document Server

    Lefranc, Valentin; Mamon, Gary A

    2016-01-01

    We derive the large Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ applying a joint spatial and spectral analysis in the likelihood. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $\\gamma$-ray energy spectrum and for dSphs with steep $J$-factor pr...

  19. Inverse Compton gamma-rays from Galactic dark matter annihilation: Anisotropy signatures

    CERN Document Server

    Zhang, Le; Sigl, Guenter

    2010-01-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10^(-6) M_sun. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10^(-26) cm^3/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky W...

  20. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  1. All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Cruz Silva, A.H.; Franckowiak, A.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Arguelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berghaus, P. [National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow (Russian Federation); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2016-10-15

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, left angle σ{sub A}v right angle, for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on left angle σ{sub A}v right angle, reaching a level of 10{sup -23} cm{sup 3} s {sup -1}, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube. (orig.)

  2. All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-10-01

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ _A v rangle , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ _A v rangle , reaching a level of 10^{-23} cm^3 s^{-1}, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.

  3. All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore

    CERN Document Server

    INSPIRE-00266703

    2016-01-01

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on , reaching a level of 10^{-23} cm^3 s^-1, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-f...

  4. Extending Fermi-LAT and H.E.S.S. limits on gamma-ray lines from dark matter annihilation

    Science.gov (United States)

    Profumo, Stefano; Queiroz, Farinaldo S.; Yaguna, Carlos E.

    2016-10-01

    Gamma-ray lines from dark matter annihilation (χχ → γX, where X = γ, h, Z) are always accompanied, at lower energies, by a continuum gamma-ray spectrum stemming both from radiative corrections (X = γ) and from the decay debris of the second particle possibly present in the final state (X = h, Z). This model-independent gamma-ray emission can be exploited to derive novel limits on gamma-ray lines that do not rely on the line feature. Although such limits are not expected to be as stringent as those based on the line feature, they can be used to probe the existence of gamma-ray lines for dark matter masses beyond the largest energies accessible to current telescopes. Here, we use continuous gamma-ray searches from Fermi-LAT observations of Milky Way dwarf spheroidal galaxies and from H.E.S.S. observations of the Galactic halo to extend the limits on the annihilation cross-sections into monochromatic photons to dark matter masses well beyond 500 GeV (Fermi-LAT) and 20 TeV (H.E.S.S.). In this large-mass regime, our results provide the first constraints on gamma-ray lines from dark matter annihilation.

  5. Does the gamma-ray signal from the central Milky Way indicate Sommerfeld enhancement of dark matter annihilation?

    Science.gov (United States)

    Chan, Man-Ho

    2016-10-01

    Recently, some studies showed that the GeV gamma-ray excess signal from the central Milky Way can be explained by the annihilation of ∼ 40 GeV dark matter through the bb¯ channel. Based on the morphology of the gamma-ray flux, the best-fit inner slope of the dark matter density profile is γ = 1.26. However, recent analyses of the Milky Way dark matter profile favor γ = 0.6 – 0.8. In this article, we show that the GeV gamma-ray excess can also be explained by the Sommerfeld-enhanced dark matter annihilation through the bb¯ channel with γ = 0.85 – 1.05. We constrain the parameters of the Sommerfeld-enhanced annihilation by using data from Fermi-LAT. We also show that the predicted gamma-ray fluxes emitted from dwarf galaxies generally satisfy recent upper limits on gamma-ray fluxes detected by Fermi-LAT.

  6. Does the gamma-ray signal from the central Milky Way indicate Sommerfeld enhancement of dark matter annihilation?

    Science.gov (United States)

    Chan, Man-Ho

    2016-10-01

    Recently, some studies showed that the GeV gamma-ray excess signal from the central Milky Way can be explained by the annihilation of ˜ 40 GeV dark matter through the bb¯ channel. Based on the morphology of the gamma-ray flux, the best-fit inner slope of the dark matter density profile is γ = 1.26. However, recent analyses of the Milky Way dark matter profile favor γ = 0.6 – 0.8. In this article, we show that the GeV gamma-ray excess can also be explained by the Sommerfeld-enhanced dark matter annihilation through the bb¯ channel with γ = 0.85 – 1.05. We constrain the parameters of the Sommerfeld-enhanced annihilation by using data from Fermi-LAT. We also show that the predicted gamma-ray fluxes emitted from dwarf galaxies generally satisfy recent upper limits on gamma-ray fluxes detected by Fermi-LAT.

  7. H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O. C.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; Wierzcholska, A.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H.E.S.S. Collaboration

    2011-03-01

    The Sculptor and Carina dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 h and 14.8 h of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% CL assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10-13-10-12 cm-2 s-1 in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from ˜ 10-21 cm3 s-1 down to ˜ 10-22 cm3 s-1 depending on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark-matter halo distributions.

  8. Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?

    Science.gov (United States)

    Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie

    2014-10-10

    If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.

  9. A GPU-Based Visualization Method for Computing Dark Matter Annihilation Signal

    Science.gov (United States)

    Yang, L.; Szalay, A.

    2013-10-01

    We present a novel GPU-based visualization method for computing the dark matter annihilation signal for cosmological dark matter simulations. The technique increased the speed of rendering by more than 1,000 times. In a previous study, using a code running on regular CPUs, each particle's contribution was explicitly calculated pixel by pixel over a HEALPIX map, then remapped onto a Molleweide projection. Using Via Lactea II simulation (˜ 400M particles), it takes over 7 hours for a single thread CPU (˜3 GHz) to complete an all-sky map with NSIDE=512 resolution. Our novel method is based on a separate stereographic projection for each hemisphere, and a hardware accelerated rendering pipeline on a GPU (OpenGL). We project the particles instead of the celestial sphere to the tangent plane with a skewed flux profile appropriate for the STR projection. OpenGL's Point Sprite feature and shader language allow us to render those eccentric circular flux profiles at the rate of more than 10M particles per second. The new method can process a single snapshot of the Via Lactea II data in less than 1 minute with a single NVIDIA GTX 480 GPU, including I/O, with effective rendering time less than 24 seconds. Using an approximate normalization for the flux, accurate to 2.5% in total flux, the rendering can be done in less than 13 seconds. The stereographic images corresponding to the two hemispheres are then warped to an all-sky image in the Molleweide projection, and are in good agreement with the result from the regular CPU code, at similar resolution.

  10. H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Barnacka, A; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Borrel, V; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L -M; Clapson, A C; Coignet, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Frster, A; Fontaine, G; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti1, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schönwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; Wierzcholska, A; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; 10.1016/j.astropartphys.2010.12.006

    2010-01-01

    The Sculptor and Carina Dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 and 14.8 hours of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% C.L. assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10^-13 to 10^-12 cm^-2s^-1 in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from ~ 10^-21 cm^3s^-1 down to ~ 10^-22 cm^3s^-1 depending on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark...

  11. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    CERN Document Server

    Cannoni, Mirco

    2015-01-01

    We find an exact formula for the thermally averaged cross section times the relative velocity $\\langle \\sigma v_{\\text{rel}} \\rangle$ with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at $x=m/T\\gg 1$ directly gives the nonrelativistic limit of $\\langle \\sigma v_{\\text{rel}}\\rangle$ which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section $\\sigma(s)$ in powers of the nonrelativistic relative velocity $v_r$. We show the correct invariant procedure that gives the nonrelativistic average $\\langle \\sigma_{nr} v_r \\rangle_{nr}$ coinciding with the large $x$ expansion of $\\langle \\sigma v_{\\text{rel}}\\rangle$ in the comoving frame. We explicitly formulate flux, cross section, thermal aver...

  12. Pre-launch Estimates for GLAST Sensitivity to Dark Matter Annihilation Signals

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, E.A.; Berenji, B.; /SLAC /KIPAC, Menlo Park; Bertone, G.; /Paris, Inst. Astrophys.; Bergstrom, L.; /Stockholm U.; Bloom, E.; /SLAC /KIPAC, Menlo Park; Bringmann, T.; /Stockholm U.; Chiang, J.; Cohen-Tanugi, J.; /SLAC /KIPAC, Menlo Park; Conrad, J.; /Stockholm U.; Edmonds, Y.; /SLAC /KIPAC, Menlo Park; Edsjo, J.; /Stockholm U.; Godfrey, G.; /SLAC /KIPAC, Menlo Park; Hughes, R.E.; /Ohio State U.; Johnson, R.P.; /UC, Santa Cruz; Lionetto, A.; /Rome U.,Tor Vergata /INFN, Rome2; Moiseev, A.A.; /CRESST; Morselli, A.; /Rome U.,Tor Vergata /INFN, Rome2; Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Nuss, E.; /Montpellier U.; Ormes, J.F.; /Denver U.; Rando, R.; /INFN, Padua /Ohio State U. /Stockholm U. /Ohio State U. /Garching, Max Planck Inst., MPE /SLAC /KIPAC, Menlo Park /Ohio State U.

    2009-05-15

    We investigate the sensitivity of the Gamma-ray Large Area Space Telescope (GLAST) to indirectly detect weakly interacting massive particles (WIMPs) through the {gamma}-ray signal that their pair annihilation produces. WIMPs are among the favorite candidates to explain the compelling evidence that about 80% of the mass in the Universe is non-baryonic dark matter (DM). They are serendipitously motivated by various extensions of the standard model of particle physics such as Supersymmetry and Universal Extra Dimensions (UED). With its unprecedented sensitivity and its very large energy range (20 MeV to more than 300 GeV) the main instrument on board the GLAST satellite, the Large Area Telescope (LAT), will open a new window of discovery. As our estimates show, the LAT will be able to detect an indirect DM signature for a large class of WIMP models given a cuspy profile for the DM distribution. Using the current state of the art Monte Carlo and event reconstruction software developed within the LAT collaboration, we present preliminary sensitivity studies for several possible sources inside and outside the Galaxy. We also discuss the potential of the LAT to detect UED via the electron/positron channel. Diffuse background modeling and other background issues that will be important in setting limits or seeing a signal are presented.

  13. Characterization of subhalo structural properties and implications for dark matter annihilation signals

    CERN Document Server

    Moliné, Ángeles; Palomares-Ruiz, Sergio; Prada, Francisco

    2016-01-01

    A prediction of the standard LCDM cosmological model, also confirmed by N-body simulations, is that dark matter (DM) halos are teeming with numerous self-bound substructure, or subhalos. The precise properties of these subhalos represent important probes of the underlying cosmological model. In this work, we use data from the VL-II and ELVIS Milky Way-size simulations to learn about the structure of subhalos with masses 10^6-10^11 h^-1 Msun. Thanks to a superb subhalo statistics, by taking a profile-independent approach, we study subhalo properties as a function of the distance to the host halo center and subhalo mass, and provide a set of fits that, including both dependences, accurately describe the subhalo structure. With this at hand, we also investigate the role of subhalos on the search for DM via its annihilation products. Indeed, previous work has shown that subhalos are expected to boost the DM signal of their host halos significantly. Yet, these works have traditionally assumed that subhalos exhibit...

  14. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2016-03-15

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  15. Improved Constraints on Dark Matter Annihilation to a Line using Fermi-LAT observations of Galaxy Clusters

    CERN Document Server

    Adams, Douglas Quincy; Spolyar, Douglas

    2016-01-01

    Galaxy clusters are dominated by dark matter, and may have a larger proportion of surviving substructure than, e.g, field galaxies. Due to the presence of galaxy clusters in relative proximity and their high dark matter content, they are promising targets for the indirect detection of dark matter via Gamma-rays. Indeed, dedicated studies of sets of up to 100 clusters have been made previously, so far with no clear indication of a dark matter signal. Here we report on Gamma-ray observations of some 26,000 galaxy clusters based on Pass-7 Fermi Large Area Telescope (LAT) data, with clusters selected from the Tully 2MASS Groups catalog. None of these clusters is significantly detected in Gamma-rays, and we present Gamma-ray flux upper limits between 20 GeV and 500 GeV. We estimate the dark matter content of each of the clusters in these catalogs, and constrain the dark matter annihilation cross section, by analyzing Fermi-LAT data from the directions of the clusters. We set some of the tightest cluster-based cons...

  16. Constraints on WIMP Annihilation for Contracted Dark Matter in the Inner Galaxy with the Fermi-LAT

    CERN Document Server

    Gomez-Vargas, German A; Huh, Ji-Haeng; Peiro, Miguel; Prada, Francisco; Morselli, Aldo; Klypin, Anatoly; Cerdeno, David G; Mambrini, Yann; Munoz, Carlos

    2013-01-01

    We derive constraints on parameters of generic dark matter candidates by comparing theoretical predictions with the gamma-ray emission observed by the Fermi-LAT from the region around the Galactic Center. Our analysis is conservative since it simply requires that the expected dark matter signal does not exceed the observed emission. The constraints obtained in the likely case that the collapse of baryons to the Galactic Center is accompanied by the contraction of the dark matter are strong. In particular, we find that for bb and \\tau+\\tau- or W+W- dark matter annihilation channels, the upper limits on the annihilation cross section imply that the thermal cross section is excluded for a Weakly Interacting Massive Particle (WIMP) mass smaller than about 700 and 500 GeV, respectively. For the \\mu+ \\mu- channel, where the effect of the inverse Compton scattering is important, depending on models of the Galactic magnetic field the exclusion of the thermal cross-section is for a WIMP mass smaller than about 150 to ...

  17. Impeded Dark Matter

    CERN Document Server

    Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...

  18. Characterization of subhalo structural properties and implications for dark matter annihilation signals

    Science.gov (United States)

    Moliné, Ángeles; Sánchez-Conde, Miguel A.; Palomares-Ruiz, Sergio; Prada, Francisco

    2017-01-01

    A prediction of the standard ΛCDM cosmology is that dark matter (DM) halos are teeming with numerous self-bound substructure, or subhalos. The precise properties of these subhalos represent important probes of the underlying cosmological model. We use data from Via Lactea II and ELVIS N-body simulations to learn about the structure of subhalos with masses 106 - 1011 h-1M⊙. Thanks to a superb subhalo statistics, we study subhalo properties as a function of distance to host halo center and subhalo mass, and provide a set of fits that accurately describe the subhalo structure. We also investigate the role of subhalos on the search for DM annihilation. Previous work has shown that subhalos are expected to boost the DM signal of their host halos significantly. Yet, these works traditionally assumed that subhalos exhibit similar structural properties than those of field halos, while it is known that subhalos are more concentrated. Building upon our N-body data analysis, we refine the substructure boost model of Sanchez-Conde & Prada (2014), and find boosts that are a factor 2-3 higher. We further refine the model to include unavoidable tidal stripping effects on the subhalo population. For field halos, this introduces a moderate (˜20% - 30%) suppression. Yet, for subhalos like those hosting dwarf galaxy satellites, tidal stripping plays a critical role, the boost being at the level of a few tens of percent at most. We provide a parametrization of the boost for field halos that can be safely applied over a wide halo mass range.

  19. Search for Neutrinos from Annihilating Dark Matter in the Direction of the Galactic Center with the 40-String IceCube Neutrino Observatory

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; Uiterweerd, G de Vries; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Hülß, J -P; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    A search for muon neutrinos from dark matter annihilations in the Galactic Center region has been performed with the 40-string configuration of the IceCube Neutrino Observatory using data collected in 367 days of live-time starting in April 2008. The observed fluxes were consistent with the atmospheric background expectations. Upper limits on the self-annihilation cross-section are obtained for dark matter particle masses ranging from 100 GeV to 10 TeV. In the case of decaying dark matter, lower limits on the lifetime have been determined for masses between 200 GeV and 20 TeV.

  20. Modeling dark matter subhalos in a constrained galaxy: Global mass and boosted annihilation profiles

    CERN Document Server

    Stref, Martin

    2016-01-01

    The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales much smaller than typical galaxies, potentially down to $\\sim 10^{-10}M_\\odot$. This clustering translates into a very large population of subhalos in galaxies and affects the predictions for direct and indirect dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on previous analytic works to model the Galactic subhalo population, while consistently with current observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent method to account for tidal effects induced by both dark matter and baryons. Our model does not strongly rely on cosmological simulations as they can hardly be fully matched to the real Milky Way, but for setting the initial subhalo mass fraction. Still, it allows to recover the main qualitative features of simulated system...

  1. Impeded Dark Matter

    OpenAIRE

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...

  2. Cannibal Dark Matter

    CERN Document Server

    Pappadopulo, Duccio; Trevisan, Gabriele

    2016-01-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the Cannibal Dark Matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of Cannibal Dark Matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  3. Enabling Forbidden Dark Matter

    OpenAIRE

    Cline, James; Liu, Hongwan; Slatyer, Tracy; Xue, Wei

    2017-01-01

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, $3 \\to 2$ annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the $3\\to 2$ process is allowed; we call this scenario "Not-Forbidden Dark Matter". We illustrate this mechanism for a vector portal dark matter model, showing that fo...

  4. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-04

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  5. Gamma-ray and Radio Constraints of High Positron Rate Dark Matter Models Annihilating into New Light Particles

    CERN Document Server

    Bergstrom, Lars; Bringmann, Torsten; Edsjo, Joakim; Taoso, Marco

    2008-01-01

    The possibility of explaining the positron and electron excess recently found by the PAMELA and ATIC collaborations in terms of dark matter (DM) annihilation has attracted considerable attention. Models surviving bounds from, e.g, antiproton production generally fall into two classes, where either DM annihilates directly with a large branching fraction into light leptons, or, as in the recent models of Arkani-Hamed et al., and of Nomura and Thaler, the annihilation gives low-mass (pseudo)scalars or vectors $\\phi$ which then decay into $\\mu^+\\mu^-$ or $e^+e^-$. While the constraints on the first kind of models have recently been treated by several authors, we study here specifically models of the second type which rely on an efficient Sommerfeld enhancement in order to obtain the necessary boost in the annihilation cross section. We compute the photon flux generated by QED radiative corrections to the decay of $\\phi$ and show that this indeed gives a rather spectacular broad peak in $E^2d\\sigma/dE$, that for t...

  6. Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; de Almeida, U Barres; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Clapson, A C; Coignet, G; Cologna, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Häffner, S; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pedaletti1, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schöck, F M; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    The Fornax galaxy cluster was observed with the High Energy Stereoscopic System (H.E.S.S.) for a total live time of 14.5 hours, searching for very-high-energy (VHE, E>100 GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of ~ 10^-23...

  7. Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun

    CERN Document Server

    Rott, Carsten; Kumar, Jason; Yaylali, David

    2016-01-01

    We consider the use of directionality in the search for monoenergetic sub-GeV neutrinos arising from the decay of stopped kaons, which can be produced by dark matter annihilation in the core of the Sun. When these neutrinos undergo charged-current interactions with a nucleus at a neutrino detector, they often eject a proton which is highly peaked in the forward direction. The direction of this track can be measured at DUNE, allowing one to distinguish signal from background by comparing on-source and off-source event rates. We find that directional information can enhance the signal to background ratio by up to a factor of 5.

  8. Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the Sun

    Science.gov (United States)

    Rott, Carsten; In, Seongjin; Kumar, Jason; Yaylali, David

    2017-01-01

    We consider the use of directionality in the search for monoenergetic sub-GeV neutrinos arising from the decay of stopped kaons, which can be produced by dark matter annihilation in the core of the Sun. When these neutrinos undergo charged-current interactions with a nucleus at a neutrino detector, they often eject a proton which is highly peaked in the forward direction. The direction of this track can be measured at DUNE, allowing one to distinguish signal from background by comparing on-source and off-source event rates. We find that directional information can enhance the signal to background ratio by up to a factor of 5.

  9. Gamma-ray signal from Dark Matter Annihilation mediated by mixing scalar mediators

    CERN Document Server

    Teng, Fei

    2016-01-01

    We present here a study of the direct and indirect detection prospects of a generic dark matter simplified model, in which the Majorana dark matter interacts only with a Standard Model lepton and a pair of uncolored mixing scalar mediators. We first show that the mixing angle significantly changes the feature of internal bremsstrahlung, as well as the flux ratio of $\\gamma\\gamma$ and $\\gamma Z$ line signals. The $CP$-violation phase will introduce an polarization asymmetry in the $\\gamma\\gamma$ final state. Then we study the direct detection prospect and discuss the complimentarity of these two search strategies.

  10. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.

    Science.gov (United States)

    Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S

    2015-02-27

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9  h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300  GeV to ∼10  TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24}  cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4  TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

  11. Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S.

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H. E. S. S. Collaboration

    2012-05-01

    The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) γ-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section langσvrang as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation γ-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional γ-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of langσvrang95% C.L. ~ 10-23 cm3 s-1, depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on langσvrang by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of langσvrang95% C.L. ~10-26 cm3 s-1.

  12. Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ata\\"ı, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goudelis, A; Grondin, M -H; Grudzińska, M; Hadsch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemiére, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Serpico, P; Sol, H; Spanier, F; Spengler, G; Spieß, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2014-01-01

    Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (...

  13. Dark Matter

    OpenAIRE

    Einasto, Jaan

    2013-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...

  14. Light Dark Matter and Dark Radiation

    CERN Document Server

    Heo, Jae Ho

    2015-01-01

    The light dark matter particles freeze out after neutrino decoupling. If the dark matter particle couples to neutrino or electromagnetic plasma, the late time entropy production by dark matter annihilations can change the neutrino-to-photon temperature ratio, and equally effective number of neutrinos. We study the effect of dark matter annihilations in the thermal equilibrium approximation and non-equilibrium method (freeze-out mechanism), and constrain both results with Planck observations. We demonstrate that the bound of dark matter mass and the possibility of the existence of extra radiation particles are more tightly constrained in the non-equilibrium method.

  15. Neutrinos and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  16. Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R.; al., et

    2009-10-23

    A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

  17. Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park

    2009-06-19

    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.

  18. Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT

    NARCIS (Netherlands)

    Ando, S.; Komatsu, E.

    2013-01-01

    Annihilation of dark matter particles in cosmological halos (including the halo of the Milky Way) contributes to the diffuse gamma-ray background (DGRB). As this contribution will appear anisotropic in the sky, one can use the angular power spectrum of anisotropies in the DGRB to constrain the prope

  19. Search for Gamma-ray Emission from Dark Matter Annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope

    CERN Document Server

    Caputo, Regina; Martin, Pierrick; Charles, Eric; Brooks, Alyson M; Drlica-Wagner, Alex; Gaskins, Jennifer M; Wood, Matthew

    2016-01-01

    The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect detection searches. In this work, we use six years of Pass 8 data from the Fermi Large Area Telescope to search for gamma-ray signals of dark matter annihilation in the SMC. Using data-driven fits to the gamma-ray backgrounds, and a combination of N-body simulations and direct measurements of rotation curves to estimate the SMC DM density profile, we found that the SMC was well described by standard astrophysical sources, and no signal from dark matter annihilation was detected. We set conservative upper limits on the dark matter annihilation cross section. These constraints are in agreement with stronger constraints set by searches in the Large Magellanic Cloud and approach the canonical thermal relic cross section at dark matter masses lower than 10 GeV in the $b\\...

  20. The 111 and 129 GeV gamma-ray lines from annihilations in the Milky Way dark matter halo, dark disk and subhalos

    CERN Document Server

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero

    2013-01-01

    Recently a series of indications have been put forward suggesting the presence of two gamma-ray lines at 110-130 GeV (centered at 111 and 129 GeV). Signals of these lines have been observed toward the Galactic center, at some galaxy clusters and among some of the unassociated point sources of the 2 years Fermi catalogue. Such a combination of signals could be generated by dark matter annihilations in the main dark matter halo, its substructures and nearby galaxy clusters. We discuss here the consistency between the number of events observed at the line energies in the sky and the predictions using results from the Via Lactea II numerical simulation and extrapolations below its mass resolution, taking into account that the annihilation cross-section to the lines can be estimated from the Galactic center signal. We find that some extrapolations to small substructures can naturally account for the point sources signal, although the hypothesis of background only cannot be rejected. We also study the morphology of...

  1. Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; D.,; Prester, Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Guberman, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; Aleksić, J; Wood, M; Anderson, B; Bloom, E D; Cohen-Tanugi, J; Drlica-Wagner, A; Mazziotta, M N; Sánchez-Conde, M; Strigari, L

    2016-01-01

    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.

  2. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  3. On the morphology of $\\gamma-$ray emission induced by $e^{\\pm}$ from annihilating self-interacting dark matter

    CERN Document Server

    Cui, Ming-Yang; Zong, Hong-Shi

    2016-01-01

    With the Fermi-LAT data quite a few research groups have reported a spatially extended GeV $\\gamma$-ray excess surrounding the Galactic Center (GC). The physical origin of such a GeV excess is still unclear and one interesting possibility is the inverse Compton scattering of the electrons/positrons from annihilation of self-interacting dark matter (SIDM) particles with the interstellar optical photons. In this work we calculate the morphology of such a kind of $\\gamma$-ray emission. For the annihilation channel of $\\bar{\\chi}\\chi\\rightarrow \\phi\\phi\\rightarrow e^{+}e^{-}e^{+}e^{-}$, the inverse Compton scattering (ICS) dominates over the bremsstrahlung on producing the GeV $\\gamma$-ray emission. For the SIDM particles with a rest mass $m_\\chi \\sim $ tens GeV that may be favored by the modeling of the Galactic GeV excess, the ICS radiation at GeV energies concentrates along the Galactic plane. The degrees of asymmetry high up to $\\geq 0.3$ are found in some regions of interest, which in turn proposes a plausib...

  4. Search for a Dark Matter Annihilation Signal from the Galactic Center Halo with H.E.S.S.

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.'C.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; Wierzcholska, A.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2011-04-01

    A search for a very-high-energy (VHE; ≥100GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r˜45-150pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section ⟨σv⟩ as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ˜1TeV, values for ⟨σv⟩ above 3×10-25cm3s-1 are excluded for the Einasto density profile.

  5. Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Barnacka, A; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Borrel, V; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L -M; Clapson, A C; Coignet, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzynski, K; Katz, U; Kaufmann, S; Keogh, D; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schönwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; Wierzcholska, A; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2011-01-01

    A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White (NFW) and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section as a function of the DM particle mass. These are among the best reported so far for this energy range. In particular, for the DM particle mass of ~1 TeV, values for above 3 * 10^(-25) cm^3 s^(-1) are excluded for the Einasto density profile. The limits derived here differ much less for the chosen density profile parametrizations, as opposed to limits from gamma-ray observations of dwarf galaxies or the very center of the Milky Way, where the d...

  6. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    CERN Document Server

    Cerdeno, D G; Robles, S

    2015-01-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM. We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSphs bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the ...

  7. Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background

    CERN Document Server

    Ackermann, M; Albert, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Guiriec, S; Gustafsson, M; Hewitt, J W; Hou, X; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Malyshev, D; Massaro, F; Mayer, M; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nemmen, R; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Raino, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sanchez-Conde, M; Schulz, A; Sgro, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G

    2015-01-01

    We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the n...

  8. Antiprotons from dark matter annihilation through light mediators and a possible excess in AMS-02 $\\pbar/p$ data

    CERN Document Server

    Huang, Xian-Jun; Wu, Yue-Liang; Zhang, Wei-Hong; Zhou, Yu-Feng

    2016-01-01

    We show that in the scenario where dark matter (DM) particles annihilate through light mediators, the energy spectra of the final state cosmic-ray particles depend strongly on the mediator mass. For final state antiprotons, a spectrum with relatively narrow peak occurs when the mediator mass is comparable to the $\\pbar p$ production threshold. Of interest, the latest AMS-02 data on the $\\pbar/p$ flux ratio hint at a bump-like excess over the expected background in the energy range $\\sim100-450$ GeV. We show that such a light mediator scenario is favoured by the latest AMS-02 data over the scenarios of DM direct annihilation into the standard model particles and that of antiprotons produced from inside supernova remnants (SNRs), and is consistent with the upper limits derived from the Fermi-LAT data on the gamma rays towards the dwarf spheroidal galaxies. The $\\pbar/p$ flux ratio with energy above 450 GeV is predicted to fall with energy quickly, which can be easily distinguished from the other two scenarios a...

  9. Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope

    CERN Document Server

    Aleksić, : J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Huber, B; Jogler, T; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moralejo, A; Munar-Adrover, P; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thom, M; Tibolla, O; Torres, D F; Treves, A; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Fornasa, M; Essig, R; Sehgal, N; Strigari, L E

    2011-01-01

    We report the results of the observation of the nearby satellite galaxy Segue 1 performed by the MAGIC-I ground-based gamma-ray telescope between November 2008 and March 2009 for a total of 43.2 hours. No significant gamma-ray emission was found above the background. Differential upper limits on the gamma-ray flux are derived assuming various power-law slopes for the possible emission spectrum. Integral upper limits are also calculated for several power-law spectra and for different energy thresholds. The values are of the order of 10^-11 ph cm^-2 s^-1 above 100 GeV and 10^-12 ph cm^-2 s^-1 above 200 GeV. Segue 1 is currently considered one of the most interesting targets for indirect dark matter searches. In these terms, the upper limits have been also interpreted in the context of annihilating dark matter particles. For such purpose, we performed a grid scan over a reasonable portion of the parameter space for the minimal SuperGravity model and computed the flux upper limit for each point separately, taking...

  10. Dark matter

    OpenAIRE

    Einasto, J.

    2011-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Properties of dark matter particles determine the structure of the cosmic web.

  11. Dark Matter and Dark Radiation

    CERN Document Server

    Ackerman, Lotty; Carroll, Sean M; Kamionkowski, Marc

    2008-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ("dark electromagnetism") that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant $\\hat\\alpha$ is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on $\\hat\\alpha$ comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies $\\hat\\alpha \\lesssim 10^{-4}$ for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to ...

  12. Antibaryonic dark matter

    CERN Document Server

    Gorbunov, D

    2013-01-01

    Assuming existence of (very) heavy fourth generation of quarks and antiquarks we argue that antibaryon composed of the three heavy antiquarks can be light, stable and invisible, hence a good candidate for the Dark matter particle. Such opportunity allows to keep the baryon number conservation for the generation of the visible baryon asymmetry. The dark matter particles traveling through the ordinary matter will annihilate with nucleons inducing proton(neutron)-decay-like events with ~5GeV energy release in outcoming particles.

  13. Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; et al., [Unknown; Bruijn, R.; Kooijman, P.

    2015-01-01

    A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of w

  14. Dark Matter annihilation energy output and its effects on the high-z IGM

    CERN Document Server

    Araya, Ignacio J

    2013-01-01

    We study the case of DM self annihilation, in order to asses its importance as an energy injection mechanism, to the IGM in general, and to the medium within particular DM haloes. We consider two well motivated WIMP candidates, the SUSY neutralino and the first KK excited state of the B electroweak boson. We explicitly compute the energy output (or luminosity) of DM haloes due to annihilations, and compare the obtained luminosities with the standard AGN feedback process, concluding that DM annihilation does not provide the necessary output as to constitute an important feedback mechanism. We then compute the energy injection rate per baryon of annihilations on the IGM, in order to calculate the effects that it has on its temperature and ionization fraction. We find significant deviations in the evolutions of the temperature and ionization fraction of the IGM, in scenarios that take into account the clustering of DM at all levels, such that a 1TeV WIMP may, for example, maintain the temperature of the IGM on t...

  15. Contamination of stellar-kinematic samples and uncertainty about dark matter annihilation profiles in ultrafaint dwarf galaxies: the example of Segue I

    Science.gov (United States)

    Bonnivard, V.; Maurin, D.; Walker, M. G.

    2016-10-01

    The expected gamma-ray flux coming from dark matter annihilation in dwarf spheroidal (dSph) galaxies depends on the so-called J-factor, the integral of the squared dark matter density along the line of sight. We examine the degree to which estimates of J are sensitive to contamination (by foreground Milky Way stars and stellar streams) of the stellar-kinematic samples that are used to infer dark matter densities in `ultrafaint' dSphs. Applying standard kinematic analyses to hundreds of mock data sets that include varying levels of contamination, we find that misclassified contaminants can cause J-factors to be overestimated by orders of magnitude. Stellar-kinematic data sets for which we obtain such biased estimates tend (1) to include relatively large fractions of stars with ambiguous membership status, and (2) to give estimates for J that are sensitive to specific choices about how to weight and/or to exclude stars with ambiguous status. Comparing publicly available stellar-kinematic samples for the nearby dSphs Reticulum II and Segue I, we find that only the latter displays both of these characteristics. Estimates of Segue I's J-factor should therefore be regarded with a larger degree of caution when planning and interpreting gamma-ray observations. Moreover, robust interpretations regarding dark matter annihilation in dSph galaxies in general will require explicit examination of how interlopers might affect the inferred dark matter density profiles.

  16. Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with H.E.S.S

    CERN Document Server

    ,

    2015-01-01

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated ON/OFF observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of $\\sim 9$ h of ON/OFF observations. Upper limits on the velocity averaged cross section, $$, for the annihilation of dark matter particles with masses in the range of $\\sim 300$ GeV to $\\sim 10$ TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of $$ that are larger than $3\\cdot 10^{-24}\\:\\mathrm{cm^3/s}$ are excluded for dark matter particles with masses between $\\sim 1$ and $\\sim 4$ TeV at $95%$ CL if the radius of the central dark matter density core does not exceed $500$ pc. This is the strongest constraint that is derived on $$ for...

  17. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    Science.gov (United States)

    Cerdeño, D. G.; Peiró, M.; Robles, S.

    2016-04-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.

  18. Phases of Cannibal Dark Matter

    CERN Document Server

    Farina, Marco; Ruderman, Joshua T; Trevisan, Gabriele

    2016-01-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes ...

  19. Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; vanHaren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; WJames, C; deJong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; VanElewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, $\\rm \\Phi_{\

  20. Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S

    CERN Document Server

    :,; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chaves, R C G; Cheesebrough, A; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Wouters, D; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2013-01-01

    Gamma-ray line signatures can be expected in the very-high-energy (VHE; E_\\gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical \\gamma-ray sources that in most cases produce continuous spectra which span over several orders of magnitude in energy. Using data collected with the H.E.S.S. \\gamma-ray instrument, upper limits on line-like emission are obtained in the energy range between ~500 GeV and ~25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic \\gamma-ray line emission, flux limits of (2x10^-7 - 2x10^-5) m^-2 s^-1 sr^-1 and (1x10^-8 - 2x10^-6) m^-2 s^-1 sr^-1 are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the veloc...

  1. First Search for Dark Matter Annihilation in the Sun Using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martinez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anton, L; Anvar, S; Ardid, M; Astraatmadjaote, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brünner, J; Busto, J; Capone, A; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Classen, F; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geisselsöder, S; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; James, C; de Jong, M; Kadler, M; Kalekin, O; Kappesote, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambardote, G; Larosa, G; Lattuada, D; Lefèvre, D; Leonora, E; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Martini, S; Montaruli, T; Morgantiote, M; Motz, H; Mueller, C; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Rujoiu, M; Samtleben, D F E; Sánchez-Losa, A; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2013-01-01

    A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90\\% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are competitive with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section.

  2. Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edsjö, J.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Savage, C.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Scott, P.; Seckel, D.; Seunarine, S.; Silverwood, H.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Te{š}ić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-04-01

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

  3. Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Edsjö, J; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Savage, C; Schatto, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Scott, P; Seckel, D; Seunarine, S; Silverwood, H; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

  4. Wino dark matter annihilation through the radiative formation of bound states

    CERN Document Server

    Johnson, Evan; Zhang, Hong

    2016-01-01

    The most dramatic "Sommerfeld enhancements" of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schr\\"odinger equation for a nonrelativistic effective field theory in which the winos interact through a potential due to the exchange of electroweak gauge bosons. The utility of the zero-range effective field theory is illustrated by calculating the rate for formation of an S-wave bound state in the collision of two neutral winos through the emission of two soft photons.

  5. DM rate at NLO and the impact of SUSY-QCD-corrections to (co-)annihilation-processes on neutralino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Harz, Julia [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael; Meinecke, Moritz; Steppeler, Patrick [Institute of Theoretical Physics Muenster (Germany); Kovarik, Karol [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)

    2013-07-01

    A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with cosmological precision measurements, in particular with WMAP- and the upcoming Planck-data. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the DM rate at NLO-project will be presented, a software package that allows for the computation of the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and the evaluation of their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino (co-)annihilation cross section as well as further ongoing projects in the context of the DM rate at NLO-project are discussed.

  6. Phases of cannibal dark matter

    Science.gov (United States)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  7. Dilaton-assisted dark matter.

    Science.gov (United States)

    Bai, Yang; Carena, Marcela; Lykken, Joseph

    2009-12-31

    A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

  8. Antideuterons from supersymmetric dark matter

    CERN Document Server

    Donato, F; Maurin, D

    2007-01-01

    We calculate the antideuteron flux expected from dark matter annihilation in the galactic halo. The propagation is treated in a full 2-D propagation model consistent with the results obtained from the propagation of B/C and other galactic species. We discuss the potentials of this indirect dark matter detection means, with special emphasis on the possible sources of uncertainties affecting future measurements

  9. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  10. Dichromatic Dark Matter

    CERN Document Server

    Bai, Yang; Zhao, Yue

    2012-01-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged ...

  11. Dichromatic dark matter

    Science.gov (United States)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.

  12. A search for gamma-ray imprints of annihilating dark matter in the galaxy, and the astrophysical implications of ultra-light fundamental vector bosons

    Energy Technology Data Exchange (ETDEWEB)

    Zechlin, Hannes-Sebastian

    2013-12-15

    Standard Model extensions imply new elementary particles that can lead to specific astrophysical signatures. In particular, weakly interacting massive particles (WIMPs) can constitute the unknown non-luminous cold dark matter, which contributes approximately 84% to the matter content of the Universe. Annihilation or decay of WIMPs may lead to high-energy gamma-rays. In this thesis, new methods of searching for gamma-ray signals from annihilating dark matter are developed and applied. Moreover, astrophysical imprints of new ultra-light hidden U(1) gauge bosons in radio data are investigated. Hierarchical structure formation predicts a variety of smaller bound dark matter sub-halos in Milky-Way-like galactic hosts. It is shown that the Fermi-LAT is sufficiently sensitive for detecting up to a few nearby dark matter subhalos in terms of faint gamma-ray sources with a moderate angular extent. Searches in the first and second Fermi-LAT source catalogs reveal about ten candidate sources each. To discriminate the source candidates from conventional astrophysical objects, an analysis for spectral, spatial, positional, and temporal gamma-ray properties using 3.5 years of Fermi-LAT data is carried out. In addition, a multi-wavelength analysis of archival data or follow-up observations in the radio, infrared, optical, UV, X-ray, high-energy, and very-high energy gamma-ray bands is carried out. The broad-band spectra of all promising candidates are compatible with AGN, in particular high-energy peaked BL-Lac type objects (HBLs). Dark matter annihilation can contribute to the small-scale angular anisotropy spectrum of the diffuse gamma-ray background (DGB). The detection capabilities of currently operating imaging atmospheric Cherenkov telescopes and the planned Cherenkov Telescope Array (CTA) are studied. With CTA, a relative gamma-ray contribution from annihilating dark matter of 10% to the extragalactic DGB can be resolved via angular anisotropies. In terms of the dark

  13. AMS-02 fits Dark Matter

    CERN Document Server

    Balázs, Csaba

    2015-01-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but add...

  14. Signals of Supersymmetric Dark Matter

    CERN Document Server

    Abbas, A

    2000-01-01

    The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter...

  15. Relativistic Dark Matter at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  16. Neutrino signals from dark matter

    Science.gov (United States)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  17. Dark Forces and Light Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weiner, Neal [New York Univ., NY (United States); Xue, Wei [Rue University (Canada)

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  18. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  19. Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S

    CERN Document Server

    :,; Abramowski, A; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J -P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M -H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J -P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leser, E; Lohse, T; Lorentz, M; Liu, R; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; Odaka, H; Ohm, S; Öttl, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Zywucka, N

    2016-01-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using $\\gamma$-ray observations towards the inner 300 parsecs of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant $\\gamma$-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section $\\langle \\sigma v\\rangle$. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach $\\langle \\sigma v\\rangle$ values of $\\rm 6\\times10^{-26} cm^3s^{-1}$ in the $W^+W^-$ channel for a DM particle mas...

  20. Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic $\\gamma$-ray background and cosmic shear

    CERN Document Server

    Shirasaki, Masato; Horiuchi, Shunsaku; Shirai, Satoshi; Yoshida, Naoki

    2016-01-01

    We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of $\\sim660$ squared degrees in total. We improve upon our previous analyses by using an updated extragalactic $\\gamma$-ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological $N$-body simulations and use them to estimate statistical errors accurately. The measured cross correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of $\\sim100$ in the mass range of O(1) TeV when including contributions from secondary $\\gamma...

  1. Dark Matter Burners

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  2. Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic γ -ray background and cosmic shear

    Science.gov (United States)

    Shirasaki, Masato; Macias, Oscar; Horiuchi, Shunsaku; Shirai, Satoshi; Yoshida, Naoki

    2016-09-01

    We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of ˜660 squared degrees in total. We improve upon our previous analyses by using an updated extragalactic γ -ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological N -body simulations and use them to estimate statistical errors accurately. The measured cross-correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of ˜100 in the mass range of O (1 ) TeV when including contributions from secondary γ rays due to the inverse-Compton upscattering of background photons. Annihilation cross sections of ⟨σ v ⟩˜10-23 cm3/s are excluded for TeV-scale DM depending on channel. Lifetimes of ˜1 025 sec are also excluded for the decaying TeV-scale DM. Finally, we apply this analysis to wino DM and exclude the wino mass around 200 GeV. These constraints will be further tightened, and all the interesting wino DM parameter region can be tested, by using data from future wide-field cosmology surveys.

  3. Regenerating a symmetry in asymmetric dark matter.

    Science.gov (United States)

    Buckley, Matthew R; Profumo, Stefano

    2012-01-06

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  4. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  5. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  6. Dark matter and dark energy

    CERN Multimedia

    Caldwell, Robert

    2009-01-01

    "Observations continue to indicate that the Universe is dominated by invisible components - dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists" (3 pages)

  7. Dark matter detection

    Science.gov (United States)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  8. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    Science.gov (United States)

    Abdallah, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Lohse, T; Lorentz, M; Lui, R; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; Odaka, H; Ohm, S; Öttl, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seyffert, A S; Shafi, N; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spieß, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-09-09

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26}  cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26}  cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

  9. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    Science.gov (United States)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  10. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2007-01-01

    We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f(abs) similar to 0.5 of their rest mass energy into the IGM;

  11. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM; a

  12. Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande

    CERN Document Server

    :,; Abe, K; Haga, Y; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tomura, T; Wendell, R A; Irvine, T; Kajita, 2 T; Kametani, I; Kaneyuki, 2 K; Lee, K P; Nishimura, Y; Okumura, 2 K; McLachlan, T; Labarga, 2 L; Kearns, E; Raaf, J L; Stone, 4 J L; Sulak, L R; Berkman, 4 S; Tanaka, 5 H A; Tobayama, 5 S; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2015-01-01

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/$c^2$ $\\sim$ 200-GeV/$c^2$) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent (SD) WIMP-proton cross section for WIMP masses below 200 GeV/$c^2$ (at 10 GeV/$c^2$, 1.49$\\times 10^{-39}$ cm$^2$ for $\\chi\\c...

  13. Indirect constraints to branon dark matter

    CERN Document Server

    Cembranos, J A R; Gammaldi, V; Maroto, A L

    2012-01-01

    If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. Here we briefly review the present constraints for the detection of gamma ray photons produced in the annihilation of branon dark matter. We show that observations of dwarf spheroidal galaxies and the galactic center by EGRET, Fermi-LAT or MAGIC are below the sensitivity limits for branon detection. However,future experiments such as CTA could be able to detect gamma-ray photons from annihilating branons of masses above 150 GeV.

  14. How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the Milky Way halo

    Science.gov (United States)

    Cerdeño, David G.; Fornasa, Mattia; Green, Anne M.; Peiró, Miguel

    2016-08-01

    When comparing constraints on the weakly interacting massive particle (WIMP) properties from direct and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM) distribution are realistic and consistent. For instance, if the Fermi-LAT Galactic center GeV gamma-ray excess was due to WIMP annihilation, its morphology would be incompatible with the standard halo model that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion limits from direct detection experiments using self-consistent velocity distributions, derived from mass models of the Milky Way where the DM halo has a generalized Navarro-Frenk-White profile. We use two different methods to make the mass model compatible with a DM interpretation of the Galactic center gamma-ray excess. First, we fix the inner slope of the DM density profile to the value that best fits the morphology of the excess. Second, we allow the inner slope to vary and include the morphology of the excess in the data sets used to constrain the gravitational potential of the Milky Way. The resulting direct detection limits differ significantly from those derived using the standard halo model, in particular for light WIMPs, due to the differences in both the local DM density and velocity distribution.

  15. How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the Milky Way halo

    CERN Document Server

    Cerdeno, David G; Green, Anne M; Peiro, Miguel

    2016-01-01

    When comparing constraints on the Weakly Interacting Massive Particle (WIMP) properties from direct and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM) distribution are realistic and consistent. For instance, if the Fermi-LAT Galactic centre GeV gamma-ray excess was due to WIMP annihilation, its morphology would be incompatible with the Standard Halo Model that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion limits from direct detection experiments using self-consistent velocity distributions, derived from mass models of the Milky Way where the DM halo has a generalized NFW profile. We use two different methods to make the mass model compatible with a DM interpretation of the Galactic centre gamma-ray excess. Firstly, we fix the inner slope of the DM density profile to the value that best fits the morphology of the excess. Secondly, we allow the inner slope to vary and include the morphology of the e...

  16. Updated galactic radio constraints on Dark Matter

    CERN Document Server

    Cirelli, Marco

    2016-01-01

    We perform a detailed analysis of the synchrotron signals produced by Dark Matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and Dark Matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  17. Updated galactic radio constraints on Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Laboratoire de Physique Théorique et Hautes Energies (LPTHE),UMR 7589 CNRS & UPMC, 4 Place Jussieu, Paris, F-75252 (France); Taoso, Marco [Instituto de Física Teórica (IFT) UAM/CSIC,calle Nicolás Cabrera 13-15, Cantoblanco, Madrid, 28049 (Spain)

    2016-07-25

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including PLANCK measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  18. Mimicking Dark Matter

    OpenAIRE

    Bel, Lluís

    2017-01-01

    I show that a very simple model in the context of Newtonian physics promoted to a first approximation of general relativity can mimic Dark matter and explain most of its intriguing properties. Namely: i) Dark matter is a halo associated to ordinary matter; ii) Dark matter does not interact with ordinary matter nor with itself; iii) Its influence grows with the size of the aggregate of ordinary matter that is considered, and iv) Dark matter influences the propagation of light.

  19. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  20. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    Marco Cirelli

    2012-11-01

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have brought along have been discussed. The main sources of uncertainties that affect this kind of searches are also listed. [Report number: Saclay T11/206, CERN-PH-TH/2011-257, extended version in arXiv:1202.1454], [Prepared for the Proceedings of Lepton–Photon 2011, Mumbai, India, 22–27 Aug. 2011].

  1. Sterile Neutrino portal to Dark Matter II: Exact Dark symmetry

    CERN Document Server

    Escudero, Miguel; Sanz, Verónica

    2016-01-01

    We analyze a simple extension of the Standard Model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.

  2. Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope

    NARCIS (Netherlands)

    Buckley, M.R.; Charles, E.; Gaskins, J.M.; Brooks, A.M.; Drlica-Wagner, A.; Martin, P.; Zhao, G.

    2015-01-01

    At a distance of 50 kpc and with a dark matter mass of similar to 10(10) M-circle dot, the large magellanic cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated models of the gamma-ray emission from standar

  3. Investigating Neutralino Annihilations Using DarkSUSY

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, S.; eSilva, E.

    2002-01-01

    Physicists do not fully understand the nature of dark matter although we infer its existence from experimental observation. This project is part of the dark matter detection searches with the Gamma-Ray Large Area Space Telescope (GLAST). We are investigating one of the Weakly Interacting Massive Particles (WIMP) candidates called the neutralino, a particle predicted by the Minimal Supersymmetric Standard Model. In particular, we ran a computer simulation called DarkSUSY that predicts the signature that we expect to see in the data from GLAST that pertains to the detection of the neutralino in the galactic halo.

  4. Light Dark Matter from Forbidden Channels.

    Science.gov (United States)

    D'Agnolo, Raffaele Tito; Ruderman, Joshua T

    2015-08-01

    Dark matter (DM) may be a thermal relic that annihilates into heavier states in the early universe. This forbidden DM framework accommodates a wide range of DM masses from keV to weak scales. An exponential hierarchy between the DM mass and the weak scale follows from the exponential suppression of the thermally averaged cross section. Stringent constraints from the cosmic microwave background are evaded because annihilations turn off at late times. We provide an example where DM annihilates into dark photons, which is testable through large DM self-interactions and direct detection.

  5. Caustics in dark matter haloes

    CERN Document Server

    Mohayaee, R; Mohayaee, Roya; Colombi, Stephane; Fort, Bernard; Gavazzi, Raphael; Shandarin, Sergei; Touma, Jihad

    2005-01-01

    Cold dark matter haloes are populated by high-density structures with sharply-peaked profiles known as caustics which have not yet been resolved by 3-dimensional numerical simulations. Here, we derive semi-analytic expressions for the density profiles near caustics in haloes which form by self-similar accretions of dark matter with infinitesimal velocity dispersion. A simple rescaling shows that these profiles are universal: they are valid for all caustics and irrespective of physical parameters of the halo. We derive the maximum density of the caustics and show that it depends on the velocity dispersion and the caustic location. Finally, we demonstrate that there can be a significant contribution to the emission measure from dark matter particle annihilation in the caustics.

  6. Superheavy thermal dark matter and primordial asymmetries

    Science.gov (United States)

    Bramante, Joseph; Unwin, James

    2017-02-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 1010 GeV. We proceed to study superheavy asym-metric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  7. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  8. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...

  9. Dark Matter Constituents

    CERN Document Server

    Bergström, L

    2005-01-01

    As cosmology has entered a phase of precision experiments, the content of the universe has been established to contain interesting and not yet fully understood components, namely dark energy and dark matter. While the cause and exact nature of the dark energy remains mysterious, there is greater hope to connect the dark matter to current models of particle physics. Supersymmetric models provide several excellent candidates for dark matter, with the lightest neutralino the prime example. This and other dark matter candidates are discussed, and prospects for their detection summarized. Some methods of detection are explained, and indications of signals in present data are critically examined.

  10. Dark matter dynamics and indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; /Fermilab; Merritt, David; /Rochester Inst. Tech.

    2005-04-01

    Non-baryonic, or ''dark'', matter is believed to be a major component of the total mass budget of the universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.

  11. Perspectives of dark matter searches with antideuterons

    Energy Technology Data Exchange (ETDEWEB)

    Vittino, A., E-mail: vittino.andrea@gmail.com [Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, 10125 Torino (Italy); Fornengo, N., E-mail: fornengo@to.infn.it [Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, 10125 Torino (Italy); Maccione, L., E-mail: luca.maccione@lmu.de [Ludwig-Maximilians-Universität, Theresienstraße 37, D-80333 München (Germany); Max-Planck-Institut für Physik (Werner Heisenberg Institut), Föhringer Ring 6, D-80805 München (Germany)

    2014-04-01

    The search for an excess of antideuterons in the cosmic rays flux has been proposed as a very promising channel for dark matter indirect detection, especially for WIMPs with a low or an intermediate mass. With the development of the AMS experiment and the proposal of a future dedicated experiment, i.e. the General Antiparticle Spectrometer (GAPS), there are exciting possibilities for a dark matter detection in the near future. We give an overview on the principal issues related both to the antideuterons production in dark matter annihilation reactions and to their propagation through the interstellar medium and the heliosphere, with a particular focus on the impact of various solar modulation models on the flux at Earth. Lastly, we provide an updated calculation of the reaching capabilities for current and future experiments compatible with the constraints on the dark matter annihilation cross-section imposed by the antiproton measurements of PAMELA.

  12. Dark matter freeze-out in a nonrelativistic sector

    Science.gov (United States)

    Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-08-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  13. Composite Scalar Dark Matter

    CERN Document Server

    Frigerio, Michele; Riva, Francesco; Urbano, Alfredo

    2012-01-01

    We show that the dark matter (DM) could be a light composite scalar $\\eta$, emerging from a TeV-scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in $O(6)/O(5)$ models, which are particularly predictive, since the low-energy interactions of $\\eta$ are determined by symmetry considerations. We identify the region of parameters where $\\eta$ has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass $m_h\\simeq 125$ GeV and a pNGB characteristic scale $f \\lesssim 1$ TeV, we find that the DM mass is either $m_\\eta \\simeq 50-70$ GeV, with DM annihilations driven by the Higgs resonance, or in the range 100-500 GeV, where the DM derivative interac...

  14. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface...... temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  15. Asymmetric dark matter in braneworld cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Michael T.; Whittingham, Ian B., E-mail: Michael.Meehan@my.jcu.edu.au, E-mail: Ian.Whittingham@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Townsville, 4811 Australia (Australia)

    2014-06-01

    We investigate the effect of a braneworld expansion era on the relic density of asymmetric dark matter. We find that the enhanced expansion rate in the early universe predicted by the Randall-Sundrum II (RSII) model leads to earlier particle freeze-out and an enhanced relic density. This effect has been observed previously by Okada and Seto (2004) for symmetric dark matter models and here we extend their results to the case of asymmetric dark matter. We also discuss the enhanced asymmetric annihilation rate in the braneworld scenario and its implications for indirect detection experiments.

  16. Weak Corrections are Relevant for Dark Matter Indirect Detection

    CERN Document Server

    Ciafaloni, Paolo; Riotto, Antonio; Sala, Filippo; Strumia, Alessandro; Urbano, Alfredo

    2011-01-01

    The computation of the energy spectra of Standard Model particles originated from the annihilation/decay of dark matter particles is of primary importance in indirect searches of dark matter. We compute how the inclusion of electroweak corrections significantly alter such spectra when the mass M of dark matter particles is larger than the electroweak scale: soft electroweak gauge bosons are copiously radiated opening new channels in the final states which otherwise would be forbidden if such corrections are neglected. All stable particles are therefore present in the final spectrum, independently of the primary channel of dark matter annihilation/decay. Such corrections are model independent.

  17. Diphoton resonance confronts dark matter

    Science.gov (United States)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  18. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  19. Dipolar Dark Matter

    CERN Document Server

    Blanchet, Luc

    2015-01-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...

  20. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  1. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  2. Dark Matter Searches

    CERN Document Server

    Baudis, L

    2006-01-01

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  3. Dark Matter Detection in Space

    OpenAIRE

    Feng, Jonathan L.

    2004-01-01

    I review prospects for detecting dark matter in space-based experiments, with an emphasis on recent developments. I propose the ``Martha Stewart criterion'' for identifying dark matter candidates that are particularly worth investigation and focus on three that satisfy it: neutralino dark matter, Kaluza-Klein dark matter, and superWIMP gravitino dark matter.

  4. Boosted Dark Matter at Neutrino Experiments

    CERN Document Server

    Necib, Lina; Wongjirad, Taritree; Conrad, Janet M

    2016-01-01

    Current and future neutrino experiments can be used to discover dark matter, not only in searches for dark matter annihilating to neutrinos, but also in scenarios where dark matter itself scatters off Standard Model particles in the detector. In this work, we study the sensitivity of different neutrino detectors to a class of models called boosted dark matter, in which a subdominant component of a dark sector acquires a large Lorentz boost today through annihilation of a dominant component in a dark matter-dense region, such as the galactic center or dwarf spheroidal galaxies. This analysis focuses on the sensitivity of different neutrino detectors, specifically the Cherenkov-based Super-K and the future argon-based DUNE to boosted dark matter that scatters off electrons. We study the dependence of the expected limits on the experimental features, such as energy threshold, volume and exposure in the limit of constant scattering amplitude. We highlight experiment-specific features that enable current and futur...

  5. Search for Dark Matter Satellites Using the Fermi-Lat

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; McEnery, J. E.; Troja, E.

    2012-01-01

    Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the bb(sup raised bar) channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 Ge V WIMP annihilating through the bb(sup raised bar) channel.

  6. Search for Dark Matter Satellites Using the FERMI-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /DESY; Albert, A.; /Ohio State U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bottacini, E.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Brandt, T.J.; /IRAP, Toulouse /Toulouse III U.; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Burnett, T.H.; /Washington U., Seattle; Caliandro, G.A.; /ICE, Bellaterra; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /ASDC, Frascati /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari /INFN, Perugia /Perugia U. /Bari U. /INFN, Bari /Bari U. /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2012-08-16

    Numerical simulations based on the {Lambda}CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the {gamma}-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard {gamma}-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on {gamma}-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

  7. Search for Dark Matter Satellites using the FERMI-LAT

    CERN Document Server

    Ackermann, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Palma, F; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Essig, R; Falletti, L; Favuzzi, C; Fegan, S J; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hou, X; Hughes, R E; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knodlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S -H; Lionetto, A M; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Pelassa, V; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Raino, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sadrozinski, H F -W; Sehgal, N; Sgro, C; Siskind, E J; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zalewski, S; Zimmer, S

    2012-01-01

    Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the $b \\bar b$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $b \\bar b$ channel.

  8. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  9. Dark Matter Signatures in the Anisotropic Radio Sky

    CERN Document Server

    Zhang, Le

    2008-01-01

    We calculate intensity and angular power spectrum of the cosmological background of synchrotron emission from cold dark matter annihilations into electron positron pairs. We compare this background with intensity and anisotropy of astrophysical and cosmological radio backgrounds, such as from normal galaxies, radio-galaxies, galaxy cluster accretion shocks, the cosmic microwave background and with Galactic foregrounds. Under modest assumptions for the dark matter clustering we find that around 2 GHz average intensity and fluctuations of the radio background at sub-degree scales allows to probe dark matter masses >100 GeV and annihilation cross sections not far from the natural values ~ 3 x 10^(-26) cm^3/s required to reproduce the correct relic density of thermal dark matter. The angular power spectrum of the signal from dark matter annihilation tends to be flatter than that from astrophysical radio backgrounds. Furthermore, radio source counts have comparable constraining power. Such signatures are interest...

  10. Searches for dark matter

    CERN Document Server

    Feinstein, Fabrice

    2000-01-01

    The fact that the mass of the visible stars could not account for the gravitational cohesion of the galaxies was the first sign of non-visible (i.e. dark) matter in the Universe. Since then, many observational evidences tell us that most of the matter is indeed dark. The nature of this dark matter is still unknown. There are good reasons to think that most of it is not composed of normal matter. These lectures will review the experimental methods, which have been developed to unravel this mystery and will compare their results with theoretical predictions.

  11. Indirect and direct search for dark matter

    CERN Document Server

    Klasen, Michael; Sigl, Günter

    2015-01-01

    The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an e...

  12. Dark matter searches

    CERN Document Server

    Baudis, Laura

    2015-01-01

    One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultr...

  13. Dark Sunshine: Detecting Dark Matter through Dark Photons from the Sun

    CERN Document Server

    Feng, Jonathan L; Tanedo, Philip

    2016-01-01

    Dark matter may interact with the Standard Model through the kinetic mixing of dark photons, $A'$, with Standard Model photons. Such dark matter will accumulate in the Sun and annihilate into dark photons. The dark photons may then leave the Sun and decay into pairs of charged Standard Model particles that can be detected by the Alpha Magnetic Spectrometer. The directionality of this "dark sunshine" is distinct from all astrophysical backgrounds, providing an opportunity for unambiguous dark matter discovery by AMS. We perform a complete analysis of this scenario including Sommerfeld enhancements of dark matter annihilation and the effect of the Sun's magnetic field on the signal, and we define a set of cuts to optimize the signal probability. With the three years of data already collected, AMS may discover dark matter with mass 1 TeV $\\lesssim m_X \\lesssim$ 10 TeV, dark photon masses $m_{A'} \\sim \\mathcal O(100)$ MeV, and kinetic mixing parameters $10^{-11} \\lesssim \\varepsilon \\lesssim 10^{-8}$. The propose...

  14. Impact of dark matter on reionization and heating

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that a

  15. Dark Matter in ATLAS

    CERN Document Server

    Resconi, Silvia; The ATLAS collaboration

    2016-01-01

    Results of Dark Matter searches in mono-X analysis with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton–proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 fb-1. A description of the main characteristics of each analysis and how the main backgrounds are estimated is shown. The observed data are in agreement with the expected Standard Model backgrounds for all analysis described. Exclusion limits are presented for Dark Matter models including pair production of dark matter candidates.

  16. Dark Matter is Baryons

    CERN Document Server

    Soberman, R K; Soberman, Robert K.; Dubin, Maurice

    2001-01-01

    A comet-like, but magnitudes smaller, extremely low albedo interstellar meteoroid population of fragile aggregates with solar type composition, measured in space and terrestrially, is most probably the universal dark matter. Although non-baryonic particles cannot be excluded, only "Big Bang" cosmology predicts an appreciable fraction of such alternate forms. As more counter-physics hypotheses are added to fit observation to the expanding universe assumption, a classical physics alternative proffers dark matter interactive red shifts normally correlated with distance. The cosmic microwave background results from size-independent thermal plateau radiation that emanates from dark matter gravitationally drawn into the Galaxy.

  17. Dark matter in voids

    Science.gov (United States)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  18. Dark matter in voids

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R. [Department of Physics, University of Durham, Durham, DH1 3LE (United Kingdom); Doroshkevich, A.G. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)]|[Teoretical Astrophysics Centrum, Blegsdamsvej 17, Copenhagen DK 2100 (Denmark); Turchaninov, V.I. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids`` or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.`` {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Dark Matter 2014

    Directory of Open Access Journals (Sweden)

    Schumann Marc

    2015-01-01

    Full Text Available This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar or spin-dependent (axial-vector couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

  20. Dark Matter 2014

    CERN Document Server

    Schumann, Marc

    2015-01-01

    This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

  1. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  2. Loop-induced dark matter direct detection signals from gamma-ray lines

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Haisch, Ulrich; Kahlhoefer, Felix;

    2012-01-01

    Improved limits as well as tentative claims for dark matter annihilation into gamma-ray lines have been presented recently. We study the direct detection cross section induced from dark matter annihilation into two photons in a model-independent fashion, assuming no additional couplings between...... dark matter and nuclei. We find a striking non-standard recoil spectrum due to different destructively interfering contributions to the dark matter nucleus scattering cross section. While in the case of s-wave annihilation the current sensitivity of direct detection experiments is insufficient...... to compete with indirect detection searches, for p-wave annihilation the constraints from direct searches are comparable. This will allow to test dark matter scenarios with p-wave annihilation that predict a large di-photon annihilation cross section in the next generation of experiments....

  3. Dark Matter: Introduction

    CERN Document Server

    Rees, Martin J

    2003-01-01

    This short review was prepared as an introduction to the Royal Society's 'Dark Matter' conference. It addresses the embarrassing fact that 95% of the universe is unaccounted for. Favoured dark matter candidates are axions or weakly-interacting particles that have survived from the very early universe, but more exotic options cannot be excluded. Experimental searches are being made for the 'dark' particles but we have indirect clues to their nature too. Comparisons of data (from, eg, gravitational lensing) with numerical simulations of galaxy formation can constrain (eg) the particle velocities and collision cross sections. The mean cosmic density of dark matter (plus baryons) is now pinned down to be only about 30% of the critical density However, other recent evidence -- microwave background anisotropies, complemented by data on distant supernovae -- reveals that our universe actually is 'flat', and that its dominant ingredient (about 70% of the total mass-energy) is something quite unexpected -- 'dark energ...

  4. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  5. Scalar Field Dark Matter

    CERN Document Server

    Matos, T; Urena-Lopez, L A; Núñez, D

    2001-01-01

    This work is a review of the last results of research on the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level. We present the complete solution to the scalar field cosmological scenario in which the dark matter is modeled by a scalar field $\\Phi$ with the scalar potential $V(\\Phi)=V_{0}(cosh {(\\lambda \\sqrt{\\kappa_{0}}\\Phi)}-1)$ and the dark energy is modeled by a scalar field $\\Psi$, endowed with the scalar potential $\\tilde{V}(\\Psi)= \\tilde{V_{0}}(\\sinh{(\\alpha \\sqrt{\\kappa_{0}}\\Psi)})^{\\beta}$, which together compose the 95% of the total matter energy in the Universe. The model presents successfully deals with the up to date cosmological observations, and is a good candidate to treat the dark matter problem at the galactic level.

  6. Cleaning up dark matter

    CERN Multimedia

    Bignami, Giovanni Fabrizio

    2006-01-01

    "An experiment in Italy has found tantalizing but puzzling evidence for axions, one if the leading candidates for dark matter. The authors explain how a pair of spinning neutron stars should settle the issue once and for all." (3 pages)

  7. Dark matter warms up

    CERN Multimedia

    Peplow, Mark

    2006-01-01

    "Unseen mass looks to be more "tepid" than thought. Astronomers have measured the temperature of dark matter for the first time. The discovery should help particle hunters to identify exactly what this mysterious substance is made of" (1 page)

  8. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    2014-01-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revis

  9. Elastically Decoupling Dark Matter

    CERN Document Server

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2015-01-01

    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  10. Elastically Decoupling Dark Matter.

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  11. $\\gamma$-rays and neutrinos from dark matter

    CERN Document Server

    Stecker, F W

    1996-01-01

    High energy gamma-rays and neutrinos can be produced both by the annihilation and by the possible slow decay of dark matter particles. We discuss the fluxes and spectra of such secondaries produced by dark matter particles in the universe and their observability in competition with other astrophysical gamma-ray signals and with atmospheric neutrinos. To do this, we work within the assumption that the dark matter particles are neutralinos which are the lightest supersymmetric particles (LSPs) predicted by supersymmetry theory.

  12. Indirect dark matter searches in gamma and cosmic rays

    Science.gov (United States)

    Conrad, Jan; Reimer, Olaf

    2017-03-01

    Dark matter candidates such as weakly interacting massive particles are predicted to annihilate or decay into Standard Model particles, leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even antinuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic-ray measurements, could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.

  13. GUTzilla Dark Matter

    CERN Document Server

    Harigaya, Keisuke; Lou, Hou Keong

    2016-01-01

    Motivated by gauge coupling unification and dark matter, we present an extension to the Standard Model where both are achieved by adding an extra new matter multiplet. Such considerations lead to a Grand Unified Theory with very heavy WIMPzilla dark matter, which has mass greater than ~10^7 GeV and must be produced before reheating ends. Naturally, we refer to this scenario as GUTzilla dark matter. Here we present a minimal GUTzilla model, adding a vector-like quark multiplet to the Standard Model. Proton decay constraints require the new multiplet to be both color and electroweak charged, which prompts us to include a new confining SU(3) gauge group that binds the multiplet into a neutral composite dark matter candidate. Current direct detection constraints are evaded due to the large dark matter mass; meanwhile, next-generation direct detection and proton decay experiments will probe much of the parameter space. The relic abundance is strongly dependent on the dynamics of the hidden confining sector, and we...

  14. Galactic Center Excess by Higgs Portal Dark Matter

    Science.gov (United States)

    Das, Arindam; Okada, Nobuchika; Seto, Osamu

    2016-07-01

    A Z2 parity odd real scalar is a good candidate for dark matter in the present Universe. We consider models contain two Higgs doublet fields and one real scalar dark matter particle with mass in the range of 31 - 40 GeV and annihilating into a bb¯ pair, or with about 10 GeV mass and annihilating into tau lepton pair. Those annihilation modes suitably explain the observed excess of the gamma-ray flux from the Galactic Center. We identify the parameter region of the model that can fit the gamma-ray excess and satisfy phenomenological constraints, such as the observed dark matter relic density and the null results of direct dark matter search experiments. Most of the parameter region is found to be within the search reach of various future experiments.

  15. Volcanogenic Dark Matter and Mass Extinctions

    CERN Document Server

    Abbas, S; Abbas, Samar; Abbas, Afsar

    1996-01-01

    The passage of the Earth through dense clumps of dark matter, the presence of which are predicted by certain cosmologies, would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat can cause large-scale volcanism which could in turn have caused the extinction of the dinosaurs and other mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe.

  16. Axions as Hot and Cold Dark Matter

    CERN Document Server

    Jeong, Kwang Sik; Takahashi, Fuminobu

    2014-01-01

    The presence of a hot dark matter component has been hinted at 3 sigma by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f_a < O(10^10) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  17. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  18. Natural minimal dark matter

    CERN Document Server

    Fabbrichesi, Marco

    2015-01-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of $SU(2)_L$) is accompanied by a scalar state. The weak gauge sector is made supersymmetric and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are non-supersymmetric. Non vanishing corrections to the Higgs boson mass only appear at three-loop level and the model is natural for dark matter masses up to 15 TeV--a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  19. Precision predictions for supersymmetric dark matter

    CERN Document Server

    Harz, J; Klasen, M; Kovarik, K; Meinecke, M; Steppeler, P

    2014-01-01

    The dark matter relic density has been measured by Planck and its predecessors with an accuracy of about 2%. We present theoretical calculations with the numerical program DM@NLO in next-to-leading order SUSY QCD and beyond, which allow to reach this precision for gaugino and squark (co-)annihilations, and use them to scan the phenomenological MSSM for viable regions, applying also low-energy, electroweak and hadron collider constraints.

  20. Neutralino dark matter with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Goudelis, Andreas

    2011-06-15

    We examine the neutralino dark matter (DM) phenomenology in supersymmetric scenarios with nonuniversal Higgs masses (NUHM) at the gauge coupling unification scale that can accommodate a light Higgs boson, where the correct relic density is obtained mostly through the annihilation into a pseudoscalar A. Our analysis shows that most part of the A pole region can produce detectable gamma-ray and antiproton signals. We further focus on uncertainties influencing the results in indirect and mainly direct detection. (orig.)

  1. Dark Matter Identification using Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Shakya, Bibhushan

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, Fermi and HESS have a dark matter origin, final state radiation (FSR) photons from dark matter annihilation into lepton-rich final states may be detected with observations of satellite dwarf galaxies of the Milky Way by ground-based atmospheric Cherenkov telescopes (ACTs). We find that current and near-future ACTs have excellent potential for such detection, although a discovery cannot be guaranteed due to large uncertainties in the distribution of dark matter within the dwarfs. We find that models predicting dark matter annihilation into two-lepton final states and those favoring four-lepton final states (as in, for example, "axion portal" models) can be reliably distinguished using the FSR photon spectrum once measured, and the dark matter particle mass can also be accurately determined.

  2. Dark Matter and MOOCs

    CERN Document Server

    Salucci, Paolo

    2013-01-01

    To teach the topic of Dark Matter in Galaxies to undergraduate and PhD students is not easy, one reason being that the scientific community has not converged yet to a generally shared knowledge. We argue that the teaching of this topic and its subsequent scientific progress may benefit by Massive Online and Open Courses. The reader of this paper can express his/her opinion on this by means of a confidence vote at: https://moocfellowship.org/submissions/dark-matter-in-galaxies-the-last-mystery

  3. Naturalness of MSSM dark matter

    CERN Document Server

    Cabrera, Maria Eugenia; Delgado, Antonio; Robles, Sandra; de Austri, Roberto Ruiz

    2016-01-01

    There exists a vast literature examining the electroweak (EW) fine-tuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, $\\chi_1^0$, and exploring the various possibilities for the mass and composition of $\\chi_1^0$, as well as different mechanisms for annihilation of the DM particles in the early Universe (well-tempered neutralinos, funnels and co-annihilation scenarios). We also present a discussion about the statistical meaning of the fine-tuning and how it should be computed for the DM abundance, and combined with the EW fine-tuning. The results are very robust and model-independent and favour some scenarios (like the h-funnel when $M_{\\chi_1^0}$ is not too close to $m_h/2$) with respect to others (such as the pure wino case). These features s...

  4. Asymmetric dark matter bound state

    Science.gov (United States)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  5. Dark Matter Superfluidity

    CERN Document Server

    Khoury, Justin

    2016-01-01

    In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...

  6. Asymmetric condensed dark matter

    Science.gov (United States)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  7. A Dark Matter Superfluid

    CERN Document Server

    Khoury, Justin

    2015-01-01

    In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...

  8. Cosmic Ray-Dark Matter Scattering: a New Signature of (Asymmetric) Dark Matter in the Gamma Ray Sky

    CERN Document Server

    Profumo, Stefano

    2011-01-01

    We consider the process of scattering of Galactic cosmic-ray electrons and protons off of dark matter with the radiation of a final-state photon. This process provides a novel way to search for Galactic dark matter with gamma rays. We argue that for a generic weakly interacting massive particle, barring effects such as co-annihilation or a velocity-dependent cross section, the gamma-ray emission from cosmic-ray scattering off of dark matter is typically smaller than that from dark matter pair-annihilation. However, if dark matter particles cannot pair-annihilate, as is the case for example in asymmetric dark matter scenarios, cosmic-ray scattering with final state photon emission provides a unique window to detect a signal from dark matter with gamma rays. We estimate the expected flux level and its spectral features for a generic supersymmetric setup, and we also discuss dipolar and luminous dark matter. We show that in some cases the gamma-ray emission might be large enough to be detectable with the Fermi L...

  9. Leptophilic Dark Matter from the Lepton Asymmetry

    CERN Document Server

    Cohen, Timothy

    2009-01-01

    We present a model of weak scale Dark Matter (DM) where the thermal DM density is set by the lepton asymmetry due to the presence of higher dimension lepton violating operators. In these models there is generically a separation between the annihilation cross-section responsible for the relic abundance (through lepton violating operators) and the annihilation cross-section that is relevant for the indirect detection of DM (through lepton preserving operators). Due to this separation, there is a perceived boost in the annihilation cross-section in the galaxy today relative to that derived for canonical thermal freeze-out. This results in a natural explanation for the observed cosmic ray electron and positron excesses, without resorting to a Sommerfeld enhancement. Generating the indirect signals also sets the magnitude of the direct detection cross-section which implies a signal for the next generation of experiments. More generically these models motivate continued searches for DM with apparently non-thermal a...

  10. WIMP Dark Matter and the First Stars

    Science.gov (United States)

    Iocco, Fabio

    2010-11-01

    If weakly interacting massive particles (WIMPs) constitute the bulk of dark matter (DM), energy from the self-annihilation of these particles can affect Population III (Pop III) star formation via two mechanisms. Before the protostar forms, energy from DM annihilations can couple to primordial gas chemistry and slightly alter the properties of the cloud-without, however, inducing dramatic changes in the final mass of the star. Later, scattering between WIMPs and baryons within the protostar can in principle congregate enough DM for annihilations, rather than nuclear reactions, to support the star against gravity. In these proceedings I briefly summarize the state of the art of the field, as well the prospects for observing such stars.

  11. Alternatives to Dark Matter (?)

    OpenAIRE

    Aguirre, Anthony

    2003-01-01

    It has long been known that Newtonian dynamics applied to the visible matter in galaxies and clusters does not correctly describe the dynamics of those systems. While this is generally taken as evidence for dark matter it is in principle possible that instead Newtonian dynamics (and with it General Relativity) breaks down in these systems. Indeed there have been a number of proposals as to how standard gravitational dynamics might be modified so as to correctly explain galactic dynamics witho...

  12. Constraining dark matter through 21-cm observations

    Science.gov (United States)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  13. One-loop corrections for Higgs-portal dark matter

    CERN Document Server

    Arroyo, J Armando

    2016-01-01

    Models endowed with Higgs portals can probe into the hidden sectors of particle physics while providing stable dark matter candidates. Previous tree-level computations in such scenarios have shown that experimental bounds constrain dark matter to a very narrow region in parameter space. Aiming at improving the study of the implications of those constraints, we inspect one-loop corrections to the annihilation cross section for scalar dark matter into observable fermions. We find that these loop contributions might be enough to drastically change those results by deforming in about 10% the allowed parameter space for dark matter particles with masses even below 1 TeV. These findings encourage further investigation.

  14. On the Validity of Dark Matter Effective Theory

    CERN Document Server

    Bauer, Martin; Desai, Nishita; Gonzalez-Fraile, Juan; Plehn, Tilman

    2016-01-01

    An effective theory of dark matter offers an attractive framework for global analyses of dark matter. In the light of global fits we test the validity of the link between the non-relativistic dark matter annihilation, or the predicted relic density, and LHC signatures. Specifically, we study how well the effective theory describes the main features of simple models with s-channel and t-channel mediators coupling to the Standard Model at tree level or through one-loop diagrams. Our results indicate that global dark matter analyses in terms of effective Lagrangians are highly non-trivial to interpret in term of actual models.

  15. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  16. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  17. Inflatable Dark Matter

    CERN Document Server

    Davoudiasl, Hooman; McDermott, Samuel D

    2016-01-01

    We describe a general scenario, dubbed "Inflatable Dark Matter", in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the...

  18. The Universal Dark Matter

    CERN Document Server

    Soberman, R K; Soberman, Robert K.; Dubin, Maurice

    2006-01-01

    Fragile volatile aggregates with extremely low albedo, gravitationally drawn into the solar system are likely from the dark matter dominating the universal mass. Characteristics of this meteoric population permitted avoiding detection through a half-century's search. Measurements from space probes and in the upper atmosphere prove their existence and confirm their elusive properties.

  19. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  20. Cold Positrons from Decaying Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boubekeur, Lotfi [Universitate de Valencia (Spain); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Vives, Oscar [Universitate de Valencia (Spain)

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  1. Dark matter powered stars: Constraints from the extragalactic background light

    CERN Document Server

    Maurer, A; Kneiske, T; Elsässer, D; Hauschildt, P H; Horns, D

    2012-01-01

    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to...

  2. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  3. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    Science.gov (United States)

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  4. Enhancements to velocity-dependent dark matter interactions from tidal streams and shells in the Andromeda galaxy

    NARCIS (Netherlands)

    Sanderson, Robyn E.; Mohayaee, Roya; Silk, Joe

    2012-01-01

    Dark matter substructures around nearby galaxies provide an interesting opportunity for confusion-free indirect detection of dark matter. We calculate the boost over a smooth background distribution of dark matter for gamma-ray emission from dark matter self-annihilations in tidal structures in M31,

  5. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  6. Dark Matter in the Universe

    Indian Academy of Sciences (India)

    2017-02-01

    Vera Rubin gave an evening lecture during the 19th General Assembly of the International Astronomical Union, in 1985 at New Delhi, on dark matter. It was a lucid introduction to the issues regarding dark matter, as well as a comprehensive review of the evidences for dark matter. This extraordinary lecture, aimed towards non-specialists, is reprinted below.

  7. Tunguska Dark Matter Ball

    CERN Document Server

    Froggatt, C D

    2014-01-01

    It is suggested that the Tunguska event in June 1908 cm-large was due to a cm-large ball of a condensate of bound states of 6 top and 6 anti-top quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  8. Asymmetric condensed dark matter

    CERN Document Server

    Aguirre, Anthony

    2015-01-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  9. Spherical cows in dark matter indirect detection

    Science.gov (United States)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  10. Levitating Dark Matter

    CERN Document Server

    Kaloper, Nemanja

    2009-01-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark $U(1)'$ charge equal to its mass, such as the BPS states in string theory. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic $w<-1$. They can also lead to a {\\it local} variation of galaxy-galaxy forces, ...

  11. R^2 Dark Matter

    CERN Document Server

    Cembranos, Jose A R

    2010-01-01

    There is a non-trivial four-derivative extension of the gravitational spectrum that is free of ghosts and phenomenologically viable. It is the so called $R^2$-gravity since it is defined by the only addition of a term proportional to the square of the scalar curvature. Just the presence of this term does not improve the ultraviolet behaviour of Einstein gravity but introduces one additional scalar degree of freedom that can account for the dark matter of our Universe.

  12. Effective Field Theory of Dark Matter: a Global Analysis

    CERN Document Server

    Liem, Sebastian; Calore, Francesca; de Austri, Roberto Ruiz; Tait, Tim M P; Trotta, Roberto; Weniger, Christoph

    2016-01-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross- section. Although current data are not informative enough to strongly constrain the theory parameter space, w...

  13. An elusive vector dark matter

    Directory of Open Access Journals (Sweden)

    Chuan-Ren Chen

    2015-02-01

    Full Text Available Even though the sensitivity of direct dark matter search experiments reaches the level of about 10−45 cm2, no confident signal of dark matter has been observed. We point out that, if dark matter is a vector boson, the null result in direct dark matter search experiments may be due to the destructive effects in dark-matter–nucleon elastic scattering. We illustrate the scenario using a modified Higgs portal model that includes exotic quarks. The significant cancellation can occur for a certain mass gap between new heavy quark and dark matter. As a result, the spin-independent dark-matter–nucleon elastic scattering is so suppressed that the future direct search experiments will hardly observe the signal of dark matter.

  14. Searches for Particle Dark Matter: An Introduction

    CERN Document Server

    Scott, Pat

    2011-01-01

    The identity of dark matter is one of the key outstanding problems in both particle and astrophysics. In this thesis, I describe a number of complementary searches for particle dark matter. I discuss how the impact of dark matter on stars can constrain its interaction with nuclei, focussing on main sequence stars close to the Galactic Centre, and on the first stars as seen through the upcoming James Webb Space Telescope. The mass and annihilation cross-section of dark matter particles can be probed with searches for gamma rays produced in astronomical targets. Dwarf galaxies and ultracompact, primordially-produced dark matter minihalos turn out to be especially promising in this respect. I illustrate how the results of these searches can be combined with constraints from accelerators and cosmology to produce a single global fit to all available data. Global fits in supersymmetry turn out to be quite technically demanding, even with the simplest predictive models and the addition of complementary data from a b...

  15. On the Importance of Electroweak Corrections for Majorana Dark Matter Indirect Detection

    CERN Document Server

    Ciafaloni, Paolo; Comelli, Denis; De Simone, Andrea; Riotto, Antonio; Urbano, Alfredo

    2011-01-01

    Recent analyses have shown that the inclusion of electroweak corrections can alter significantly the energy spectra of Standard Model particles originated from dark matter annihilations. We investigate the important situation where the radiation of electroweak gauge bosons has a substantial influence: a Majorana dark matter particle annihilating into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. We study this effect in detail and explore its impact on the fluxes of stable particles resulting from the dark matter annihilations, which are relevant for dark matter indirect searches. We also discuss the effective field theory approach, pointing out that the opening of the s-wave is missed at the level of dimension-six operators and only encoded by higher orders.

  16. Dark Matter Identification with Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Perelstein, Maxim

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, FERMI and HESS are due to dark matter annihilation into lepton-rich final states, the accompanying final state radiation (FSR) photons may be detected by ground-based atmospheric Cherenkov telescopes (ACTs). Satellite dwarf galaxies in the vicinity of the Milky Way are particularly promising targets for this search. We find that current and near-future ACTs have an excellent potential for discovering the FSR photons from dwarfs, although a discovery cannot be guaranteed due to large uncertainties in the fluxes resulting from lack of precise knowledge of dark matter distribution within the dwarfs. We also investigate the possibility of discriminating between different dark matter models based on the measured FSR photon spectrum. For typical parameters, we find that the ACTs can reliably distinguish models predicting dark matter annihilation into two-lepton final states from those favoring four-lepton final states...

  17. Constraints on Majorana dark matter from a fourth lepton family

    DEFF Research Database (Denmark)

    Hapola, T.; Jarvinen, M.; Kouvaris, C.

    2014-01-01

    We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC and coll......We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC...... and collider physics, underground direct detectors, neutrino telescopes, and indirect astrophysical searches. Although we embed the WIMP candidate within a model of composite dynamics, the majority of our results are model independent and applicable to all models where heavy neutrinos with suppressed couplings...

  18. GLAST And Dark Matter Substructure in the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlen, Michael; /Princeton, Inst. Advanced Study; Diemand, Jurg; /UC, Santa Cruz, Astron. Astrophys.; Madau, Piero; /UC, Santa Cruz, Astron. Astrophys. /Garching, Max Planck Inst.

    2011-11-29

    We discuss the possibility of GLAST detecting gamma-rays from the annihilation of neutralino dark matter in the Galactic halo. We have used 'Via Lactea', currently the highest resolution simulation of cold dark matter substructure, to quantify the contribution of subhalos to the annihilation signal. We present a simulated allsky map of the expected gamma-ray counts from dark matter annihilation, assuming standard values of particle mass and cross section. In this case GLAST should be able to detect the Galactic center and several individual subhalos. One of the most exciting discoveries that the Gamma-ray Large Area Space Telescope (GLAST) could make, is the detection of gamma-rays from the annihilation of dark matter (DM). Such a measurement would directly address one of the major physics problems of our time: the nature of the DM particle. Whether or not GLAST will actually detect a DM annihilation signal depends on both unknown particle physics and unknown astrophysics theory. Particle physics uncertainties include the type of particle (axion, neutralino, Kaluza-Klein particle, etc.), its mass, and its interaction cross section. From the astrophysical side it appears that DM is not smoothly distributed throughout the Galaxy halo, but instead exhibits abundant clumpy substructure, in the form of thousands of so-called subhalos. The observability of DM annihilation radiation originating in Galactic DM subhalos depends on their abundance, distribution, and internal properties. Numerical simulations have been used in the past to estimate the annihilation flux from DM substructure, but since the subhalo properties, especially their central density profile, which determines their annihilation luminosity, are very sensitive to numerical resolution, it makes sense to re-examine their contribution with higher resolution simulations.

  19. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  20. WEAKLY INTERACTING MASSIVE PARTICLE DARK MATTER AND FIRST STARS: SUPPRESSION OF FRAGMENTATION IN PRIMORDIAL STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rowan J.; Glover, Simon C. O.; Klessen, Ralf S. [Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Iocco, Fabio [Department of Physics, Oskar Klein Centre, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Schleicher, Dominik R. G. [Institut fuer Astrophysik, Georg-August-Universitaet, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Hirano, Shingo; Yoshida, Naoki, E-mail: rowan@uni-heidelberg.de [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)

    2012-12-20

    We present the first three-dimensional simulations to include the effects of dark matter annihilation feedback during the collapse of primordial minihalos. We begin our simulations from cosmological initial conditions and account for dark matter annihilation in our treatment of the chemical and thermal evolution of the gas. The dark matter is modeled using an analytical density profile that responds to changes in the peak gas density. We find that the gas can collapse to high densities despite the additional energy input from the dark matter. No objects supported purely by dark matter annihilation heating are formed in our simulations. However, we find that dark matter annihilation heating has a large effect on the evolution of the gas following the formation of the first protostar. Previous simulations without dark matter annihilation found that protostellar disks around Population III stars rapidly fragmented, forming multiple protostars that underwent mergers or ejections. When dark matter annihilation is included, however, these disks become stable to radii of 1000 AU or more. In the cases where fragmentation does occur, it is a wide binary that is formed.

  1. Scalar dark matter in the B−L model

    Energy Technology Data Exchange (ETDEWEB)

    Rodejohann, Werner; Yaguna, Carlos E. [Max-Planck-Institute für Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2015-12-15

    The U(1){sub B−L} extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ{sub DM}, that is a singlet of the Standard Model but charged under U(1){sub B−L}. An advantage of this scenario is that the stability of ϕ{sub DM} can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles.

  2. Phenomenology of Dirac Neutralino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  3. On thermal production of self-interacting dark matter

    Science.gov (United States)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-12-01

    We consider thermal production mechanisms of self-interacting dark matter in models with gauged Z 3 symmetry. A complex scalar dark matter is stabilized by the Z 3, that is the remnant of a local dark U(1) d . Light dark matter with large self-interaction can be produced from thermal freeze-out in the presence of SM-annihilation, SIMP and/or forbidden channels. We show that dark photon and/or dark Higgs should be relatively light for unitarity and then assist the thermal freeze-out. We identify the constraints on the parameter space of dark matter self-interaction and mass in cases that one or some of the channels are important in determining the relic density.

  4. On thermal production of self-interacting dark matter

    CERN Document Server

    Choi, Soo-Min; Lee, Hyun Min

    2016-01-01

    We consider thermal production mechanisms of self-interacting dark matter in models with gauged $Z_3$ symmetry. A complex scalar dark matter is stabilized by the $Z_3$, that is the remnant of a local dark $U(1)_d$. Light dark matter with large self-interaction can be produced from thermal freeze-out in the presence of SM-annihilation, SIMP and/or forbidden channels. We show that dark photon and/or dark Higgs should be relatively light for unitarity and then assist the thermal freeze-out. We identify the constraints on the parameter space of dark matter self-interaction and mass in cases that one or some of the channels are important in determining the relic density.

  5. Dark matter on the lattice

    OpenAIRE

    Lewis, Randy

    2014-01-01

    Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.

  6. Dark matter in the Galaxy

    OpenAIRE

    Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D.

    2002-01-01

    After a brief introduction to standard cosmology and the dark matter problem in the the Universe, we consider a self-gravitating noninteracting fermion gas at nonzero temperature as a model for the dark matter halo of the Galaxy. This fermion gas model is then shown to imply the existence of a supermassive compact dark object at the Galactic center.

  7. A Simple Singlet Fermionic Dark-Matter Model Revisited

    Institute of Scientific and Technical Information of China (English)

    QIN Hong-Yi; WANG Wen-Yu; XIONG Zhao-Hua

    2011-01-01

    We evaluate the spin-independent elastic dark matter-nucleon scattering cross section in the framework of the simple singlet fermionic dark matter extension of the standard model and constrain the model parameter space with the following considerations:(i) new dark matter measurement,in which,apart from WMAP and CDMS,the results from the XENON experiment are also used in constraining the model;(ii) new fitted value of the quark fractions in nucleons,in which the updated value of fTs from the recent lattice simulation is much smaller than the previous one and may reduce the scattering rate significantly;(iii) new dark matter annihilation channels,in which the scenario where top quark and Higgs pairs produced by dark matter annihilation was not included in the previous works.We find that unlike in the minimal supersymmetric standard model,the cross section is just reduced by a factor of about 1/4 and dark matter lighter than 100 GeV is not favored by the WMAP,CDMS and XENON experiments.It is well known that about 20% of the energy density of the Universe[1] is composed of dark matter (DM).Probing the properties of DM and searching for DM candidates are the most important motivations for the research of new physics beyond the standard model (SM).%We evaluate the spin-independent elastic dark matter-nucleon scattering cross section in the framework of the simple singlet fermionic dark matter extension of the standard model and constrain the model parameter space with the following considerations: (I) new dark matter measurement, in which, apart from WMAP and CDMS, the results from the XENON experiment are also used in constraining the model; (ii) new fitted value of the quark fractions in nucleons, in which the updated value of fT8 from the recent lattice simulation is much smaller than the previous one and may reduce the scattering rate significantly; (Hi) new dark matter annihilation channels, in which the scenario where top quark and Higgs pairs produced by dark

  8. Searching for Dark Matter with X-ray Observations of Local Dwarf Galaxies

    CERN Document Server

    Jeltema, Tesla E

    2008-01-01

    A generic feature of weakly interacting massive particle (WIMP) dark matter models is the emission of photons over a broad energy band resulting from the stable yields of dark matter pair annihilation. Inverse Compton scattering off cosmic microwave background photons of energetic electrons and positrons produced in dark matter annihilation is expected to produce significant diffuse X-ray emission. Dwarf galaxies are ideal targets for this type of dark matter search technique, being nearby, dark matter dominated systems free of any astrophysical diffuse X-ray background. In this paper, we present the first systematic study of X-ray observations of local dwarf galaxies aimed at the search for WIMP dark matter. We outline the optimal energy and angular ranges for current telescopes, and analyze the systematic uncertainties connected to electron/positron diffusion. We do not observe any significant X-ray excess, and translate this null result into limits on the mass and pair annihilation cross section for partic...

  9. Dark matter monopoles, vectors and photons

    CERN Document Server

    Khoze, Valentin V

    2014-01-01

    In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of 't Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons gamma' as well as charged massive vector bosons W'. The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to the dark photon radiation, we compute their contribution to the measured density of relativistic particles Neff and also apply ob...

  10. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  11. Indirect and direct search for dark matter

    Science.gov (United States)

    Klasen, M.; Pohl, M.; Sigl, G.

    2015-11-01

    The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.

  12. X-ray lines and self-interacting dark matter.

    Science.gov (United States)

    Mambrini, Yann; Toma, Takashi

    We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.

  13. Plasma dark matter direct detection

    CERN Document Server

    Clarke, Jackson D

    2015-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken $U(1)'$ gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed $U(1)'$ neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the $U(1)'$ gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA...

  14. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    Science.gov (United States)

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  15. Indirect dark matter searches: current status and perspectives

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Many theoretical ideas for the particle nature of dark matter exist. The  most popular models often predict that dark matter particles self-annihilate or decay, giving rise to potentially detectable signatures in astronomical observations.  I will summarize the current status of searches for such signatures and critically reassess recent claims for dark matter signals.  I will further provide an outlook on anticipated developments in the next 10 years, and discuss new methods to facilitate strategy development.

  16. Dark Matter Relic Abundance and Light Sterile Neutrinos

    CERN Document Server

    Tang, Yi-Lei

    2016-01-01

    In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass $\\lesssim 100 \\text{ GeV}$ in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such case, if the Yukawa coupling between Higgs and sterile neutrino $y_N$ is small, this process gives rise to a larger $\\Omega_{\\text{DM}} h^2$ so we need a larger coupling between dark matter and the sterile neutrino for a correct relic abundance.

  17. Evading Direct Dark Matter Detection in Higgs Portal Models

    CERN Document Server

    Arcadi, Giorgio; Lebedev, Oleg; Pokorski, Stefan; Toma, Takashi

    2016-01-01

    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of `secluded' dark matter naturally.

  18. How dark matter cares about topological superstrings

    CERN Document Server

    Anchordoqui, Luis A

    2010-01-01

    Non-trivial toplogical properties of string world-sheets with three boundaries can give rise to superpotentials which preserve supersymmetry but violate R-symmetry by two units. This results in four point functions which permit s-wave annihilation of two neutralinos into gauge bosons. If the topological partition function is such as to allow saturation of the WMAP dark matter density for low string scales (M_s ~ 2 TeV), the annihilation into monochromatic gamma rays is predicted to lie about a factor of 2 below the current H.E.S.S. measurement of gamma ray flux from the galactic center. Thus, it may be detectable in the next round of gamma ray observations.

  19. Dark matter searches with CMS

    CERN Document Server

    Jeitler, Manfred

    2016-01-01

    The existence of dark matter, indicated by astronomical observations, is one of the main proofs of physics beyond the standard model. Despite its abundance, dark matter has not been directly observed yet. This talk presents several searches for dark matter production in proton-proton collisions at 7, 8, and 13 TeV at the LHC, performed by the CMS collaboration. They are interpreted in terms of simplified models with different structures and mediators, as well as generic effective theory terms.

  20. (Mainly) axion dark matter

    Science.gov (United States)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  1. Monodromy Dark Matter

    Science.gov (United States)

    Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.

    2017-01-01

    Light pseudo-Nambu-Goldstone bosons (pNGBs) such as, e.g. axion-like particles, that are non-thermally produced via the misalignment mechanism are promising dark matter candidates. An important feature of pNGBs is their periodic potential, whose scale of periodicity controls their couplings. As a consequence of the periodicity the maximal potential energy is limited and, hence, producing the observed dark matter density poses significant constraints on the allowed masses and couplings. In the presence of a monodromy, the field range as well as the range of the potential can be significantly extended. As we argue in this paper this has important phenomenological consequences. The constraints on the masses and couplings are ameliorated and couplings to Standard Model particles could be significantly stronger, thereby opening up considerable experimental opportunities. Yet, monodromy models can also give rise to new and qualitatively different features. As a remnant of the periodicity the potential can feature pronounced ``wiggles''. When the field is passing through them quantum fluctuations are enhanced and particles with non-vanishing momentum are produced. Here, we perform a first analysis of this effect and delineate under which circumstances this becomes important. We briefly discuss some possible cosmological consequences.

  2. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  3. Dark matter and cosmological nucleosynthesis

    Science.gov (United States)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  4. Detection of Galactic Dark Matter by GLAST

    CERN Document Server

    Moiseev, A; Arrighi, H; Bloom, Elliott D; Chaput, C; Digel, S W; Engovatov, D; Norris, J; Silvis, J

    1999-01-01

    The mysterious dark matter has been a subject of special interest to high energy physicists, astrophysicists and cosmologists for many years. According to theoretical models, it can make up a significant fraction of the mass of the Universe. One possible form of galactic dark matter, Weakly Interacting Massive Particles (WIMPs), could be detected by their annihilation into monoenergetic gamma-ray line(s). This paper will demonstrate that the Gamma-ray Large Area Space Telescope (GLAST), scheduled for launch in 2005 by NASA, will be capable of searching for these gamma-ray lines in the energy range from 20 GeV to ~500 GeV and will be sufficiently sensitive to test a number of models. The required instrument performance and its capability to reject backgrounds to the required levels are explicitly discussed.

  5. Dark Matter Search Perspectives with GAMMA-400

    CERN Document Server

    Moiseev, A A; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Avanesov, G A; Bergstrom, L; Boezio, M; Bonvicini, V; Boyarchuk, K A; Dogiel, V A; Gusakov, Yu V; Fradkin, M I; Fuglesang, Ch; Hnatyk, B I; Kachanov, V A; Kaplin, V A; Kheymits, M D; Korepanov, V; Larsson, J; Leonov, A A; Longo, F; Maestro, P; Marrocchesi, P; Mazets, E P; Mikhailov, V V; Mocchiutti, E; Mori, N; Moskalenko, I; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Runtso, M F; Ryde, F; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Topchiev, N P; Vacchi, A; Vannuccini, E; Yurkin, Yu T; Zampa, N; Zarikashvili, V N; Zverev, V G

    2013-01-01

    GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is ~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400 is planned to be launched on the Russian space platform Navigator in 2019. The GAMMA-400 perspectives in the search for dark matter in various scenarios are presented in this paper

  6. Axions as hot and cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kawasaki, Masahiro [Tokyo Univ., Kashiwa (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-10-15

    The presence of a hot dark matter component has been hinted at 3{sigma} by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  7. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  8. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  9. (In)visible Z' and dark matter

    CERN Document Server

    Dudas, E; Pokorski, S; Romagnoni, A

    2009-01-01

    We study the consequences of an extension of the standard model containing an invisible extra gauge group under which the SM particles are neutral. We show that effective operators, generated by loops of heavy chiral fermions charged undervboth gauge groups and connecting the new gauge sector to the Standard Model, can give rise to a viable dark matter candidate. Its annihilations produce clean visible signals through a gamma-ray line. This would be a smoking gun signature of such models observable by actual experiments.

  10. Dark matter vs. Pulsars: Catching the impostor

    CERN Document Server

    Mirabal, N

    2013-01-01

    Evidence of excess GeV emission nearly coinciding with the Galactic Centre has been interpreted as a possible signature of annihilating dark matter. In this paper, we argue that it seems too early to discard pulsars as a viable explanation for the observed excess. On the heels of the recently released Second Fermi LAT Pulsar Catalogue (2FPC), it is still possible that a population of hard (Gamma < 1) millisecond pulsars (MSPs) either endemic to the innermost region or part of a larger nascent collection of hard MSPs that appears to be emerging in the 2FPC could explain the GeV excess near the Galactic Centre.

  11. Systematic uncertainties from halo asphericity in dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Forero-Romero, Jaime E. [Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip, Bogotá (Colombia); Garani, Raghuveer [Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn,Germany (Germany); Palomares-Ruiz, Sergio, E-mail: nicolas@ift.unesp.br, E-mail: je.forero@uniandes.edu.co, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergio.palomares.ruiz@ific.uv.es [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071, València (Spain)

    2014-09-01

    Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm {sup 3}. Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.

  12. A blueprint for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S.D.M.; Frenk, C.S.; Navarro, J.F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce g -rays at a lev

  13. Make Dark Matter Charged Again

    CERN Document Server

    Agrawal, Prateek; Randall, Lisa; Scholtz, Jakub

    2016-01-01

    We revisit constraints on dark matter that is charged under a $U(1)$ gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viabili...

  14. Electroweak breaking and Dark Matter from the common scale

    Energy Technology Data Exchange (ETDEWEB)

    Benić, Sanjin; Radovčić, Branimir

    2014-05-01

    We propose a classically scale invariant extension of the Standard Model where the electroweak symmetry breaking and the mass of the Dark Matter particle come from the common scale. We introduce U(1){sub X} gauge symmetry and X-charged scalar Φ and Majorana fermion N. Scale invariance is broken via Coleman–Weinberg mechanism providing the vacuum expectation value of the scalar Φ. Stability of the dark matter candidate N is guaranteed by a remnant Z{sub 2} symmetry. The Higgs boson mass and the mass of the Dark Matter particle have a common origin, the vacuum expectation value of Φ. Dark matter relic abundance is determined by annihilation NN→ΦΦ. We scan the parameter space of the model and find the mass of the dark matter particle in the range from 500 GeV to a few TeV.

  15. Electroweak breaking and Dark Matter from the common scale

    CERN Document Server

    Radovcic, Branimir

    2014-01-01

    We propose a classically scale invariant extension of the Standard Model where the electroweak symmetry breaking and the mass of the Dark Matter particle come from the common scale. We introduce $U(1)_X$ gauge symmetry and $X$-charged scalar $\\Phi$ and Majorana fermion $N$. Scale invariance is broken via Coleman-Weinberg mechanism providing the vacuum expectation value of the scalar $\\Phi$. Stability of the dark matter candidate $N$ is guaranteed by a remnant $Z_2$ symmetry. The Higgs boson mass and the mass of the Dark Matter particle have a common origin, the vacuum expectation value of $\\Phi$. Dark matter relic abundance is determined by annihilation $NN \\to \\Phi\\Phi$. We scan the parameter space of the model and find the mass of the dark matter particle in the range from 500 GeV to a few TeV.

  16. Dark matter for excess of AMS-02 positrons and antiprotons

    Directory of Open Access Journals (Sweden)

    Chuan-Hung Chen

    2015-07-01

    Full Text Available We propose a dark matter explanation to simultaneously account for the excess of antiproton-to-proton and positron power spectra observed in the AMS-02 experiment while having the right dark matter relic abundance and satisfying the current direct search bounds. We extend the Higgs triplet model with a hidden gauge symmetry of SU(2X that is broken to Z3 by a quadruplet scalar field, rendering the associated gauge bosons stable weakly-interacting massive particle dark matter candidates. By coupling the complex Higgs triplet and the SU(2X quadruplet, the dark matter candidates can annihilate into triplet Higgs bosons each of which in turn decays into lepton or gauge boson final states. Such a mechanism gives rise to correct excess of positrons and antiprotons with an appropriate choice of the triplet vacuum expectation value. Besides, the model provides a link between neutrino mass and dark matter phenomenology.

  17. Primordial Black Holes as Dark Matter: All or Nothing

    CERN Document Server

    Lacki, Brian C

    2010-01-01

    Primordial black holes (PBHs) are expected to accrete particle dark matter around them to form primordially-laid ultracompact minihalos (PLUMs), if the PBHs themselves are not most of the dark matter. We show that if most dark matter is a thermal relic, then the inner regions of PLUMs around PBHs are highly luminous sources of annihilation products. Flux constraints on gamma rays and neutrinos set strong abundance limits, improving previous limits by orders of magnitude. Assuming enough particle dark matter exists to form PLUMs (if PBHs do not compose all of the dark matter), we find that Omega_PBH <~ 10^-4 (for m_DM c^2 ~ 100 GeV) for a vast range in PBH mass, 10^-18 M_sun to 1000 M_sun.

  18. Searching for dwarf spheroidal galaxies and other galactic dark matter substructures with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Stanford Univ., CA (United States). Dept. of Physics

    2013-08-01

    Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce γ rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for γ rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for γ-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through γ-ray emission from dark matter annihilation. We found no conclusive evidence for γ-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While γ-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of γ-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.

  19. Skew-Flavored Dark Matter

    CERN Document Server

    Agrawal, Prateek; Fortes, Elaine C F S; Kilic, Can

    2015-01-01

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects Minimal Flavor Violation, and is therefore naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. These events exhibit a characteristic flavor pattern that may allow this cla...

  20. Gravitational Origin of Dark Matter

    CERN Document Server

    Babichev, Eugeny; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-01-01

    Observational evidence for the existence of Dark Matter is limited to its gravitational effects. The extensive program for dedicated searches has yielded null results so far, challenging the most popular models. Here we propose that this is the case because the very existence of cold Dark Matter is a manifestation of gravity itself. The consistent bimetric theory of gravity, the only known ghost-free extension of General Relativity involving a massless and a massive spin-2 field, automatically contains a perfect Dark Matter candidate. We demonstrate that the massive spin-2 particle can be heavy, stable on cosmological scales, and that it interacts with matter only through a gravitational type of coupling. Remarkably, these features persist in the same region of parameter space where bimetric theory satisfies the current gravity tests. We show that the observed Dark Matter abundance can be generated via freeze-in and suggest possible particle physics and gravitational signatures of our bimetric Dark Matter mod...

  1. Familon model of dark matter

    Science.gov (United States)

    Burdyuzha, V.; Lalakulich, O.; Ponomarev, Yu.; Vereshkov, G.

    2004-05-01

    If the next fundamental level of matter occurs (preons), then dark matter must consist of familons containing a 'hot' component from massless particles and a 'cold' component from massive particles. During the evolution of the Universe this dark matter occurred up to late-time relativistic phase transitions the temperatures of which were different. Fluctuations created by these phase transitions had a fractal character. As a result the structuration of dark matter (and therefore the baryon subsystem) occurred, and in the Universe some characteristic scales which have caused this phenomenon arise naturally. Familons are collective excitations of non-perturbative preon condensates that could be produced during an earlier relativistic phase transition. For structuration of dark matter (and the baryon component), three generations of particles are necessary. The first generation of particles produced the observed baryon world. The second and third generations produced dark matter from particles that appeared when symmetry between the generations was spontaneously broken.

  2. Familon Model of Dark Matter

    CERN Document Server

    Burdyuzha, V; Ponomarev, Yu; Vereshkov, G

    2008-01-01

    If the next fundamental level of matter occurs (preons) then dark matter must consist of familons containing a "hot" component from massless particles and a "cold" component from massive particles. During evolution of the Universe this dark matter was undergone to late-time relativistic phase transitions temperatures of which were different. Fluctuations created by these phase transitions have had a fractal character. In the result the structurization of dark matter (and therefore the baryon subsystem) has taken place and in the Universe some characteristic scales which have printed this phenomenon arise naturally. Familons are collective excitations of nonperturbative preon condensates which could be produced during more early relativistic phase transition. For structurization of dark matter (and baryon component) three generations of particles are necessary. The first generation of particles has produced the observed baryon world. The second and third generations have produced dark matter from particles whi...

  3. Flaring of tidally compressed dark-matter clumps

    CERN Document Server

    Ali-Haïmoud, Yacine; Silk, Joseph

    2015-01-01

    We explore the physics and observational consequences of tidal compression events (TCEs) of dark-matter clumps (DMCs) by supermassive black holes (SMBHs). Our analytic calculations show that a DMC approaching a SMBH much closer than the tidal radius undergoes significant compression along the axis perpendicular to the orbital plane, shortly after pericenter passage. For DMCs composed of self-annihilating dark-matter particles, we find that the boosted DMC density and velocity dispersion lead to a flaring of the annihilation rate, most pronounced for a velocity- dependent annihilation cross section. If the end products of the annihilation are photons, this results in a gamma-ray flare, detectable (and possibly already detected) by the Fermi telescope for a range of model parameters. If the end products of dark-matter annihilation are relativistic electrons and positrons and the local magnetic field is large enough, TCEs of DMCs can lead to flares of synchrotron radiation. Finally, TCEs of DMCs lead to a burst ...

  4. Cold dark matter resuscitated?

    CERN Document Server

    White, M; Silk, J; Davis, M; White, Martin; Scott, Douglas; Silk, Joe; Davis, Marc

    1995-01-01

    The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with n=0.8--0.9 and h=0.45--0.50 can fit the available data. Our ``best fit'' CDM model has n=0.9, h=0.45 and C_2^{T}/C_2^{S}=0.7. We discuss the current state of observations which could definitely rule out this model.

  5. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  6. Lectures on Dark Matter Physics

    CERN Document Server

    Lisanti, Mariangela

    2016-01-01

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive P...

  7. Dark Energy Scaling from Dark Matter to Acceleration

    OpenAIRE

    Bielefeld, Jannis; Caldwell, Robert R.; Linder, Eric V.

    2014-01-01

    The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic...

  8. Bimetric gravity and dark matter

    CERN Document Server

    Bernard, Laura; Heisenberg, Lavinia

    2015-01-01

    We review some recent proposals for relativistic models of dark matter in the context of bimetric gravity. The aim is to solve the problems of cold dark matter (CDM) at galactic scales, and to reproduce the phenomenology of the modified Newtonian dynamics (MOND), while still being in agreement with the standard cosmological model $\\Lambda$-CDM at large scales. In this context a promising alternative is dipolar dark matter (DDM) in which two different species of dark matter particles are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. The phenomenology of MOND then results from a mechanism of gravitational polarization. Probably the best formulation of the model is within the framework of recently developed massive bigravity theories. Then the gravitational sector of the model is safe by construction, but a ghostly degree of freedom in the decoupling limit is still present in the dark matter sector. Future work should analyse the cosmological solutions of...

  9. Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Geha, Marla; /Yale U.; Simon, Joshua D.; /Carnegie Inst. Observ.

    2011-08-11

    We use new kinematic data from the ultra-faint Milky Way satellite Segue 1 to model its dark matter distribution and derive upper limits on the dark matter annihilation cross-section. Using gamma-ray ux upper limits from the Fermi satellite and MAGIC, we determine cross-section exclusion regions for dark matter annihilation into a variety of different particles including charged leptons. We show that these exclusion regions are beginning to probe the regions of interest for a dark matter interpretation of the electron and positron uxes from PAMELA, Fermi, and HESS, and that future observations of Segue 1 have strong prospects for testing such an interpretation. We additionally discuss prospects for detecting annihilation with neutrinos using the IceCube detector, finding that in an optimistic scenario a few neutrino events may be detected. Finally we use the kinematic data to model the Segue 1 dark matter velocity dispersion and constrain Sommerfeld enhanced models.

  10. Dark matter searches: looking for the cake or its frosting?

    Energy Technology Data Exchange (ETDEWEB)

    Gelmini, G. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States)]. E-mail: gelmini@physics.ucla.edu

    2005-01-15

    The dark matter candidates we are searching for, e.g. neutralinos, may be one of many components of the cold dark matter (CDM). We point out here that very subdominant components, constituting even 1% of the CDM for indirect detection and much less for direct detection, remain observable in current and future searches. So, if a CDM signal is confirmed in CDM search experiments (except for a signal from annihilations in the dark halo), we will need to find out the halo fraction accounted for by the CDM component we detected.

  11. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  12. Gamma Ray Line Constraints on Effective Theories of Dark Matter

    CERN Document Server

    Goodman, Jessica; Rajaraman, Arvind; Shepherd, William; Tait, Tim M P; Yu, Hai-Bo

    2010-01-01

    A monochromatic gamma ray line results when dark matter particles in the galactic halo annihilate to produce a two body final state which includes a photon. Such a signal is very distinctive from astrophysical backgrounds, and thus represents an incisive probe of theories of dark matter. We compare the recent null results of searches for gamma ray lines in the galactic center and other regions of the sky with the predictions of effective theories describing the interactions of dark matter particles with the Standard Model. We find that the null results of these searches provide constraints on the nature of dark matter interactions with ordinary matter which are complementary to constraints from other observables, and stronger than collider constraints in some cases.

  13. Dark matter properties implied by gamma ray interstellar emission models

    CERN Document Server

    Balázs, Csaba

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our Bayes factors single out four of the Fermi scenarios as compatible with the simplified dark matter model. In the most preferred scenario the dark matter (mediator) mass is in the 100-500 (1-200) GeV range and its annihilation is dominated by top quark final state. Less preferred but still plausible is annihilation into b\\bar{b} and tau^+tau^- final states with an order of magnitude lower dark matter mass. Our conclusion is that the properties of dark matter extracted ...

  14. The Local Dark Matter Density

    CERN Document Server

    Read, J I

    2014-01-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for 'direct detection' dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a 'dark disc'. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data - particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I highlight several recent measurements in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way's rotation curve, I show that the Milky Way is consistent with having a spherical dark matter ...

  15. Effective field theory of dark matter: a global analysis

    Science.gov (United States)

    Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; de Austri, Roberto Ruiz; Tait, Tim M. P.; Trotta, Roberto; Weniger, Christoph

    2016-09-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.

  16. Holographic dark energy interacting with dark matter

    CERN Document Server

    Forte, Mónica I

    2012-01-01

    We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a dark energy which is given by the modified holographic Ricci cutoff. The interaction used is linear in both dark energy densities, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6km/sMpc$, $\\omega_s=\\gamma_s -1=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.

  17. Dark Matter and Potential fields

    CERN Document Server

    Pestov, I

    2004-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent in local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution is given of the old problem to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which...

  18. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.

  19. Deceleration without dark matter

    CERN Document Server

    Jackson, J C; Dodgson, Marina

    1997-01-01

    Despite its title, a prominent conclusion is that if the Universe is spatially flat, then the best cosmological parameters are Omega_m=0.2, Omega_Lambda=0.8, with probable range 0.1dark matter model(Omega_0=1, Lambda_0=0) app...

  20. (Mainly) axion dark matter

    CERN Document Server

    Baer, Howard

    2015-01-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the F\\tilde{F} term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle-- the Higgs boson-- has been discovered, one might expect its mass to reside at the axion scale f_a~ 10^{11} GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dar...

  1. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  2. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  3. "Dark Matter searches at ATLAS"

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  4. Dark matter searches at ATLAS

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  5. A no-go theorem for the dark matter interpretation of the positron anomaly

    CERN Document Server

    Laletin, Maxim

    2016-01-01

    The overabundance of high-energy cosmic positrons, observed by PAMELA and AMS-02, can be considered as the consequence of dark matter decays or annihilations. We show that recent FERMI/LAT measurements of the isotropic diffuse gamma-ray background impose severe constraints on dark matter explanations and make them practically inconsistent.

  6. Dark Matter in a twisted bottle

    Science.gov (United States)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  7. Decoupling Dark Energy from Matter

    CERN Document Server

    Brax, Philippe; Martin, Jerome; Davis, Anne-Christine

    2009-01-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kahler potential, the coupling to matter remains small. However, the cosmological dynamics are largel...

  8. Branon dark matter: an introduction

    CERN Document Server

    Cembranos, J A R; Maroto, A L

    2004-01-01

    This is a brief introduction to branon physics and its role in the dark matter problem. We pay special attention to the phenomenological consequences, both in high-energy particle physics experiments and in astrophysical and cosmological observations.

  9. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology.

  10. Dark Matter search at LHC

    CERN Document Server

    Pazzini, Jacopo

    2016-01-01

    The results of recent searches for dark matter at the Large Hadron Collider at CERN are reported.The searches for dark matter performed with the first data collected during the LHC Run-2 by the CMS and ATLAS collaborations, corresponding to 2.1~\\fb and 3.2~\\fb of proton-proton collisions at $\\sqrt{s}=13~\\TeV$ respectively, are presented and categorized according to the event topology characteristics.No excesses are found above the standard model expectations and the results are interpreted in terms of upper limits in the production of dark matter using simplified theory models.The results are also translated into limits on the dark matter-nucleon spin-dependent and spin-independent cross section to compare with the results of direct detection experiments.

  11. Dark matter and cosmic structure

    OpenAIRE

    2012-01-01

    We review the current standard model for the evolution of cosmic structure, tracing its development over the last forty years and focusing specifically on the role played by numerical simulations and on aspects related to the nature of dark matter.

  12. Scalar Dark Matter Models with Significant Internal Bremsstrahlung

    CERN Document Server

    Giacchino, Federica; Tytgat, Michel H G

    2013-01-01

    There has been interest recently on particle physics models that may give rise to sharp gamma ray spectral features from dark matter annihilation. Because dark matter is supposed to be electrically neutral, it is challenging to build weakly interacting massive particle models that may accommodate both a large cross section into gamma rays at, say, the Galactic center, and the right dark matter abundance. In this work, we consider the gamma ray signatures of a class of scalar dark matter models that interact with Standard Model dominantly through heavy vector-like fermions (the vector-like portal). We focus on a real scalar singlet S annihilating into lepton-antilepton pairs. Because this two-body final-state annihilation channel is d-wave suppressed in the chiral limit, we show that virtual internal bremsstrahlung emission of a gamma ray gives a large correction, both today and at the time of freeze-out. For the sake of comparison, we confront this scenario to the familiar case of a Majorana singlet annihilat...

  13. Dark matter relic density in Gauss-Bonnet braneworld cosmology

    CERN Document Server

    Meehan, Michael T

    2014-01-01

    The relic density of symmetric and asymmetric dark matter in the Gauss-Bonnet braneworld cosmology is investigated. The reduced expansion rate in this scenario delays particle freeze-out, leading to relic abundances which are suppressed by up to $\\mathcal{O}(10^{-3})$. In this case the annihilation cross section must be reduced by up to two orders of magnitude below the canonical value $\\langle\\sigma v\\rangle \\approx 2\\times 10^{-26}$ cm$^3$s$^{-1}$ to reconcile the predicted dark matter density with observation. We use the latest observational bound $\\Omega_{DM}h^2 = 0.1187 \\pm 0.0017$ to constrain the various model parameters and discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.

  14. Secluded Dark Matter Coupled to a Hidden CFT

    CERN Document Server

    von Harling, Benedict

    2012-01-01

    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.

  15. Analyzing the Discovery Potential for Light Dark Matter.

    Science.gov (United States)

    Izaguirre, Eder; Krnjaic, Gordan; Schuster, Philip; Toro, Natalia

    2015-12-18

    In this Letter, we determine the present status of sub-GeV thermal dark matter annihilating through standard model mixing, with special emphasis on interactions through the vector portal. Within representative simple models, we carry out a complete and precise calculation of the dark matter abundance and of all available constraints. We also introduce a concise framework for comparing different experimental approaches, and use this comparison to identify important ranges of dark matter mass and couplings to better explore in future experiments. The requirement that dark matter be a thermal relic sets a sharp sensitivity target for terrestrial experiments, and so we highlight complementary experimental approaches that can decisively reach this milestone sensitivity over the entire sub-GeV mass range.

  16. Determination of Dark Matter Properties at High-Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer

    2006-11-05

    If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the nextgeneration of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.

  17. Determination of Dark Matter Properties at High-Energy Collider

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer

    2006-02-24

    If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the next generation of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.

  18. Gamma-rays from Heavy Minimal Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cely, Camilo [Service de Physique Théorique, CP225, Université Libre de Bruxelles,Bld du Triomphe, 1050 Brussels (Belgium); Ibarra, Alejandro; Lamperstorfer, Anna S. [Physik-Department T30d, Technische Universität München,James-Franck-Straße, D-85748 Garching (Germany); Tytgat, Michel H.G. [Service de Physique Théorique, CP225, Université Libre de Bruxelles,Bld du Triomphe, 1050 Brussels (Belgium)

    2015-10-27

    Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2){sub L}, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.

  19. Simulated Milky Way analogues: implications for dark matter indirect searches

    CERN Document Server

    Calore, F; Lovell, M; Bertone, G; Schaller, M; Frenk, C S; Crain, R A; Schaye, J; Theuns, T; Trayford, J W

    2015-01-01

    We study high-resolution hydrodynamic simulations of Milky Way type galaxies obtained within the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) project, and identify the those that best satisfy observational constraints on the Milky Way total stellar mass, rotation curve, and galaxy shape. Contrary to mock galaxies selected on the basis of their total virial mass, the Milky Way analogues so identified consistently exhibit very similar dark matter profiles inside the solar circle, therefore enabling more accurate predictions for indirect dark matter searches. We find in particular that high resolution simulated haloes satisfying observational constraints exhibit, within the inner few kiloparsecs, dark matter profiles shallower than those required to explain the so-called Fermi GeV excess via dark matter annihilation.

  20. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  1. Thermal dark matter from a highly decoupled sector

    Science.gov (United States)

    Berlin, Asher; Hooper, Dan; Krnjaic, Gordan

    2016-11-01

    It has recently been shown that if the dark matter is in thermal equilibrium with a sector that is highly decoupled from the Standard Model, it can freeze out with an acceptable relic abundance, even if the dark matter is as heavy as ˜1 - 100 PeV . In such scenarios, both the dark and visible sectors are populated after inflation, but with independent temperatures. The lightest particle in the dark sector will be generically long-lived and can come to dominate the energy density of the Universe. Upon decaying, these particles can significantly reheat the visible sector, diluting the abundance of dark matter and thus allowing for dark matter particles that are much heavier than conventional WIMPs. In this paper, we present a systematic and pedagogical treatment of the cosmological history in this class of models, emphasizing the simplest scenarios in which a dark matter candidate annihilates into hidden sector particles which then decay into visible matter through the vector, Higgs, or lepton portals. In each case, we find ample parameter space in which very heavy dark matter particles can provide an acceptable thermal relic abundance. We also discuss possible extensions of models featuring these dynamics.

  2. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  3. Tachyonic models of dark matter

    CERN Document Server

    Nikitin, Igor

    2016-01-01

    We consider a spherically symmetric stationary problem in General Relativity, including a black hole, inflow of normal and tachyonic matter and outflow of tachyonic matter. Computations in a weak field limit show that the resulting concentration of matter around the black hole leads to gravitational effects equivalent to those associated with dark matter halo. In particular, the model reproduces asymptotically constant galactic rotation curves, if the tachyonic flows of the central supermassive black hole in the galaxy are considered as a main contribution.

  4. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  5. Dark Matter from Starobinsky Supergravity

    OpenAIRE

    Addazi, Andrea; Khlopov, Maxim Yu.

    2017-01-01

    We review our recent results on dark matter from Starobinsky supergravity. In this context, a natural candidate for Cold Dark Matter is the gravitino. On the other hand, assuming the supersymmetry broken at scales much higher than the electroweak scale, gravitinos are super heavy particles. In this case, they may be non-thermally produced during inflation, in turn originated by the scalaron field with Starobinsky's potential.Assuming gravitinos as Lightest supersymmetric particles (LSSP), the...

  6. Dark Matter searches at CMS

    CERN Document Server

    Kumar, Ashok

    2016-01-01

    This talk describes searches for directly produced Dark Matter particles in CMS. The searches are performed using the datasets recorded with the CMS detector in proton-proton collisions at center-of-mass energies of 8 and 13 TeV. Final states with a monojet, monophoton, and monolepton signature are among the final states considered, as well as dark-matter particles produced in association with bottom and top quarks.

  7. Dark Matter at the LHC and IceCube - a Simplified Model Interpretation

    CERN Document Server

    Heisig, Jan

    2015-01-01

    We present an interpretation of searches for Dark Matter in a simplified model approach. Considering Majorana fermion Dark Matter and a neutral vector mediator with axial-vector interactions we explore mono-jet searches at the LHC and searches for neutrinos from Dark Matter annihilation in the Sun at IceCube and place new limits on model parameter space. Further, we compare the simplified model with its effective field theory approximation and discuss the validity of the latter one.

  8. Sterile neutrinos as dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Widrow, L.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics]|[Toronto Univ., ON (Canada). Canadian Inst. for Theoretical Astrophysics

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  9. Dark matter and global symmetries

    Science.gov (United States)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  10. Sterile neutrino portal to Dark Matter I: The $U(1)_{B-L}$ case

    CERN Document Server

    Escudero, Miguel; Sanz, Verónica

    2016-01-01

    In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global $U(1)_{B-L}$, broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars - the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron - and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and charged leptons or neutrinos produce unusual signatures for indirect searches.

  11. Leptophilic dark matter confronts AMS-02 cosmic-ray positron flux

    Science.gov (United States)

    Cao, Qing-Hong; Chen, Chuan-Ren; Gong, Ti

    2017-02-01

    With the measurement of positron flux published recently by AMS-02 collaboration, we show how the leptophilic dark matter fits the observation. We obtain the percentages of different products of dark matter annihilation that can best describe the flux of high energy positrons observed by AMS. We show that dark matter annihilates predominantly into $\\tau\\tau$ pair, while both $ee$ and $\\mu\\mu$ final states should be less than $20\\%$. When gauge boson final states are included, the best branching ratio of needed $\\tau\\tau$ mode reduces.

  12. Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter

    Directory of Open Access Journals (Sweden)

    Gammaldi Viviana

    2016-01-01

    Full Text Available It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W− gauge boson and preliminary results for antiprotons are presented.

  13. Modified Gravity Explains Dark Matter?

    CERN Document Server

    Katsuragawa, Taishi

    2016-01-01

    We explore a new horizon of modified gravity from the viewpoint of the particle physics. As a concrete example, we take the $F(R)$ gravity to raise a question: can a scalar particle ("scalaron") derived from the $F(R)$ gravity be a dark matter candidate? We place the limit on the form of function $F(R)$ from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.

  14. Impact of Mass Generation for Simplified Dark Matter Models

    CERN Document Server

    Bell, Nicole F; Leane, Rebecca K

    2016-01-01

    In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, on...

  15. Cold dark matter heats up.

    Science.gov (United States)

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  16. Indirect detection constraints on s- and t-channel simplified models of dark matter

    Science.gov (United States)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim

    2016-09-01

    Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.

  17. Indirect Detection Constraints on s and t Channel Simplified Models of Dark Matter

    CERN Document Server

    Carpenter, Linda M; Goodman, Jessica; Linden, Tim

    2016-01-01

    Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross-section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as $b\\bar{b}$ or $\\tau^+\\tau^-$. In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the medi...

  18. Impact of squark flavour violation on neutralino dark matter

    CERN Document Server

    Herrmann, Björn; Boulc'h, Quentin Le

    2011-01-01

    We discuss the possibility of new sources of flavour violation in the squark sector of supersymmetric models in the context of the dark matter relic density. We show that the corresponding non-minimal flavour violation terms in the squark mass matrices can have an important impact on the thermally averaged (co)annihilation cross section of the neutralino, and in consequence can modify its predicted relic density. We discuss in detail the relevant effects and present a numerical study of neutralino annihilation and coannihilation in this context. We also comment on the LHC phenomenology of the corresponding scenarios.

  19. Impact of squark flavor violation on neutralino dark matter

    Science.gov (United States)

    Herrmann, Björn; Klasen, Michael; Le Boulc'H, Quentin

    2011-11-01

    We discuss the possibility of new sources of flavor violation in the squark sector of supersymmetric models in the context of the dark matter relic density. We show that the corresponding nonminimal flavor violation terms in the squark mass matrices can have an important impact on the thermally averaged (co)annihilation cross section of the neutralino, and in consequence can modify its predicted relic density. We discuss in detail the relevant effects and present a numerical study of neutralino annihilation and coannihilation in this context. We also comment on the LHC phenomenology of the corresponding scenarios.

  20. Impact of squark flavour violation on neutralino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Bjoern [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Le Boulc' h, Quentin [Univ. Joseph Fourier/CNRS-IN2P3/INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie

    2011-06-15

    We discuss the possibility of new sources of flavour violation in the squark sector of supersymmetric models in the context of the dark matter relic density. We show that the corresponding non-minimal flavour violation terms in the squark mass matrices can have an important impact on the thermally averaged (co)annihilation cross section of the neutralino, and in consequence can modify its predicted relic density. We discuss in detail the relevant effects and present a numerical study of neutralino annihilation and coannihilation in this context. We also comment on the LHC phenomenology of the corresponding scenarios. (orig.)

  1. Exploring SUSY light Higgs boson scenarios via dark matter experiments

    CERN Document Server

    Das, Debottam; Mambrini, Yann

    2010-01-01

    We examine the dark matter phenomenology in supersymmetric light higgs boson scenarios, adapting nonuniversal Higgs masses at the gauge coupling unification scale. The correct relic density is obtained mostly through the annihilation into a pseudoscalar $A$, which gives high values for the self-annihilation cross-section at present times. Our analysis shows that most part of the $A$ pole region can produce detectable gamma-rays and antiproton signals, and still be compatible with with recent direct detection data from XENON100 and CDMS-II.

  2. Explaining Dark Matter and $B$ Decay Anomalies with an $L_\\mu - L_\\tau$ Model

    OpenAIRE

    Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano; Farinaldo S. Queiroz(Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, U.S.A.)

    2016-01-01

    We present a dark sector model based on gauging the $L_\\mu - L_\\tau$ symmetry that addresses anomalies in $b \\rightarrow s \\mu^+ \\mu^-$ decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the $Z^\\prime$ gauge boson of the $L_{\\mu}-L_{\\tau}$ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and c...

  3. Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter

    CERN Document Server

    Elor, Gilly; Slatyer, Tracy R; Xue, Wei

    2015-01-01

    If dark matter inhabits an expanded "hidden sector", annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e+e- and antiprotons) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for such cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter annihilation cross section by up to an order of magnitude in either directi...

  4. Sterile neutrinos and indirect dark matter searches in IceCube

    CERN Document Server

    Arguelles, Carlos A

    2012-01-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter--nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  5. A minimal model for two-component dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E. [Institut fuer theoretische Physik, Universitaet Muenster, Wilhelm-Klemm-Strasse 9,D-48149 Muenster (Germany)

    2015-07-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z{sub 2} symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  6. A minimal model for two-component dark matter

    Science.gov (United States)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-09-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  7. A review of indirect searches for particle dark matter

    CERN Document Server

    Gaskins, Jennifer M

    2016-01-01

    The indirect detection of dark matter annihilation and decay using observations of photons, charged cosmic rays, and neutrinos offers a promising means of identifying the particle nature of this elusive component of the universe. The last decade has seen substantial advances in observational data sets, complemented by new insights from numerical simulations, which together have enabled for the first time strong constraints on dark matter particle models, and have revealed several intriguing hints of possible signals. This review provides an introduction to indirect detection methods and an overview of recent results in the field.

  8. Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher [Chicago U.; Gratia, Pierre [Chicago U.; Hooper, Dan [Chicago U., Astron. Astrophys. Ctr.; McDermott, Samuel D. [Michigan U., MCTP

    2014-07-24

    The gamma-ray excess observed from the Galactic Center can be in