WorldWideScience

Sample records for annealing

  1. multicast utilizando Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Yezid Donoso

    2005-01-01

    Full Text Available En este artículo se presenta un método de optimización multiobjetivo para la solución del problema de balanceo de carga en redes de transmisión multicast, apoyándose en la aplicación de la meta-heurística de Simulated Annealing (Recocido Simulado. El método minimiza cuatro parámetros básicos para garantizar la calidad de servicio en transmisiones multicast: retardo origen destino, máxima utilización de enlaces, ancho de banda consumido y número de saltos. Los resultados devueltos por la heurística serán comparados con los resultados arrojados por el modelo matemático propuesto en investigaciones anteriores.

  2. Austenite formation during intercritical annealing

    OpenAIRE

    A. Lis; J. Lis

    2008-01-01

    Purpose: of this paper is the effect of the soft annealing of initial microstructure of the 6Mn16 steel on the kinetics of the austenite formation during next intercritical annealing.Design/methodology/approach: Analytical TEM point analysis with EDAX system attached to Philips CM20 was used to evaluate the concentration of Mn, Ni and Cr in the microstructure constituents of the multiphase steel and mainly Bainite- Martensite islands.Findings: The increase in soft annealing time from 1-60 hou...

  3. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......-root relationship between the rate of change of resistivity and the resistivity change. The saturation defect density at room temperature is estimated on the basis of a model for defect creation in cuprous oxide....

  4. Quantum annealing with manufactured spins.

    Science.gov (United States)

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

  5. Thermal Annealing of Exfoliated Graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen

    2013-01-01

    Full Text Available Monolayer graphene is obtained by mechanical exfoliation using scotch tapes. The effects of thermal annealing on the tape residues and edges of graphene are researched. Atomic force microscope images showed that almost all the residues could be removed in N2/H2 at 400°C but only agglomerated in vacuum. Raman spectra of the annealed graphene show both the 2D peak and G peak blueshift. The full width at half maximum (FWHM of the 2D peak becomes larger and the intensity ratio of the 2D peak to G peak decreases. The edges of graphene are completely attached to the surface of the substrate after annealing.

  6. Feasibility of Simulated Annealing Tomography

    CERN Document Server

    Vo, Nghia T; Moser, Herbert O

    2014-01-01

    Simulated annealing tomography (SAT) is a simple iterative image reconstruction technique which can yield a superior reconstruction compared with filtered back-projection (FBP). However, the very high computational cost of iteratively calculating discrete Radon transform (DRT) has limited the feasibility of this technique. In this paper, we propose an approach based on the pre-calculated intersection lengths array (PILA) which helps to remove the step of computing DRT in the simulated annealing procedure and speed up SAT by over 300 times. The enhancement of convergence speed of the reconstruction process using the best of multiple-estimate (BoME) strategy is introduced. The performance of SAT under different conditions and in comparison with other methods is demonstrated by numerical experiments.

  7. Recursive simulation of quantum annealing

    CERN Document Server

    Sowa, A P; Samson, J H; Savel'ev, S E; Zagoskin, A M; Heidel, S; Zúñiga-Anaya, J C

    2015-01-01

    The evaluation of the performance of adiabatic annealers is hindered by lack of efficient algorithms for simulating their behaviour. We exploit the analyticity of the standard model for the adiabatic quantum process to develop an efficient recursive method for its numerical simulation in case of both unitary and non-unitary evolution. Numerical simulations show distinctly different distributions for the most important figure of merit of adiabatic quantum computing --- the success probability --- in these two cases.

  8. Residual entropy and simulated annealing

    OpenAIRE

    Ettelaie, R.; Moore, M. A.

    1985-01-01

    Determining the residual entropy in the simulated annealing approach to optimization is shown to provide useful information on the true ground state energy. The one-dimensional Ising spin glass is studied to exemplify the procedure and in this case the residual entropy is related to the number of one-spin flip stable metastable states. The residual entropy decreases to zero only logarithmically slowly with the inverse cooling rate.

  9. Strong white photoluminescence from annealed zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Zhenhua, E-mail: baizh46@gmail.com [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-01-15

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies.

  10. Loviisa Unit One: Annealing - healing

    Energy Technology Data Exchange (ETDEWEB)

    Kohopaeae, J.; Virsu, R. [ed.; Henriksson, A. [ed.

    1997-11-01

    Unit 1 of the Loviisa nuclear powerplant was annealed in connection with the refuelling outage in the summer of 1996. This type of heat treatment restored the toughness properties of the pressure vessel weld, which had been embrittled be neutron radiation, so that it is almost equivalent to a new weld. The treatment itself was an ordinary metallurgical procedure that took only a few days. But the material studies that preceded it began over fifteen years ago and have put IVO at the forefront of world-wide expertise in the area of radiation embrittlement

  11. Keystream Generator Based On Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Ayad A. Abdulsalam

    2011-01-01

    Full Text Available Advances in the design of keystream generator using heuristic techniques are reported. A simulated annealing algorithm for generating random keystream with large complexity is presented. Simulated annealing technique is adapted to locate these requirements. The definitions for some cryptographic properties are generalized, providing a measure suitable for use as an objective function in a simulated annealing algorithm, seeking randomness that satisfy both correlation immunity and the large linear complexity. Results are presented demonstrating the effectiveness of the method.

  12. DOE`s annealing prototype demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  13. Modernizing quantum annealing using local searches

    Science.gov (United States)

    Chancellor, Nicholas

    2017-02-01

    I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques.

  14. Cylinder packing by simulated annealing

    Directory of Open Access Journals (Sweden)

    M. Helena Correia

    2000-12-01

    Full Text Available This paper is motivated by the problem of loading identical items of circular base (tubes, rolls, ... into a rectangular base (the pallet. For practical reasons, all the loaded items are considered to have the same height. The resolution of this problem consists in determining the positioning pattern of the circular bases of the items on the rectangular pallet, while maximizing the number of items. This pattern will be repeated for each layer stacked on the pallet. Two algorithms based on the meta-heuristic Simulated Annealing have been developed and implemented. The tuning of these algorithms parameters implied running intensive tests in order to improve its efficiency. The algorithms developed were easily extended to the case of non-identical circles.Este artigo aborda o problema de posicionamento de objetos de base circular (tubos, rolos, ... sobre uma base retangular de maiores dimensões. Por razões práticas, considera-se que todos os objetos a carregar apresentam a mesma altura. A resolução do problema consiste na determinação do padrão de posicionamento das bases circulares dos referidos objetos sobre a base de forma retangular, tendo como objetivo a maximização do número de objetos estritamente posicionados no interior dessa base. Este padrão de posicionamento será repetido em cada uma das camadas a carregar sobre a base retangular. Apresentam-se dois algoritmos para a resolução do problema. Estes algoritmos baseiam-se numa meta-heurística, Simulated Annealling, cuja afinação de parâmetros requereu a execução de testes intensivos com o objetivo de atingir um elevado grau de eficiência no seu desempenho. As características dos algoritmos implementados permitiram que a sua extensão à consideração de círculos com raios diferentes fosse facilmente conseguida.

  15. Precision Laser Annealing of Focal Plane Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeRose, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Starbuck, Andrew Lea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verley, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, Mark W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  16. Entanglement in a Quantum Annealing Processor

    Science.gov (United States)

    2016-09-07

    quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm , quantum annealing (QA), provides a... algorithm such as quantum annealing (QA), provides a more practical approach in the near term [6,7]. However, one of the main features that makes such...thermal equilibrium, an encouraging result as any practical hard- ware designed to run a quantum algorithm will be inevi- tably coupled to a thermal

  17. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    Science.gov (United States)

    2016-08-25

    classical simulated annealing6 that aims to take advantage of quantum tunnelling. In classical cooling optimization algorithms such as simulated annealing...to have established a quantum speedup. To this end, one would have to demonstrate that no known classical algorithm finds the optimal solution as fast...classical algorithms such as Quantum Monte Carlo or by employing cluster update methods. However, the collective tunnelling phenomena demonstrated here

  18. Quantum Adiabatic Evolution Algorithms versus Simulated Annealing

    CERN Document Server

    Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam

    2002-01-01

    We explain why quantum adiabatic evolution and simulated annealing perform similarly in certain examples of searching for the minimum of a cost function of n bits. In these examples each bit is treated symmetrically so the cost function depends only on the Hamming weight of the n bits. We also give two examples, closely related to these, where the similarity breaks down in that the quantum adiabatic algorithm succeeds in polynomial time whereas simulated annealing requires exponential time.

  19. Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys

    Indian Academy of Sciences (India)

    Svetlana Nestorovic

    2005-08-01

    This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn, Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were followed in order to investigate the anneal hardening effect. This effect was observed after secondary annealing also. Au and Al have been found to be more effective in inducing anneal hardening effect.

  20. Comparative study of the performance of quantum annealing and simulated annealing.

    Science.gov (United States)

    Nishimori, Hidetoshi; Tsuda, Junichi; Knysh, Sergey

    2015-01-01

    Relations of simulated annealing and quantum annealing are studied by a mapping from the transition matrix of classical Markovian dynamics of the Ising model to a quantum Hamiltonian and vice versa. It is shown that these two operators, the transition matrix and the Hamiltonian, share the eigenvalue spectrum. Thus, if simulated annealing with slow temperature change does not encounter a difficulty caused by an exponentially long relaxation time at a first-order phase transition, the same is true for the corresponding process of quantum annealing in the adiabatic limit. One of the important differences between the classical-to-quantum mapping and the converse quantum-to-classical mapping is that the Markovian dynamics of a short-range Ising model is mapped to a short-range quantum system, but the converse mapping from a short-range quantum system to a classical one results in long-range interactions. This leads to a difference in efficiencies that simulated annealing can be efficiently simulated by quantum annealing but the converse is not necessarily true. We conclude that quantum annealing is easier to implement and is more flexible than simulated annealing. We also point out that the present mapping can be extended to accommodate explicit time dependence of temperature, which is used to justify the quantum-mechanical analysis of simulated annealing by Somma, Batista, and Ortiz. Additionally, an alternative method to solve the nonequilibrium dynamics of the one-dimensional Ising model is provided through the classical-to-quantum mapping.

  1. Nanocrystalline magnetic materials obtained by flash annealing

    Directory of Open Access Journals (Sweden)

    R.K. Murakami

    1999-04-01

    Full Text Available The aim of the present work was to produce enhanced-remanence nanocrystalline magnetic material by crystallizing amorphous or partially amorphous Pr4.5Fe77B18.5 alloys by the flash annealing process, also known as the dc-Joule heating process, and to determine the optimal conditions for obtaining good magnetic coupling between the magnetic phases present in this material. Ribbons of Pr4.5Fe77B18.5 were produced by melt spinning and then annealed for 10-30 s at temperatures 500 - 640 °C by passing current through the sample to develop the enhanced-remanence nanocrystalline magnetic material. These materials were studied by X-ray diffraction, differential thermal analysis and magnetic measurements. Coercivity increases of up to 15% were systematically observed in relation to furnace-annealed material. Two different samples were carefully examined: (i a sample annealed at 600 °C which showed the highest coercive field Hc and remanence ratio Mr/Ms and (ii a sample annealed at 520 °C which showed phase separation in the second quadrant demagnetization curve. Our results are in agreement with other studies which show that flash annealing improves the magnetic properties of some amorphous ferromagnetic ribbons.

  2. An Application of Simulated Annealing to Scheduling Army Unit Training

    Science.gov (United States)

    1986-10-01

    Simulated annealing operates by analogy to the metalurgy process which strengthens metals through successive heating and cooling. The method is highly...diminishing returns is observed. The simulated annealing heuristic operates by analogy to annealing in physical systems. Annealing in a physical

  3. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  4. Quantum annealing correction with minor embedding

    Science.gov (United States)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  5. Enhanced piecewise regression based on deterministic annealing

    Institute of Scientific and Technical Information of China (English)

    ZHANG JiangShe; YANG YuQian; CHEN XiaoWen; ZHOU ChengHu

    2008-01-01

    Regression is one of the important problems in statistical learning theory. This paper proves the global convergence of the piecewise regression algorithm based on deterministic annealing and continuity of global minimum of free energy w.r.t temperature, and derives a new simplified formula to compute the initial critical temperature. A new enhanced piecewise regression algorithm by using "migration of prototypes" is proposed to eliminate "empty cell" in the annealing process. Numerical experiments on several benchmark datasets show that the new algo-rithm can remove redundancy and improve generalization of the piecewise regres-sion model.

  6. Annealing study of a bistable cluster defect

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra, E-mail: alexandra.junkes@desy.d [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Makarenko, Leonid F. [Belarusian State University, Minsk (Belarus); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)

    2010-01-11

    This work deals with the influence of neutron and proton induced cluster related defects on the properties of n-type silicon detectors. Defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) technique, while the full depletion voltage and the reverse current were extracted from capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The annealing behaviour of the reverse current can be correlated with the annealing of the cluster related defect levels labeled E4a and E4b by making use of their bistability. This bistability was characterised by isochronal and isothermal annealing studies and it was found that the development with increasing annealing temperature is similar to that of divacancies. This supports the assumption that E4a and E4b are vacancy related defects. In addition we observe an influence of the disordered regions on the shape and height of the DLTS or TSC signals corresponding to point defects like the vacancy-oxygen complex.

  7. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.;

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  8. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  9. Influence of time of annealing on anneal hardening effect of a cast CuZn alloy

    Directory of Open Access Journals (Sweden)

    Nestorović Svetlana

    2003-01-01

    Full Text Available Investigated cast copper alloy containing 8at%Zn of a solute. For comparison parallel specimens made from cast pure copper. Copper and copper alloy were subjected to cold rolling with different a final reduction of 30,50 and 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to recrystallization temperature. After that the values of hardness, strength and electrical conductivity were measured and X-ray analysis was performed. These investigations show that anneal hardening effect at alloys was attained under recrystallization temperature in the temperature range of 180-3000C, followed with an increase in hardness. The amount of strengthening increase with increasing degree of prior cold work. Also the X-ray analysis show the change of lattice parameter during annealing when anneal hardening effect was attained.

  10. An Effect of Annealing on Shielding Properties of Shungite

    Science.gov (United States)

    Belousova, E. S.; Mahmoud, M. Sh.; Lynkou, L. M.

    2013-05-01

    Annealing of shungite is studied in oxidizing conditions in a chamber with NH4Cl, and in vacuum at 900 °C for 2h. Frequency dependencies of transmission and reflection coefficients of annealed shungite are measured in the frequency range of 8-12 GHz. The minimum reflection at 8-10 GHz was shown for shungite annealed in the oxidizing atmosphere.

  11. Simulated annealing algorithm for optimal capital growth

    Science.gov (United States)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  12. Annealing free magnetic tunnel junction sensors

    Science.gov (United States)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  13. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    Science.gov (United States)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  14. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering.

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  15. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  16. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  17. Shortcuts to adiabaticity for quantum annealing

    Science.gov (United States)

    Takahashi, Kazutaka

    2017-01-01

    We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.

  18. Interference Alignment Using Variational Mean Field Annealing

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Guillaud, Maxime; Fleury, Bernard Henri

    2014-01-01

    We study the problem of interference alignment in the multiple-input multiple- output interference channel. Aiming at minimizing the interference leakage power relative to the receiver noise level, we use the deterministic annealing approach to solve the optimization problem. In the corresponding...... for interference alignment. We also show that the iterative leakage minimization algorithm by Gomadam et al. and the alternating minimization algorithm by Peters and Heath, Jr. are instances of our method. Finally, we assess the performance of the proposed algorithm through computer simulations....

  19. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  20. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  1. Annealing effect and stability of carbon nanotubes in hydrogen flame

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spectra decreased with the increase in the annealing time. The CNTs were not stable in the hydrogen flame and the etching rate of the CNTs by hydrogen flame was very high. The hydrogen flame annealing had some effects on improving the crystallinity of CNTs.

  2. Annealing-induced Grain Refinement in a Nanostructured Ferritic Steel

    Institute of Scientific and Technical Information of China (English)

    Limin Wang; Zhenbo Wangt; Sheng Guo; Ke Lu

    2012-01-01

    A nanostructured surface layer with a mean ferrite grain size of -8 nm was produced on a Fe-gCr steel by means of surface mechanical attrition treatment. Upon annealing, ferrite grains coarsen with increasing temperature and their sizes increase to -40 nm at 973 K. Further increasing annealing temperature leads to an obvious reduction of ferrite grain sizes, to -14 nm at 1173 K. The annealing-induced grain refinement is analyzed in terms of phase transformations in the nanostructured steel.

  3. Human pose tracking by parametric annealing

    CERN Document Server

    Kaliamoorthi, Prabhu

    2012-01-01

    Model based methods to marker-free motion capture have a very high computational overhead that make them unattractive. In this paper we describe a method that improves on existing global optimization techniques to tracking articulated objects. Our method improves on the state-of-the-art Annealed Particle Filter (APF) by reusing samples across annealing layers and by using an adaptive parametric density for diffusion. We compare the proposed method with APF on a scalable problem and study how the two methods scale with the dimensionality, multi-modality and the range of search. Then we perform sensitivity analysis on the parameters of our algorithm and show that it tolerates a wide range of parameter settings. We also show results on tracking human pose from the widely-used Human Eva I dataset. Our results show that the proposed method reduces the tracking error despite using less than 50% of the computational resources as APF. The tracked output also shows a significant qualitative improvement over APF as dem...

  4. Energy conservation in cupolas and annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Takeno, S.; Kumagaya, M.; Azuma, T.

    1984-01-01

    Successive reductions in the amount of coke and fuel oil used in cupolas and annealing furnaces are reported. In the cupolas, 2% oxygen enrichment resulted in a 0.9% drop in coke ratio and a 13.3% increase in output of pig iron. Coke ratios of 9.3-9.5% were obtained by tuyere blow-in of inexpensive carbon materials instead of expensive coke, by the use of formed coke, and by employing a dehumidified blast. In the case of the fuel oil-fired annealing furnaces, fuel oil consumption rates were reduced by treating two charges per heat instead of one. Energy consumption was successively reduced by 25-71% by 1) adopting a ceramic fibre heat-insulating material, 2) changing to low-oxygen combustion by increasing the number of burners, 3) lengthening the time during which the furnace high-temperature zone is maintained, 4) raising the combustion chamber load by using ceramic fibres in the furnace casing. 3 references.

  5. MEDICAL STAFF SCHEDULING USING SIMULATED ANNEALING

    Directory of Open Access Journals (Sweden)

    Ladislav Rosocha

    2015-07-01

    Full Text Available Purpose: The efficiency of medical staff is a fundamental feature of healthcare facilities quality. Therefore the better implementation of their preferences into the scheduling problem might not only rise the work-life balance of doctors and nurses, but also may result into better patient care. This paper focuses on optimization of medical staff preferences considering the scheduling problem.Methodology/Approach: We propose a medical staff scheduling algorithm based on simulated annealing, a well-known method from statistical thermodynamics. We define hard constraints, which are linked to legal and working regulations, and minimize the violations of soft constraints, which are related to the quality of work, psychic, and work-life balance of staff.Findings: On a sample of 60 physicians and nurses from gynecology department we generated monthly schedules and optimized their preferences in terms of soft constraints. Our results indicate that the final value of objective function optimized by proposed algorithm is more than 18-times better in violations of soft constraints than initially generated random schedule that satisfied hard constraints.Research Limitation/implication: Even though the global optimality of final outcome is not guaranteed, desirable solutionwas obtained in reasonable time. Originality/Value of paper: We show that designed algorithm is able to successfully generate schedules regarding hard and soft constraints. Moreover, presented method is significantly faster than standard schedule generation and is able to effectively reschedule due to the local neighborhood search characteristics of simulated annealing.

  6. Magnetic field annealing for improved creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  7. Structure and magnetism of Ni/Ti multilayers on annealing

    Indian Academy of Sciences (India)

    Surendra Singh; Saibal Basu; P Bhatt

    2008-11-01

    Neutron reflectometry study has been carried out in unpolarized (NR) and polarized (PNR) mode to understand the structure and magnetic properties of alloy formation at the interfaces of Ni/Ti multilayers on annealing. The PNR data from annealed sample shows a noticeable change with respect to the as-deposited sample. These changes are: a prominent shift of the multilayer Bragg peak to a higher angle and a decrease in the intensity of the Bragg peak. The PNR data from annealed sample revealed the formation of magnetically dead alloy layers at the interfaces. Changes in roughness parameters of the interfaces on annealing were also observed in the PNR data.

  8. A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling

    Institute of Scientific and Technical Information of China (English)

    SHU Wanneng; ZHENG Shijue

    2006-01-01

    In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.

  9. Annealing effects on deuterium retention behavior in damaged tungsten

    Directory of Open Access Journals (Sweden)

    S. Sakurada

    2016-12-01

    Full Text Available Effects of annealing after/under iron (Fe ion irradiation on deuterium (D retention behavior in tungsten (W were studied. The D2 TDS spectra as a function of heating temperature for 0.1dpa damaged W showed that the D retention was clearly decreased as the annealing temperature was increased. In particular, the desorption of D trapped by voids was largely reduced by annealing at 1173K. The TEM observation indicated that the size of dislocation loops was clearly grown, and its density was decreased by the annealing above 573K. After annealing at 1173K, almost all the dislocation loops were recovered. The results of positron annihilation spectroscopy suggested that the density of vacancy-type defects such as voids, was decreased as the annealing temperature was increased, while its size was increased, indicating that the D retention was reduced by the recovery of the voids. Furthermore, it was found that the desorption temperature of D trapped by the voids for damaged W above 0.3dpa was shifted toward higher temperature side. These results lead to a conclusion that the D retention behavior is controlled by defect density. The D retention in the samples annealed during irradiation was less than that annealed after irradiation. This result shows that defects would be quickly annihilated before stabilization by annealing during irradiation.

  10. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  11. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    The hierarchical network problem is the problem of finding the least cost network, with nodes divided into groups, edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of hierarchical networks comes from telecommunication networks where hierarchies exist. Hierarchical...... networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub......-algorithm uses a construction algorithm to determine edges and route the demand. Performance for different versions of the algorithm are reported in terms of runtime and quality of the solutions. The algorithm is able to find solutions of reasonable quality in approximately 1 hour for networks with 100 nodes....

  12. Rapid thermal anneal of arsenic implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, A.

    1985-01-01

    The distribution of arsenic implanted into silicon during rapid thermal anneal (RTA) was investigated. Secondary ion mass spectrometry, Rutherford backscattering spectrometry, and channeling techniques were used for the measurement of the total (chemical) dopant profile. The electrically active dopant profiles were measured with sheet resistance, sheet-resistance maps, spreading resistance and pinch resistors. It was found that arsenic profile after RTA is influenced by many parameters including crystallographic orientation of the sample, temperature gradient, and defect structure in the surface part affected by heavy arsenic implant. A diffusion model based on inhomogeneous medium was examined. Exact solutions of the diffusion equation were obtained for the rectangular and Gaussian initial dopant profiles. Calculated results are compared to the measured profiles. It is concluded that model satisfactory predicts the major features of the arsenic diffusion into silicon during RTA.

  13. Rapid Thermal Anneal of Arsenic Implanted Silicon.

    Science.gov (United States)

    Feygenson, Anatoly

    1985-12-01

    The distribution of arsenic implanted into silicon during rapid thermal anneal (RTA) has been investigated. Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and channeling techniques were used for the measurement of the total (chemical) dopant profile. The electrically active dopant profiles were measured with sheet resistance, sheet resistance maps, spreading resistance, and pinch resistors. It has been found that arsenic profile after RTA is influenced by many parameters including crystallographic orientation of the sample, temperature gradient, and defect structure in the surface part affected by heavy arsenic implant. A diffusion model based on inhomogeneous medium was examined. Exact solutions of the diffusion equation were obtained for the rectangular and Gaussian initial dopant profiles. Calculated results are compared to the measured profiles. It is concluded that model satisfactory predicts the major features of the arsenic diffusion into silicon during RTA.

  14. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  16. Annealing Behavior of Si1-xGex/Si Heterostructures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of Si1-xGex/Si heterostructures under different annealing conditions has been studied. It is found that while RTA treatment diminishes the point defects, it introduces the misfit dislocations into Si1-xGex layers at same time. Higher annealing temperature will result in the propagation of misfit dislocations and then the total destruction of the crystal quality.

  17. Parameters Optimization of Low Carbon Low Alloy Steel Annealing Process

    Institute of Scientific and Technical Information of China (English)

    Maoyu ZHAO; Qianwang CHEN

    2013-01-01

    A suitable match of annealing process parameters is critical for obtaining the fine microstructure of material.Low carbon low alloy steel (20CrMnTi) was heated for various durations near Ac temperature to obtain fine pearlite and ferrite grains.Annealing temperature and time were used as independent variables,and material property data were acquired by orthogonal experiment design under intercritical process followed by subcritical annealing process (IPSAP).The weights of plasticity (hardness,yield strength,section shrinkage and elongation) of annealed material were calculated by analytic hierarchy process,and then the process parameters were optimized by the grey theory system.The results observed by SEM images show that microstructure of optimization annealing material are consisted of smaller lamellar pearlites (ferrite-cementite)and refining ferrites which distribute uniformly.Morphologies on tension fracture surface of optimized annealing material indicate that the numbers of dimple fracture show more finer toughness obviously comparing with other annealing materials.Moreover,the yield strength value of optimization annealing material decreases apparently by tensile test.Thus,the new optimized strategy is accurate and feasible.

  18. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation ...

  19. Remote sensing of atmospheric duct parameters using simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiao-Feng; Huang Si-Xun; Xiang Jie; Shi Wei-Lai

    2011-01-01

    Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper,we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements),and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison,the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm,while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.

  20. Influence of time of annealing on anneal hardening effect of a cast CuZn alloy

    OpenAIRE

    Nestorović Svetlana; Ivanić Lj.; Marković Desimir

    2003-01-01

    Investigated cast copper alloy containing 8at%Zn of a solute. For comparison parallel specimens made from cast pure copper. Copper and copper alloy were subjected to cold rolling with different a final reduction of 30,50 and 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to recrystallization temperature. After that the values of hardness, strength and electrical conductivity were measured and X-ray analysis was performed. These investigatio...

  1. Annealing of ion-implanted GaN

    CERN Document Server

    Burchard, A; Stötzler, A; Weissenborn, R; Deicher, M

    1999-01-01

    $^{111m}$Cd and $^{112}$Cd ions have been implanted into GaN. With photoluminescence spectroscopy and perturbed $\\gamma-\\gamma$-angular correlation spectroscopy (PAC) the reduction of implantation damage and the optical activation of the implants have been observed as a function of annealing temperature using different annealing methods. The use of N$_{2}$ or NH$_{3}$ atmosphere during annealing allows temperatures up to 1323k and 1373 K, respectively, but above 1200 K a strong loss of Cd from the GaN has been observed. Annealing GaN together with elementary Al forms a protective layer on the GaN surface allowing annealing temperatures up to 1570 K for 10 min. (11 refs).

  2. Mechanism of Annealing Softening of Rolled or Forged Tool Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to reduce hardness of rolled or forged steels after annealing and improve processability, the diameter and dispersity of carbides were measured by SEM and quantitative metallography. The microstructure of annealed steel was analyzed by TEM. The effects of the factors such as solute atoms, carbides, grain boundary and interphase boundary were studied. The mechanism of annealing softening of steels was analyzed on the examples of steels H13, S5, S7, X45CrNiMo4, which are treated with new technology. The results showed that the softening of H13, S7, S5 is easier obtained by isothermal or slow cooling annealing from slightly below A1, but hardness of X45CrNiMo4 after annealing is reduced effectively by obtaining coarse lamellar pearlite. Economic results can be obtained from good processability.

  3. Annealed Scaling for a Charged Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Caravenna, F., E-mail: francesco.caravenna@unimib.it [Università degli Studi di Milano-Bicocca, Dipartimento di Matematica e Applicazioni (Italy); Hollander, F. den, E-mail: denholla@math.leidenuniv.nl [Leiden University, Mathematical Institute (Netherlands); Pétrélis, N., E-mail: nicolas.petrelis@univ-nantes.fr [Université de Nantes, Laboratoire de Mathématiques Jean Leray UMR 6629 (France); Poisat, J., E-mail: poisat@ceremade.dauphine.fr [Université Paris-Dauphine, PSL Research University, CEREMADE, UMR 7534 (France)

    2016-03-15

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  4. Annealed Scaling for a Charged Polymer

    Science.gov (United States)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  5. The changes of ADI structure during high temperature annealing

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2010-01-01

    Full Text Available The results of structure investigations of ADI during it was annealing at elevated temperature are presented. Ductile iron austempered at temperature 325oC was then isothermally annealed 360 minutes at temperature 400, 450, 500 and 550oC. The structure investigations showed that annealing at these temperatures caused substantial structure changes and thus essential hardness decrease, which is most useful property of ADI from point of view its practical application. Degradation advance of the structure depends mainly on annealing temperature, less on the time of the heat treatment. It was concluded that high temperature annealing caused precipitation of Fe3C type carbides, which morphology and distribution depend on temperature. In case of 400oC annealing the carbides precipitates inside bainitic ferrite lath in specific crystallographic planes and partly at the grain boundaries. The annealing at the temperature 550oC caused disappearing of characteristic for ADI needle or lath – like morphology, which is replaced with equiaxed grains. In this case Fe3C carbides take the form very fine precipitates with spheroidal geometry.

  6. Surface Morphology of Annealed Lead Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    P.Kalugasalam,

    2010-06-01

    Full Text Available The thin films of Lead Phthalocyanine (PbPc on glass substrates were prepared by Vacuum deposition. The thickness of the films was 450 nm. The sample annealed in high vacuum at 373 K temperature. The sample has been analysed by X-ray diffraction, scanning electron microscopy and atomic force microscopy in order to get structural and surface morphology of the PbPc thin film. The formation of XRD patterns of PbPc shows a triclinic grains (T seen along with monoclinic (M forms of PbPc. The sample is annealed at 373 K temperatures; the film shows peaks that assigned to the triclinic phase. SEM and AFM are the best tools to investigate the surface smoothness and to find the grain size of the particles. The grain size is calculated for all films of different thicknesses. The annealed AFM micrograph shows that the surface of the films consists of large holes. The annealed AFM image indicates a smooth surface. It is very clear that the grain size decreases with increase in the annealing temperature. The roughness also decreases with the increase in film annealing temperature. Annealed film leads to the oxidation of the hthalocyanine with oxygen absorbed or diffused. Therefore, the heat is responsible for the increase in film thickness. Since the films expand, it is believed that the porosity is increased.

  7. Embrittlement recovery due to annealing of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, E.D.; Wright, J.E.; Nelson, E.E. [Modeling and Computing Services, Boulder, CO (United States); Odette, G.R.; Mader, E.V. [Univ. of California, Santa Barbara, CA (United States)

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  8. Kriging-approximation simulated annealing algorithm for groundwater modeling

    Science.gov (United States)

    Shen, C. H.

    2015-12-01

    Optimization algorithms are often applied to search best parameters for complex groundwater models. Running the complex groundwater models to evaluate objective function might be time-consuming. This research proposes a Kriging-approximation simulated annealing algorithm. Kriging is a spatial statistics method used to interpolate unknown variables based on surrounding given data. In the algorithm, Kriging method is used to estimate complicate objective function and is incorporated with simulated annealing. The contribution of the Kriging-approximation simulated annealing algorithm is to reduce calculation time and increase efficiency.

  9. Kinetics of the austenite formation during intercritical annealing

    OpenAIRE

    J. Lis; A. Lis

    2008-01-01

    Purpose: of this paper is the effect of the microstructure of the 6Mn16 steel after soft annealing on the kinetics of the austenite formation during next intercritical annealing.Design/methodology/approach: Analytical TEM point analysis with EDAX system attached to Philips CM20 was used to evaluate the concentration of Mn in the microstructure constituents of the multiphase steel,Findings: The increase in soft annealing time from 1-60 hours at 625 °C increases Mn partitioning between ferrite ...

  10. Excimer laser annealing for low-voltage power MOSFET

    Science.gov (United States)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  11. A NEW GENETIC SIMULATED ANNEALING ALGORITHM FOR FLOOD ROUTING MODEL

    Institute of Scientific and Technical Information of China (English)

    KANG Ling; WANG Cheng; JIANG Tie-bing

    2004-01-01

    In this paper, a new approach, the Genetic Simulated Annealing (GSA), was proposed for optimizing the parameters in the Muskingum routing model. By integrating the simulated annealing method into the genetic algorithm, the hybrid method could avoid some troubles of traditional methods, such as arduous trial-and-error procedure, premature convergence in genetic algorithm and search blindness in simulated annealing. The principle and implementing procedure of this algorithm were described. Numerical experiments show that the GSA can adjust the optimization population, prevent premature convergence and seek the global optimal result.Applications to the Nanyunhe River and Qingjiang River show that the proposed approach is of higher forecast accuracy and practicability.

  12. Composition dependent thermal annealing behaviour of ion tracks in apatite

    Energy Technology Data Exchange (ETDEWEB)

    Nadzri, A., E-mail: allina.nadzri@anu.edu.au [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Schauries, D.; Mota-Santiago, P.; Muradoglu, S. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gleadow, A.J.W. [School of Earth Science, University of Melbourne, Melbourne, VIC 3010 (Australia); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia)

    2016-07-15

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  13. An adaptive approach to the physical annealing strategy for simulated annealing

    Science.gov (United States)

    Hasegawa, M.

    2013-02-01

    A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.

  14. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  15. Evidence for quantum annealing with more than one hundred qubits

    Science.gov (United States)

    Boixo, Sergio; Rønnow, Troels F.; Isakov, Sergei V.; Wang, Zhihui; Wecker, David; Lidar, Daniel A.; Martinis, John M.; Troyer, Matthias

    2014-03-01

    Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards the ground state of a Hamiltonian encoding a given problem. Here, we present results from tests on a 108 qubit D-Wave One device based on superconducting flux qubits. By studying correlations we find that the device performance is inconsistent with classical annealing or that it is governed by classical spin dynamics. In contrast, we find that the device correlates well with simulated quantum annealing. We find further evidence for quantum annealing in the form of small-gap avoided level crossings characterizing the hard problems. To assess the computational power of the device we compare it against optimized classical algorithms.

  16. Structural and magnetic changes on annealing permalloy/copper multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fulthorpe, B.D.; Hase, T.P.A. E-mail: t.p.a.hase@dur.ac.uk; Tanner, B.K.; Marrows, C.H.; Hickey, B.J

    2001-05-01

    Thin-film powder diffraction and in situ grazing incidence X-ray scattering have been used to determine the structural changes that occur during annealing of permalloy/copper multilayers. We show that the enhanced stability in the magnetotransport properties of multilayers doped with cobalt at the interfaces correlates with reduced interdiffusion. The development of a long correlation length conformal roughness during annealing is observed.

  17. A simulated annealing technique for multi-objective simulation optimization

    OpenAIRE

    Mahmoud H. Alrefaei; Diabat, Ali H.

    2009-01-01

    In this paper, we present a simulated annealing algorithm for solving multi-objective simulation optimization problems. The algorithm is based on the idea of simulated annealing with constant temperature, and uses a rule for accepting a candidate solution that depends on the individual estimated objective function values. The algorithm is shown to converge almost surely to an optimal solution. It is applied to a multi-objective inventory problem; the numerical results show that the algorithm ...

  18. Precise annealing of focal plane arrays for optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  19. Improved mapping of the travelling salesman problem for quantum annealing

    Science.gov (United States)

    Troyer, Matthias; Heim, Bettina; Brown, Ethan; Wecker, David

    2015-03-01

    We consider the quantum adiabatic algorithm as applied to the travelling salesman problem (TSP). We introduce a novel mapping of TSP to an Ising spin glass Hamiltonian and compare it to previous known mappings. Through direct perturbative analysis, unitary evolution, and simulated quantum annealing, we show this new mapping to be significantly superior. We discuss how this advantage can translate to actual physical implementations of TSP on quantum annealers.

  20. Synthesis and characterization of Ar-annealed zinc oxide nanostructures

    Directory of Open Access Journals (Sweden)

    Narayanan Kuthirummal

    2016-09-01

    Full Text Available Nanostructured zinc oxide samples were synthesized through CVD and annealed in argon. The samples were investigated using SEM, TEM, XRD, and UV/VIS/FTIR photoacoustic spectroscopy. The SEM/TEM images show relatively spherical particles that form elongated, connected domains post-anneal. XRD measurements indicate a typical wurtzite structure and reveal an increase in average grain size from 16.3 nm to 21.2 nm in Ar-annealed samples over pristine samples. Visible photoacoustic spectra reveal the contribution of defect levels on the absorption edge of the fundamental gap of zinc oxide. The steepness parameter of the absorption edge, which is inversely proportional to the width of the absorption edge, decreased from 0.1582 (pristine to 0.1539 (annealed for 90 minutes revealing increased density of defect states upon annealing. The FTIR photoacoustic spectra show an intense peak at 412 cm-1 and a shoulder at 504 cm-1 corresponding to the two transverse optical stretching modes of ZnO. These results may indicate a self-assembly mechanism upon anneal under Ar atmosphere leading to early-stage nanorod growth.

  1. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... and force sensitivity measurements are taken before and after annealing. Parameters such as annealing time and annealing temperature are investigated. The change of the fibre diameter due to water absorption and the annealing process is also considered. The results show that annealing the polymer optical...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  2. Annealing behaviors of vacancy in varied neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LIU Li-li; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect,oxygen atom shares a vacancy,it is bonded to two silicon neighbors. Annealed at 200 ℃,divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2),834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1,825 cm-1 and 889 cm-1 (VO2),in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO,etc,in high dose neutron irradiated CZ-Si (S2),the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose,the annealing behavior of A-center is changed.

  3. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing.

    Science.gov (United States)

    Lundström, H

    2015-08-01

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  4. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lundström, H., E-mail: hans.lundstrom@hig.se [Department of Building, Energy and Environmental Engineering, University of Gävle, SE-801 76 Gävle (Sweden)

    2015-08-15

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  5. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing

    Science.gov (United States)

    Lundström, H.

    2015-08-01

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  6. Annealing-induced shape recovery in thin film metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Negussie, Alemu Tesfaye; Diyatmika, Wahyu [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chu, J.P., E-mail: jpchu@mail.ntust.edu.tw [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shen, Y.L. [Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Jang, J.S.C. [Department of Mechanical Engineering, National Central University, Chung-Li 32001, Taiwan (China); Hsueh, C.H. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-11-15

    Highlights: • Annealing-induced shape recovery of thin film metallic glass is examined. • Shape recovery becomes obvious with increasing temperature and holding time. • Minimum roughness is obtained when annealed within supercooled liquid region. • The amount of free volume in the film plays a role for the shape recovery. • The numerical simulation confirms the shape recovery upon annealing. - Abstract: The shape recovery property of a sputtered Zr{sub 50.3}Cu{sub 28.1}Al{sub 14}Ni{sub 7.6} (in at.%) thin film metallic glass upon heating is examined. Due to the surface tension-driven viscous flow, the shape of indentation appears to recover to different extents at various temperatures and holding times. It is found that a maximum of 59.8% indentation depth recovery is achieved after annealing within the supercooled liquid region (SCLR). The amount of free volume in the film is found to play a role in the recovery. Atomic force microscopy results reveal a decrease in film roughness to a minimum value within SCLR. To elucidate the experimentally observed shape recovery, a numerical modeling has been employed. It is evident that the depressed region caused by indentation is elevated after annealing.

  7. Photoluminescence evolution in self-ion-implanted and annealed silicon

    Institute of Scientific and Technical Information of China (English)

    Yang Yu; Wang Chong; Yang Rui-Dong; Li Liang; Xiong Fei; Bao Ji-Ming

    2009-01-01

    Si+ ion-implanted silicon wafers are annealed at different temperatures from room temperature to 950℃ and then characterized by using the photoluminescence (PL) technique at different recorded temperatures (RETs). Plentiful optical features are observed and identified clearly in these PL curves. The PL spectra of these samples annealed in different temperature ranges are correspondingly dominated by different emission peaks. Several characteristic features, such as an R line, S bands, a W line, the phonon-assistant W~(TA) and Si~(TO) peaks, can be detected in the PL spectra of samples annealed at different temperatures. For the samples annealed at 800 ℃, emission peaks from the dislocations bounded at the deep energy levels of the forbidden band, such as D_1 and D_2 bands, can be observed at a temperature as high as 280 K. These data strongly indicate that a severe transformation of defect structures could be manipulated by the annealing and recorded temperatures. The deactivation energies of the main optical features are extracted from the PL data at different temperatures.

  8. Spall response of annealed copper to direct explosive loading

    Science.gov (United States)

    Finnegan, S. G.; Burns, M. J.; Markland, L.; Goff, M.; Ferguson, J. W.

    2017-01-01

    Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive disc which was being used for a shock to detonation transition (SDT) test in a gas gun. This technique allows two experiments to be conducted with one piece of explosive. Explosive loading creates a high stress state within the target with a lower strain rate than an equivalent plate impact experiment, although the shock front will also have some curvature. Three shots were performed on two differently annealed batches of copper to investigate the viability of the technique and the effect of annealing on the spall response. One pair of targets was annealed at 850°C for four hours and the other target was annealed at 600°C for one hour. The free surface velocity (FSV) profiles were recorded using a Photonic Doppler Velocimetry (PDV) probe focused on the center of the target. The profiles were compared to predictions from the CREST reactive burn model. One profile recorded a significantly lower peak velocity which was attributed to the probe being located off center. Despite this, all three calculated spall strengths closely agreed and it was concluded that the technique is a viable one for loading an inert target.

  9. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.

    2012-02-09

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Laser annealing of silicon surface defects for photovoltaic applications

    Science.gov (United States)

    Sun, Zeming; Gupta, Mool C.

    2016-10-01

    High power lasers are increasingly used for low cost fabrication of solar cell devices. High power laser processes generate crystal defects, which lower the cell efficiency. This study examines the effect of low power laser annealing for the removal of high power laser induced surface defects. The laser annealing behavior is demonstrated by the significant decrease of photoluminescence generated from dislocation-induced defects and the increase of band-to-band emission. This annealing effect is further confirmed by the X-ray diffraction peak reversal. The dislocation density is quantified by observing etch pits under the scanning electron microscope (SEM). For as-melted samples, the dislocation density is decreased to as low as 1.01 × 106 cm- 2 after laser annealing, resulting in an excellent surface carrier lifetime of 920 μs that is comparable to the value of 1240 μs for the silicon starting wafer. For severely defective samples, the dislocation density is decreased by 4 times and the surface carrier lifetime is increased by 5 times after laser annealing.

  11. Experimental quantum annealing: case study involving the graph isomorphism problem.

    Science.gov (United States)

    Zick, Kenneth M; Shehab, Omar; French, Matthew

    2015-06-08

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  12. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry.

  13. Incoherent-light-flash annealing of phosphorus-implanted silicon

    Science.gov (United States)

    Correra, L.; Pedulli, L.

    1980-07-01

    Incoherent light pulses emitted from a xenon flash lamp were used to anneal radiation damage in (100) silicon implanted with 2×1015 31P+/cm2 at 100 keV. Electrical carrier concentration has been determined by means of differential sheet resistivity and Hall effect together with the anodic oxidation stripping technique; the surface photovoltage technique has been used to evaluate bulk lifetime and Rutherford backscattering and transmission electron microscopy for analysis of radiation damage. Damage recovery appears to take place via a solid phase epitaxial process. Electrical activity and carrier mobility values of samples annealed by incoherent light are similar to those obtained by laser, electron beam, and furnace annealing. The bulk lifetime of minority carriers is not degraded.

  14. Solving Set Cover with Pairs Problem using Quantum Annealing

    Science.gov (United States)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  15. A Personified Annealing Algorithm for Circles Packing Problem

    Institute of Scientific and Technical Information of China (English)

    ZHANGDe-Fu; LIXin

    2005-01-01

    Circles packing problem is an NP-hard problem and is difficult to solve. In this paper, a hybrid search strategy for circles packing problem is discussed. A way of generating new configuration is presented by simulating the moving of elastic objects, which can avoid the blindness of simulated annealing search and make iteration process converge fast. Inspired by the life experiences of people,an effective personified strategy to jump out of local minima is given. Based on the simulated annealing idea and personification strategy, an effective personified annealing algorithm for circles packing problem is developed. Numerical experiments on benchmark problem instances show that the proposed algorithm outperforms the best algorithm in the literature.

  16. Enhancement of GMI Effect in Silicon Steels by Furnace Annealing

    Institute of Scientific and Technical Information of China (English)

    C.Sirisathitkul; P. Jantaratana

    2009-01-01

    The ratio and sensitivity of giant magnetoimpedance (GMI) in grain oriented silicon steels (Fe-4.5%Si) are improved after furnace annealing in air for 20 min. By annealing at 800℃, the GMI sensitivity rises from 1.29%/Oe to 1.91%/Oe and the ratio increases from 237% to 294% with decreasing characteristic frequency. The results are attributable to an increase in the transverse magnetic permeability during the heat treatment. From simulation by finite element method, the GMI effect can be interpreted as the modification of the current distribution by the applied magnetic field via the transverse permeability. In the case of annealed samples, the larger transverse permeability allows a higher GMI ratio and sensitivity.

  17. Annealing behavior of rolled AZ31 alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Wei-ping; LI Pei-jie; ZENG Pan

    2006-01-01

    The annealed microstructures of the rolled AZ31 alloy sheets were examined by using light optical microscopy. The mechanical properties were measured by tensile testing, with their crystal orientations analyzed by X-ray diffraction (XRD). After the annealing treatment, the elongated grains were transformed to equiaxed grains with uniform and homogeneous structures. The changes of microstructure decreased the yield strength and enhanced the elongation. The analysis of XRD shows that the AZ31 alloy sheet possesses intense basal-texture, which is weakened during the recrystallization while reinforced during the grain growth. The intense basal-texture induces low ductility, which hence makes the further rolling more difficult. The results indicate that the optimum annealing treatment during AZ31 alloys sheet rolling is at about 300 ℃ for 60-120 min.

  18. Phosphorus diffusion in germanium following implantation and excimer laser annealing

    Science.gov (United States)

    Wang, Chen; Li, Cheng; Huang, Shihao; Lu, Weifang; Yan, Guangming; Zhang, Maotian; Wu, Huanda; Lin, Guangyang; Wei, Jiangbin; Huang, Wei; Lai, Hongkai; Chen, Songyan

    2014-05-01

    We focus our study on phosphorus diffusion in ion-implanted germanium after excimer laser annealing (ELA). An analytical model of laser annealing process is developed to predict the temperature profile and the melted depth in Ge. Based on the heat calculation of ELA, a phosphorus diffusion model has been proposed to predict the dopant profiles in Ge after ELA and fit SIMS profiles perfectly. A comparison between the current-voltage characteristics of Ge n+/p junctions formed by ELA at 250 mJ/cm2 and rapid thermal annealing at 650 °C for 15 s has been made, suggesting that ELA is promising for high performance Ge n+/p junctions.

  19. Annealing Effect on Photovoltages of Quartz Single Crystals

    Institute of Scientific and Technical Information of China (English)

    TIAN Lu; ZHAO Song-Qing; ZHAO Kun

    2010-01-01

    @@ We investigate the photovoltaic effects of quartz single crystals annealed at high temperatures in ambient atmosphere.The open-circuit photovoltages and surface morphologies strongly depend on the heating treatments.When the annealing temperature increases from room temperature to 900℃,the rms roughness of quartz single crystal wafers increases from 0.207 to 1.011 nm.In addition,the photovoltages decrease from 1.994#V at room temperature to 1.551 μ V after treated at 500℃,and then increase up to 9.8μV after annealed at 900℃.The inner mechanism of the present photovoltaic response and surface morphologies is discussed.

  20. NRC assessment of the Department of Energy annealing demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.A.; Malik, S.N. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-02-01

    Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner`s Group, Consumers Power, Electricite` de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when the project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project.

  1. SIMULATED ANNEALING BASED POLYNOMIAL TIME QOS ROUTING ALGORITHM FOR MANETS

    Institute of Scientific and Technical Information of China (English)

    Liu Lianggui; Feng Guangzeng

    2006-01-01

    Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The paper outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time.

  2. Reduction of Annealing Times for Energy Conservation in Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  3. Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing

    Science.gov (United States)

    Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.

    2016-04-01

    Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.

  4. A flexible annealing chaotic neural network to maximum clique problem.

    Science.gov (United States)

    Yang, Gang; Tang, Zheng; Zhang, Zhiqiang; Zhu, Yunyi

    2007-06-01

    Based on the analysis and comparison of several annealing strategies, we present a flexible annealing chaotic neural network which has flexible controlling ability and quick convergence rate to optimization problem. The proposed network has rich and adjustable chaotic dynamics at the beginning, and then can converge quickly to stable states. We test the network on the maximum clique problem by some graphs of the DIMACS clique instances, p-random and k random graphs. The simulations show that the flexible annealing chaotic neural network can get satisfactory solutions at very little time and few steps. The comparison between our proposed network and other chaotic neural networks denotes that the proposed network has superior executive efficiency and better ability to get optimal or near-optimal solution.

  5. Microstructural evolution of aluminum alloy 3003 during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Wen-xiang; ZHANG Xin-ming; SUN De-qin; HU Guo-qiang; LIU Guo-jin

    2006-01-01

    The microstructural evolution of cold-rolled aluminum alloy 3003 during annealing was investigated by means of micro-hardness measurement, electrical resistivity measurement, optical microscopy and transmission electron microscopy. The interaction of recrystallization and precipitation of aluminum alloy 3003 was also discussed. The results show that the recrystallized grain size of cold-rolled aluminum alloy 3003 is strongly affected by precipitation during annealing. When precipitation occurs prior to recrystallization at low temperature(300 ℃), the grain structure becomes coarse, and the precipitation process is affected by the presence of lattice defects, i.e. high cold reduction results in a large number of precipitates. When annealing at 500 ℃, however, for the recrystallization is prior to precipitation, the precipitation is independent of cold deformation reduction and a fine, equiaxed grain structure is obtained.

  6. Thermally induced native defect transform in annealed GaSb

    Science.gov (United States)

    Jie, Su; Tong, Liu; Jing-Ming, Liu; Jun, Yang; Yong-Biao, Bai; Gui-Ying, Shen; Zhi-Yuan, Dong; Fang-Fang, Wang; You-Wen, Zhao

    2016-07-01

    Undoped p-type GaSb single crystals were annealed at 550-600 °C for 100 h in ambient antimony. The annealed GaSb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy (GDMS), infrared (IR) optical transmission and photoluminescence (PL) spectroscopy. Compared with the as-grown GaSb single crystal, the annealed GaSb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the GaSb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).

  7. Chaotic Multiquenching Annealing Applied to the Protein Folding Problem

    Directory of Open Access Journals (Sweden)

    Juan Frausto-Solis

    2014-01-01

    Full Text Available The Chaotic Multiquenching Annealing algorithm (CMQA is proposed. CMQA is a new algorithm, which is applied to protein folding problem (PFP. This algorithm is divided into three phases: (i multiquenching phase (MQP, (ii annealing phase (AP, and (iii dynamical equilibrium phase (DEP. MQP enforces several stages of quick quenching processes that include chaotic functions. The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing algorithm (SA with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least squares method. CMQA is tested with several instances of PFP.

  8. Five-fold twin formation during annealing of nanocrystalline Cu

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Farkas, D; Caro, A; Wang, Y M; McNaney, J; Smith, R

    2009-05-20

    Contrary to the common belief that many-fold twins, or star twins, in nanophase materials are due to the action of significant external stresses, we report molecular dynamics simulations of annealing in 5 nm grain size samples annealed at 800 K for nearly 0.5 nsec at 0 external pressure showing the formation of five-fold star twins during annealing under the action of the large internal stresses responsible for grain growth and microstructural evolution. The structure of the many-fold twins is remarkably similar to those we have found to occur under uniaxial shock loading, of samples of nanocrystalline NiW with a grain size of {approx}5-30 nm. The mechanism of formation of the many-fold twins is discussed in the light of the simulations and experiments.

  9. Molecular dynamics simulation of annealed ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  10. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  11. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  12. Adiabatic quantum computation and quantum annealing theory and practice

    CERN Document Server

    McGeoch, Catherine C

    2014-01-01

    Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov

  13. A theoretical comparison of evolutionary algorithms and simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications for the performance of a variety of other optimization algorithm.

  14. Determination and Correction of Persistent Biases in Quantum Annealers

    Science.gov (United States)

    2016-08-25

    24. King, A. D. & McGeoch, C. C. Algorithm engineering for a quantum annealing platform. arXiv:1410.2628 (2014). 25. Harris, R. et al. Experimental...1Scientific RepoRts | 6:18628 | DOI: 10.1038/srep18628 www.nature.com/scientificreports Determination and correction of persistent biases in quantum ...annealers Alejandro Perdomo-Ortiz1,2, Bryan O’Gorman1,3, Joseph Fluegemann1,4, Rupak Biswas5 & Vadim N. Smelyanskiy6 Calibration of quantum

  15. Annealing in sulfur of CZTS nanoparticles deposited through doctor blading

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea

    Solar cells made from nanoparticles of copper zinc tin sulfide (CZTS) from solution-processing are expected to be comparatively inexpensive, but their efficiency is still low compared with cells produced by vacuum processing. However, (1) the high carbon content in nanoparticle thin films is one......, and annealed in a vacuum furnace using a graphite box with sulfur. The surface morphology and thus grain growth is studied for various annealing conditions in vacuum at 10-5 mbar or up to 10 mbar nitrogen atmosphere and with a varying amount of sulfur content. The films are characterized in terms...

  16. Magnetoimpedance effect in current annealed Co-based amorphous wires

    Science.gov (United States)

    Ghanaatshoar, M.; Tehranchi, M. M.; Mohseni, S. M.; Parhizkari, M.; Roozmeh, S. E.; Jazayeri Gharehbagh, A.

    2006-09-01

    Current-annealing of Co68.15Fe4.35Si12.5B15 amorphous wires has been studied at various vacuum orders. Structure-sensitive properties such as the electrical resistance during Joule heating treatment have been monitored to investigate the structural changes. Different driving currents have been flowed through the samples at different vacuums between 6×10-2 and 6×10-5 mbar. Regarding the giant magnetoimpedance (GMI) effect, annealing at different vacuums but with the same current can lead to various responses.

  17. Population Annealing: Theory and Application in Spin Glasses

    Science.gov (United States)

    Machta, Jonathan; Wang, Wenlong; Katzgraber, Helmut G.

    Population annealing is an efficient sequential Monte Carlo algorithm for simulating equilibrium states of systems with rough free energy landscapes. The theory of population annealing is presented, and systematic and statistical errors are discussed. The behavior of the algorithm is studied in the context of large-scale simulations of the three-dimensional Ising spin glass and the performance of the algorithm is compared to parallel tempering. It is found that the two algorithms are similar in efficiency though with different strengths and weaknesses. Supported by NSF DMR-1151387, DMR-1208046 and DMR-1507506.

  18. Thermal annealing of K(+)-Na(+) ion-exchanged waveguides.

    Science.gov (United States)

    Giorgetti, E; Grando, D; Palchetti, L; Sottini, S

    1995-06-15

    The process of thermal annealing of K(+)(-)Na(+) ion-exchanged waveguides in soda lime glass is characterized and compared with a simple theoretical model. The discrepancies between theory and experiments in the case of initially thick guides disappear if the existence of a stress-induced contribution to the refractive index is assumed that is not proportional to the concentration of the doping ions. The results obtained for initially thin guides are exploited for the design of annealed single-mode channel waveguides: 0.4-dB coupling losses with commercial single-mode fibers at lambda = 1.321 microm were measured.

  19. Coplanar waveguide flux qubit suitable for quantum annealing

    Science.gov (United States)

    Quintana, Chris; Chen, Yu; Sank, D.; Kafri, D.; Megrant, A.; White, T. C.; Shabani, A.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    We introduce the ''fluxmon'' flux qubit, designed with the goal of practical quantum annealing. The qubit's capacitance and linear inductance are provided by a coplanar waveguide on a low loss substrate, minimizing dielectric dissipation and in principle allowing for GHz-scale inter-qubit coupling in a highly connected tunable architecture. Utilizing a dispersive microwave readout scheme, we characterize single-qubit noise and dissipation, and present a simple tunable inter-qubit coupler. We discuss tradeoffs between coherence and coupling in a quantum annealing architecture. This work was supported by Google Inc. and by the NSF GRFP.

  20. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne...... of these annealed in the manner characteristic of intrinsic defects studied by EPR and ir spectroscopy. Two may be related to residual oxygen and carbon complexes. Applied Physics Letters is copyrighted by The American Institute of Physics....

  1. An Overview of Approaches to Modernize Quantum Annealing Using Local Searches

    Directory of Open Access Journals (Sweden)

    Nicholas Chancellor

    2016-06-01

    Full Text Available I describe how real quantum annealers may be used to perform local (in state space searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm. The quantum annealing algorithm is an analogue of simulated annealing, a classical numerical technique which is now obsolete. Hence, I explore strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms, and additionally should be less sensitive to problem mis-specification then the traditional quantum annealing algorithm.

  2. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver......-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  3. Deep level defects in high temperature annealed InP

    Institute of Scientific and Technical Information of China (English)

    DONG Zhiyuan; ZHAO Youwen; ZENG Yiping; DUAN Manlong; LIN Lanying

    2004-01-01

    Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed iniron phosphide ambient,while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

  4. High temperature annealing studies of strontium ion implanted glassy carbon

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  5. Competitive annealing of multiple DNA origami: formation of chimeric origami

    Science.gov (United States)

    Majikes, Jacob M.; Nash, Jessica A.; LaBean, Thomas H.

    2016-11-01

    Scaffolded DNA origami are a robust tool for building discrete nanoscale objects at high yield. This strategy ensures, in the design process, that the desired nanostructure is the minimum free energy state for the designed set of DNA sequences. Despite aiming for the minimum free energy structure, the folding process which leads to that conformation is difficult to characterize, although it has been the subject of much research. In order to shed light on the molecular folding pathways, this study intentionally frustrates the folding process of these systems by simultaneously annealing the staple pools for multiple target or parent origami structures, forcing competition. A surprising result of these competitive, simultaneous anneals is the formation of chimeric DNA origami which inherit structural regions from both parent origami. By comparing the regions inherited from the parent origami, relative stability of substructures were compared. This allowed examination of the folding process with typical characterization techniques and materials. Anneal curves were then used as a means to rapidly generate a phase diagram of anticipated behavior as a function of staple excess and parent staple ratio. This initial study shows that competitive anneals provide an exciting way to create diverse new nanostructures and may be used to examine the relative stability of various structural motifs.

  6. High temperature annealing studies of strontium ion implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Odutemowo, O.S., E-mail: u12052613@tuks.co.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Malherbe, J.B.; Prinsloo, L.; Langa, D.F. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Wendler, E. [Institut für Festkörperphysik, Friedrich-Schiller University, Jena (Germany)

    2016-03-15

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 10{sup 16} ions/cm{sup 2} at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  7. Analysis of Trivium by a Simulated Annealing variant

    DEFF Research Database (Denmark)

    Borghoff, Julia; Knudsen, Lars Ramkilde; Matusiewicz, Krystian

    2010-01-01

    . A characteristic of equation systems that may be efficiently solvable by the means of such algorithms is provided. As an example, we investigate equation systems induced by the problem of recovering the internal state of the stream cipher Trivium. We propose an improved variant of the simulated annealing method...

  8. Impacts of excimer laser annealing on Ge epilayer on Si

    Science.gov (United States)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  9. Annealing properties of potato starches with different degrees of phosphorylation

    DEFF Research Database (Denmark)

    Muhrbeck, Per; Svensson, E

    1996-01-01

    Changes in the gelatinization temperature interval and gelatinization enthalpy with annealing time at 50 degrees C were followed for a number of potato starch samples, with different degrees of phosphorylation, using differential scanning calorimetry. The gelatinization temperature increased with...... and crystalline structure of amylopectin helices. (C) 1997 Elsevier Science Ltd....

  10. Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing

    NARCIS (Netherlands)

    Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.

    2006-01-01

    The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval arithm

  11. Computer simulation of laser annealing of a nanostructured surface

    NARCIS (Netherlands)

    Ivanov, D.; Marinov, I.; Gorbachev, Y.; Smirnov, A.; Krzhizhanovskaya, V.

    2010-01-01

    Laser annealing technology is used in mass production of new-generation semiconductor materials and nano-electronic devices like the MOS-based (metal-oxide-semiconductor) integrated circuits. Manufacturing sub-100 nm MOS devices demands application of ultra-shallow doping (junctions), which requires

  12. Self-Organization and Annealed Disorder in a Fracturing Process

    DEFF Research Database (Denmark)

    Caldarelli, Guido; Di Tolla, Francesco; Petri, Alberto

    1996-01-01

    We show that a vectorial model for inhomogeneous elastic media self-organizes under external stress. An onset of crack avalanches of every duration and length scale compatible with the lattice size is observed. The behavior is driven by the introduction of annealed disorder, i.e., by lowering the...

  13. Annealing effects of chemically synthesized FePt nanocrystal films

    Science.gov (United States)

    Hyun, Changbae; Lee, Doh C.

    2005-03-01

    Chemically synthesized FePt nanocrystals can exhibit room temperature ferromagnetism after being annealed at temperatures above ˜500^oC[1]. The thermal annealing changes the crystal structure from face-centered cubic to the hard magnetic face-centered tetragonal phase. In thick nanocrystal films, the coercivity can be quite large, however, the coercivity of thin films has been found to decrease significantly with decreasing thickness, even losing the room temperature ferromagnetism in some cases[2]. In order to help determine how the microscopic magnetic structure in these thin films evolves with film thickness, we studied using magnetic force microscopy (MFM), under external applied fields, films consisting of 4 to 15 nanocrystal monolayers. We cast smooth films of 4 nm diameter FePt nanocrystals and annealed them at temperatures ranging from 400 to 650^oC, acquiring MFM images as a function of annealing temperature. Thin FePt films showed lower coercivity than thick films. To help interpret the MFM images, complementary magnetic and structural data was obtained using SQUID magnetometry, x-ray diffraction, and transmission electron microscopy (TEM). [1] S. Sun et al., Science 287, 1989 (2000). [2] G. A. Held et al., Journal of Applied Physics 95, 1481 (2004)

  14. Thermally assisted quantum annealing of a 16-qubit problem.

    Science.gov (United States)

    Dickson, N G; Johnson, M W; Amin, M H; Harris, R; Altomare, F; Berkley, A J; Bunyk, P; Cai, J; Chapple, E M; Chavez, P; Cioata, F; Cirip, T; Debuen, P; Drew-Brook, M; Enderud, C; Gildert, S; Hamze, F; Hilton, J P; Hoskinson, E; Karimi, K; Ladizinsky, E; Ladizinsky, N; Lanting, T; Mahon, T; Neufeld, R; Oh, T; Perminov, I; Petroff, C; Przybysz, A; Rich, C; Spear, P; Tcaciuc, A; Thom, M C; Tolkacheva, E; Uchaikin, S; Wang, J; Wilson, A B; Merali, Z; Rose, G

    2013-01-01

    Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

  15. EPR of ion-implanted, laser-annealed silicon

    Energy Technology Data Exchange (ETDEWEB)

    Brower, K.L.; Peercy, P.S.

    1979-01-01

    Electron paramagnetic resonance and ion backscattering measurements were made on ion-implanted, pulsed laser-annealed silicon. For phosphorus-implanted silicon (3 x 10/sup 13/ 200 keV P/sup +//cm/sup 2/) the electrical activity of the implanted donors is restored after laser annealing with greater than or equal to 1.8 J/cm/sup 2/. Silicon made amorphous with 2 x 10/sup 15/ 200 keV Si/sup +//cm/sup 2/ and implanted with 3 x 10/sup 13/ 200 keV P/sup +//cm/sup 2/ can be restored to crystallinity after laser annealing, but electrical activity of the P was not restored due to residual defects for laser energies less than or equal to 3 J/cm/sup 2/. Electrical activity can be restored, at least in part, for amorphous silicon implanted at lower energies (approx. = 50 keV). We also observed that N/sub 2/ reacts with amorphous silicon surfaces to form silicon-nitride. Under laser annealing the N is redistributed and exists as an N interstitial within the implanted layer.

  16. Blue thermoluminescence emission of annealed lithium rich aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V.; Rodriguez-Lazcano, Y., E-mail: v.correcher@ciemat.e [CIEMAT, Madrid (Spain); Garcia-Guinea, J.; Crespo-Feo, E. [Museo Nacional de Ciencias Naturales, Madrid (Spain)

    2010-09-15

    The blue thermoluminescence (TL) emission of different thermally annealed {beta}-eucryptite (LiAlSiO{sub 4}), virgilite-petalite (LiAlSi{sub 5}O{sub 12}) and virgilite-petalite-bikitaite (LiAlSi{sub 10}O{sub 22}) mixed crystals have been studied. The observed changes in the TL glow curves could be linked to simultaneous processes taking place in the lithium aluminosilicate lattice structure (phase transitions, consecutive breaking linking of bonds, alkali self-diffusion, redox reactions, etc). The stability of the TL signal after four months of storage performed at RT under red light, shows big differences between annealed (12 hours at 1200 deg C) and non-annealed samples. The fading process in non-annealed samples can be fitted to a first-order decay mathematical expression; however preheated samples could not be reasonably fitted due to the highly dispersion detected. The changes observed in the X-ray diffractograms are in the intensity of the peaks that denote modifications in the degree of crystallinity and, in addition, there are some differences in the appearance of new peaks that could suppose new phases (e.g. b-spodumene). (author)

  17. HAFNIUM IMPLANTED IN IRON .1. LATTICE LOCATION AND ANNEALING BEHAVIOR

    NARCIS (Netherlands)

    DEBAKKER, JMGJ; PLEITER, F; SMULDERS, PJM

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  18. Hafnium implanted in iron 1. Lattice location and annealing behavior

    NARCIS (Netherlands)

    de Bakker, J.M.G.J.; Pleiter, F; Smulders, P.J M

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  19. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.;

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....

  20. Electrochemically induced annealing of stainless-steel surfaces

    Science.gov (United States)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  1. Toward understanding dynamic annealing processes in irradiated ceramics

    Science.gov (United States)

    Myers, Michael Thomas

    High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects

  2. Radiation and annealing response of WWER 440 beltline welding seams

    Science.gov (United States)

    Viehrig, Hans-Werner; Houska, Mario; Altstadt, Eberhard

    2015-01-01

    The focus of this paper is on the irradiation response and the effect of thermal annealing in weld materials extracted from decommissioned WWER 440 reactor pressure vessels of the nuclear power plant Greifswald. The characterisation is based on the measurement of the hardness, the yield stress, the Master Curve reference temperature, T0, and the Charpy-V transition temperature through the thickness of multi-layer beltline welding seams in the irradiated and the thermally annealed condition. Additionally, the weld bead structure was characterised by light microscopic studies. We observed a large variation in the through thickness T0 values in the irradiated as well as in thermally annealed condition. The T0 values measured with the T-S-oriented Charpy size SE(B) specimens cut from different thickness locations of the multilayer welding seams strongly depend on the intrinsic weld bead structure along the crack tip. The Master Curve, T0, and Charpy-V, TT47J, based ductile-to-brittle transition temperature progressions through the thickness of the multi-layer welding seam do not correspond to the forecast according to the Russian code. In general, the fracture toughness values at cleavage failure, KJc, measured on SE(B) specimens from the irradiated and large-scale thermally annealed beltline welding seams follow the Master Curve description, but more than the expected number lie outside the curves for 2% and 98% fracture probability. In this case the test standard ASTM E1921 indicates the investigated multi-layer weld metal as not uniform. The multi modal Master Curve based approach describes the temperature dependence of the specimen size adjusted KJc-1T values well. Thermal annealing at 475 °C for 152 h results in the expected decrease of the hardness and tensile strength and the shift of Master Curve and Charpy-V based ductile-to-brittle transition temperatures to lower values.

  3. Optical study of annealed cobalt–porous silicon nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bouzourâa, M.-B. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Zaïbi, M.-A. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Lorrain, N.; Hajji, L. [Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518, 22305 Lannion, Cedex (France); Oueslati, M. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia)

    2013-11-15

    We report Raman and photoluminescence studies of cobalt–porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl{sub 2} aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si–H{sub x(x=2,3)} with the formation of cobalt oxide for annealing temperature less than 450 °C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (≻450°C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve. -- Highlights: • Introduction of cobalt ions into porous silicon (PS) layer using immersion method. • The Co ions influence the photoluminescence (PL) intensity of PS. • Annealing the PS/Co sample leads to an improvement of the PL intensity. • The increase of the PL is due to the formation of different cobalt oxides on the PS surface.

  4. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  5. Discrepancy between ambient annealing and H{sup +} implantation in optical absorption of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinpeng, E-mail: hitljp@gmail.com [College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu (China); Li, Chundong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang (China)

    2016-05-15

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H{sup +} implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to V{sub O}, whereas the absorption centers caused by H{sup +} implantation and H{sub 2} annealing are primarily associated with V{sub O} and ionized Zn{sub i}.

  6. Process check of annealing process of coiled sheets by indirect measurement

    Directory of Open Access Journals (Sweden)

    K. Kostúr

    2017-01-01

    Full Text Available The contribution deals with a possibility of increasing quality production and decreasing costs in annealing furnaces by process check of annealing temperatures. The lowest temperature of annealed coiled sheets is very important. The information about this inner temperature is unknown during annealing. It is possible to obtain this information by indirect measurement. The indirect measurement uses two types of mathematical models. In this paper, the structure of both models and its verification is described.

  7. Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles

    Science.gov (United States)

    Nadeem, K.; Ullah, Asmat; Mushtaq, M.; Kamran, M.; Hussain, S. S.; Mumtaz, M.

    2016-11-01

    We reported systematic study on structural and magnetic properties of nickel/nickel oxide (Ni/NiO) nanoparticles annealed under air atmosphere at different temperatures in the range 400-800 °C. The XRD spectra revealed two phases such as Ni and NiO. The average crystallite size increases with increasing annealing temperature. A phase diagram was developed between two phases versus annealing temperature using XRD analysis. At lower annealing temperatures, Ni phase is dominant which does not easily undergo oxidation to form NiO. The NiO phase increases with increasing annealing temperature. FTIR spectroscopy revealed an increase in the NiO phase content at higher annealing temperature, which is in agreement with the XRD analysis. SEM images showed that nanoparticles are well separated at lower annealing temperatures but get agglomerated at higher annealing temperatures. The ferromagnetic (FM) Ni phase content and saturation magnetization (Ms) showed nearly the same trend with increasing annealing temperature. The nanoparticles annealed at 500 °C and 800 °C revealed highest and lowest Ms values, respectively, which is in accordance with the XRD phase diagram. Coercivity showed an overall decreasing trend with increasing annealing temperature due to decreased concentration of FM Ni phase and increasing average crystallite size. All these measurements indicate that the structural and magnetic properties of Ni/NiO nanoparticles are strongly influenced by the annealing temperature.

  8. Effect of prolonged annealing on the performance of coaxial Ge gamma-ray detectors

    NARCIS (Netherlands)

    Owens, A.; Brandenburg, S.; Buis, E. -J.; Kozorezov, A. G.; Kraft, S.; Ostendorf, R. W.; Quarati, F.

    2007-01-01

    The effects of prolonged annealing at elevated temperatures have been investigated in a 53 cm(3) closed-end coaxial high purity germanium detector in the reverse electrode configuration. The detector was multiply annealed at 100 degrees C in block periods of 7 days. After each anneal cycle it was co

  9. 78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan

    Science.gov (United States)

    2013-05-24

    ...)] Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis of the... reason of imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel products, provided... diffusion-annealed, nickel-plated flat-rolled steel products from Japan. Accordingly, effective March...

  10. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Science.gov (United States)

    2010-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... life of these components. (B) The effects of localized high temperatures on degradation of the concrete... thermal annealing or to operate the nuclear power reactor following the annealing must be identified....

  11. Influence of Microwave and Conventional Annealing Processes in Improving an Electrodeposited Nickel Interlayer Characteristics

    Science.gov (United States)

    Hassan, Abdelkarim; Noordin, Mohd Yusof; Izman, Sudin; Denni, Kurniawan

    2016-10-01

    Nickel interlayer was coated on tungsten carbide substrate by electrodeposition process for the purpose of diamond deposition. Conventional and microwave annealing processes were used to improve the adhesion strength and modify the surface composition of the electroplated nickel interlayer. The conventional annealing was conducted in a high-temperature tube furnace at 1323.15 K (1050 °C) for 20 and 60 minutes annealing durations. The microwave annealing was carried out in 2.45 GHz microwave furnace at 1303.15 K (1030 °C) for the same annealing durations as the conventional process. The annealed specimens were characterized by electron microscopy, Energy dispersive X-ray spectroscopy, and X-ray diffraction technique. Adhesion of the annealed nickel interlayer was assessed by the scratch test. The results revealed significant changes in the nickel coating composition, adhesion, and appearance. The adhesion strength of nickel interlayer annealed for the longer duration of the two processes is similar. For shorter annealing duration, the microwave-annealed coating showed better adhesion. The surface composition of the nickel interlayer was modified by the diffusion of carbon and tungsten during the microwave and conventional annealing, respectively. The microwave annealing is a promising process for producing good quality treated nickel-coated tungsten carbide specimens.

  12. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...

  13. First application of quantum annealing to IMRT beamlet intensity optimization

    Science.gov (United States)

    Nazareth, Daryl P.; Spaans, Jason D.

    2015-05-01

    Optimization methods are critical to radiation therapy. A new technology, quantum annealing (QA), employs novel hardware and software techniques to address various discrete optimization problems in many fields. We report on the first application of quantum annealing to the process of beamlet intensity optimization for IMRT. We apply recently-developed hardware which natively exploits quantum mechanical effects for improved optimization. The new algorithm, called QA, is most similar to simulated annealing, but relies on natural processes to directly minimize a system’s free energy. A simple quantum system is slowly evolved into a classical system representing the objective function. If the evolution is sufficiently slow, there are probabilistic guarantees that a global minimum will be located. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitations. The beamlet dose matrices were computed using CERR and an objective function was defined based on typical clinical constraints, including dose-volume objectives, which result in a complex non-convex search space. The objective function was discretized and the QA method was compared to two standard optimization methods, simulated annealing and Tabu search, run on a conventional computing cluster. Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the simulated annealing (SA) method. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu and 22.9 for the SA. The QA algorithm required 27-38% of the time required by the other two methods. In this first application of hardware-enabled QA to IMRT optimization, its performance is comparable to Tabu search, but less effective than the SA in terms of final objective function values. However, its speed was 3-4 times faster than the other two methods

  14. Radiation and annealing response of WWER 440 beltline welding seams

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, Hans-Werner, E-mail: h.w.viehrig@hzdr.de; Houska, Mario; Altstadt, Eberhard

    2015-01-15

    Highlights: • Investigation of the beltline welding seam from decommissioned reactor pressure vessels. • The Master Curve based reference temperature varies strongly through the thickness. • This variation is mainly caused by the intrinsic weld bead structure. • The Charpy-V based ductile-to-brittle temperature shift does not correspond to the prediction. • The mitigation of the irradiation induced embrittlement by annealing has been confirmed. - Abstract: The focus of this paper is on the irradiation response and the effect of thermal annealing in weld materials extracted from decommissioned WWER 440 reactor pressure vessels of the nuclear power plant Greifswald. The characterisation is based on the measurement of the hardness, the yield stress, the Master Curve reference temperature, T{sub 0}, and the Charpy-V transition temperature through the thickness of multi-layer beltline welding seams in the irradiated and the thermally annealed condition. Additionally, the weld bead structure was characterised by light microscopic studies. We observed a large variation in the through thickness T{sub 0} values in the irradiated as well as in thermally annealed condition. The T{sub 0} values measured with the T–S-oriented Charpy size SE(B) specimens cut from different thickness locations of the multilayer welding seams strongly depend on the intrinsic weld bead structure along the crack tip. The Master Curve, T{sub 0}, and Charpy-V, TT{sub 47J}, based ductile-to-brittle transition temperature progressions through the thickness of the multi-layer welding seam do not correspond to the forecast according to the Russian code. In general, the fracture toughness values at cleavage failure, K{sub Jc}, measured on SE(B) specimens from the irradiated and large-scale thermally annealed beltline welding seams follow the Master Curve description, but more than the expected number lie outside the curves for 2% and 98% fracture probability. In this case the test standard ASTM

  15. Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J., E-mail: J.Kennedy@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Murmu, P.P.; Leveneur, J. [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand); Markwitz, A. [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Futter, J. [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand)

    2016-03-30

    Graphical abstract: - Highlights: • Annealing dependent microstructural evolution and change in conductivity of ZnO films. • Preferential growth along (0 0 2) and (1 0 0) planes in air and vacuum annealed films. • Resistivity varied between 10{sup 6} and 10{sup −2} Ω cm depending on annealing conditions. • Hydrogen interstitials, and hydrogen-oxygen vacancy complexes affect the conductivity. • Narrow ZnO bandgap assigned to band tail effect related to intrinsic defects states. - Abstract: We report the microstructural evolution of the preferred orientation and electrical conductivity of zinc oxide (ZnO) thin films prepared by ion beam sputtering. Elastic recoil detection analysis results showed 0.6 at% H in as-deposited film which decreased to 0.35 at% in air annealed film due to H diffusion. XRD results showed that the preferred orientation can be tuned by selecting annealing conditions. Vacuum annealed films exhibited (1 0 0) orientation, whereas air annealed film showed (0 0 2) orientation. The annealing conditions caused a dramatic increase in the resistivity of air annealed films (∼10{sup 6} Ω cm), whereas vacuum annealed films showed lower resistivity (∼10{sup −2} Ω cm). High resistivity in air annealed film is attributed to the lack of hydrogen interstitials and hydrogen-oxygen vacancy complexes. Raman results supported the XRD results which demonstrated that annealing assisted in recovery of the crystalline disorder in as-deposited films. Air annealed film exhibited the highest optical transmission (89.7%) in the UV–vis region compared to as-deposited and vacuum annealed films (∼85%). Optical bandgap was found to vary between 3.11 eV and 3.18 eV in as-deposited and annealed films, respectively. The bandgap narrowing is associated with the intrinsic defects which introduced defect states resulting in band tail in ZnO films.

  16. Effect of hydrogen annealing on characteristics of polycrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    GOU Xianfang; XU Ying; LI Xudong; HENG Yang; MA Lifen; REN Bingyan

    2006-01-01

    The characteristics of mc-Si used for solar cells during H2 ambient annealing at 800-1200 ℃ were investigated by means of FTIR and QSSPCD. The results reveal that grain boundaries or defects in mc-Si may facilitate the formation of oxygen precipitates, and the formation of oxygen precipitates has deleterious effect on the lifetime of mc-Si. Decreasing lifetime could result from the formation of new recombination during annealing. Additionally, It is found that hydrogen may facilitate the formation of oxygen precipitates in mc-Si. On the other hand, the diffusion of hydrogen may passivate the defects/boundaries and it is beneficial to the lifetime of mc-Si.

  17. Post annealing investigations of thin praseodymia films on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Gevers, Sebastian; Bruns, Daniel; Weisemoeller, Thomas; Deiter, Carsten; Wollschlaeger, Joachim [Fachbereich Physik, Universitaet Osnabrueck (Germany)

    2008-07-01

    Due to its large oxygen capacity and oxygen mobility praseodymia is interesting for applications in modern heterogenous catalysis. For instance the selectivity of praseodymia for carbon compounds is advantageous in olefiant gas synthesis. The investigation of annealing processes leads to a better understanding of the oxygen transport in the praseodymia films. In this context thin PrO{sub 2} films were annealed at temperatures from 300 C up to 600 C under UHV conditions before they were analysed with spot analysis profile low electron energy diffraction (SPALEED). The diffraction pattern indicates a phase transition to Pr{sub 2}O{sub 3} at the surface. Furthermore X-ray diffraction experiments (XRD) show a partial subsurface phase transition from PrO{sub 2} into various oxidation states including Pr{sub 2}O{sub 3}.

  18. Hardening by annealing and softening by deformation in nanostructured metals

    DEFF Research Database (Denmark)

    Huang, X.; Hansen, N.; Tsuji, N.

    2006-01-01

    -dislocation and dislocation-interface reactions, such that heat treatment reduces the generation and interaction of dislocations, leading to an increase in strength and a reduction in ductility. A subsequent deformation step may restore the dislocation structure and facilitate the yielding process when the metal is stressed......We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation....... As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing....

  19. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    Science.gov (United States)

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  20. Variable neighbourhood simulated annealing algorithm for capacitated vehicle routing problems

    Science.gov (United States)

    Xiao, Yiyong; Zhao, Qiuhong; Kaku, Ikou; Mladenovic, Nenad

    2014-04-01

    This article presents the variable neighbourhood simulated annealing (VNSA) algorithm, a variant of the variable neighbourhood search (VNS) combined with simulated annealing (SA), for efficiently solving capacitated vehicle routing problems (CVRPs). In the new algorithm, the deterministic 'Move or not' criterion of the original VNS algorithm regarding the incumbent replacement is replaced by an SA probability, and the neighbourhood shifting of the original VNS (from near to far by k← k+1) is replaced by a neighbourhood shaking procedure following a specified rule. The geographical neighbourhood structure is introduced in constructing the neighbourhood structures for the CVRP of the string model. The proposed algorithm is tested against 39 well-known benchmark CVRP instances of different scales (small/middle, large, very large). The results show that the VNSA algorithm outperforms most existing algorithms in terms of computational effectiveness and efficiency, showing good performance in solving large and very large CVRPs.

  1. Temperature-dependent permittivity of annealed and unannealed gold films

    CERN Document Server

    Shen, Po-Ting; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chang, Chih-Wei; Chu, Shi-Wei

    2016-01-01

    Due to local field enhancement and subwavelength confinements, nano-plasmonics provide numerous novel applications. Simultaneously, as an efficient nanoscale heat generator from inherent absorption, thermo-plasmonics is emerging as an important branch. However, although significant temperature increase is involved in applications, detailed characterization of metal permittivity at different temperatures is lacking. In this work, we extract the permittivity of gold film from 300K to the annealing temperature of 570K. By comparing annealed and unannealed films, more than one-order difference in thermo-derivative of permittivity is revealed, resulting in unexpectedly large variation of plasmonic properties. Our result is valuable not only for characterizing extensively used unannealed nanoparticles, but also for designing future thermo-nano-plasmonic systems.

  2. Annealing free, clean graphene transfer using alternative polymer scaffolds

    Science.gov (United States)

    Wood, Joshua D.; Doidge, Gregory P.; Carrion, Enrique A.; Koepke, Justin C.; Kaitz, Joshua A.; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T.; Lyding, Joseph W.; Pop, Eric

    2015-02-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  3. Ranking important nodes in complex networks by simulated annealing

    Science.gov (United States)

    Sun, Yu; Yao, Pei-Yang; Wan, Lu-Jun; Shen, Jian; Zhong, Yun

    2017-02-01

    In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented. First, the concept of an importance sequence (IS) to describe the relative importance of nodes in complex networks is defined. Then, a measure used to evaluate the reasonability of an IS is designed. By comparing an IS and the measure of its reasonability to a state of complex networks and the energy of the state, respectively, the method finds the ground state of complex networks by simulated annealing. In other words, the method can construct a most reasonable IS. The results of experiments on real and artificial networks show that this ranking method not only is effective but also can be applied to different kinds of complex networks. Project supported by the National Natural Science Foundation of China (Grant No. 61573017) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JQ6062).

  4. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  5. Stochastic seismic inversion using greedy annealed importance sampling

    Science.gov (United States)

    Xue, Yang; Sen, Mrinal K.

    2016-10-01

    A global optimization method called very fast simulated annealing (VFSA) inversion has been applied to seismic inversion. Here we address some of the limitations of VFSA by developing a new stochastic inference method, named greedy annealed importance sampling (GAIS). GAIS combines VFSA and greedy importance sampling (GIS), which uses a greedy search in the important regions located by VFSA, in order to attain fast convergence and provide unbiased estimation. We demonstrate the performance of GAIS with application to seismic inversion of field post- and pre-stack datasets. The results indicate that GAIS can improve lateral continuity of the inverted impedance profiles and provide better estimation of uncertainties than using VFSA alone. Thus this new hybrid method combining global and local optimization methods can be applied in seismic reservoir characterization and reservoir monitoring for accurate estimation of reservoir models and their uncertainties.

  6. Annealing-induced evolution of transformation characteristics in TiNi shape memory alloys

    Science.gov (United States)

    Wang, Z. G.; Zu, X. T.; Feng, X. D.; Zhu, S.; Zhou, J. M.; Wang, L. M.

    2004-11-01

    The effect of annealing on transformation characteristics of TiNi shape memory alloys (SMAs) was investigated by differential scanning calorimetry (DSC) and the evolution of the microstructure was studied using positron annihilation technology (PAT) and transmission electron microscopy (TEM). The results showed that transformation characteristics depend on the annealing temperature. The R-phase transformation appeared at low annealing temperature. The R-phase disappeared and austensite transformed into martensite directly as the annealing temperature exceeded 550 °C. With increasing annealing temperature, the vacancy cluster and dislocation related positron lifetime decreased. Changes in transformation characteristics can be attributed to the evolution of the microstructrue of the TiNi specimen.

  7. Influences of Annealing on Residual Stress and Structure of HfO2 Films

    Institute of Scientific and Technical Information of China (English)

    SHEN Yan-Ming; SHAO Shu-Ying; DENG Zhen-Xia; HE Hong-Bo; SHAO Jian-Da; FAN Zheng-Xiu

    2007-01-01

    HfO2 films are deposited on BK7 glass substrates by electron beam evaporation. The influences of annealing between 100℃ and 400℃ on residual stresses and structures of HfO2 films are studied. It is found that little differences of spectra, residual stresses and structures are obtained after annealing at lower temperatures. After annealing at higher temperatures, the spectra shift to short wavelength, the residual stress increases with the increasing annealing temperature. At the same time, the crystallite size increases and interplanar distance decreases. The variations of optical spectra and residual stress correspond to the evolutions of structures induced by annealing.

  8. Effect of thermal-annealing on the magnetoresistance of manganite-based junctions

    Institute of Scientific and Technical Information of China (English)

    Xie Yan-Wu; Shen Bao-Gen; Sun Ji-Rong

    2008-01-01

    Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+δ film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: From the junction annealed-in-air to the junction annealed-in-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to~0. A possible mechanism accounting for this phenomenon is discussed.

  9. Effects of Primary Annealing Condition on Recrystallization Texture in a Grain Oriented Silicon Steel

    Institute of Scientific and Technical Information of China (English)

    Yuhui SHA; Fang ZHANG; Song LI; Xiaoyu GAO; Jiazhen XU; Liang ZUO

    2004-01-01

    The recrystallization texture in grain oriented silicon steel sheets, which were annealed at different primary annealing temperatures with and without an electric field, was investigated. An automated electron backscattered diffraction (EBSD) technique was used to analyze the recrystallization texture. It was found that recovery and application of electric field in primary annealing lead to an increase of {001} component and a decrease of {111} component after annealing at 900℃. The development of recrystallization texture can be explained in terms of the effects of electric field and primary annealing temperature on recovery.

  10. Simulated Annealing for the 0/1 Multidimensional Knapsack Problem

    Institute of Scientific and Technical Information of China (English)

    Fubin Qian; Rui Ding

    2007-01-01

    In this paper a simulated annealing (SA) algorithm is presented for the 0/1 multidimensional knapsack problem. Problem-specific knowledge is incorporated in the algorithm description and evaluation of parameters in order to look into the performance of finite-time implementations of SA. Computational results show that SA performs much better than a genetic algorithm in terms of solution time, whilst having a modest loss of solution quality.

  11. Dating thermal events at Cerro Prieto using fission track annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, S.J.; Elders, W..

    1981-01-01

    Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.

  12. Solving geometric constraints with genetic simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    刘生礼; 唐敏; 董金祥

    2003-01-01

    This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over- constraint problems naturally. It has advantages (due to its not being sensitive to the initial values) over the Newton-Raphson method, and its yielding of multiple solutions, is an advantage over other optimal methods for multi-solution constraint system. Our experiments have proved the robustness and efficiency of this method.

  13. Reverse degradation of nickel graphene junction by hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Zhenjun Zhang

    2016-02-01

    Full Text Available Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C is an effective technique to reverse the degradation.

  14. Transient Crystallization of an Aromatic Polyetherimide: Effect of Annealing

    Science.gov (United States)

    1991-01-01

    on the annealing behavior of an aromatic polyetherimide ( Ultem 5001). Although crystallization from the melt did not occur, crystallinity was easily...in LARC-TPI. 10-’ 3 Ultem aromatic polyetherimide, first reported by Serfaty, 15 is an amorphous thermoplastic with the following structure for a...commercially available Ultem 1000. 0 0 0n Our studies have been carried out on Ultem 5001-based materials which is a new aro- matic polyetherimide with

  15. Reverse degradation of nickel graphene junction by hydrogen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenjun; Yang, Fan; Agnihotri, Pratik; Lee, Ji Ung; Lloyd, J. R., E-mail: jlloyd@sunypoly.edu [College of Nanoscience and Engineering, SUNY Polytechnic Institute, Albany, NY USA 12203 (United States)

    2016-02-15

    Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 {sup 0}C) is an effective technique to reverse the degradation.

  16. Thermal annealing of laser damage precursors on fused silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  17. Reverse degradation of nickel graphene junction by hydrogen annealing

    CERN Document Server

    Zhang, Zhenjun; Agnihotri, Pratik; Lee, Ji Ung; Lloyd, Jim R

    2016-01-01

    Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C) is an effective technique to reverse the degradation.

  18. Estimation of the parameters of ETAS models by Simulated Annealing

    OpenAIRE

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is...

  19. Prime factorization using quantum annealing and computational algebraic geometry

    Science.gov (United States)

    Dridi, Raouf; Alghassi, Hedayat

    2017-02-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

  20. Adaptive Simulated Annealing Based Protein Loop Modeling of Neurotoxins

    Institute of Scientific and Technical Information of China (English)

    陈杰; 黄丽娜; 彭志红

    2003-01-01

    A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox-LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient.

  1. Prime factorization using quantum annealing and computational algebraic geometry

    Science.gov (United States)

    Dridi, Raouf; Alghassi, Hedayat

    2017-01-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854

  2. Simulated annealing spectral clustering algorithm for image segmentation

    Institute of Scientific and Technical Information of China (English)

    Yifang Yang; and Yuping Wang

    2014-01-01

    The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity mea-sure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid conver-gence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently ap-ply the algorithm to image segmentation, the Nystr¨om method is used to reduce the computation complexity. Experimental re-sults show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images.

  3. Microstructure Evolution and Grain Growth Kinetics in Annealed Nanocrystalline Chromium

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, Grzegorz [Warsaw University; Przenioslo, Radoslaw [Warsaw University; Sosnowska, Izabela [Warsaw University; Bukowski, Mirko [University of Saarbrucken, Saarbrucken, Germany; Natter, Harald [University of Saarbrucken, Saarbrucken, Germany; Hempelmann, Rolf [University of Saarbrucken, Saarbrucken, Germany; Fitch, Andrew [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL

    2007-01-01

    The kinetics of thermal evolution of the microstructure of nanocrystalline chromium (nano-Cr) has been studied by time-resolved synchrotron radiation techniques: high-resolution powder diffraction and small-angle X-ray scattering (SAXS). The as-prepared electrodeposited nano-Cr with average grain size of 27 nm shows the same bcc structure as {alpha}-Cr. The nano-Cr cubic lattice parameter thermal expansion is the same as that of reference polycrystalline {alpha}-Cr. Annealing of nano-Cr at temperatures above 400 C leads to a grain growth process with the final grain size not exceeding 125 nm even at a temperature of 700 C. The single power-law behavior is observed by SAXS in as-prepared nano-Cr changes during annealing above 400 C. In nano-Cr samples annealed at temperatures between 400 and 700 C, the low-q part of the SAXS signal shows a Porod-type behavior while the high-q part shows a power-law Q-{alpha} with the exponent {alpha} < 4. This effect is probably due to changes of the grain surface roughness during grain growth.

  4. Vacuum annealing temperature on spray In2S3 layers

    Science.gov (United States)

    Bouguila, Nourredine; Timoumi, Abdelmajid; Bouzouita, Hassen

    2014-02-01

    Indium sulfide In2S3 thick films are deposited on glass substrates using spray technique over the optimum conditions experiments (Ts = 340 °C, S/In = 2). The films are polycrystalline and have thickness of about 1.8 μm. These films are annealed in a vacuum sealed pyrex tubes (10-5 torr). Physico-chemical characterizations by SEM observation, X-ray diffraction and EDX analysis are undertaked on these films. This treatment has improved crystallinity of samples. It has allowed thus to stabilize β and γ varieties of In2S3 material. In2O3 and In6S7 phases have appeared with very weak intensities at high temperatures. The best structure quality are obtained at 300 °C for the optimum annealed temperature (Ts = 340 °C, S/In = 2), for which samples are constituted in dominance by γ phase oriented preferentially towards (1 0 2). The grain size is 42 nm of this phase. Chemical composition of such films has changed relatively to non-treated film but it seems not be affected by treatment temperature. Atomic molar ratio S/In is obtained for 0.9. Optical study shows that these layers are transparent in the visible and optical direct band gap increases as function of annealed temperature.

  5. Rayleigh wave inversion using heat-bath simulated annealing algorithm

    Science.gov (United States)

    Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng

    2016-11-01

    The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.

  6. Maximum-Entropy Inference with a Programmable Annealer.

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A

    2016-03-03

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  7. CDF Run II Silicon Vertex Detector Annealing Study

    CERN Document Server

    Stancari, M; Behari, S; Christian, D; Di Ruzza, B; Jindariani, S; Junk, T R; Mattson, M; Mitra, A; Mondragon, M N; Sukhanov, A

    2013-01-01

    Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron collider delivered 12~fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV to the Collider Detector at Fermilab (CDF). During that time, the CDF silicon vertex detector was subject to radiation doses of up to 12 Mrad. After the end of operations, the silicon detector was annealed for 24 days at $18^{\\circ}$C. In this paper, we present a measurement of the change in the bias currents for a subset of sensors during the annealing period. We also introduce a novel method for monitoring the depletion voltage throughout the annealing period. The observed bias current evolution can be characterized by a falling exponential term with time constant $\\tau_I=17.88\\pm0.36$(stat.)$\\pm0.25$(syst.) days. We observe an average decrease of $(27\\pm3)\\%$ in the depletion voltage, whose evolution can similarly be described by an exponential time constant of $\\tau_V=6.21\\pm0.21$ days. These results are consistent with the Ham...

  8. Thin tungsten telluride layer preparation by thermal annealing

    Science.gov (United States)

    Lu, Wei; Zhang, Yudao; Zhu, Zusong; Lai, Jiawei; Zhao, Chuan; Liu, Xuefeng; Liu, Jing; Sun, Dong

    2016-10-01

    We report a simple method to prepare a thin Tungsten Telluride (WTe2) flake with accurate thickness control, which allows preparing and studying this two dimensional material conveniently. First, the WTe2 flake, which is relatively thick due to its strong interlayer van der Waals forces, is obtained by a conventional mechanical exfoliation method. Then, the exfoliated flake is annealed at 600 °C under a constant Ar protecting flow. Raman and atomic force spectroscopy characterizations demonstrate that thermal annealing can effectively thin down the WTe2 flake and retain its original lattice structure, though its surface smoothness is slightly deteriorated. Additionally, systematical study indicates that the thinning process strongly depends on the initial thickness of the WTe2 flake before annealing: the thinning rate increases from 0.12 nm min-1 to 0.36 nm min-1 as the initial thickness increases from 10 nm to 45 nm, while the roughness of the final product also increases with the increase of its initial thickness. However, the method fails when it is applied to WTe2 flakes thicker than 100 nm, resulting in uneven or burnt surface, which is possibly caused by big cavities formed by a large amount of defects gathered at the top surface.

  9. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  10. Effect of Annealing Atmosphere on the Mechanical Property of Free-cutting Phosphor Bronze Alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The present work is focused on the influence of annealing atmosphere on the microstructure and mechanical property of free-cutting phosphor bronze alloy. The annealing of the alloy was conducted in the three kinds of annealing atmosphere such as air, vacuum and nitrogen. After annealing, a discernable difference in recystallized grain size and lead particle size was not appeared with different annealing atmosphere. The tensile strength of the alloy annealed in air or nitrogen atmosphere was higher than that of those annealed in vacuum atmosphere. In thecase of the alloy annealed in vacuum atmosphere, the mechanical strength was reduced by vaporization of zinc. In the case of annealing in nitrogen and in air atmosphere, the sweating of lead was occurred. However, the inverse segregation of lead was suppressed by copper oxide layer on the surface annealed in air. This copper oxide layer leads to a decrease of the yield during fabrication process. Therefore, annealing of the alloy in nitrogen atmosphere is favorable in terms of the mechanical strength and yield.

  11. Sensitivity enhancement using annealed polymer optical fibre based sensors for pressure sensing applications

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Saez-Rodriguez, D.

    2016-01-01

    enhancement and augmented temperature operational range. The annealing process can change both the optical and mechanical properties of the fibre. In this paper, the annealing effects on the stress and force sensitivities of PMMA fibre Bragg grating sensors are investigated. The incentive......Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity......-inscribed and characterised with regard their stress and force sensitivities. Then, the fibres were annealed by placing them in hot water, controlling with that way the humidity factor. After annealing, stress and force sensitivities were measured again. The results show that the annealing can improve the stress and force...

  12. Laser annealing and defect study of chalcogenide photovoltaic materials

    Science.gov (United States)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  13. MICROSTRUCTURE AND PROPERTIES OF ANNEALED ZnO THIN FILMS DEPOSITED BY MAGNETRON SPUTTERING

    Institute of Scientific and Technical Information of China (English)

    J. Lee; W. Gao; Z. Li; M. Hodgson; A. Asadov; J. Metson

    2005-01-01

    ZnO thin films were deposited on a glass substrate by dc (direct current) and rf (radio frequency) magnetron sputtering. Post-deposition annealing was performed in different atmospheres and at different temperatures. The correlation of the annealing conditions with the microstructure and properties of the ZnO films were investigated by ultraviolet-visible spectroscopy, X-ray diffraction, conductivity measurement and scanning electron microscopy. Only the strong 002peak could be observed by X-ray diffraction. The post-deposition annealing of ZnO films was found to alter the film's microstructure and properties, including crystallinity, porosity, grain size, internal stress level and resistivity. It was also found that after annealing, the conductivity of poorly conductive samples often improved. However, annealing does not improve the conductivity of samples with high conductivity prior to annealing. The resistivity of as-grown films annealing on the conductivity of ZnO, it is believed that annealing may alter the presence and distribution of oxygen defects, reduce the lattice stress, cause diffusion, grain coarsening and recrystallization. Annealing will reduce the density of grain boundaries in less dense films,which may decrease the resistivity of the films. On the other hand, annealing may also increase the porosity of thin films, leading to an increase in resistivity.

  14. Effect of annealing in hydrogen atmosphere on ZnO films for field emission display

    Science.gov (United States)

    Zulkifli, Zurita; Sharma, Subash; Shinde, Sachin; Kalita, Golap; Tanemura, M.

    2015-11-01

    Surface morphology, crystallinity, conductivity and optical transmittance of ZnO films can be modified by annealing process. Hydrogen is one of the popular annealing gases as well as nitrogen, argon, oxygen and air which are commonly used for thin film cleaning or the removal of native oxide. In general, annealing is done at high temperatures (> 600degC) to improve the film properties. From a view point of environment, however, lower annealing temperature is preferable. In this work, low annealing process was challenged to understand the effect of annealing temperature on properties of ZnO thin films and nanostructured film grown on glass substrates for transparent field emission device applications. The annealing temperature employed was 100, 200 and 450°C at 100 sccm hydrogen flow rate. ZnO thin films were deposited by RF magnetron sputtering. The ZnO thin films were characterized by X-ray diffraction analysis (XRD), Atomic Force Microscopy (AFM), UV-VIS and Raman spectroscopy. The sheet resistances reduced about 15 kohm/sq at low annealing temperature. By contrast, the optical transmittance did not show any significant changes after annealing. The FE current density increased after the ZnO nanostructures film was annealed in 100°C. The results obtained could motivate a surface treatment for flexible ZnO thin film since the substrate is always suffered by heat.

  15. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.

    Science.gov (United States)

    Nakazawa, Yuta; Wang, Ya-Jane

    2003-11-21

    Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.

  16. Formation of oxygen related donors in step-annealed CZ–silicon

    Indian Academy of Sciences (India)

    Vikash Dubey; Shyam Singh

    2002-12-01

    The effect of step-annealing necessitated by the difficulties being faced in the long duration annealing treatments to be given to CZ–silicon has been studied. One pre-anneal of 10 h followed by annealing of 10 h causes a decrease in the absorption coefficient for carbon (c). Oxygen and carbon both accelerate thermal donor (TD) formation process but oxygen plays a dominating role. Three anneals of 10 h each followed by one anneal of 10 h support the view that carbon suppresses the donor formation. The absorption coefficient for carbon decreases after a few number of step-anneals resulting in the transformation of TD to new donor (ND) as brought about by annealing at temperature, > 500°C. It is quite logical to conclude that step-annealing may bring about the same results as obtained on continuous annealing for a longer duration. The results have been fully supported by proper interpretation in the light of existing theories.

  17. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P.; McCallum, J.C. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  18. Reduced-Complexity Deterministic Annealing for Vector Quantizer Design

    Directory of Open Access Journals (Sweden)

    Ortega Antonio

    2005-01-01

    Full Text Available This paper presents a reduced-complexity deterministic annealing (DA approach for vector quantizer (VQ design by using soft information processing with simplified assignment measures. Low-complexity distributions are designed to mimic the Gibbs distribution, where the latter is the optimal distribution used in the standard DA method. These low-complexity distributions are simple enough to facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to result in near-optimal performance. We have also derived the theoretical performance loss at a given system entropy due to using the simple soft measures instead of the optimal Gibbs measure. We use thederived result to obtain optimal annealing schedules for the simple soft measures that approximate the annealing schedule for the optimal Gibbs distribution. The proposed reduced-complexity DA algorithms have significantly improved the quality of the final codebooks compared to the generalized Lloyd algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest neighbor (PNN codebook initialization. The proposed algorithms are able to evade the local minima and the results show that they are not sensitive to the choice of the initial codebook. Compared to the standard DA approach, the reduced-complexity DA algorithms can operate over 100 times faster with negligible performance difference. For example, for the design of a 16-dimensional vector quantizer having a rate of 0.4375 bit/sample for Gaussian source, the standard DA algorithm achieved 3.60 dB performance in 16 483 CPU seconds, whereas the reduced-complexity DA algorithm achieved the same performance in 136 CPU seconds. Other than VQ design, the DA techniques are applicable to problems such as classification, clustering, and resource allocation.

  19. Quantum Annealing and Computation: A Brief Documentary Note

    CERN Document Server

    Ghosh, Asim

    2013-01-01

    Major breakthrough in quantum computation has recently been achieved using quantum annealing to develop analog quantum computers instead of gate based computers. After a short introduction to quantum computation, we retrace very briefly the history of these developments and discuss the Indian researches in this connection and provide some interesting documents (in the Figs.) obtained from a chosen set of high impact papers (and also some recent news etc. blogs appearing in the Internet). This note is also designed to supplement an earlier note by Bose (Science and Culture, 79, pp. 337-378, 2013).

  20. P-type conductivity in annealed strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814 (United States)

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  1. Global annealing genetic algorithm and its convergence analysis

    Institute of Scientific and Technical Information of China (English)

    张讲社; 徐宗本; 梁怡

    1997-01-01

    A new selection mechanism termed global annealing selection (GAnS) is proposed for the genetic algorithm. It is proved that the GAnS genetic algorithm converges to the global optimums if and only if the parents are allowed to compete for reproduction, and that the variance of population’s fitness can be used as a natural stopping criterion. Numerical simulations show that the new algorithm has stronger ability to escape from local maximum and converges more rapidly than canonical genetic algorithm.

  2. Annealed Demon Algorithms Solving the Environmental / Economic Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Aristidis VLACHOS

    2013-06-01

    Full Text Available This paper presents an efficient and reliable Annealed Demon (AD algorithm for the Environmental/Economic Dispatch (EEB problem. The EED problem is a multi-objective non-linear optimization problem with constraints. This problem is one of the fundamentals issues in power system operation. The system of generation associates thermal generators and emissions which involves sulphur oxides (SO2 and nitrogen oxides (NOx. The aim is to minimize total fuel cost of the system and control emission. The proposed AD algorithm is applied for EED of a simple power system.

  3. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  4. Estimation of the parameters of ETAS models by Simulated Annealing

    Science.gov (United States)

    Lombardi, Anna Maria

    2015-02-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  5. Skymapping with OSSE via the Mean Field Annealing Pixon Technique

    CERN Document Server

    Dixon, D D; Zych, A D; Cheng, L X; Johnson, W N; Kurfess, J D; Pina, R K; Pütter, R C; Purcell, W R; Wheaton, W A; Wheaton, Wm. A.

    1997-01-01

    We present progress toward using scanned OSSE observations for mapping and sky survey work. To this end, we have developed a technique for detecting pointlike sources of unknown number and location, given that they appear in a background which is relatively featureless or which can be modeled. The technique, based on the newly developed concept and mean field annealing, is described, with sample reconstructions of data from the OSSE Virgo Survey. The results demonstrate the capability of reconstructing source information without any a priori information about the number and/or location of pointlike sources in the field-of-view.

  6. Simulated annealing approach to the max cut problem

    Science.gov (United States)

    Sen, Sandip

    1993-03-01

    In this paper we address the problem of partitioning the nodes of a random graph into two sets, so as to maximize the sum of the weights on the edges connecting nodes belonging to different sets. This problem has important real-life counterparts, but has been proven to be NP-complete. As such, a number of heuristic solution techniques have been proposed in literature to address this problem. We propose a stochastic optimization technique, simulated annealing, to find solutions for the max cut problem. Our experiments verify that good solutions to the problem can be found using this algorithm in a reasonable amount of time.

  7. Radiation and annealing effects on integrated bipolar Operational Amplifier

    Science.gov (United States)

    Assaf, J.

    2017-02-01

    Integrated bipolar Operational Amplifier (op-amp) type μA 741 was irradiated with neutrons and gamma rays. The radiation on gain factors, slew rate, and power supply current have been evaluated. The experimental results show a decrease of these parameter values after exposing to the radiation. The advantage of the increase of the voltage power supplies and the thermal annealing treatment on the damaged parameters was also explored. The relationship among different frequency response parameters is also studied leading to an analytical formula for the above degraded parameters.

  8. Effects of Annealing on TiN Thin Film Growth by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Azadeh Jafari

    2014-07-01

    Full Text Available We have reviewed the deposition of titanium nitride (TiN thin films on stainless steel substrates by a DC magnetron sputtering method and annealing at different annealing temperatures of 500, 600, and 700°C for 120 min in nitrogen/argon atmospheres. Effects of annealing temperatures on the structural and the optical properties of TiN films were investigated using X-ray diffraction (XRD, atomic force microscope (AFM, field emission scanning electron microscopy (FESEM, and UV-VIS spectrophotometer. Our experimental studies reveal that the annealing temperature appreciably affected the structures, crystallite sizes, and reflection of the films. By increasing the annealing temperature to 700°C crystallinity and reflection of the film increase. These results suggest that annealed TiN films can be good candidate for tokamak first wall due to their structural and optical properties.

  9. Fe48Co52 Alloy Nanowire Arrays: Effects of Magnetic Field Annealing

    Institute of Scientific and Technical Information of China (English)

    Hai-lin Sua; Shao-long Tang; Rui-long Wang; Yi-qing Chen; Chong Jia; You-wei Du

    2009-01-01

    The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys-talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.

  10. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix

    Directory of Open Access Journals (Sweden)

    Wan Zhenyu

    2011-01-01

    Full Text Available Abstract In this paper, a positive effect of rapid thermal annealing (RTA technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%. Si nanocrystals (Si-NC containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

  11. A deterministic annealing algorithm for a combinatorial optimization problem using replicator equations

    Science.gov (United States)

    Tsuchiya, Kazuo; Nishiyama, Takehiro; Tsujita, Katsuyoshi

    2001-02-01

    We have proposed an optimization method for a combinatorial optimization problem using replicator equations. To improve the solution further, a deterministic annealing algorithm may be applied. During the annealing process, bifurcations of equilibrium solutions will occur and affect the performance of the deterministic annealing algorithm. In this paper, the bifurcation structure of the proposed model is analyzed in detail. It is shown that only pitchfork bifurcations occur in the annealing process, and the solution obtained by the annealing is the branch uniquely connected with the uniform solution. It is also shown experimentally that in many cases, this solution corresponds to a good approximate solution of the optimization problem. Based on the results, a deterministic annealing algorithm is proposed and applied to the quadratic assignment problem to verify its performance.

  12. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    CERN Document Server

    Rhee, J Y

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder -> order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by p...

  13. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Hara, Masanori [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Otsuka, Teppei [Kyushu University, Interdisciplinary Graduate School of Engineering Science, Higashi-ku, Fukuoka (Japan); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-08-15

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 10{sup 26} m{sup −2}) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min{sup −1} up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  14. Effect of thermal annealing on properties of polycrystalline ZnO thin films

    Science.gov (United States)

    Gritsenko, L. V.; Abdullin, Kh. A.; Gabdullin, M. T.; Kalkozova, Zh. K.; Kumekov, S. E.; Mukash, Zh. O.; Sazonov, A. Yu.; Terukov, E. I.

    2017-01-01

    Electrical properties (density, carriers mobility, resistivity), optical absorption and photoluminescence spectra of ZnO, grown by MOCVD and hydrothermal methods, have been investigated depending on the annealing and treatment modes in a hydrogen plasma. It has been shown that the electrical and photoluminescent (PL) properties of ZnO are strongly dependent on gas atmosphere during annealing. The annealing in oxygen atmosphere causes a sharp drop of carrier mobility and films conductivity due to the absorption of oxygen on grain boundaries. The process of ZnO electrical properties recovery by the thermal annealing in inert atmosphere (nitrogen), in oil (2×10-2 mbar) and oil-free (1×10-5 mbar) vacuum has been investigated. The hydrogen plasma treatment influence on the intensity of near-band-gap emission (NBE) has been studied. The effect of annealing and subsequent plasma treatment on PL intensity depends on the gas atmosphere of preliminary thermal annealing.

  15. Influence of Annealing Temperature on the Properties of TiO2 Films Annealed by ex situ and in situ TEM

    Institute of Scientific and Technical Information of China (English)

    PENG Tangchao; XIAO Xiangheng; REN Feng; XU Jinxia; ZHOU Xiaodong; MEI Fei; JIANG Changzhong

    2012-01-01

    TiO2 thin films were deposited on quartz substrates by DC reactive magnetron sputtering of a pure Ti target in Ar/O2 plasma at room temperature.The TiO2 films were annealed at different temperatures ranging from 300 to 800 ℃ in a tube furnace under flowing oxygen gas for half an hour each.The effect of annealing temperatures on the structure,optical properties,and morphologies were presented and discussed by using X-ray diffraction,optical absorption spectrum,and atomic force microscope.The films show the presence of diffraction peaks from the (101),(004),(200) and (105) lattice planes of the anatase TiO2 lattice.The direct band gap of the annealed films decreases with the increase of annealing temperature.While,the roughness of the films increases with the increases of annealing temperature,and some significant roughness changes of the TiO2 film surfaces were observed after the annealing temperature reached 800 ℃.Moreover,the influences of annealing on the microstructures of the TiO2 film were investigated also by in situ observation in transmission electron microscope.

  16. Enhancement of Stability of Polymer Light-Emitting Diodes by Post Annealing

    Institute of Scientific and Technical Information of China (English)

    YAO Bing; XIE Zhi-Yuan; YANG Jun-Wei; CHENG Yan-Xiang; WANG Li-Xiang

    2007-01-01

    We investigate the effect of thermal annealing before and after cathode deposition on the stability of polymer light-emitting diodes (PLEDs) based on green fluorescent polyfluorene derivative. The annealed PLEDs exhibit improved charge transport and red-shift emission compared to the as-fabricated device. The stability of the PLEDs is largely enhanced by post-annealing before and after Ca deposition, which is attributed to the enhanced charge transport and the intimate contact between the cathode and the emissive layer.

  17. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy

    Science.gov (United States)

    2016-08-25

    open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and...relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model...annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is

  18. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology.

    OpenAIRE

    Marcel Ander; Sivaraman Subramaniam; Karim Fahmy; Francis Stewart, A.; Erik Schäffer

    2015-01-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recog...

  19. Recognition of hairpin DNA from coil DNA by electrospray mass spectrometry with annealing strategy

    Institute of Scientific and Technical Information of China (English)

    Bo Zheng; Yi Quan Liu; Gu Yuan

    2012-01-01

    This research presented an annealing strategy to identify hairpin DNA from coil DNA with the same base composition but different arrangements using electrospray mass spectrometry (ESI-MS).A series of single-stranded DNA were annealed with their complementary sequences,respectively.All the five pairs of hairpin DNA and coil DNA were unambiguously distinguished by ESIMS with annealing strategy.This research offers a potential method to probe the DNA structure by comparing with mass spectral characteristics.

  20. Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H.L.; Gao, R.; Zhang, T., E-mail: zhangtao@issp.ac.cn; Wang, X.P.; Fang, Q.F., E-mail: qffang@issp.ac.cn; Liu, C.S.

    2015-11-15

    Graphical abstract: TEM images of microstructure for 14%Cr-ODS ferritic steel annealed for 2 h at different temperatures: (a) 600 °C, (b) 800 °C, (c) 950 °C, and (d) 1150 °C, and the evolution trends of coercivity field (H{sub C}) and Vickers microhardness for samples annealed at above temperatures for 2 h and 50 h. - Highlights: • The thermal stability of annealed 14%Cr-ODS ferritic steel was investigated. • The particle size keeps fairly constant with increasing annealing temperature. • The grain size is still 2–4 μm even after annealing for 50 h at 1150 °C. • The hardness and H{sub C} are almost unchanged after annealing from 800 °C to 1150 °C. - Abstract: The microstructure and magnetic properties of the 14%Cr oxide dispersion strengthened (ODS) ferritic steel fabricated by sol–gel and HIP method were investigated by annealing in vacuum for 2 h (at 300, 600, 800, 950 and 1150 °C) and 50 h (at 600, 800, 950 and 1150 °C). Microstructure analysis shows that as the annealing temperature increases, the size of oxide nanoparticles becomes smaller and their dispersion in matrix becomes more homogeneous. Grain size remains stable when the annealing temperature is below 800 °C, while above 800 °C, grain size grows with the increasing annealing temperature and time. The Vickers microhardness and coercivity (H{sub C}) display almost similar evolution trend with annealing temperature for 2 h and 50 h. No obvious recrystallization appears after 1150 °C annealing, which indicates the high microstructural stability of 14%Cr-ODS ferritic steel. The possible mechanism for above behaviors is discussed in this paper.

  1. EFFECT OF ANNEALING ON THE PROPERTIES OF VANADIUM PENTOXIDE FILMS PREPARED BY SOL–GEL METHOD

    OpenAIRE

    YAQIANG LIU; XUELIAN DU; XUEQIN LIU

    2014-01-01

    The vanadium pentoxide (V2O5) films were obtained by using sol–gel procedure and then were annealed at different temperature in air. The effect of different annealing temperatures on the composition, the microstructure, the surface morphology and the optical properties of the films were characterized by methods such as by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and spectral transmittance. The results revealed that the film annealed at 150°C has amorphous structure ...

  2. Evolution of nano-structures of silver due to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Bhattacharyya, S. R., E-mail: shyamal.mondal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  3. Sparse approximation problem: how rapid simulated annealing succeeds and fails

    Science.gov (United States)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki

    2016-03-01

    Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.

  4. Manufacture of Radio Frequency Micromachined Switches with Annealing

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2014-01-01

    Full Text Available The fabrication and characterization of a radio frequency (RF micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  5. Manufacture of radio frequency micromachined switches with annealing.

    Science.gov (United States)

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  6. Helium Behaviour in Waste Conditioning Matrices during Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry A.; Hiernaut, J-P; Damen, P; Lutique, Stphanie; Fromknecht, R; Weber, William J.

    2006-06-30

    Reprocessing of spent fuel produces high level waste including minor actinides and long living fission products that might be disposed in waste conditioning matrices. Several natural mineral phases were proven to be able to incorporate fission products or actinides in their crystalline structure for long periods of time. In this study, synthetic compounds of zirconolite (CaZrTi2O7) and pyrochlores (Gd2Ti2O7 and Nd2Zr2O7) were fabricated and doped with the short-lived alpha-emitter 244Cm to increase the total amount of helium and damage generated in a laboratory time scale. Helium implantations were also used to simulate the damage caused by the alpha-decay and the build-up of helium in the matrix. The samples were annealed in a Knudsen cell, and the helium release profile interpreted in conjunction with radiation damage studies and previous analysis of annealing behaviour. Several processes like diffusion, trapping or phase changes could then be attributed to the helium behaviour depending on the material considered. Despite high damage and large amount of helium accumulated, the integrity of the studied materials was preserved during storage.

  7. Helium behaviour in waste conditioning matrices during thermal annealing

    Science.gov (United States)

    Wiss, T. A. G.; Hiernaut, J.-P.; Damen, P. M. G.; Lutique, S.; Fromknecht, R.; Weber, W. J.

    2006-06-01

    Reprocessing of spent fuel produces high level waste including minor actinides and long living fission products that might be disposed in waste conditioning matrices. Several natural mineral phases were proven to be able to incorporate fission products or actinides in their crystalline structure for long periods of time. In this study, synthetic compounds of zirconolite (CaZrTi2O7) and pyrochlores (Gd2Ti2O7 and Nd2Zr2O7) were fabricated and doped with the short-lived alpha-emitter 244Cm to increase the total amount of helium and damage generated in a laboratory time scale. Helium implantations were also used to simulate the damage caused by the alpha-decay and the build-up of helium in the matrix. The samples were annealed in a Knudsen cell, and the helium release profile interpreted in conjunction with radiation damage studies and previous analysis of annealing behaviour. Several processes like diffusion, trapping or phase changes could then be attributed to the helium behaviour depending on the material considered. Despite high damage and large amount of helium accumulated, the integrity of the studied materials was preserved during storage.

  8. Simulated annealing technique to design minimum cost exchanger

    Directory of Open Access Journals (Sweden)

    Khalfe Nadeem M.

    2011-01-01

    Full Text Available Owing to the wide utilization of heat exchangers in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters to satisfy a given heat duty and constraints. Although well proven, this kind of approach is time consuming and may not lead to cost effective design as no cost criteria are explicitly accounted for. The present study explores the use of nontraditional optimization technique: called simulated annealing (SA, for design optimization of shell and tube heat exchangers from economic point of view. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tube length, baffle spacing, number of tube passes, tube layout, type of head, baffle cut etc and minimization of total annual cost is considered as design target. The presented simulated annealing technique is simple in concept, few in parameters and easy for implementations. Furthermore, the SA algorithm explores the good quality solutions quickly, giving the designer more degrees of freedom in the final choice with respect to traditional methods. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm. The SA approach is able to reduce the total cost of heat exchanger as compare to cost obtained by previously reported GA approach.

  9. Annealing of GaN under high pressure of nitrogen

    CERN Document Server

    Porowski, S; Kolesnikov, D; Lojkowski, W; Jager, V; Jäger, W; Bogdanov, V; Suski, T; Krukowski, S

    2002-01-01

    Gallium nitride, aluminum nitride and indium nitride are basic materials for blue optoelectronic devices. The essential part of the technology of these devices is annealing at high temperatures. Thermodynamic properties of the Ga-N system and their consequences to application of high nitrogen pressure for the annealing of GaN based materials are summarized. The diffusion of Zn, Mg and Au in high dislocation density heteroepitaxial GaN/Al sub 2 O sub 3 layers will be compared with the diffusion in dislocation-free GaN single crystals and homoepitaxial layers. It will be shown that high dislocation density can drastically change the diffusion rates, which strongly affects the performance of nitride devices. Inter-diffusion of Al, Ga and In in AlGaN/GaN and InGaN/GaN quantum well (QW) structures will be also considered. It will be shown that in contrast to stability of metal contacts, which is strongly influenced by dislocations, the inter-diffusion of group III atoms in QW structures is not affected strongly by...

  10. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Science.gov (United States)

    Kumar, Pankaj; Bilen, Chhinder; Feron, Krishna; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.

    2014-05-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and P3HT:indene-C60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ˜50% performance restoration over several degradation/regeneration cycles.

  11. Evaluation of trapping parameters of annealed natural quartz

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui [College of Resources, Environment & Tourism, Capital Normal University, 100048 Beijing (China); Shisanling Seismic Station, Institute of Earthquake Science, CEA, 102200 Beijing (China); Wei, Ming-Jian, E-mail: weimj@cnu.edu.cn [College of Resources, Environment & Tourism, Capital Normal University, 100048 Beijing (China); Song, Bo [College of Resources, Environment & Tourism, Capital Normal University, 100048 Beijing (China); Beijing Jing Yuan School, 100040 Beijing (China); Zhang, Yan [College of Resources, Environment & Tourism, Capital Normal University, 100048 Beijing (China); School of TaiPingqiao, Nan Lu of West Railway Station, 100073 Beijing (China); Zhao, Qiu-Yue [Key Laboratory of Tourism and Resources Environment in Universities of Shandong, Taishan University, 271000 Tai’an (China); Pan, Bao-Lin; Li, Teng-Fei [College of Resources, Environment & Tourism, Capital Normal University, 100048 Beijing (China)

    2016-05-15

    The thermoluminescence (TL) trapping parameters of annealed quartz have been investigated. The apparent TL peaks observed at temperatures of 133 °C, 211 °C, 266 °C and 405 °C, respectively, were named Peak I, Peak II, Peak III and Peak IV. The T{sub m} − T{sub stop} method is applied to investigate the number of peaks and their positions, and to obtain the trap distributions in the quartz. Peak shape (PS), Hoogenstraaten method (Various Heating Rates Method, VHR), and Computerized Glow Curve Deconvolution (CGCD) are used to evaluate the trapping parameters of the annealed quartz. The glow curve can be considered as a superposition of at least nine overlapping peaks. These peaks show up at 133 °C, 211 °C, 266 °C, 308 °C, 333 °C, 384 °C, 441 °C, 466 °C and 484 °C. The PS method can be only used in evaluating the parameters for Peaks I. The VHR method can be used in evaluating the trapping parameters for the first three peaks. CGCD method is complementary to obtaining parameters for the sub-peaks, and the thermal quenching correction with the Urbach’s method is necessary. The Urbach’s coefficient for the quartz is 30.03 kT{sub m}.

  12. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Shi-hua Zhan

    2016-01-01

    Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  13. Microstructural, Structural, and Thermal Characterization of Annealed Carbon Steels

    Science.gov (United States)

    Lara-Guevara, A.; Ortiz-Echeverri, C. J.; Rojas-Rodriguez, I.; Mosquera-Mosquera, J. C.; Ariza-Calderón, H.; Ayala-Garcia, I.; Rodriguez-García, M. E.

    2016-10-01

    As is well known, the metallurgical microstructure of carbon steel is formed by ferrite and pearlite after the annealing heat treatment. When the cooling rate increases, the diffusive process is interrupted causing a change in the metallurgical microstructure which will affect steel properties. The aim of this work was to study thermal, structural, and microstructural properties of annealed carbon steel samples with four different carbon contents. Crystalline structure and crystalline quality were studied by the X-ray diffraction technique, where the full width at half maximum analysis showed that as the carbon content increased, the crystalline quality decreased. The metallurgical microstructure morphology was studied by scanning electron microscopy. The thermal diffusivity and the heat capacity were determined by the photoacoustic technique and by the thermal relaxation method, respectively. The thermal diffusivity and the thermal conductivity decreased as the carbon content increased. The amplitude signal of photothermal radiometry increased as the carbon content increased, while the phase signal of photothermal radiometry did not show significant differences among studied carbon steel types. The photoacoustic technique represents an important alternative in the steel characterization field.

  14. Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Gai-Ge Wang

    2013-01-01

    Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.

  15. Interferometric Studies for the Annealing Effects on the Necking Deformation along Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    T.Z.N. Sokkar

    2007-07-01

    Full Text Available An automated multiple-beam Fizeau fringes in transmission technique was used with a fiber-drawing device to detect necking deformation along polypropylene (PP fibers axis under different conditions of annealing process. The refractive indices, refractive index profiles and crystallinity were calculated along the annealed PP fibers at different draw ratios. The annealing temperature controls the propagation of necking deformation along PP fibers axis that stretched at low draw ratios (D< 2. The necking deformations along PP fibers axis due to fast drawing process could be avoided when PP fibers were annealed at the temperature of 120oC. Microinterferograms are given for illustrations.

  16. SAIL: A CUDA-based implementation of the simulated annealing for the inverse Laplace transform problem

    CERN Document Server

    Lutsyshyn, Yaroslav

    2016-01-01

    We developed a CUDA-based parallelization of the annealing method for the inverse Laplace transform problem. The algorithm is based on annealing algorithm and minimizes residue of the reconstruction of the spectral function. We introduce local updates which preserve first two sum rules and allow an efficient parallel CUDA implementation. Annealing is performed with the Monte Carlo method on a population of Markov walkers. We propose imprinted branching method to improve further the convergence of the anneal. The algorithm is tested on truncated double-peak Lorentzian spectrum with examples of how the error in the input data affects the reconstruction.

  17. Annealing to reduce scattering centers in Czochralski-grown beta-BaB2O4.

    Science.gov (United States)

    Kouta, H; Kuwano, Y

    1999-02-20

    When a visible laser beam passes through beta-BaB(2)O(4) (BBO), scattered light can be observed along the beam within the crystal. Scattering centers caused by structural defects in Czochralski-grown BBO can be reduced by 95% by annealing at 920 degrees C. In the flux-grown BBO, centers actually increase by the same annealing because the process causes microcracks and/or secondary inclusions. It is shown that annealed Czochralski-grown BBO is superior to flux-grown BBO (annealed or as-grown) in terms of optical loss.

  18. Effect of annealing on the thermal properties of poly (lactic acid)/starch blends.

    Science.gov (United States)

    Lv, Shanshan; Gu, Jiyou; Cao, Jun; Tan, Haiyan; Zhang, Yanhua

    2015-03-01

    A comparative study of the thermal behavior of PLA/starch blends annealed at different temperatures has been conducted. Annealing was found to be beneficial to weaken and even eliminate the enthalpy relaxation near Tg. The degree of crystallinity was evaluated by means of DSC, and the results showed that the crystallinity of the samples increased as the annealing temperatures were increased. It was observed that, during the annealing process, the disorder α (α') crystal modification tended to transform into the order α crystal modification. All of the PLA/starch blends showed a double melting behavior. With the increase of annealing temperatures, the lower Tm1 increased, while the Tm2 showed no evident change. The XRD patterns also showed that annealing was beneficial to the samples to form higher crystallinity. The TGA results indicated that the annealed samples did not show any higher thermal stability than the virgin samples. The activation energy calculated by the Flynn-Wall-Ozawa method at lower conversion degrees confirmed that the annealing slightly slowed the degradation. The activation energy did not show any dependence on the conversion degree, which indicated that there existed a complex degradation process of the PLA/starch blends. The average activation energy did not show obvious differences, indicating that the annealing treatment had little influence on the degradation activation energy.

  19. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sekiguchi, T. [Advanced Electronic Materials Center, National Institute for Materials Science, Tsukuba 305-0044 (Japan)

    2012-11-15

    Hydrothermal grown ZnO single crystals were annealed in N{sub 2} or O{sub 2} between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N{sub 2} or O{sub 2} atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O{sub 2} ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O{sub 2} ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Two- and multi-step annealing of cereal starches in relation to gelatinization.

    Science.gov (United States)

    Shi, Yong-Cheng

    2008-02-13

    Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch.

  1. spsann - optimization of sample patterns using spatial simulated annealing

    Science.gov (United States)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a

  2. Laser annealing of plasma-damaged silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, T., E-mail: tsamesim@cc.tuat.ac.jp [Tokyo University of Agriculture and Technology, Tokyo, 184-8588 (Japan); Hasumi, M. [Tokyo University of Agriculture and Technology, Tokyo, 184-8588 (Japan); Mizuno, T. [Kanagawa University, Kanagawa, 259-1293 (Japan)

    2015-05-01

    Highlights: • Ar plasma irradiation caused serious damage at SiO{sub 2}/Si interfaces. • The light induced minority carrier effective lifetime (τ{sub eff}) was decreased to 1.7 × 10{sup −5} s by Ar plasma irradiation. • The density of charge injection type interface traps at 9.1 × 10{sup 11} cm{sup −2} eV{sup −1} was formed. • 940-nm laser irradiation at 3.7 × 10{sup 4} W/cm{sup 2} for 4 × 10{sup −3} s cured the interface. • It increased τ{sub eff} to 1.7 × 10{sup −3} s and decreased D{sub it} to 2.1 × 10{sup 10} cm{sup −2} eV{sup −1}. - Abstract: 13.56 MHz capacitance coupled Ar plasma irradiation at 50 W for 120 s caused serious damage at SiO{sub 2}/Si interfaces for n-type 500-μm-thick silicon substrates. The 635-nm-light induced minority carrier effective lifetime (τ{sub eff}) was decreased from 1.7 × 10{sup −3} (initial) to 1.0 × 10{sup −5} s by Ar plasma irradiation. Moreover, the capacitance response at 1 MHz alternative voltage as a function of the bias voltage (C–V) was changed to hysteresis characteristic associated with the density of charge injection type interface traps at the mid gap (D{sub it}) at 9.1 × 10{sup 11} cm{sup −2} eV{sup −1}. Subsequent 940-nm laser annealing at 3.7 × 10{sup 4} W/cm{sup 2} for 4.0 × 10{sup −3} s markedly increased τ{sub eff} to 1.7 × 10{sup −3} s and decreased D{sub it} to 2.1 × 10{sup 10} cm{sup −2} eV{sup −1}. The hysteresis phenomenon was reduced in C–V characteristics. Laser annealing effectively decreased the density of plasma induced carrier recombination and trap states. However, laser annealing with a high power intensity of 4.0 × 10{sup 4} W/cm{sup 2} seriously caused a thermal damage associated with a low τ{sub eff} and a high D{sub it} with no hysteresis characteristic.

  3. Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Been; Cho, Su Hyun; Kim, Chang Young [Center for Correlated Electron Systems, Institute for Basic Science, Seoul (Korea, Republic of); Song, Dong Joon [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Park, Seung Ryong [Dept. of Physics, Research Institute of Basic Sciences, Incheon National University, Incheon (Korea, Republic of)

    2016-06-15

    Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate Pr0.9La1.0Ce0.1CuO4 on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

  4. Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pröll, J., E-mail: johannes.proell@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Weidler, P.G. [Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), P.O. Box 3640, 76021 Karlsruhe (Germany); Kohler, R.; Mangang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Heißler, S. [Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), P.O. Box 3640, 76021 Karlsruhe (Germany); Seifert, H.J. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Pfleging, W. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen (Germany)

    2013-03-01

    The structure and phase formations of radio frequency magnetron sputtered lithium manganese oxide thin films (Li{sub 1.1}Mn{sub 1.9}O{sub 4}) under ambient air were studied. The influence of laser annealing and furnace annealing, respectively, on the bulk structure and surface phases was compared by using ex-situ X-ray diffraction and Raman analysis. Laser annealing technique formed a dominant (440)-reflection, furnace annealing led to both, (111)- and (440)-reflections within a cubic symmetry (S.G. Fd3m (227)). Additionally, in-situ Raman and in-situ X-ray diffraction were applied for online detection of phase transformation temperatures. In-situ X-ray diffraction measurements clearly identified the starting temperature for the (111)- and (440)-reflections around 525 °C and 400 °C, respectively. The 2θ Bragg peak positions of the characteristic (111)- and (440)-reflections were in good agreement with those obtained through conventional furnace annealing. Laser annealing of lithium manganese oxide films provided a quick and efficient technique and delivered a dominant (440)-reflection which showed the expected electrochemical behavior of the well-known two-step de-/intercalation process of lithium-ions into the cubic spinel structure within galvanostatic testing and cyclic voltammetry. - Highlights: ► Formation of cubic spinel-like phase of Li–Mn–O thin films by rapid laser annealing ► Laser annealing at 680 °C and 100 s was demonstrated as quick crystallization method. ► 400 °C was identified as characteristic onset temperature for (440)-reflex formation.

  5. Memoryless cooperative graph search based on the simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    Hou Jian; Yan Gang-Feng; Fan Zhen

    2011-01-01

    We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip consensus method based scheme is presented to update the key parameter-radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.

  6. Relaxation of the EM Algorithm via Quantum Annealing

    CERN Document Server

    Miyahara, Hideyuki

    2016-01-01

    The EM algorithm is a novel numerical method to obtain maximum likelihood estimates and is often used for practical calculations. However, many of maximum likelihood estimation problems are nonconvex, and it is known that the EM algorithm fails to give the optimal estimate by being trapped by local optima. In order to deal with this difficulty, we propose a deterministic quantum annealing EM algorithm by introducing the mathematical mechanism of quantum fluctuations into the conventional EM algorithm because quantum fluctuations induce the tunnel effect and are expected to relax the difficulty of nonconvex optimization problems in the maximum likelihood estimation problems. We show a theorem that guarantees its convergence and give numerical experiments to verify its efficiency.

  7. Implantation and annealing effects in molecular organic films

    CERN Document Server

    Pakhomov, G L; Shashkin, V I; Tura, J M; Ribo, J M; Ottaviano, L

    2002-01-01

    Ion implantation and annealing effects on the surface of phthalocyanine thin films have been studied by means of atomic force microscopy and electron spectroscopy for chemical analysis. Both the topology and the chemical composition of the surface are affected by irradiation. The influence of the irradiation dose is shown. The chemical degradation of the layer results mainly in the decrease of atomic concentration of nitrogen and chlorine, and in the increase of atomic concentration of oxygen. At highest dose, carbonization becomes important. Furthermore, N 1s, C 1s and Cl 2p core levels testify that the formation of new chemical species occurs in implanted pthalocyanine films. All these processes are modified by subsequent heat treatment in different ways, depending on the applied implantation fluence.

  8. Simulated annealing and joint manufacturing batch-sizing

    Directory of Open Access Journals (Sweden)

    Sarker Ruhul

    2003-01-01

    Full Text Available We address an important problem of a manufacturing system. The system procures raw materials from outside suppliers in a lot and processes them to produce finished goods. It proposes an ordering policy for raw materials to meet the requirements of a production facility. In return, this facility has to deliver finished products demanded by external buyers at fixed time intervals. First, a general cost model is developed considering both raw materials and finished products. Then this model is used to develop a simulated annealing approach to determining an optimal ordering policy for procurement of raw materials and also for the manufacturing batch size to minimize the total cost for meeting customer demands in time. The solutions obtained were compared with those of traditional approaches. Numerical examples are presented. .

  9. Luminescence sensitivity changes in quartz as a result of annealing

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Agersnap Larsen, N.; Mejdahl, V.;

    1995-01-01

    Retrospective dosimetry using optically stimulated luminescence (OSL) on quartz extracted from (for example) bricks needs to account for strong OSL sensitivity changes that are known to occur depending on the previous thermal treatment of the sample. Non-heated quartz exhibits OSL orders...... of magnitude less per unit radiation than that for heated material. The reason these temperature-induced sensitivity changes occur in quartz is presently not well understood. This phenomenon is also seen in the related area of luminescence dating in which sedimentary quartz and quartz from heated...... archaeological samples show very different OSL sensitivities. In this paper we report on studies of the effect of high temperature annealing on the OSL and phototransferred TL (PTTL) signals from sedimentary and synthetic quartz. A dramatic enhancement of both OSL and PTTL sensitivity was found especially...

  10. Annealing effect and irradiation properties of HFCVD diamond films

    Institute of Scientific and Technical Information of China (English)

    REN Ling; WANG Lin-jun; SU Qing-feng; LIU Jian-min; XU Run; PENG Hong-yan; SHI Wei-min; XIA Yi-ben

    2006-01-01

    The post-growth treatment of a [100]-oriented diamond film was performed to improve the film quality. The characteristic of post-growth film was investigated by using the RAMAN spectrum and the capacitance-frequency curve. The results show that the resistivities and frequency response enhance after the post-treatments in solution of H2SO4 and H2O2 and an annealing under N2 atmosphere at 500 ℃ for 60 min. Under a bias voltage of 100 V,the net photocurrent is obtained under 55Fe(5.9 keV) X-rays and 241Am (5.5 MeV) α particles radiation,respectively. The photocurrent increases rapidly at first and becomes stable for the "pumping" effect with the radiation time.

  11. Restoration of polarimetric SAR images using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning

    2001-01-01

    approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented...... are obtained while at the same time preserving most of the structures in the image. The algorithm is evaluated using multilook polarimetric L-band data from the Danish airborne EMISAR system, and the impact of the algorithm on the unsupervised H-α classification is demonstrated......Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering...

  12. Surface Integrity in Turning of Annealed Brass: Hardness Prediction

    Science.gov (United States)

    Zurita, O.; Di Graci, V.

    2012-07-01

    The purpose of this study was to obtain a comprehensive understanding of the effects of cutting parameters (depth of cut, feed rate, and cutting speed) on the surface integrity of, in terms of superficial hardening, annealed brass during a turning process. The results indicate that no significant phase transformations occurred for any of the turning conditions evaluated; however, microstructural changes were observed, as well as changes in the superficial hardness were measured. It was found that when the studied cutting parameters increase, the superficial hardness increases, with the cutting speed having less influence (2.56%), and feed rate having the greatest effect (22.67%). Finally, a mathematical expression is proposed, which relates the cutting parameters to the maximum hardness obtained for a given cutting condition.

  13. Optimization of multiple-layer microperforated panels by simulated annealing

    DEFF Research Database (Denmark)

    Ruiz Villamil, Heidi; Cobo, Pedro; Jacobsen, Finn

    2011-01-01

    Sound absorption by microperforated panels (MPP) has received increasing attention the past years as an alternative to conventional porous absorbers in applications with special cleanliness and health requirements. The absorption curve of an MPP depends on four parameters: the holes diameter......, the panel thickness, the perforation ratio, and the thickness of the air cavity between the panel and an impervious wall. It is possible to find a proper combination of these parameters that provides an MPP absorbing in one octave band or two, within the frequency range of interest for noise control....... Therefore, simulated annealing is proposed in this paper as a tool to solve the optimization problem of finding the best combination of the constitutive parameters of an ML-MPP providing the maximum average absorption within a prescribed frequency band....

  14. A Scheduling Algorithm Based on Petri Nets and Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Rachida H. Ghoul

    2007-01-01

    Full Text Available This study aims at presenting a hybrid Flexible Manufacturing System "HFMS" short-term scheduling problem. Based on the art state of general scheduling algorithms, we present the meta-heuristic, we have decided to apply for a given example of HFMS. That was the study of Simulated Annealing Algorithm SA. The HFMS model based on hierarchical Petri nets, was used to represent static and dynamic behavior of the HFMS and design scheduling solutions. Hierarchical Petri nets model was regarded as being made up a set of single timed colored Petri nets models. Each single model represents one process which was composed of many operations and tasks. The complex scheduling problem was decomposed in simple sub-problems. Scheduling algorithm was applied on each sub model in order to resolve conflicts on shared production resources.

  15. Automated Guide Vehicles Dynamic Scheduling Based on Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zou Gan

    2013-05-01

    Full Text Available Dispatching automated guided vehicles (AGVs is the common approach for AGVs scheduling in practice, the information about load arrivals in advance was not used to optimize the performance of the automated guided vehicles system (AGVsS. According to the characteristics of the AGVsS, the mathematical model of AGVs scheduling was established. A heuristic algorithm called Annealing Genetic Algorithm (AGA was presented to deal with the AGVs scheduling problem,and applied the algorithm dynamically by using it repeatedly under a combined rolling optimization strategy. the performance of the proposed approach for AGVs scheduling was compared with the dispatching rules by simulation. Results showed that the approach performs significantly better than the dispatching rules and proved that it is really effective for AGVsS.

  16. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    Directory of Open Access Journals (Sweden)

    Abdulqader M. Mohsen

    2016-01-01

    Full Text Available Ant Colony Optimization (ACO has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  17. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    Science.gov (United States)

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  18. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  19. Maximum-Entropy Inference with a Programmable Annealer

    CERN Document Server

    Chancellor, Nicholas; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A

    2015-01-01

    Optimisation problems in science and engineering typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this approach maximises the likelihood that the solution found is correct. An alternative approach is to make use of prior statistical information about the noise in conjunction with Bayes's theorem. The maximum entropy solution to the problem then takes the form of a Boltzmann distribution over the ground and excited states of the cost function. Here we use a programmable Josephson junction array for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that maximum entropy decoding at finite temperature can in certain cases give competitive and even slightly better bit-error-rates than the maximum likelihood approach at zero temperature, confirming that useful information can be extracted from the excited states of the annealing...

  20. Fuzzy unit commitment solution - A novel twofold simulated annealing approach

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Ahmed Yousuf; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Riverside Building 36-2, Tokyo 103-8515 (Japan)

    2007-10-15

    The authors propose a twofold simulated annealing (twofold-SA) method for the optimization of fuzzy unit commitment formulation in this paper. In the proposed method, simulated annealing (SA) and fuzzy logic are combined to obtain SA acceptance probabilities from fuzzy membership degrees. Fuzzy load is calculated from error statistics and an initial solution is generated by a priority list method. The initial solution is decomposed into hourly-schedules and each hourly-schedule is modified by decomposed-SA using a bit flipping operator. Fuzzy membership degrees are the selection attributes of the decomposed-SA. A new solution consists of these hourly-schedules of entire scheduling period after repair, as unit-wise constraints may not be fulfilled at the time of an individual hourly-schedule modification. This helps to detect and modify promising schedules of appropriate hours. In coupling-SA, this new solution is accepted for the next iteration if its cost is less than that of current solution. However, a higher cost new solution is accepted with the temperature dependent total cost membership function. Computation time of the proposed method is also improved by the imprecise tolerance of the fuzzy model. Besides, excess units with the system dependent probability distribution help to handle constraints efficiently and imprecise economic load dispatch (ELD) calculations are modified to save the execution time. The proposed method is tested using standard reported data sets. Numerical results show an improvement in solution cost and time compared to the results obtained from other existing methods. (author)

  1. A Numerical Method for Determining Diffusivity from Annealing Experiments

    Science.gov (United States)

    Harris-Kuhlman, K. R.; Kulcinski, G. L.

    1998-12-01

    Terrestrial analogs of lunar ilmenite (FeTiO3) have been implanted with solar-wind energy 4He at 4 keV and 3He at 3 keV using Plasma Source Ion Implantation (PSII). Isochronal annealing of the samples revealed thermally induced 4He evolution similar to the helium release of the Apollo 11 regoliths reported by Pepin, et. al., [1970]. These annealing experiments are analyzed with a three dimensional numerical method based on Fick's law for diffusion. An iterative method is used to calculate the diffusivity. The code uses an assumed diffusivity to calculate the amount of gas released during a temperature step. The initial depth profile of the implanted species is generated using the TRIM electronic stopping code [Ziegler, 1996]. The calculated value is compared to the measured value and a linear regression is used to calculate a new diffusivity until there is convergence within a specified tolerance level. The diffusivity as a function of temperature is then fitted to an Arrhenius equation. Analysis of results for 4 keV 4He on ilmenite shows two distinct regions of Arrehnius behavior with activation energies of 0.5 +/- 0.1 eV at emperatures below 800 deg C and 1.5 +/- 0.2 eV at temperatures from 800 deg C to 1100 deg C. Pepin, R. O., L. E. Nyquist, D. Phinney, and D. C. Black (1970) "Rare Gases in Apollo 11 Lunar Material," Proceedings of the Apollo 11 Lunar Science Conference, 2, pp. 1435-1454. Ziegler, J. P. (1996) SRIM Instruction Manual: The Stopping and Range of Ions in Matter, (Yorktown, New York: IBM - Research); based on Ziegler, J. P., J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, (New York: Pergamon Press, 1985).

  2. Improving hardness of electroless Ni-B coatings using optimized deposition conditions and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Oraon, B. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India)], E-mail: b_oraon_65@yahoo.co.in; Majumdar, G. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India); Ghosh, B. [Advanced Materials and Solar Photovoltaic Division, School of Energy Studies, Jadavpur University, Kolkata 700 032 (India)

    2008-07-01

    The alkaline borohydride-reduced bath has been used to deposit electroless nickel-boron (Ni-B) coatings on a pure (99.99%) copper substrate. The hardness of the Ni-B coatings has been improved using optimized deposition conditions and thereafter by annealing. The electroless Ni-B deposition per unit area has been considered as the response variable and response surface method (RSM) has been used to optimize the process parameters and the deposition per unit area. The electroless Ni-B coatings have again been formed at the optimized deposition conditions and the as-deposited coating hardness has been evaluated using an empirical model and regression analysis. It has been observed that there is a significant improvement in as-deposited coating hardness. The Ni-B coated specimens formed at optimized deposition conditions have also been annealed at different temperatures ranging from 100 deg. C to 500 deg. C. The hardness of the annealed specimens has been estimated for different annealing temperatures and has been observed that the coating hardness increases with annealing temperature and then further increase in annealing temperature reduces the coating hardness. The coating hardness becomes the highest for annealing temperature of about 300 deg. C. Both the as-deposited and annealed coating hardness have been observed to be significantly higher than that reported by many researchers for electroless Ni-B coatings.

  3. Pulsed laser annealing of sodium super ionic conductor for carbon dioxide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shi-Chien; Su, Guo-Dung John, E-mail: gdjsu@cc.ee.ntu.edu.t

    2010-10-29

    This paper discussed a way to improve solid electrolyte carbon dioxide (CO{sub 2}) sensor by excimer laser annealing of sodium super ionic conductors (NASICON). The CO{sub 2} sensor used in this paper consists of a thin NASICON layer. We additionally annealed the NASICON to improve its electrical conductivity by pulsed excimer laser. The laser annealing results in re-crystallization of the NASICON thin film and changes the conductivity, grain sizes, and the structure of grain boundaries. From the scanning electron microscope pictures, we saw that NASICON grain sizes were enlarged after laser annealing. Grain sizes were also correlated to laser annealing energy and annealing times. After 2 times annealing of 420 mJ laser energy with 7 pulses each time at 1 Hz repetition rate, the conductivity of NASICON was increased by 90%. When the CO{sub 2} concentration was changed from 1000 ppm to 5000 ppm, the sensor resolution was enhanced up to 66%. These results suggested that appropriate laser annealing treatment not only enlarges NASICON grain sizes but also reduces its resistance. Therefore, the NASICON CO{sub 2} sensor resolution can be improved accordingly.

  4. Annealing effect on properties of transparent and conducting ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)], E-mail: boudermstf@yahoo.fr; Hamzaoui, S.; Adnane, M.; Sahraoui, T.; Zerdali, M. [Laboratoire de Microscopie Electronique et des Sciences des Materiaux, Departement de Physique, USTO, B.P. 1505, El-Mnaouer, 31000 Oran (Algeria)

    2009-01-01

    This work presents the effect of postdeposition annealing on the structural, electrical and optical properties of undoped ZnO (zinc oxide) thin films, prepared by radio-frequency sputtering method. Two samples, 0.17 and 0.32 {mu}m-thick, were annealed in vacuum from room temperature to 350 deg. C while another 0.32 {mu}m-thick sample was annealed in air at 300 deg. C for 1 h. X-ray diffraction analysis revealed that all the films had a c-axis orientation of the wurtzite structure normal to the substrate. Electrical measurements showed that the resistivity of samples annealed in vacuum decreased gradually with the increase of annealing temperature. For the 0.32 {mu}m-thick sample, the gradual decrease of the resistivity was essentially due to a gradual increase in the mobility. On the other hand, the resistivity of the sample annealed in air increased strongly. The average transmission within the visible wavelength region for all films was higher than 80%. The band gap of samples annealed in vacuum increased whereas the band gap of the one annealed in air decreased. The main changes observed in all samples of this study were explained in terms of the effect of oxygen chemisorption and microstructural properties.

  5. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.;

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  6. Defect evolution and dopant activation in laser annealed Si and Ge

    DEFF Research Database (Denmark)

    Cristiano, F.; Shayesteh, M.; Duffy, R.;

    2016-01-01

    Defect evolution and dopant activation are intimately related to the use of ion implantation and annealing, traditionally used to dope semiconductors during device fabrication. Ultra-fast laser thermal annealing (LTA) is one of the most promising solutions for the achievement of abrupt and highly...

  7. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    K. Nadeemn; S. Rahman; M. Mumtaz

    2015-01-01

    A comparison of structural and magnetic properties of as-prepared and annealed (900 1C) Mg doped Zn ferrite nanoparticles (Zn1 ? xMgxFe2O4, with x ¼ 0, 0.1, 0.2, 0.3, 0.4 and 0.5) is presented. X-ray diffraction (XRD) studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM) images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR) also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.&2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license.

  8. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2015-04-01

    Full Text Available A comparison of structural and magnetic properties of as-prepared and annealed (900 °C Mg doped Zn ferrite nanoparticles (Zn1−xMgxFe2O4, with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 is presented. X-ray diffraction (XRD studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.

  9. Recovery process of neutron-irradiated vanadium alloys in post-irradiation annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, K., E-mail: fukumoto@u-fukui.ac.jp [Research Institute for Nuclear Engineering, University of Fukui, Tsuruga, Fukui 914-0055 (Japan); Iwasaki, M. [Research Institute for Nuclear Engineering, University of Fukui, Tsuruga, Fukui 914-0055 (Japan); Xu, Q. [KUR, Kyoto University, Kumatori, Osaka (Japan)

    2013-11-15

    Experiments to determine the influence of post-irradiation annealing on the mechanical properties and microstructures of neutron-irradiated V–4Cr–4Ti alloys were conducted. Two groups of specimens (as-irradiated specimens and specimens which underwent the post-irradiation annealing treatment) were subjected to tensile tests at room temperature and 773 K. Post-irradiation annealing experiments carried out over periods of up to 50 h were used to restore strength and ductility. As annealing time was extended, ductility was recovered up to 5% at 50 h anneal; however irradiation hardening was not recovered completely. Microstructural changes due to post-irradiation annealing corresponded to the amount that yield stress increased in tensile behavior in the irradiated specimen. The recovery in ductility was likely caused by the dissolution of interstitial impurities from defect clusters and dislocation cores produced by neutron irradiation during post-irradiation anneal treatment. A 3% elongation recovery in V–4Cr–4Ti alloys was achieved by annealing at 773 K for 20 h in a vacuum for neutron-irradiated samples at low temperature.

  10. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    Science.gov (United States)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  11. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.;

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress and ...

  12. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs

    Science.gov (United States)

    Burns, Samantha; MacLeod, Jennifer; Trang Do, Thu; Sonar, Prashant; Yambem, Soniya D.

    2017-01-01

    Thermal annealing of the emissive layer of an organic light emitting diode (OLED) is a common practice for solution processable emissive layers and reported annealing temperatures varies across a wide range of temperatures. We have investigated the influence of thermal annealing of the emissive layer at different temperatures on the performance of OLEDs. Solution processed polymer Super Yellow emissive layers were annealed at different temperatures and their performances were compared against OLEDs with a non-annealed emissive layer. We found a significant difference in the efficiency of OLEDs with different annealing temperatures. The external quantum efficiency (EQE) reached a maximum of 4.09% with the emissive layer annealed at 50 °C. The EQE dropped by ~35% (to 2.72%) for OLEDs with the emissive layers annealed at 200 °C. The observed performances of OLEDs were found to be closely related to thermal properties of polymer Super Yellow. The results reported here provide an important guideline for processing emissive layers and are significant for OLED and other organic electronics research communities. PMID:28106082

  13. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...... structures....

  14. Projected length annealing of etched {sup 152}Sm ion tracks in apatite

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, I., E-mail: igorav@ifi.unicamp.br [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Guedes, S. [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Jonckheere, R. [Geologisches Institut, Technische Universitaet Bergakademie Freiberg, Bernhard-von-Cotta-Strasse 2, Freiberg (Sachsen) 09599 (Germany); Trautmann, C. [Gesselschaft fuer Schwerionenforschung, GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Soares, C.J.; Moreira, P.A.F.P. [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Curvo, E.A.C. [Instituto de Fisica, UFMT, Av. Fernando Correa da Costa, S/N, CEP 78060-900 Cuiaba-MT (Brazil); Tello, C.A.; Nakasuga, W.M. [Departamento de Fisica, Quimica e Biologia, Faculdade de Ciencia e Tecnologia, UNESP, Rua Roberto Simonsen 305, CEP 19060-900 Presidente Prudente-SP (Brazil); and others

    2012-10-01

    Slices of apatite (cut {approx}45 Degree-Sign apart from c-axis) were irradiated with {sup 152}Sm ions and heated at different steps in order to investigate the thermal annealing property of tracks generated by these ions. The ions were impinged with 45 Degree-Sign and {approx}150 MeV at apatite surface. Samples were etched with diluted nitric acid. Results of annealed projected lengths are presented for isochronal 10, 100 and 1000 h thermal treatments (runs) for samples with and without pre-annealing preparation. For low annealing temperatures, a distinct behavior of these samples was observed: pre-annealed samples presented a faster annealing rate. At elevated temperatures, the behavior seems to be equal. A single activation energy model was fitted to data and the energy obtained is in agreement with literature. Finally, despite the different trend in comparison with annealing rates of confined fission tracks, extrapolation to geological timescales presents reasonable estimates, indicating small influence of surface effects and, in principle, the possibility to employ ion tracks as proxies for annealing kinetics.

  15. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52.

    Science.gov (United States)

    Erler, Axel; Wegmann, Susanne; Elie-Caille, Celine; Bradshaw, Charles Richard; Maresca, Marcello; Seidel, Ralf; Habermann, Bianca; Muller, Daniel J; Stewart, A Francis

    2009-08-21

    Single-strand annealing proteins, such as Redbeta from lambda phage or eukaryotic Rad52, play roles in homologous recombination. Here, we use atomic force microscopy to examine Redbeta quaternary structure and Redbeta-DNA complexes. In the absence of DNA, Redbeta forms a shallow right-handed helix. The presence of single-stranded DNA (ssDNA) disrupts this structure. Upon addition of a second complementary ssDNA, annealing generates a left-handed helix that incorporates 14 Redbeta monomers per helical turn, with each Redbeta monomer annealing approximately 11 bp of DNA. The smallest stable annealing intermediate requires 20 bp DNA and two Redbeta monomers. Hence, we propose that Redbeta promotes base pairing by first increasing the number of transient interactions between ssDNAs. Then, annealing is promoted by the binding of a second Redbeta monomer, which nucleates the formation of a stable annealing intermediate. Using threading, we identify sequence similarities between the RecT/Redbeta and the Rad52 families, which strengthens previous suggestions, based on similarities of their quaternary structures, that they share a common mode of action. Hence, our findings have implications for a common mechanism of DNA annealing mediated by single-strand annealing proteins including Rad52.

  16. The influence of strain on annealing behaviour of heavily rolled aluminium AA1050

    DEFF Research Database (Denmark)

    Mishin, Oleg; Juul Jensen, Dorte; Hansen, Niels

    2012-01-01

    Deformation structures and annealing behaviour have been analysed in the centre layer of two AA1050 samples cold-rolled to von Mises strains of 3.6 and 6.4. During annealing at 270-300°C structural coarsening and discontinuous recrystallization occurred in both samples. In the coarsened microstru...

  17. Implantation temperature and thermal annealing behavior in H2+-implanted 6H-SiC

    Science.gov (United States)

    Li, B. S.; Wang, Z. G.; Jin, J. F.

    2013-12-01

    The effects of hydrogen implantation temperature and annealing temperature in 6H-SiC are studied by the combination of Rutherford backscattering in channeling geometry (RBS/C), high-resolution X-ray diffraction (HRXRD) and scanning electron microscopy (SEM). 6H-SiC wafers were implanted with 100 keV H2+ ions to a fluence of 2.5 × 1016 H2+ cm-2 at room temperature (RT), 573 K and 773 K. Post-implantation, the samples were annealing under argon gas flow at different temperatures from 973 K to 1373 K for isochronal annealing (15 min). The relative Si disorder at the damage peak for the sample implanted at RT decreases gradually with increasing annealing temperature. However, the reverse annealing effect is found for the samples implanted at 573 K and 773 K. As-implantation, the intensity of in-plane compressive stress is the maximum as the sample was implanted at RT, and is the minimum as the sample was implanted at 573 K. The intensity of in-plane compressive stress for the sample implanted at RT decreases gradually with increasing annealing temperature, while the intensities of in-plane compressive stress for the sample implanted at 573 K and 773 K show oscillatory changes with increasing annealing temperature. After annealing at 1373 K, blisters and craters occur on the sample surface and their average sizes increase with increasing implantation temperature.

  18. Effect of Subcritical Annealing Temperature on Microstructure and Mechanical Properties of SCM435 Steel

    Institute of Scientific and Technical Information of China (English)

    Cheng JI; Lei WANG; Miao-yong ZHU

    2015-01-01

    The effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel was inves-tigated through changing the heating and soaking temperature as 660 °C, 680 °C, 700 °C, 720 °C and 745 °C. The microstructure and mechanical properties of intercritically annealed specimens were analyzed. With increasing the subcritical annealing tempera-ture from 660 °C to 720 °C, the spheroidization ratio gradually increased, and the mechanical properties, formability and Vickers hardness were improved. According to the comprehensive comparison of mechanical properties and formability, the subcritical process at soaking temperature of 680−720 °C could achieve similar annealing effect as that of intercritical process. Therefore, the subcritical annealing temperature could be set as 700 °C in practice, with theAc1 temperature lfuctuation within ±20 °C, and the applicability and stability of subcritical annealing were guaranteed in industrial application. The plant results of the cold heading showed that the subcritical annealing could replace original intercritical annealing successfully with signiifcantly saving time and energy.

  19. Facile synthesis of calcium borate nanoparticles and the annealing effect on their structure and size.

    Science.gov (United States)

    Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Abdullah, Wan Saffiey B Wan; Navasery, Manizheh

    2012-11-08

    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB(2)O(4)) nanoparticles and tetraborate (CaB(4)O(7)) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.

  20. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    Directory of Open Access Journals (Sweden)

    Manizheh Navasery

    2012-11-01

    Full Text Available Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD and Fourier Transform Infrared spectroscopy (FTIR, Transmission electron microscopy (TEM, and Thermogravimetry (TGA. The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4 nanoparticles and tetraborate (CaB4O7 nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.

  1. Impact of hydrogen anneal on low frequency noise of n- and p-MOSFET

    Science.gov (United States)

    Ioannidis, E. G.; Pflanzl, W. C.; Stueckler, E.; Vescoli, V.; Carniello, S.; Seebacher, E.

    2016-12-01

    In this paper, we present a detailed investigation of the impact of hydrogen anneal on the low frequency noise spectra of n- and p-MOS devices from an advanced CMOS technology node. We investigate the impact of hydrogen anneal in three different wafers, one with one time hydrogen anneal step (1×H2), one with two times (2×H2) and one without hydrogen anneal (w/o H2). The results demonstrate that the carrier number with correlated mobility fluctuations model can explain accurately the 1/f noise results. A significant reduction of the 1/f noise level was observed for the device treated with two times hydrogen anneal.

  2. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Surface decomposition and annealing behavior of GaN implanted with Eu

    CERN Document Server

    Liu Hua Ming; Chen Chang Chun; Wang Sen; Zhu De Zhang; Xu Hong Jie

    2002-01-01

    Investigations on surface decomposition of GaN implanted with low energy (80 keV) Eu ion to a low dose (1 x 10 sup 1 sup 4 cm sup - sup 2), and its annealing behavior under high temperature (1050 degree C) in N sub 2 are performed. The as-grown, as-implanted and annealed GaN films are characterized by proton elastic scattering (PES), Rutherford backscattering spectrometry (RBS), photoluminescence (PL) and atomic force microscopy (AFM). The results show that Eu ion implantation induces radiation defects and decomposition of GaN. The GaN surface decomposition is more serious during high temperature annealing. The atomic ratio of N in as-grown, as-implanted and annealed GaN film is 47 at.%, 44 at.% and 40 at.%, respectively. As a result, a rough Ga-rich layer is formed at the surface, though the lattice defects are partly removed after high temperature annealing

  4. Annealing effects on residual stress of HfO2/SiO2 multilayers

    Institute of Scientific and Technical Information of China (English)

    Yanming Shen; Zhaoxia Han; Jianda Shao; Shuying Shao; Hongbo He

    2008-01-01

    HfO2/SiO2 multilayer films were deposited on BK7 glass substrates by electron beam evaporation method.The effects of annealing at the temperature between 200 and 400℃ on residual stresses have been studied.It is found that the residual stress of as-deposited HfO2/SiO2 multilayers is compressive.It becomes tensile after annealing at 200℃,and then the value of tensile stress increases as annealing temperature increases.And cracks appear in the film because tensile stress is too large when the sample is annealed at 400℃.At the same time,the crystallite size increases and interplanar distance decreases with the increase of annealing temperature.The variation of residual stresses is corresponding with the evolution of structures.

  5. Selective aspect ratio of CNTs based on annealing temperature by TCVD method

    Science.gov (United States)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    Various aspect ratios of CNTs reported based on alteration of annealing temperature using thermal-chemical vapor deposition (TCVD) method. Also the growth dependent and independent parameters of the carbon nanotube (CNTs) array were studied as a function of synthesis method. The FESEM images indicate that the nanotubes are approximately perpendicular to the surface of the silicon substrate and form carbon nanotubes in different aspect ratios according to the applied annealing temperature. Furthermore, due to the optimized results it can be observed that, the mechanism of the CNTs growth is still present in the annealing step as well as deposition process and the most CNTs with crystalline aspect, produced in the annealing temperature, which was optimized at 700 - 900 ˚C. This result demonstrates that the growth rate, mass production, diameter, density, and crystallinity of CNT can be controlled by the annealing temperature.

  6. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Science.gov (United States)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  7. Manipulation of magnetic properties of glass-coated microwires by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Chichay, K. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Talaat, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); Rodionova, V. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); National University of Science and Technology (MISIS), 119049 Moscow (Russian Federation); Blanco, J.M. [Dpto. Física Aplicada, EUPDS Basque Country University UPV/EHU (Spain); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain)

    2015-06-01

    We demonstrated that magnetic properties (hysteresis loops, domain wall propagation and giant magnetoimpedance effect) of Fe and Co-rich amorphous microwires can be tailored by stress and conventional annealing. Observed dependences discussed considering stress relaxation, back stresses and change of the magnetostriction after samples annealing. These considerations have been proved by experimental observation of the change of the magnetostriction coefficient sign induced by annealing. - Highlights: • Manipulation of hysteresis loop of amorphous Co–Fe- rich microwires by annealing. • Coexistence of Giant magnetoimpedance effect and fast domain wall propagation in the same sample. • Evidence of annealing dependence of the magnetostriction coefficient. • Effect of stress induced anisotropy on magnetic properties and GMI effect.

  8. Annealing to Mitigate Pitting in Electropolished Niobium Coupons and SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, L.D.; Hahn, E.; Hicks, D.; Romanenko, A.; Schuessler, R.; Thompson, C.; /Fermilab

    2011-06-08

    Ongoing studies at Fermilab investigate whether dislocations and other factors instigate pitting during cavity electropolishing (EP), despite careful processing controls and the inherent leveling mechanism of EP itself. Here, cold-worked niobium coupons, which exhibited increased tendencies for pitting in our past study, were annealed in a high vacuum furnace and subsequently processed by EP. Laser confocal scanning microscopy and special defect counting algorithms were used to assess the population of pits formed. Hardness measurements indicated that annealing for 2 hours at 800 C produced recovery, whereas annealing for 12 hours at 600 C did not, as is consistent with known changes for cavities annealed in a similar way. The 800 C anneal was effective in some cases but not others, and we discuss reasons why tendencies for pitting remain. We discuss implications for cavities and continued work to understand pitting.

  9. Influence of Thermal Annealing on Structural and Electrical Properties of Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    A. Mallikarjuna Reddy

    2011-01-01

    Full Text Available Nickel oxide (NiO is a potential p-type transparent conducting oxide material with suitable electrical properties. Nickel oxide thin films were deposited by dc reactive magnetron sputtering technique on unheated glass substrates, and subsequently annealed at 773 K in two different annealing processes. X-ray diffractometer studies revealed that the films exhibited (200 preferred orientation. Scanning electron microscopy and energy dispersive spectroscopy were used to study the effect of annealing temperature on surface morphology and composition of the films. The uniform grains were distributed throughout the substrate after annealed at 773 K. Electrical properties were studied by Hall effect measurements. The low electrical resistivity of 36.9 Ω cm was observed after annealing.

  10. The influence of annealing temperature on the morphology of graphene islands

    Institute of Scientific and Technical Information of China (English)

    Huang Li; Gao Hong-Jun; Xu Wen-Yan; Que Yan-De; Pan Yi; Gao Min; Pan Li-Da; Guo Hai-Ming; Wang Ye-Liang; Du Shi-Xuan

    2012-01-01

    We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃,800 ℃,and 900 ℃.The sizes of the islands each show a nonIinear increase with the annealing temperature.In 700 ℃ and 800 ℃ annealings,the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate,which is in accordance with the etching growth mode.In 900 ℃ annealing,the islands are much larger and of lower quality,which represents the early stage of Smoluchowski ripening.A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moiré pattern.Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.

  11. Effect of Intermediate Annealing on Microstructure and Property of 5182 Aluminum Alloy Sheet for Automobile

    Directory of Open Access Journals (Sweden)

    WANG Yu

    2016-09-01

    Full Text Available Effect of intermediate annealing on the microstructure and properties of 5182 aluminum alloy sheet with full annealed state (5182-O was investigated by means of optical microscope, scanning electron microscope and universal testing machine. The results indicate that compared with 5182-O sheet without intermediate annealing, 5182-O sheet with intermediate annealing possesses too fine grain size, intermetallic compounds not broken enough, larger size intermetallic particles, less dispersed phase. Yield strength and ultimate tensile strength, work hardening exponent and normal anisotropy of plastic strain ratio decrease but planner anisotropy of plastic strain ratio increases. The mechanical properties and forming ability of 5182-O aluminum alloy sheet and its microstructure are not improved significantly after intermediate annealing.

  12. The effect of annealing of ZnSe nanocrystal thin films in air atmosphere

    Science.gov (United States)

    Yildirim, E.; Gubur, H. Metin; Alpdogan, S.; Ari, M.; Harputlu, E.; Ocakoglu, K.

    2016-07-01

    The zinc selenide (ZnSe) nanocrystal thin films have been prepared on glass substrates by chemical bath deposition at 80 °C. The ZnSe films have been annealed in an air atmosphere at 373, 473, 573, 673 and 773 K for 1 h. The crystallographic structure and size of the crystallites, dislocation density, number of crystallites per unit surface area and strain have been studied by X-ray diffraction on as-deposited and annealed films. The surface morphology of ZnSe coated thin films obtained at different annealing temperatures has been elucidated by AFM studies. The optical properties of the films have been investigated by recording the transmission spectra. It has been observed that the energy band gap decreases upon annealing temperature. The conductivity measurements have been carried out using four probe methods. It is observed that the conductivity and activation energy change upon annealing temperature.

  13. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs

    Science.gov (United States)

    Monmeyran, Corentin; Patel, Neil S.; Bautz, Mark W.; Grant, Catherine E.; Prigozhin, Gregory Y.; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-12-01

    After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of -50 °C for one day or -60 °C for a week, to prevent further CTI increase.

  14. Effect of thermal annealing on the properties of cadmium sulfide deposited via chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faisal R., E-mail: ahmad@ge.com; Yakimov, Aharon; Davis, Robert J.; Her, Jae-Hyuk; Cournoyer, James R.; Ayensu, Nana Menya

    2013-05-01

    This study elucidates how post-deposition annealing in air of CdS thin films deposited via chemical bath deposition, influences the defects and impurities in the films, which in turn affect the electrical conductivity and optical transparency of the films. The electrical properties of the annealed CdS films were characterized using a van der Pauw Hall effect measurement method. Using low-temperature photoluminescence measurements, a variety of sub-bandgap energy levels were observed and identified that are believed to play a critical role in impacting the concentration of carriers in the films. In addition, we studied the optical transmission and crystalline quality of the films as a function of the different annealing conditions. - Highlights: ► Annealing CdS affects its bandgap, structure and electrical conductivity. ► Low temperature photoluminescence spectra show how annealing affects CdS. ► Carrier concentration affected sulfur vacancies and cadmium interstitials.

  15. Annealing behavior of radiation damage in JFET-input operational amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Guo Qi; Yu Xuefeng

    2009-01-01

    The elevated and room temperature annealing behavior of radiation damage in JFET-input operational amplifiers (op-amps) were investigated. High-and low-dose-rate irradiation results show that one of the JFET-input op-amps studied in this paper exhibits enhanced low-dose-rate sensitivity and the other shows time-dependent effect. The offset voltage of both op-amps increases during long-term annealing at room temperature. However, the offset voltage decreases at elevated temperature. The dramatic difference in annealing behavior at room and elevated temperatures indicates the migration behavior of radiation-induced species at elevated and room temperatures. This provides useful information to understand the degradation and annealing mechanisms in JFET-input op-amps under total ionizing radiation. Moreover, the annealing of oxide trapped charges should be taken into consideration, when using elevated temperature methods to evaluate low-dose-rate damage.

  16. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor-liquid-solid technique.

    Science.gov (United States)

    Kar, Ayan; Yang, Jianyong; Dutta, Mitra; Stroscio, Michael A; Kumari, Jyoti; Meyyappan, M

    2009-02-11

    Tin oxide nanowires have been grown on p-type silicon substrates using a gold-catalyst-assisted vapor-liquid-solid growth process. The nanowires were annealed in the presence of oxygen at 700 degrees C for different time intervals. The changes in material properties of the nanowires after annealing were investigated using various characterization techniques. Annealing improves the crystal quality of the nanowires as seen from Raman spectroscopy analysis. Photoluminescence (PL) data indicates a decrease in the oxygen vacancies and defects after annealing, affecting the luminescence from the nanowires. In addition, x-ray photoelectron spectroscopy (XPS) was used to obtain the changes in the tin and oxygen atomic concentrations before and after annealing, from which the stoichiometry was calculated.

  17. Bayesian system identification of a nonlinear dynamical system using a novel variant of Simulated Annealing

    Science.gov (United States)

    Green, P. L.

    2015-02-01

    This work details the Bayesian identification of a nonlinear dynamical system using a novel MCMC algorithm: 'Data Annealing'. Data Annealing is similar to Simulated Annealing in that it allows the Markov chain to easily clear 'local traps' in the target distribution. To achieve this, training data is fed into the likelihood such that its influence over the posterior is introduced gradually - this allows the annealing procedure to be conducted with reduced computational expense. Additionally, Data Annealing uses a proposal distribution which allows it to conduct a local search accompanied by occasional long jumps, reducing the chance that it will become stuck in local traps. Here it is used to identify an experimental nonlinear system. The resulting Markov chains are used to approximate the covariance matrices of the parameters in a set of competing models before the issue of model selection is tackled using the Deviance Information Criterion.

  18. DLTS studies of low-temperature annealing in lithium-doped silicon. [Si:Li

    Energy Technology Data Exchange (ETDEWEB)

    Brilliantov, N.V.; Zverev, V.V. (Dept. of Physics, Moscow State Univ. (Russia)); Rudenko, A.I.; Shcherbakov, Yu.V. (Inst. of Physics and Engineering, Moscow (Russia))

    1992-03-16

    DLTS studies of annealing kinetics are carried out for 1 MeV electron irradiated lithium-doped silicon p-n solar cells. The results obtained show that during low-temperature annealing Li atoms actively interact with radiation defects, transforming them into complexes with low recombination properties. New deep levels (E{sub c} -0.36 eV) and E{sub v} +0.30 eV), associated with lithium-containing complexes are observed. A multistage annealing model for annealing of radiation defects is proposed. An explanation of the annealing kinetics as well as the identification of the new deep levels is given on the base of the model. (orig.).

  19. SEMICONDUCTOR DEVICES: Total ionizing dose effects and annealing behavior for domestic VDMOS devices

    Science.gov (United States)

    Bo, Gao; Xuefeng, Yu; Diyuan, Ren; Gang, Liu; Yiyuan, Wang; Jing, Sun; Jiangwei, Cui

    2010-04-01

    Total dose effects and annealing behavior of domestic n-channel VDMOS devices under different bias conditions were investigated. The dependences of typical electrical parameters such as threshold voltage, breakdown voltage, leakage current, and on-state resistance upon total dose were discussed. We also observed the relationships between these parameters and annealing time. The experiment results show that: the threshold voltage negatively shifts with the increasing of total dose and continues to decrease at the beginning of 100 °C annealing; the breakdown voltage under the drain bias voltage has passed through the pre-irradiation threshold voltage during annealing behaving with a “rebound" effect; there is a latent interface-trap buildup (LITB) phenomenon in the VDMOS devices; the leakage current is suppressed; and on-state resistance is almost kept constant during irradiation and annealing. Our experiment results are meaningful and important for further improvements in the design and processing.

  20. Effects of ambient humidity on the optimum annealing time of mixed-halide Perovskite solar cells.

    Science.gov (United States)

    Cronin, Harry M; Jayawardena, K D G Imalka; Stoeva, Zlatka; Shkunov, Maxim; Silva, S Ravi P

    2017-03-17

    Mixed halide Perovskite solar cells (PSCs) are commonly produced by depositing PbCl2 and CH3NH3I from a common solvent followed by thermal annealing, which in an up-scaled manufacturing process is likely to take place under ambient conditions. However, it has been reported that, similar to the effects of thermal annealing, ambient humidity also affects the crystallisation behaviour and subsequent growth of the Perovskite films. This implies that both of these factors must be accounted for in solar cell production. In this work, we report for the first time the correlation between the annealing time, relative humidity (RH) and device performance for inverted, mixed halide CH3NH3PbI(3-x)Cl x PSCs with active area ≈1 cm(2). We find a trade-off between ambient humidity and the required annealing time to produce efficient solar cells, with low humidities needing longer annealing times and vice-versa. At around 20% RH, device performance weakly depends on annealing time, but at higher (30%-40% RH) or lower (0%-15% RH) humidities it is very sensitive. Processing in humid environments is shown to lead to the growth of both larger Perovskite grains and larger voids; similar to the effect of thermal annealing, which also leads to grain growth. Therefore, samples which are annealed for too long under high humidity show loss of performance due to low open circuit voltage caused by an increased number of shunt paths. Based on these results it is clear that humidity and annealing time are closely interrelated and both are important factors affecting the performance of PSCs. The findings of this work open a route for reduced annealing times to be employed by control of humidity; critical in roll-to-roll manufacture where low manufacturing time is preferred for cost reductions.

  1. Microstructure and mechanical behavior of annealed MP35N alloy wire

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.J.N.V. [School of Engineering, Brown University, Providence, RI 02912 (United States); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Reiterer, M.W. [Medtronic, PLC, USA, Science and Technology, Minneapolis, MN 55432 (United States); Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2015-06-11

    In a previous paper, the microstructure, monotonic, and cyclic response of as-drawn ~100 μm diameter MP35N low-Ti alloy wire were presented and discussed. In this sequel paper, the effects of annealing the same cold-drawn wire on microstructure and mechanical properties are examined. Specifically, segments of the wire were annealed for 1 h at 973 K, 1023 K, 1073 K, 1123 K and 1173 K in a vacuum furnace. The resulting microstructure was characterized by SEM, EBSD and TEM and compared to the as-drawn microstructure. In-situ heating in the TEM of MP35N ribbon in a similarly cold worked condition enabled corroboration of microstructure evolution during annealing. Annealed wires were tested monotonically and cyclically in uniaxial tension at room temperature, the latter using a stress ratio (R) of 0.3. In addition, the annealed wires were tested cyclically at R=−1 using the rotating beam bending fatigue test. Post-deformation structures and fracture surfaces were characterized using TEM and SEM respectively. Annealing the cold drawn wire results in recrystallization and grain growth; the extent is dependent on the annealing temperature. Deformation twin boundaries in the as-drawn structure illustrate faceted bulging and eventually complete elimination, the microstructure evolving into fine equiaxed grains containing coarser annealing twins with no significant change in texture. Yield strength decreases rapidly with recrystallization to almost half the value of the as-drawn condition, but is accompanied by an increase in modulus (by ~25%) and tensile elongation reaching ~30%. Cyclic response by the way of S–N curves is not enhanced by annealing on an absolute stress scale (due to the loss in yield strength) although the annealed wires are cyclically superior when the stress data are normalized by yield stress.

  2. Annealing temperature dependence of the structures and properties of Co-implanted ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Tang, Kun; Gu, Shulin, E-mail: slgu@nju.edu.cn; Ye, Jiandong, E-mail: yejd@nju.edu.cn; Huang, Shimin; Gu, Ran; Zhang, Yang; Yao, Zhengrong; Zhu, Shunming; Zheng, Youdou

    2014-09-15

    Highlights: • To avoid the forming of Co clusters and explore the origin of the magnetism, detailed investigation on the properties of the Co-implanted ZnO films with a rather low dose of 8 × 10{sup 15} cm{sup −2} and high implantation energy of 1 MeV were carried out. • The crystalline structure of the damaged region caused by ion-implantation has been recovered via the thermal annealing treatment at the temperature of 900 °C and above. • The low temperature magnetic hysteresis loops have indicated paramagnetism for the annealed films with weak ferromagnetic characteristics. • The zero-field cooling (ZFC) magnetization curves of the Co-implanted ZnO samples have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C. - Abstract: The effects of thermal annealing treatment on the structural, electrical, optical and magnetic properties of Co-implanted ZnO (0 0 0 1) films have been investigated in detail. The crystalline structure of the damaged region caused by ion implantation has been recovered via the thermal annealing at the temperature of 900 °C and above, and no Co clusters or its related oxide phases have been observed. The electrical and optical properties of the annealed films have shown strong dependence on the annealing temperature. The zero field cooling magnetization curves of the annealed films have varied from concave shape to convex one as the annealing temperature increased from 750 °C to 1000 °C, which are possibly tuned by the changes of the ratio of the itinerant carriers over the localized spin density. The low temperature magnetic hysteresis loops have indicated paramagnetic behavior for the annealed films with weak ferromagnetic characteristics. The ferromagnetism is attributed to the substituted Co{sup 2+} ions and vacancy defects, while the paramagnetism could be induced by ionized interstitial Zn defects.

  3. Effects of ambient humidity on the optimum annealing time of mixed-halide Perovskite solar cells

    Science.gov (United States)

    Cronin, Harry M.; Imalka Jayawardena, K. D. G.; Stoeva, Zlatka; Shkunov, Maxim; Silva, S. Ravi P.

    2017-03-01

    Mixed halide Perovskite solar cells (PSCs) are commonly produced by depositing PbCl2 and CH3NH3I from a common solvent followed by thermal annealing, which in an up-scaled manufacturing process is likely to take place under ambient conditions. However, it has been reported that, similar to the effects of thermal annealing, ambient humidity also affects the crystallisation behaviour and subsequent growth of the Perovskite films. This implies that both of these factors must be accounted for in solar cell production. In this work, we report for the first time the correlation between the annealing time, relative humidity (RH) and device performance for inverted, mixed halide CH3NH3PbI(3‑x)Cl x PSCs with active area ≈1 cm2. We find a trade-off between ambient humidity and the required annealing time to produce efficient solar cells, with low humidities needing longer annealing times and vice-versa. At around 20% RH, device performance weakly depends on annealing time, but at higher (30%–40% RH) or lower (0%–15% RH) humidities it is very sensitive. Processing in humid environments is shown to lead to the growth of both larger Perovskite grains and larger voids; similar to the effect of thermal annealing, which also leads to grain growth. Therefore, samples which are annealed for too long under high humidity show loss of performance due to low open circuit voltage caused by an increased number of shunt paths. Based on these results it is clear that humidity and annealing time are closely interrelated and both are important factors affecting the performance of PSCs. The findings of this work open a route for reduced annealing times to be employed by control of humidity; critical in roll-to-roll manufacture where low manufacturing time is preferred for cost reductions.

  4. Influence of silicon substitution and annealing temperature on the microstructure and magnetic properties of lithium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Mazen, S.A., E-mail: dr.saidmazen@gmail.com; Abu-Elsaad, N.I.; Nawara, A.S.

    2015-11-05

    Silicon substituted lithium ferrite with the general chemical formula Li{sub 0.5+0.5x}Si{sub x}Fe{sub 2.5−1.5x}O{sub 4}, (where, x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were prepared by high energy ball milling (HEBM) technique. The obtained powders were annealed at three different temperatures (700, 900 and 1000 °C) for 2 h. The phase formation, microstructure and magnetic properties with respect to annealing temperature were studied using different characterization techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The results exhibit the formation of single phase in cubic spinel at annealing temperature 1000 °C, with a slight decrease in lattice parameter values. The bulk density of Li–Si ferrite samples increases as the annealing temperature increases. From VSM measurements it was observed that the saturation magnetization (M{sub s}) decreases with silicon content. The observed decrease in M{sub s} was explained in terms of Neel's two sublattice model according to which the magnetic moment is the vector sum of lattice magnetic moment. The magnetic measurements showed that the magnetization increases, and the coercivity decreases by increasing the annealing temperature. This is attributed to the promotion of crystallinity consequent of annealing. The permeability showed increasing trend with the increase of annealing temperature since the permeability depends on the microstructure. The Curie temperature obtained from μ{sub i}–T curves indicates that it is unaffected by silicon substitution. - Highlights: • Li–Si ferrites have been prepared by HEBM technique. • Single phase spinel structure is achieved at annealing temperature 1000 °C for 2 h. • Magnetic properties were affected by both silicon and annealing temperatures. • Curie temperature has no noticeable change with the annealing temperature.

  5. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    Science.gov (United States)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  6. Annealing Behavior of New Micro-defects in p-type Large-diameter CZ-Si Crystal

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New types of defects in 15.24 cm diameter and 20.32 cm diameter Czochralski silicon crystals were found after SCI cleaning. Their annealing behavior was studied. It was suggested that these defects become larger during high temperature annealing and disappear by annealing at 1250℃.

  7. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    Science.gov (United States)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Lu, Wei; Lau, S. S.; Lanz, A.; Alford, T. L.

    2013-12-01

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P+ implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  8. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L., E-mail: TA@asu.edu [School of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); David Theodore, N. [CHD-Fab, Freescale Semiconductor Inc., 1300 N. Alma School Rd., Chandler, Arizona 85224 (United States); Lu, Wei; Lau, S. S. [Department of Electrical Engineering, University of California, San Diego, California 92093 (United States); Lanz, A. [Department of Mathematics, Norfolk State University, Norfolk, Virginia 23504 (United States)

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  9. 78 FR 50378 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Postponement of...

    Science.gov (United States)

    2013-08-19

    ... International Trade Administration Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan... Department) initiated the antidumping duty investigation of diffusion-annealed, nickel-plated flat-rolled steel products from Japan. See Diffusion- Annealed, Nickel-Plated Flat-Rolled Steel Products From...

  10. The effect of rapid thermal annealing on characteristics of carbon coatings on optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jen-Feng; Chen, Tsuen-Sung; Lin, Hung-Chien; Shiue, Sham-Tsong [Department of Materials Science and Engineering, National Chung Hsing University, Taichung (China)

    2010-02-15

    Carbon films are deposited on silica glass fibers by radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD), and the properties of these optical fibers are improved by rapid thermal annealing. The annealing temperatures are set to 100, 200, 300, 400, 500, 550, 600, and 700 C. Experimental results show that the thickness and surface roughness of carbon films decrease with increasing annealing temperature, ranging from as-deposited to 500 C, while the sp{sup 2} carbon bonding, sp{sup 3} CH{sub 3} bonding, optical bandgap, and water contact angle (CA) of carbon films increase. As the annealing temperature increases from 550 to 700 C, parts of the carbon films are delaminated. The sp{sup 3} CH{sub 3} bonding in carbon films is shifted to the sp{sup 3} CH{sub 2} bonding, and the sp{sup 3} CH{sub 2} bonding is subsequently transferred to the sp{sup 2} CH bonding. Meanwhile, the amount of the sp{sup 2} carbon bonding in carbon films increases, while the optical bandgap decreases. Based on the evaluation of water repellency and low-temperature morphology of carbon films, the carbon film annealed at a temperature of 500 C is the best for production of carbon-coated optical fibers. As compared to conventional thermal annealing (CTA), rapid thermal annealing (RTA) is more effective to improve the properties of carbon-coated optical fibers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. PERBANDINGAN KINERJA ALGORITMA GENETIKA DAN SIMULATED ANNEALING UNTUK MASALAH MULTIPLE OBJECTIVE PADA PENJADWALAN FLOWSHOP

    Directory of Open Access Journals (Sweden)

    I Gede Agus Widyadana

    2002-01-01

    Full Text Available The research is focused on comparing Genetics algorithm and Simulated Annealing in the term of performa and processing time. The main purpose is to find out performance both of the algorithm to solve minimizing makespan and total flowtime in a particular flowshop system. Performances of the algorithms are found by simulating problems with variation of jobs and machines combination. The result show the Simulated Annealing is much better than the Genetics up to 90%. The Genetics, however, only had score in processing time, but the trend that plotted suggest that in problems with lots of jobs and lots of machines, the Simulated Annealing will run much faster than the Genetics. Abstract in Bahasa Indonesia : Penelitian ini difokuskan pada pembandingan algoritma Genetika dan Simulated Annealing ditinjau dari aspek performa dan waktu proses. Tujuannya adalah untuk melihat kemampuan dua algoritma tersebut untuk menyelesaikan problem-problem penjadwalan flow shop dengan kriteria minimasi makespan dan total flowtime. Kemampuan kedua algoritma tersebut dilihat dengan melakukan simulasi yang dilakukan pada kombinasi-kombinasi job dan mesin yang berbeda-beda. Hasil simulasi menunjukan algoritma Simulated Annealing lebih unggul dari algoritma Genetika hingga 90%, algoritma Genetika hanya unggul pada waktu proses saja, namun dengan tren waktu proses yang terbentuk, diyakini pada problem dengan kombinasi job dan mesin yang banyak, algoritma Simulated Annealing dapat lebih cepat daripada algoritma Genetika. Kata kunci: Algoritma Genetika, Simulated Annealing, flow shop, makespan, total flowtime.

  12. Formation of light-emitting Si nanostructures in SiO(2) by pulsed anneals.

    Science.gov (United States)

    Kachurin, G A; Cherkova, S G; Marin, D V; Yankov, R A; Deutschmann, M

    2008-09-03

    Intense excimer laser pulses, flash lamp annealing and rapid thermal annealing were used to form Si nanocrystals in thin SiO(2) layers implanted with high doses of Si ions. The pulse durations were 20 ns, 20 ms and 1 s, respectively. Laser annealing produced light sources luminescing in the wavelength range of 400-600 nm. They were attributed to the Si clusters formed as a result of the fast segregation of Si atoms from the SiO(2) network. There were no indications of nanocrystal formation in the as-implanted layers after 20 ns laser pulses; however, nanocrystals formed when, before the laser annealing, the amorphous Si nanoprecipitates were prepared in the oxide layers. Evaluations show that the crystallization may proceed via melting. A photoluminescence band near 800 nm, typical of Si nanocrystals, was found after 20 ms and 1 s anneals. Calculations revealed that the annealing times in both cases were too short to provide the diffusion-limited crystal growth if one uses the values of stationary Si diffusivity in SiO(2). This points toward the existence of a transient rapid growth process at the very beginning of the anneals.

  13. Formation of light-emitting Si nanostructures in SiO{sub 2} by pulsed anneals

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G A; Cherkova, S G; Marin, D V [Institute of Semiconductor Physics SO RAN, 630090 Novosibirsk (Russian Federation); Yankov, R A [Forschungszentrum Rossendorf, 01314 Dresden (Germany); Deutschmann, M [Laser Zentrum Hannover, 30419 Hannover (Germany)

    2008-09-03

    Intense excimer laser pulses, flash lamp annealing and rapid thermal annealing were used to form Si nanocrystals in thin SiO{sub 2} layers implanted with high doses of Si ions. The pulse durations were 20 ns, 20 ms and 1 s, respectively. Laser annealing produced light sources luminescing in the wavelength range of 400-600 nm. They were attributed to the Si clusters formed as a result of the fast segregation of Si atoms from the SiO{sub 2} network. There were no indications of nanocrystal formation in the as-implanted layers after 20 ns laser pulses; however, nanocrystals formed when, before the laser annealing, the amorphous Si nanoprecipitates were prepared in the oxide layers. Evaluations show that the crystallization may proceed via melting. A photoluminescence band near 800 nm, typical of Si nanocrystals, was found after 20 ms and 1 s anneals. Calculations revealed that the annealing times in both cases were too short to provide the diffusion-limited crystal growth if one uses the values of stationary Si diffusivity in SiO{sub 2}. This points toward the existence of a transient rapid growth process at the very beginning of the anneals.

  14. Formation of light-emitting Si nanostructures in SiO2 by pulsed anneals

    Science.gov (United States)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Yankov, R. A.; Deutschmann, M.

    2008-09-01

    Intense excimer laser pulses, flash lamp annealing and rapid thermal annealing were used to form Si nanocrystals in thin SiO2 layers implanted with high doses of Si ions. The pulse durations were 20 ns, 20 ms and 1 s, respectively. Laser annealing produced light sources luminescing in the wavelength range of 400-600 nm. They were attributed to the Si clusters formed as a result of the fast segregation of Si atoms from the SiO2 network. There were no indications of nanocrystal formation in the as-implanted layers after 20 ns laser pulses; however, nanocrystals formed when, before the laser annealing, the amorphous Si nanoprecipitates were prepared in the oxide layers. Evaluations show that the crystallization may proceed via melting. A photoluminescence band near 800 nm, typical of Si nanocrystals, was found after 20 ms and 1 s anneals. Calculations revealed that the annealing times in both cases were too short to provide the diffusion-limited crystal growth if one uses the values of stationary Si diffusivity in SiO2. This points toward the existence of a transient rapid growth process at the very beginning of the anneals.

  15. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  16. Thermal annealing of SiC thin films with varying stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Kuenle, Matthias [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany)], E-mail: matthias.kuenle@ise.fraunhofer.de; Janz, Stefan [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Eibl, Oliver [Eberhard-Karls-Universitaet, Tuebingen, Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tuebingen (Germany); Berthold, Christoph; Presser, Volker; Nickel, Klaus-Georg [Eberhard-Karls-Universitaet, Tuebingen, Institute for Geoscience, Applied Mineralogy, Wilhelmstrasse 56, 72074 Tuebingen (Germany)

    2009-03-15

    Thin films of amorphous hydrogenated silicon carbide (a-SiC:H) with varying stoichiometry of silicon and carbon were prepared by Plasma Enhanced Chemical Vapour Deposition (PECVD). After deposition a subsequent rapid thermal annealing was carried out at 900, 1100 and 1300 deg. C. The as-deposited and annealed SiC thin films were investigated by X-ray diffraction (XRD), cross-section and plane view transmission electron microscopy (TEM), Fourier-Transformed Infrared (FTIR) and Raman spectroscopy. The deposited films were amorphous directly after deposition and became nanocrystalline after annealing at 1300 deg. C. This was verified by XRD measurements. Microvoids were found in all films investigated by TEM. Densification and crystallisation as well as cooling introduced tensile stresses within the annealed SiC film and lead eventually to crack formation in the film. The annealed stoichiometric SiC film shows v-shaped extended defects at the Si-SiC interface likely formed during the annealing at high temperatures. FTIR and Raman spectroscopy showed a strong influence of initial film properties such as hydrogen content and binding structure on the internal structure of the SiC thin films after annealing.

  17. Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

    Indian Academy of Sciences (India)

    Sushil Kumar Pandey; Saurabh Kumar Pandey; Vishnu Awasthi; Ashish Kumar; Uday P Deshpande; Mukul Gupta; Shaibal Mukherjee

    2014-08-01

    We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on -type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ∼ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

  18. Structural, Optical, and Dielectric Properties of Azure B Thin Films and Impact of Thermal Annealing

    Science.gov (United States)

    Zeyada, H. M.; Zidan, H. M.; Abdelghany, A. M.; Abbas, I.

    2017-03-01

    Thin films of azure B (AB) have been prepared by thermal evaporation. Structural, optical, and dielectric characteristics of as-prepared and annealed samples were studied. AB is polycrystalline in as-synthesized powder form. Detailed x-ray diffraction studies showed amorphous structure for pristine and annealed films. Fourier-transform infrared vibrational spectroscopy indicated minor changes in molecular bonds of AB thin films either after deposition or after thermal annealing. Optical transmittance and reflection spectra of prepared thin films were studied at nearly normal light incidence in the spectral range from 200 nm to 2500 nm, showing marked changes without new peaks. Annealing increased the absorption coefficient and decreased the optical bandgap. Onset and optical energy gaps of pristine films were found to obey indirect allowed transition with values of 1.10 eV and 2.64 eV, respectively. Annealing decreased the onset and optical energy gaps to 1.0 eV and 2.57 eV, respectively. The dispersion parameters before and after annealing are discussed in terms of a single-oscillator model. The spectra of the dielectric constants (ɛ 1, ɛ 2) were found to depend on the annealing temperature in addition to the incident photon energy.

  19. ACTIVITY-BASED COSTING DAN SIMULATED ANNEALING UNTUK PENCARIAN RUTE PADA FLEXIBLE MANUFACTURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Gregorius Satia Budhi

    2003-01-01

    Full Text Available Flexible Manufacturing System (FMS is a manufacturing system that is formed from several Numerical Controlled Machines combine with material handling system, so that different jobs can be worked by different machines sequences. FMS combine the high productivity and flexibility of Transfer Line and Job Shop manufacturing system. In this reasearch, Activity-Based Costing(ABC approach was used as the weight to search the operation route in the proper machine, so that the total production cost can be optimized. The search method that was used in this experiment is Simulated Annealling, a variant form Hill Climbing Search method. An ideal operation time to proses a part was used as the annealling schedule. From the empirical test, it could be proved that the use of ABC approach and Simulated Annealing to search the route (routing process can optimize the Total Production Cost. In the other hand, the use of ideal operation time to process a part as annealing schedule can control the processing time well. Abstract in Bahasa Indonesia : Flexible Manufacturing System (FMS adalah sistem manufaktur yang tersusun dari mesin-mesin Numerical Control (NC yang dikombinasi dengan Sistem Penanganan Material, sehingga job-job berbeda dikerjakan oleh mesin-mesin dengan alur yang berlainan. FMS menggabungkan produktifitas dan fleksibilitas yang tinggi dari Sistem Manufaktur Transfer Line dan Job Shop. Pada riset ini pendekatan Activity-Based Costing (ABC digunakan sebagai bobot / weight dalam pencarian rute operasi pada mesin yang tepat, untuk lebih mengoptimasi biaya produksi secara keseluruhan. Adapun metode Searching yang digunakan adalah Simulated Annealing yang merupakan varian dari metode searching Hill Climbing. Waktu operasi ideal untuk memproses sebuah part digunakan sebagai Annealing Schedulenya. Dari hasil pengujian empiris dapat dibuktikan bahwa penggunaan pendekatan ABC dan Simulated Annealing untuk proses pencarian rute (routing dapat lebih

  20. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed

    2014-06-01

    Cu(In, Ga)Se2 (CIGS) ink was formulated from CIGS powder, polyvinyl butyral PVB, terpineol and polyester/polyamine co-polymeric dispersant KD-1. Thin films with different thicknesses were deposited on PET substrate using screen-printing followed by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying at 200 °C, which is well below the decomposition temperature of the PET substrate. It was observed by SEM that 20 pulses of 532nm and 60 mJ/cm2 Nd:YAG laser annealing causes atomic diffusion on the near surface area. Furthermore, FIB cross section images were utilized to monitor the effect of laser annealing in the depth of the layer. Laser annealing effects were compared to as deposited layer using XRD in reference to CIGS powder. The measurement shows that crystallinity of deposited CIGS is retained while EDS quantification and atomic ratio result in gradual loss of selenium as laser energy increases. The laser parameters were tuned in an effort to utilize laser annealing of screen-printed CIGS layer as a layer annealing method for solar cell fabrication process.

  1. Ionization annealing of semiconductor crystals. Part two: the experiment

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2014-12-01

    Full Text Available There is a conception that irradiation of semiconductor crystals with high energy electrons (300 keV results in a significant and irreversible deterioration of their electrical, optical and structural properties. Semiconductors are typically irradiated by low voltage electron accelerators with a continuous flow, the current density in such accelerators is 10–5—10–6 A/cm2, the energy — 0,3—1 MeV. All changes in the properties after such irradiation are resistant at room temperature, and marked properties recovery to baseline values is observed only after prolonged heating of the crystals to a high temperature. In contrast, the authors in their studies observe an improvement of the structural properties of semiconductor crystals (annealing of defects under irradiation with powerful (high current pulsed electron beams of high energy (E0 = 0,3–1 MeV, t = 0,1—10 ns, Ω = 1—10 Hz, j = 20—300 A/cm2. In their previous paper, the authors presented theoretical basis of this effect. This article describes an experimental study on the influence of high-current pulsed electron beams on the optical homogeneity of semiconductor GaAs and CdS crystals, confirming the theory put forward earlier.

  2. Morphological Optimization of Perovskite Thin Films via Dynamic Zone Annealing

    Science.gov (United States)

    Sun, Yan; Wang, Kai; Gong, Xiong; Karim, Alamgir

    2015-03-01

    Organolead Halide Perovskites have been proved to be excellent candidates for application in low-cost high-efficient solar cells owing to their superior desired optical and electrical properties, as well as compatibility with low-temperature solution-processed manufacturing. However, most perovskites applications in photovoltaics require high quality perovskite films. Although tremendous works on tuning perovskite film morphology have been reported previously, it is still a challenge to realize high quality perovskite film with controllable film uniformity and surface coverage, neither the mechanisms in the formation of perovskite. To address the issues above, here we demonstrate the effect of Dynamic Zone Annealing (DZA) on perovskite morphologies, which is proved as an efficient method to control the structure and morphology in crystalline polymer and block copolymers. Via applying the DZA method, the mechanism in perovskite film formation is studied. Furthermore, by optimizing DZA parameter such as maximum temperature, temperature gradient and zone velocity to control dendritic morphology and the grain growth, enhanced device performance was realized eventually. Equal contribution.

  3. Static Security Enhancement and Loss Minimization Using Simulated Annealing

    Directory of Open Access Journals (Sweden)

    A.Y. Abdelaziz

    2013-03-01

    Full Text Available This paper presents a developed algorithm for optimal placement of thyristor controlled series capacitors (TCSC’s for enhancing the power system static security and minimizing the system overall power loss. Placing TCSC’s at selected branches requires analysis of the system behavior under all possible contingencies. A selective procedure to determine the locations and settings of the thyristor controlled series capacitors is presented. The locations are determined by evaluating contingency sensitivity index (CSI for a given power system branch for a given number of contingencies. This criterion is then used to develop branches prioritizing index in order to rank the system branches possible for placement of the thyristor controlled series capacitors. Optimal settings of TCSC’s are determined by the optimization technique of simulated annealing (SA, where settings are chosen to minimize the overall power system losses. The goal of the developed methodology is to enhance power system static security by alleviating/eliminating overloads on the transmission lines and maintaining the voltages at all load buses within their specified limits through the optimal placement and setting of TCSC’s under single and double line outage network contingencies. The proposed algorithm is examined using different IEEE standard test systems to shown its superiority in enhancing the system static security and minimizing the system losses.

  4. Simulated Annealing Technique for Routing in a Rectangular Mesh Network

    Directory of Open Access Journals (Sweden)

    Noraziah Adzhar

    2014-01-01

    Full Text Available In the process of automatic design for printed circuit boards (PCBs, the phase following cell placement is routing. On the other hand, routing process is a notoriously difficult problem, and even the simplest routing problem which consists of a set of two-pin nets is known to be NP-complete. In this research, our routing region is first tessellated into a uniform Nx×Ny array of square cells. The ultimate goal for a routing problem is to achieve complete automatic routing with minimal need for any manual intervention. Therefore, shortest path for all connections needs to be established. While classical Dijkstra’s algorithm guarantees to find shortest path for a single net, each routed net will form obstacles for later paths. This will add complexities to route later nets and make its routing longer than the optimal path or sometimes impossible to complete. Today’s sequential routing often applies heuristic method to further refine the solution. Through this process, all nets will be rerouted in different order to improve the quality of routing. Because of this, we are motivated to apply simulated annealing, one of the metaheuristic methods to our routing model to produce better candidates of sequence.

  5. Optical Design of Multilayer Achromatic Waveplate by Simulated Annealing Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jun Ma; Jing-Shan Wang; Carsten Denker; Hai-Min Wang

    2008-01-01

    We applied a Monte Carlo method-simulated annealing algorithm-to carry out the design of multilayer achromatic waveplate. We present solutions for three-, six-and ten-layer achromatic waveplates. The optimized retardance settings are found to be 89°51'39"±0°33'37" and 89°54'46"±0°22'4" for the six-and ten-layer waveplates, respectively, for a wavelength range from 1000nm to 1800nm. The polarimetric properties of multilayer waveplates are investigated based on several numerical experiments. In contrast to previously proposed three-layer achromatic waveplate, the fast axes of the new six-and ten-layer achromatic waveplate remain at fixed angles, independent of the wavelength. Two applications of multilayer achromatic waveplate are discussed, the general-purpose phase shifter and the birefringent filter in the Infrared Imaging Magnetograph (IRIM) system of the Big Bear Solar Observatory (BBSO). We also checked an experimental method to measure the retardance of waveplates.

  6. Impurity and defect interactions during laser thermal annealing in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, R., E-mail: ruggero.milazzo@unipd.it; De Salvador, D.; Carnera, A.; Napolitani, E. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Impellizzeri, G.; Privitera, V. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Piccinotti, D. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France); La Magna, A. [CNR-IMM, Z.I. VIII Strada 5, 95121 Catania (Italy); Fortunato, G. [CNR-IMM, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Portavoce, A.; Mangelinck, D. [IM2NP, CNRS-Universités d' Aix-Marseille et de Toulon, Case 142, 13397 Marseille Cedex 20 (France)

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron is shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.

  7. Traveling Salesman Approach for Solving Petrol Distribution Using Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Zuhaimy Ismail

    2008-01-01

    Full Text Available This research presents an attempt to solve a logistic company's problem of delivering petrol to petrol station in the state of Johor. This delivery system is formulated as a travelling salesman problem (TSP. TSP involves finding an optimal route for visiting stations and returning to point of origin, where the inter-station distance is symmetric and known. This real world application is a deceptive simple combinatorial problem and our approach is to develop solutions based on the idea of local search and meta-heuristics. As a standard problem, we have chosen a solution is a deceptively simple combinatorial problem and we defined it simply as the time spends or distance travelled by salesman visiting n cities (or nodes cyclically. In one tour the vehicle visits each station just once and finishes up where he started. As standard problems, we have chosen TSP with different stations visited once. This research presents the development of solution engine based on local search method known as Greedy Method and with the result generated as the initial solution, Simulated Annealing (SA and Tabu Search (TS further used to improve the search and provide the best solution. A user friendly optimization program developed using Microsoft C++ to solve the TSP and provides solutions to future TSP which may be classified into daily or advanced management and engineering problems.

  8. Modeling of Strip Heating Process in Vertical Continuous Annealing Furnace

    Institute of Scientific and Technical Information of China (English)

    WAN Fei; WANG Yong-qin; QIN Shu-ren

    2012-01-01

    The mechanism for heat transfer of radiation is usually adopted to heat strip in vertical continuous annealing furnace. The rate of heat transfer among strip and other objects can be hugely affected by the parameters of strip speed, geometry factors and radiating characteristic of surfaces of strip, radiating tubes and walls of furnace. A model including all parameters is proposed for calculating the heat transfer coefficient, predicting the strip tempera- ture and boundary temperature of strip through analyzing these parameters. The boundary temperature is a important datum and different from average arithmetic value of temperature of strip and temperature in furnace. Also, the model can be used to analyze the relation for temperature of strip and heat transfer coefficient, total heat transfer quantity and heating time. The model is built by using the radiating heat transfer rate, the Newtonrs law of cooling, and lumped system analysis. The results of calculation are compared to the data from production line. The comparisons indicate that the model can well predict the heating process. The model is already applied for process control in pro- duction line. Also, this research will provide a new method for analyzing the radiation heat transfer.

  9. Enhanced Simulated Annealing for Solving Aggregate Production Planning

    Directory of Open Access Journals (Sweden)

    Mohd Rizam Abu Bakar

    2016-01-01

    Full Text Available Simulated annealing (SA has been an effective means that can address difficulties related to optimisation problems. SA is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP is one of the most considerable problems in production planning, in this paper, we present multiobjective linear programming model for APP and optimised by SA. During the course of optimising for the APP problem, it uncovered that the capability of SA was inadequate and its performance was substandard, particularly for a sizable controlled APP problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state will generate only one in next state that will make the search slower and the drawback is that the search may fall in local minimum which represents the best solution in only part of the solution space. In order to enhance its performance and alleviate the deficiencies in the problem solving, a modified SA (MSA is proposed. We attempt to augment the search space by starting with N+1 solutions, instead of one solution. To analyse and investigate the operations of the MSA with the standard SA and harmony search (HS, the real performance of an industrial company and simulation are made for evaluation. The results show that, compared to SA and HS, MSA offers better quality solutions with regard to convergence and accuracy.

  10. Superconductor-insulator transition on annealed complex networks.

    Science.gov (United States)

    Bianconi, Ginestra

    2012-06-01

    Cuprates show multiphase and multiscale complexity that has hindered physicists search for the mechanism of high T{c} for many years. Recently the interest has been addressed to a possible optimum inhomogeneity of dopants, defects, and interstitials, and the structural scale invariance of dopants detected by scanning micro-x-ray diffraction has been reported to promote the critical temperature. In order to shed light on critical phenomena on granular materials, here we propose a stylized model capturing the essential characteristics of the superconducting-insulator transition of a highly dynamical, heterogeneous granular material: the random transverse Ising model (RTIM) on annealed complex network. We show that when the networks encode for high heterogeneity of the expected degrees described by a power-law distribution, the critical temperature for the onset of the superconducting phase diverges to infinity as the power-law exponent γ of the expected degree distribution is less than 3, i.e., γinsulator transition has a maximum if γ>3 and diverges if γ<3.

  11. Synthesis of ZnO nanocrystals in sapphire by ion implantation and vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Franco, N. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Alves, L.C. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Silva, R.C. da [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal) and Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Alves, E. [LFI, Dep. Fisica, Instituto Tecnologico e Nuclear, E.N. 10, 2686-953 Sacavem (Portugal) and Centro Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal)]. E-mail: ealves@itn.pt; Safran, G. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest (Hungary); McHargue, C.J. [University of Tennessee, Knoxville, TN 37996-0750 (United States)

    2007-04-15

    The synthesis of embedded ZnO nanoparticles in m-cut sapphire was achieved through high fluence Zn ion implantation, 0.9 x 10{sup 17} cm{sup -2} at room temperature, followed by annealing at 1000 deg. C in vacuum. In c-cut samples subjected to similar annealing conditions only buried precipitates of Zn form. TEM results in these samples show a high concentration of faceted precipitates distributed along the c-plane and the presence of Kirkendall voids distributed along the entire implanted region. In both cases a strong loss of Zn is observed upon annealing, which depends on the sapphire host orientation.

  12. Effect of annealing on Raman scattering spectra of monolayer graphene samples gradually disordered by ion irradiation

    OpenAIRE

    Zion, E.; BUTENKO A.; Kaganovskii, Yu.; Richter, V.; Wolfson, L; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-01-01

    The Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C$^{+}$ and Xe$^{+}$ ions were measured after annealing in high vacuum, and in forming gas (95\\%Ar+5\\%H$_{2}$). It was found that these methods of annealing have dramatically different influence on the RS lines. Annealing in vacuum below 500$^{\\circ}$C leads to significant decrease of both D-line, associated with defects, and 2D-line, associated with the intact lattice structure, whi...

  13. Band gap and conductivity variations of ZnO nano structured thin films annealed under Vacuum

    Science.gov (United States)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). The samples were annealed under vacuum and conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. All the results were compared with that of the sample annealed under air. It was observed that the band gap decreases and concequently conductivity of the samples increases when the samples are annealed under vacuum.

  14. Effects of annealing process on electrical conductivity and mechanical property of Cu-Te alloys

    Institute of Scientific and Technical Information of China (English)

    ZHU Da-chuan; TANG Ke; SONG Ming-zhao; TU Ming-jing

    2006-01-01

    The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results show that recrystallization and precipitation occur simultaneously during the annealing process of Cu-Te alloys. Tellurium precipitates as Cu2Te second phase. The grain size increases with the increasing of annealing temperature and time. The electrical conductivity increases monotonously. The tensile strength of Cu-Te alloy is higher than that of pure copper.

  15. Investigation of Nano Structural Changes by Annealing Temperature and Uniform Oxygen Flow on Ti Layers

    Directory of Open Access Journals (Sweden)

    Haleh Kangarlou

    2011-01-01

    Full Text Available Problem statement: Ti films of the same thickness, deposition angle (near normal and deposition rate were deposited on glass substrates at room temperature under UHV conditions. Approach: Different annealing temperatures 423 K, 523 K and 623 K with uniform 7 cm3 sec-1, oxygen flow, were used to produce titanium oxide layers. Results: Thin film structures were studied using AFM, XRD and spectrophotometer methods. Roughness of the films changed due to annealing process. Conclusion/Recommendations: The getting property of Ti and annealing temperature can play an important role on the structure of the films.

  16. Buckling and Delamination of Ti/Cu/Si Thin Film During Annealing

    Science.gov (United States)

    Lin, Qijing; Yang, Shuming; Jing, Weixuan; Li, Changsheng; Wang, Chenying; Jiang, Zhuangde; Jiang, Kely

    2014-09-01

    In this paper, the formation of buckling and delamination of sandwiched stacking of Ti/Cu/Si thin film are investigated. The crystallization structures, the composition of the Cu/Ti thin films, and the surface morphology are measured during annealing. The results show that the solid-phase reaction between Cu and Ti occurs at the interface. Buckling is initiated in the thin film annealed at 600°C. The volume expansion promotes the buckling and further produces microcracks. With increasing volume expansion, there are cavities formed in the middle layer when the annealing temperature is up to 700°C. Finally, thin film is delaminated from the substrate.

  17. Annealing Effect of Magnetostriction in Fe49Co49V2 Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Research Institute of Industrial Science & Technology, P.O.Box 135 Pohang, 790-600, Korea A Fe49Co49V2 alloy was annealed at 500, 750, 800 and 900℃. The magnetostriction was measured by Michelson laser interferometer to receive the feedback signal of OPL variation. With the increase of annealing temperature, the grain size of texture in samples increases due to the recrystallization. Magnetostriction of 2× 10-6 at H=60 Oe increases up to 38 × 10-6 at annealing temperature of 900C, suggesting that the magnetostrictive characteristics are improved by the microstructural modification.

  18. Annealed SnO{sub 2} thin films: Structural, electrical and their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mehraj, Sumaira, E-mail: sumairamehraj07@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Ansari, M. Shahnawaze, E-mail: shah.csengg@gmail.com [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-08-31

    SnO{sub 2} thin films of ~ 150 nm thicknesses were deposited on quartz substrate by pulse laser deposition technique and annealed at 600–900 °C for 1 h with a variation of 100 °C per sample. The X-ray diffraction patterns show that as deposited SnO{sub 2} thin film was completely amorphous while annealed SnO{sub 2} thin films were randomly oriented, polycrystalline in nature and correspond to the rutile phase. The average crystallite size estimated using Scherrer and Williamson–Hall equations was found to increase with annealing temperature. In addition to the three fundamental Raman peaks at 473 cm{sup −1}, 627 cm{sup −1} and 766 cm{sup −1} corresponding to the tetragonal rutile phase of SnO{sub 2}, two IR active Raman bands and one Raman forbidden mode were also observed at 500 cm{sup −1}, 690 cm{sup −1} and 544 cm{sup −1} respectively. The dc resistivity measurements in the temperature range of 297–400 K show semiconducting behavior of all the annealed thin films. Room temperature dielectric properties of all the samples show dispersion which is explained in the light of Koop's theory based on Maxwell–Wagner two layer models. The dielectric parameters: real part of dielectric constant, dielectric loss and ac conductivity show their maximum value for SnO{sub 2} film sample annealed at 600 °C. The dielectric loss shows anomalous behavior and exhibits relaxation peaks (Debye peaks) at lower and middle frequencies. Complex impedance plots (Nyquist plots) for annealed SnO{sub 2} thin films show two well-resolved semicircles corresponding to two different electrical transport mechanisms which stand for grain and grain boundary. It is observed that the contribution of grains in the conduction process starts dominating over the grain boundary with the increase in annealing temperature. From a magnetic hysteresis loop, it is clear that all the single phase SnO{sub 2} thin films annealed at different temperatures are ferromagnetic at room

  19. Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V (Preprint)

    Science.gov (United States)

    2011-05-01

    AFRL-RX-WP-TP-2011-4300 MICROSTRUCTURE EVOLUTION DURING FRICTION STIR WELDING OF MILL-ANNEALED Ti-6Al-4V (Preprint) A.L. Pilchak...DURING FRICTION STIR WELDING OF MILL-ANNEALED Ti-6Al-4V (Preprint) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Transactions A. Document contains color. 14. ABSTRACT In this study, mill-annealed Ti-6Al-4V plates were successfully friction stir welded over a

  20. Behaviors of optical and chemical state of Nb+ implanted sapphire after annealing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of the radiation damage of sapphire crystal, produced by implantation with 380 keV Nb+ ion followed by annealing in a series of steps from 500 to 1100℃C at reducing atmosphere, was investigated in optical absorption and XPS measurements. It is found that the implanted niobium in sapphire is in different local environments with different chemical states after the annealing. The changes in optical density (OD) from the bands, based on the well known F-type centers, show that the annealing behavior of the radiation damage may be divided into different stages due to different mechanisms.

  1. Study of phosphorus implanted and annealed silicon by electrical measurements and ion channeling technique

    CERN Document Server

    Hadjersi, T; Zilabdi, M; Benazzouz, C

    2002-01-01

    We investigated the effect of annealing temperature on the electrical activation of phosphorus implanted into silicon. The measurements performed using spreading resistance, four-point probe and ion channeling techniques have allowed us to establish the existence of two domains of variation of the electrical activation (350-700 deg. C) and (800-1100 deg. C). The presence of reverse annealing and the annihilation of defects have been put in a prominent position in the first temperature range. It has been shown that in order to achieve a complete electrical activation, the annealing temperature must belong to the second domain (800-1100 deg. C).

  2. Effect of Anneal on the Release Behaviour of LY12-Al Alloy

    Institute of Scientific and Technical Information of China (English)

    HU Jian-Bo; YU Yu-Ying; TAN Hua; DAI Cheng-Da

    2006-01-01

    @@ The sound velocities along the release path of annealed LY12-Al are measured by using a velocity interferometer system for any reflector (VISAR) technique. The shear modulus and yield strength are then obtained. Comparison of the experimental results with those of unannealed LY12-Al shows that anneal has little influence on sound velocities and shear modulus though it weakens the yield strength considerably, and changes the dependence of yield strength upon shock stress. The ratio of shear modulus to yield strength of unannealed LY12-Al increases with shock stress monotonically while that of annealed LY12-Al exhibits much more complicated behaviour.

  3. Synthesis of ZnO nanocrystals in sapphire by ion implantation and vacuum annealing

    Science.gov (United States)

    Marques, C.; Franco, N.; Alves, L. C.; da Silva, R. C.; Alves, E.; Safran, G.; McHargue, C. J.

    2007-04-01

    The synthesis of embedded ZnO nanoparticles in m-cut sapphire was achieved through high fluence Zn ion implantation, 0.9 × 1017 cm-2 at room temperature, followed by annealing at 1000 °C in vacuum. In c-cut samples subjected to similar annealing conditions only buried precipitates of Zn form. TEM results in these samples show a high concentration of faceted precipitates distributed along the c-plane and the presence of Kirkendall voids distributed along the entire implanted region. In both cases a strong loss of Zn is observed upon annealing, which depends on the sapphire host orientation.

  4. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  5. Tuning the Corrosion Behavior of Rapidly Solidified and Thermally-annealed Fe-Ti-Pd Alloys

    OpenAIRE

    Gonzalez Sanchez, Sergio; Sort, Jordi

    2014-01-01

    The corrosion behavior of rapidly solidified Fe(91-x)Ti9Pdx (x=0, 1, 3 5) alloys (wt. %), both in the as-cast and thermally annealed (i.e., slowly cooled) states, has been investigated by means of electrochemical potentiodynamic polarization and immersion tests. Addition of Pd shifts the corrosion potential towards more anodic values than in the Fe91Ti9 alloy, both in the as-cast and annealed samples. In turn, the processing route (rapid cooling vs. thermal annealing) has a strong influence i...

  6. Effect of Vacuum Annealing on Superconductivity in Fe(Se,Te) Single Crystals

    OpenAIRE

    Komiya, Seiki; Hanawa, Masafumi; Tsukada, Ichiro; Maeda, Atsutaka

    2013-01-01

    The effect of vacuum annealing on superconductivity is investigated in Fe(Se,Te) single crystals. It is found that superconductivity is not enhanced by annealing under high vacuum (~ 10^(-3) Pa) or by annealing in a sealed evacuated quartz tube. In a moderate vacuum atmosphere (~ 1 Pa), iron oxide layers are found to show up on sample surfaces, which would draw excess Fe out of the crystal. Thus, it is suggested that remanent oxygen effectively works to remove excess Fe from the matrix of Fe(...

  7. Effective annealing of ZnO thin films grown by three different SILAR processes

    OpenAIRE

    2015-01-01

    In the present work, zinc oxide (ZnO) thin films have been grown three different cation solution on glass substrates by a simple and economic successive ionic layer absorption and reaction method (SILAR). One of each grown different solution films was annealed to investigate to effective annealing at 473 K for 30 minutes. Absorption measurements showed that the optical band-gaps of all ZnO thin films were wide and were about 3.08-3.31 eV. All films’ band gap increased with annealing. Energy-D...

  8. Evaluation of the formation of a junctional DNA nanostructure through annealing curve analysis.

    Science.gov (United States)

    Shin, Seung Won; Park, Kyung Soo; Um, Soong Ho

    2015-02-20

    During the self-assembly of different numbers of oligonucleotides comprising junctional DNA nanostructures, a change in environmental variables (e.g., temperature or salt concentration) has a substantial influence on the final products. Further, distinctive annealing temperatures of oligonucleotides are observed depending on the state of hybridization. Here, we present an evaluation of the annealing characteristics of oligonucleotides for the formation of a simple junctional DNA nanostructure using an annealing curve analysis. This method may be useful for analyzing the formation of complex junctional DNA nanostructures.

  9. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer

    Indian Academy of Sciences (India)

    Sangita Rajvaidya; R Bajpai; A K Bajpai

    2005-10-01

    The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile. Various compositions of gluteraldehyde crosslinked gelatin and N,N′-methylene-bis-acrylamide crosslinked PAN were characterized by SEM and DSC techniques. The IPNs were also thermally pretreated by the annealing process. The effects of annealing temperature on the microhardness of IPNs were studied using the Vickers method. SEM indicates the homogeneous morphological features for IPN. The role of gelatin, AN and crosslinker on the developed hard biopolymer has been described with the help of DSC thermograms and microhardness measurements of annealed specimens and good correlation is observed.

  10. The influence of vacuum annealing on the uranium–hydrogen reaction

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, John P., E-mail: john.knowles@awe.co.uk; Findlay, Ian M.

    2015-10-05

    Highlights: • Apparent activation energies of the U–H{sub 2} reaction. • Enhanced H{sub 2} reactivity occurs with vacuum annealed uranium. • Transition from nucleation to growth mechanisms is demonstrated. • Elevated nucleation kinetics affords the enhanced H{sub 2} reactivity observed. - Abstract: The constant pressure hydriding kinetics of uranium have been measured as a function of temperature for as-polished and vacuum annealed uranium between 65 °C and 385 °C. Enhanced hydrogen reactivity was observed for vacuum annealed uranium between 65 °C and 120 °C and is the result of elevated nucleation kinetics promoting steady state kinetics.

  11. Defects in Fast-Neutron Irradiated Nitrogen-Doped Czochralski Silicon after Annealing at High Temperature

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fast-neutron irradiated nitrogen-doped Czochralski silicon (NCZ-Si) was annealed at 1100 ℃ for different time, then FTIR and optical microscope were used to study the behavior of oxygen. It is found that [Oi] increase at the early stage then decrease along with the increasing of anneal time. High density induced-defects can be found in the cleavage plane. By comparing NCZ-Si with Czochralski silicon (CZ-Si), [Oi] in NCZ-Si decrease more after anneal 24 h.

  12. Effect of annealing on the mechanical and scratch properties of BCN films obtained by magnetron sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuyan, E-mail: xsynefu@126.com [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Ma, Xinxin [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, Huiying [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China); Tang, Guangze [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Chunwei [Key Laboratory of Forest Sustainable Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040 (China)

    2014-09-15

    Highlights: • The amorphous BCN films were annealed at different temperatures under vacuum condition. • The order degree increases with the annealing temperature increasing, and the films do not decompose even the annealing temperature rise to 1000 °C. • The nano-hardness and modulus of the films decrease with the increasing of annealing temperatures. • The critical load of BCN films is not affected by the annealing temperature, and the films have good interfacial adhesion. • The scratch resistance properties of BCN film are improved by annealing at 600 °C. - Abstract: Boron-carbon-nitride (BCN) films have been fabricated by direct current unbalanced magnetron sputtering. Boron carbide/graphite compound and a mixture of nitrogen and argon are used as target and carrier gas, respectively, during BCN synthesis. The obtained BCN films are annealed at different temperatures under vacuum condition. The effect of annealing temperature on the structure, mechanical properties and scratch behavior of the BCN films has been investigated. The results indicate that no decomposition products are found even the BCN films are annealed at 1000 °C. The hardness and elastic modulus of the films decrease with the increase of annealing temperatures. The BCN film annealed at 600 °C has the strongest scratch resistance. The friction coefficient of all BCN films is in range of 0.05 to 0.15.

  13. Observation of Atomic Steps on Vicinal Si(111) Annealed in Hydrogen Gas Flow by Scanning Tunneling Microscopy

    Science.gov (United States)

    Kitahara, Kuninori; Ueda, Osamu

    1993-12-01

    The surface of vicinal Si(111) annealed in H2 flow was observed by equipping the chemical vapor deposition chamber with the scanning tunneling microscope. Samples were annealed at 1000°C for 10 min by passing an electric current under the H2 pressure of 7 Torr. Their surface morphology was compared with those annealed in ultrahigh vacuum (UHV) and in N2 flow at the same temperature. We found that the step motion during annealing in H2 was obviously smaller than that for annealing in UHV and N2. The multisteps formed during the annealing in UHV and N2 were not observed for H2 annealing except in the case of heating by direct current in the direction of lower to higher terraces. The mechanism of the interruption of the step motion is discussed from the viewpoint of the interaction between the surface and hydrogen.

  14. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  15. Effect of annealing temperature on properties of RF sputtered Cu(In,Ga)Se2 thin films

    Science.gov (United States)

    Yu, Zhou; Yan, Chuanpeng; Yan, Yong; Zhang, Yanxia; Huang, Tao; Huang, Wen; Li, Shasha; Liu, Lian; Zhang, Yong; Zhao, Yong

    2012-09-01

    Cu(In,Ga)Se2 (CIGSe) thin films were prepared by radio frequency (RF) magnetron sputtering at room temperature, following vacuum annealing at different temperatures. We have investigated the effect of annealing temperature (150-550 °C) on the phase transformation process of the CIGSe films. The as-deposited precursor films show a near stoichiometry composition and amorphous structure. Composition loss of the films mainly occur in the annealing temperature range of 150-300 °C. Comparing with samples annealed at 300 °C, films annealed at 350 °C or higher temperatures exhibit almost similar composition and polycrystalline chalcopyrite structure. Crystal quality of the films improves with increasing annealing temperature. Reflectance spectra of the annealed films show interference fringe pattern. The calculated refractive indexes of the films are in the range of 2.4-2.5.

  16. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Science.gov (United States)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  17. Effects of optical interference and annealing on the performance of poly (3-hexylthiophene):fullerene based solar cells

    Institute of Scientific and Technical Information of China (English)

    You Hai-Long; Zhang Chun-Fu

    2009-01-01

    In this paper, the effects of optical interference and annealing on the performance of P3HT:PCBM based organic solar cells are studied in detail. Due to the optical interference effect, short circuit current density (JSC) shows obvious oscillatory behaviour with the variation of active layer thickness. With the help of the simulated results, the devices are optimized around the first two optical interference peaks. It is found that the optimized thicknesses are 80 and 208 nm. The study on the effect of annealing on the performance indicates that post-annealing is more favourable than pre-annealing. Based on post-annealing, different annealing temperatures are tested. The optimized annealing condition is 160℃ for 10 min in a nitrogen atmosphere. The device shows that the open circuit voltage VOC achieves about 0.65V and the power conversion efficiency is as high as 4.0 % around the second interference peak.

  18. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    Science.gov (United States)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  19. Synthesis and annealing study of RF sputtered ZnO thin film

    Science.gov (United States)

    Singh, Shushant Kumar; Sharma, Himanshu; Singhal, R.; Kumar, V. V. Siva; Avasthi, D. K.

    2016-05-01

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  20. Annealing effect on the structural and electrical performance of Mn-Co-Ni-O films

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2015-11-01

    Full Text Available Thin films of Mn1.95Co0.77Ni0.28O4are deposited on amorphous Al2O3 substrate by the magnetron sputtering method with the thickness of 6.5 μm. The effects of annealing treatment are studied on the film structural performance as well as the entropy of Mn-Co-Ni-O(MCNO films by annealed at 400 ∘C, 500 ∘C, 600 ∘C, 700 ∘C, 800 ∘C respectively. It shows that the crystallinity of the thin film is the best annealed at 700 ∘C and the entropy is the largest because the number of different kinds of ions belonging to the same element equals with each other. After 800 ∘C annealing, the film resistivity is the minimal with the maximal entropy which means the highest stability.

  1. Irradiation and annealing effects on delamination toughness in carbon/epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Sekulic, D.R. [Institute of Nuclear Sciences, Vinca, POB 522, 11000 Belgrade, Serbia (Serbia )], E-mail: pesikan@vin.bg.ac.yu; Gordic, M.V. [General High School Milutin Milankovic, 11000 Belgrade (Serbia); Djordjevic, I.M. [Institute of Nuclear Sciences, Vinca, POB 522, 11000 Belgrade (Serbia); Petrovic, Z.S. [Kansas Polymer Research Center, Pittsburgh State University (United States); Stevanovic, M.M. [Institute of Nuclear Sciences, Vinca, POB 522, 11000 Belgrade (Serbia)

    2009-01-01

    Gamma irradiation to various doses (4.8-27.2 MGy) was performed on unidirectional carbon fiber/epoxy resin composite plates. Unidirectional composite coupons irradiated to various doses were annealed at 180 and 250 deg. C, in vacuum. The strain energy release rate G{sub IC}, as a measure of delamination fracture toughness, was determined by Mode I fracture testing on double cantilever beam coupons. The glass transition temperature (T{sub g}) of the tested coupons matrices was determined in DMA tests. The effects of irradiation and annealing on G{sub IC} values - the mean values of 10 propagation points (G{sub IC,mean}) and that of fracture initiation (G{sub IC,init}) - were established. These values were analyzed as a function of irradiation dose and annealing temperatures, having in mind glass transition temperature values changes, as well as the possible mechanisms and phenomena of irradiation and annealing.

  2. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method

    Indian Academy of Sciences (India)

    Ajay Kumar Mann; Deepak Varandani; Bodh Raj Mehta; Lalit Kumar Malhotra; G Mangamma; A K Tyagi

    2008-06-01

    In the present study, a novel method involving nitrogen plasma annealing has been reported for preparing InN nanoparticle/nanorod structures and for improving the properties of InN nanoparticle layers. Plasma annealed structures have been characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy techniques. InN nanoparticle layers have been prepared using activated reactive evaporation set up. It has been observed that there is a remarkable improvement in the conductivity and crystallinity of InN nanoparticle layers on annealing in nitrogen plasma. This has been attributed to the increase in the nitrogen content of the samples. Experiments involving plasma annealing of In nanorods deposited oxide template has also been carried out. It was found that on plasma treatment In nanorods get converted to mixed phase InN nanorods with hexagonal and cubic fractions.

  3. Ultraclean suspended monolayer graphene achieved by in situ current annealing

    Science.gov (United States)

    Wang, Haidong; Zhang, Xing; Takamatsu, Hiroshi

    2017-01-01

    Ultraclean graphene is essential for studying its intrinsic transport properties or fabricating high-performance electronic devices. Unfortunately, the contamination on graphene is unavoidable after microelectromechanical system processing. Here, we report an in situ current-annealing method for achieving ultraclean suspended monolayer graphene. The charge mobility of cleaned graphene reached a surprising 3.8 × 105 cm2 V‑1 s‑1, one of the highest values ever reported. For the first time, the process of current annealing was recorded under a high-resolution electron scanning microscope. It was demonstrated that temperature was the only dominant factor of the current-annealing process. Meanwhile, the mobility of suspended graphene was found to be highly sensitive to structural defects. The mobility decreased by a factor of over 100 after ion irradiation on graphene. The results revealed the underlying mechanism of current annealing on graphene and provided an effective means of preparing ultraclean graphene membranes.

  4. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  5. Improving the Stability and Performance of Perovskite Light-Emitting Diodes by Thermal Annealing Treatment.

    Science.gov (United States)

    Yu, Jae Choul; Kim, Dae Woo; Kim, Da Bin; Jung, Eui Dae; Park, Jong Hyun; Lee, Ah-Young; Lee, Bo Ram; Di Nuzzo, Daniele; Friend, Richard H; Song, Myoung Hoon

    2016-08-01

    A perovskite LED with a perovskite film treated under optimum thermal annealing conditions exhibits a significantly enhanced long-term stability with full coverage of the green electroluminescence emission due to the highly uniform morphology of the perovskite film.

  6. Different annealing temperature suitable for different Mg doped P-GaN

    Science.gov (United States)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  7. Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing.

    Science.gov (United States)

    Chang, Chia-Chi; Chen, Haitian; Chen, Chun-Chung; Hung, Wei-Hsuan; Hsu, I-Kai; Theiss, Jesse; Zhou, Chongwu; Cronin, Stephen B

    2011-07-29

    We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes:Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 µm in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.

  8. Oscillatory annealing in solid-state hot-atom chemistry - does it really exist?

    Energy Technology Data Exchange (ETDEWEB)

    Muller, H.

    1993-12-31

    Dimotakis and his group reported for a number of neutron irradiated target substances (e.g. [Co(en){sub 3}](NO{sub 3}){sub 3}) oscillatory annealing instead of smooth annealing as usually assumed. They discuss their results following the predator-prey model of Lotka-Volterra. - Two annealing experiments at 120{degrees}C - one with 24 measurements (1-min steps) between 30 and 53 minutes and one with 21 measurements (2-min steps) between 50 and 92 minutes - did not prove oscillatory annealing. While an oscillatory curve would run through almost all points, a fitted non-oscillatory curve runs - considering the standard deviations of {+-} 0.5% - through {open_quotes}only{close_quotes} approximately 68% of the experimental points as predicted by the statistical nature of radioactivity measurements.

  9. Effect of Laser Annealing on Permeability Spectra in Co-based Amorphous Ribbon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We investigated the variation of permeability spectra and relaxation frequency in Co-based amor phous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f)and rotational magnetiza tion μrot(f) by analyzing the rneasured spectra as a function of driving ac field amplitude. The magnitude ofμdw(f) andμrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined byu″(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.

  10. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires

    Science.gov (United States)

    Xu, H. J.; Zhu, H. C.; Shan, X. D.; Liu, Y. X.; Gao, J. Y.; Zhang, X. Z.; Zhang, J. M.; Wang, P. W.; Hou, Y. M.; Yu, D. P.

    2010-01-01

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn1-xCuxO nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high Tc ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  11. Influence of annealing on the optical properties of vacuum deposited silver thin films

    Science.gov (United States)

    Gnanadurai, P.; Sivaraja, N.; Soundrarajan, N.; Vijayan, C.

    2015-06-01

    Thin Silver films of thickness 15nm were prepared by thermal evaporation on well cleaned glass substrates at room temperature at a pressure of 2×10-5 mbar with the deposition rate of 0.01À/sec and annealed in air for an hour at temperatures between 300°c and 400°c. The prepared films were characterized by X-ray diffraction (XRD), UV-visible spectroscopy and AFM. The mean grain size of the film at different annealing temperatures was determined by the X-ray diffraction pattern by using Scheer's formula. It is found that from absorbance studies surface Plasmon peak position decreases as the annealing temperature increases and blue shifted. And also from transmittance studies the thermal effect of silver film strongly affects the optical transmittance. From AFM studies the average particle size and RMS surface roughness increase with increase of annealing temperatures.

  12. Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy

    Indian Academy of Sciences (India)

    Svetlana Nestorovic; Desimir Markovic; Ljubica Ivanic

    2003-10-01

    This paper reports results of investigations carried out on a cast copper alloy containing 8 at.% Al. The alloy, and pure copper for the sake of comparison, were subjected to cold rolling with a final reduction of 30, 50 or 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to the recrystallization temperature. The hardness, strength and electrical conductivity were measured and X-ray and DSC analyses performed. Anneal hardening effect was observed in the alloy in the temperature range 180–300°C, followed by an increase in the electrical conductivity. The amount of strengthening increases with increasing degree of prior cold work. The X-ray analysis shows a change in the lattice parameter during annealing when anneal hardening effect was observed. The DSC analysis shows the exothermic character of this effect.

  13. Annealed Treatment Effect in Poly(3-hexylthiophene):Methanofullerene Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU Huang-Zhong; PENG Jun-Biao

    2008-01-01

    @@ Polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) 1:1 weight-ratio blend are reported. The effects of various annealing treatments on the device performance axe investigated. Thermal annealing shows significant improvement of the device performances. For devices at 130℃ annealing, maximum power conversion efficiency (PCE) of 3.3% and fill factor up to 60.3% is achieved under air mass 1.5, 100 m W/cm2 illumination. We discuss the effect of thermal annealing by the results of ultraviolet-visible absorption spectroscopy (UV-vis), dark current-voltage curve, atomic force microscopy (AFM).

  14. Evolution of microstructure at hot band annealing of ferritic FeSi steels

    Science.gov (United States)

    Schneider, Jürgen; Li, Guangqiang; Franke, Armin; Zhou, Bowen

    2017-02-01

    The magnetic properties of the finally fabricated nonoriented FeSi steels critically depend on the microstructure and on the occurring crystallographic texture. The fabrication route comprises hot rolling, coiling and cooling, hot band annealing before cold rolling (optional), cold rolling and the final thermal treatment. As well known there is an interplay between the microstructure and texture during the various processing steps. For that reason, it is of interest to know more on the evolution of the microstructure at hot band annealing of hot band prepared in different ways. In this paper we will summarize our recent results on the evolution of microstructure during thermal annealing of hot band: thermal treatment following immediately the last pass of hot rolling or a hot band annealing as a separate processing step before cold rolling.

  15. On the analysis of the activation mechanisms of sub-melt laser anneals

    DEFF Research Database (Denmark)

    Clarysse, T.; Bogdanowicz, J.; Goosens, J.

    2008-01-01

    electrically active concentration level as well as the concurrent mobility is dependent on the dopant concentration level. This implies that the activation of B through the laser anneal process in the explored temperature–time space is governed by kinetic processes (i.e. the dissolution of B–I pairs......In order to fabricate carrier profiles with a junction depth (15 nm) and sheet resistance value suited for sub-32 nm Si-CMOS technology, the usage of sub-melt laser anneal is a promising route to explore. As laser annealed junctions seem to outperform standard anneal approaches, a detailed...... between the various parameters as they are not completely independent, it is possible to test the consistency of the various methods and to identify potential short comings. This concept is applied to the activation behavior of low and high implanted Boron doses and indicates that the obtained...

  16. Impact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers

    Science.gov (United States)

    Weiss, Thomas Paul; Redinger, Alex; Rey, Germain; Schwarz, Torsten; Spies, Maria; Cojocura-Mirédin, Oana; Choi, P.-P.; Siebentritt, Susanne

    2016-07-01

    Reported growth processes for kesterite absorber layers generally rely on a sequential process including a final high temperature annealing step. However, the impact and details for this annealing process vary among literature reports and little is known on its impact on electrical properties of the absorber. We used kesterite absorber layers prepared by a high temperature co-evaporation process to explicitly study the impact of two different annealing processes. From electrical characterization it is found that the annealing process incorporates a detrimental deep defect distribution. On the other hand, the doping density could be reduced leading to a better collection and a higher short circuit current density. The activation energy of the doping acceptor was studied with admittance spectroscopy and showed Meyer-Neldel behaviour. This indicates that the entropy significantly contributes to the activation energy.

  17. Hybrid annealing using a quantum simulator coupled to a classical computer

    CERN Document Server

    Graß, Tobias

    2016-01-01

    Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configurati...

  18. Analysis of Li-related defects in ZnO thin films influenced by annealing ambient

    Indian Academy of Sciences (India)

    Bing Wang; Lidan Tang

    2014-02-01

    Li-doped ZnO thin films were grown on quartz substrates by radio frequency magnetron sputtering and in situ annealing under O2 or Ar ambient. Li-related defects in ZnO films strongly depend on the annealing ambient. AFM and XRD indicated that ZnO films possessed a good crystallinity with -axis orientation, uniform thickness and dense surface. Electrical and optical properties demonstrated that, an amount of LiZn defect had existed in ZnO annealed under O2 ambient and an amount of Lii(o) defect had existed in ZnO annealed under Ar ambient. First-principle calculations were performed to calculate formation energies of Li-doped ZnO in order to explain the formation mechanism of Li-related defects in ZnO.

  19. Post annealing performance evaluation of printable interdigital capacitive sensors by principal component analysis

    KAUST Repository

    Zia, Asif Iqbal

    2015-06-01

    The surface roughness of thin-film gold electrodes induces instability in impedance spectroscopy measurements of capacitive interdigital printable sensors. Post-fabrication thermodynamic annealing was carried out at temperatures ranging from 30 °C to 210 °C in a vacuum oven and the variation in surface morphology of thin-film gold electrodes was observed by scanning electron microscopy. Impedance spectra obtained at different temperatures were translated into equivalent circuit models by applying complex nonlinear least square curve-fitting algorithm. Principal component analysis was applied to deduce the classification of the parameters affected due to the annealing process and to evaluate the performance stability using mathematical model. Physics of the thermodynamic annealing was discussed based on the surface activation energies. The post anneal testing of the sensors validated the achieved stability in impedance measurement. © 2001-2012 IEEE.

  20. Annealing effects of sapphire substrate on properties of ZnO films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Z. [South China Normal University, School of Physics and Telecommunication Engineering, Guangzhou (China); Xu, J. [Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800-211, Shanghai (China)

    2007-09-15

    The annealing effects of sapphire substrates on the quality of epitaxial ZnO films grown by dc reactive magnetron sputtering were studied. The atomic steps formed on (0001) sapphire ({alpha}-Al{sub 2}O{sub 3}) substrates surface by annealing at high temperature were analyzed by atomic force microscopy. Their influence on the growth of ZnO films was examined by X-ray diffraction and photoluminescence measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates for ZnO grown by magnetron sputtering is 1400 C for 1 h in air. (orig.)

  1. Dielectric Relaxation of La-Doped Zirconia Caused by Annealing Ambient

    Directory of Open Access Journals (Sweden)

    Werner M

    2011-01-01

    Full Text Available Abstract La-doped zirconia films, deposited by ALD at 300°C, were found to be amorphous with dielectric constants (k-values up to 19. A tetragonal or cubic phase was induced by post-deposition annealing (PDA at 900°C in both nitrogen and air. Higher k-values (~32 were measured following PDA in air, but not after PDA in nitrogen. However, a significant dielectric relaxation was observed in the air-annealed film, and this is attributed to the formation of nano-crystallites. The relaxation behavior was modeled using the Curie–von Schweidler (CS and Havriliak–Negami (HN relationships. The k-value of the as-deposited films clearly shows a mixed CS and HN dependence on frequency. The CS dependence vanished after annealing in air, while the HN dependence disappeared after annealing in nitrogen.

  2. Effect of post deposition annealing on the performance of copper phthalocyanine based organic thin film transistor

    Science.gov (United States)

    Padma, N.; Sawant, Shilpa N.; Sen, Shaswati; Gupta, S. K.

    2013-02-01

    The electrical performance of copper phthalocyanine (CuPc) based OFETs on SiO2 dielectric was studied with and without post deposition annealing of CuPc films. Field effect mobility of holes and the drain current modulation (Ion/Ioff) was found to increase by one order for devices with annealed films as compared to that with as deposited film. This is attributed to well connected grains and increased crystallinity of CuPc film. Subthreshold slope (SS) was found to be reducing with increase in annealing temperature and was minimum for the device with CuPc film annealed at 225 °C, implying lesser traps affecting the mobility of charge carriers.

  3. Annealing Behavior at Triple Junctions in High-Purity Aluminum After Slight Cold Rolling

    Science.gov (United States)

    Yin, Wenhong; Wang, Weiguo; Fang, Xiaoying; Qin, Congxiang

    2017-02-01

    High-purity polycrystalline aluminum samples with a typical grain size of approximately 30 μm were slightly cold-rolled with a thickness reduction of 15%, and then, off-line in situ electron backscatter diffraction was used to identify the annealing behavior at triple junctions during annealing at 400 °C. The results show that recrystallization nuclei are developed at some triple junctions during annealing. High-angle grain boundaries migrate from harder grains to softer grains at the triple junctions leading to the formation of nuclei. All such nuclei show Σ3 orientation relationships with the parent grains, and the bounded Σ3 boundaries are found to be incoherent. During further annealing, these nuclei are consumed by other growing grains, indicating that their presence is just a release of the strain concentration at the triple junctions.

  4. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  5. Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability

    Science.gov (United States)

    Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.

    2014-12-01

    Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.

  6. Sensitivity study on hydraulic well testing inversion using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

  7. Proton irradiation damage of an annealed Alloy 718 beam window

    Science.gov (United States)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ∼0.2-0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ∼34-120 °C with short excursion to be ∼47-220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (∼0.2-0.7 dpa) was the highest and attributed to the formation of γ″ precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (∼11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  8. Differential evolution and simulated annealing algorithms for mechanical systems design

    Directory of Open Access Journals (Sweden)

    H. Saruhan

    2014-09-01

    Full Text Available In this study, nature inspired algorithms – the Differential Evolution (DE and the Simulated Annealing (SA – are utilized to seek a global optimum solution for ball bearings link system assembly weight with constraints and mixed design variables. The Genetic Algorithm (GA and the Evolution Strategy (ES will be a reference for the examination and validation of the DE and the SA. The main purpose is to minimize the weight of an assembly system composed of a shaft and two ball bearings. Ball bearings link system is used extensively in many machinery applications. Among mechanical systems, designers pay great attention to the ball bearings link system because of its significant industrial importance. The problem is complex and a time consuming process due to mixed design variables and inequality constraints imposed on the objective function. The results showed that the DE and the SA performed and obtained convergence reliability on the global optimum solution. So the contribution of the DE and the SA application to the mechanical system design can be very useful in many real-world mechanical system design problems. Beside, the comparison confirms the effectiveness and the superiority of the DE over the others algorithms – the SA, the GA, and the ES – in terms of solution quality. The ball bearings link system assembly weight of 634,099 gr was obtained using the DE while 671,616 gr, 728213.8 gr, and 729445.5 gr were obtained using the SA, the ES, and the GA respectively.

  9. Influence of Annealing Temperature on CZTS Thin Film Surface Properties

    Science.gov (United States)

    Feng, Wenmei; Han, Junfeng; Ge, Jun; Peng, Xianglin; Liu, Yunong; Jian, Yu; Yuan, Lin; Xiong, Xiaolu; Cha, Limei; Liao, Cheng

    2017-01-01

    In this work, copper zinc tin sulfide (CZTS) films were deposited by direct current sputtering and the samples were annealed in different oven-set temperatures and atmosphere (Ar and H2S). The surface evolution was investigated carefully by using scanning electron microscopy (SEM), Raman spectroscopy and x-ray photoelectron spectroscopy. The surface of the as-sputtered precursor contained little Cu and large amounts of Zn and Sn. The metallic precursor was continuous and compact without pinholes or cracks. With the increase of the temperature from room temperature to 250°C, Cu atoms diffused to the film surface to form Cu1- x S and covered other compounds. Some small platelets were smaller than 500 nm spreading randomly in the holes of the film surfaces. When the temperature reached 350°C, Zn and Sn atoms began to diffuse to the surface and react with S or Cu1- x S. At 400°C, SEM showed the melting of large particles and small particles with a size from 100 nm to 200 nm in the background of the film surface. Excess Zn segregated towards the surface regions and formed ZnS phase on the surface. In addition, the signal of sodium in the CZTS surface was observed above 400°C. At 600°C, a large amount of regular structures with clear edges and corners were observed in the film surface in SEM images. A clear recrystallized process on the surface was assumed from those observations.

  10. Annealing-induced interfacial toughening using a molecular nanolayer.

    Science.gov (United States)

    Gandhi, Darshan D; Lane, Michael; Zhou, Yu; Singh, Amit P; Nayak, Saroj; Tisch, Ulrike; Eizenberg, Moshe; Ramanath, Ganapathiraman

    2007-05-17

    Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants, in nanolithography, for corrosion protection and in the crystallization of biominerals. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices, and as passive layers, inhibiting interfacial diffusion, promoting adhesion and toughening brittle nanoporous structures. The relatively low stability of MNLs on surfaces at temperatures above 350-400 degrees C (refs 12, 13), as a result of desorption or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper-dielectric interfaces relevant to wiring in micro- and nano-electronic devices. Annealing Cu/MNL/SiO2 structures at 400-700 degrees C results in interfaces that are five times tougher than pristine Cu/SiO2 structures, yielding values exceeding approximately 20 J m(-2). Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option-such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.

  11. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing

    OpenAIRE

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-01-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in...

  12. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing.

    Science.gov (United States)

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-12-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in detail.

  13. Characteristic diode parameters in thermally annealed Ni/p-InP contacts

    Science.gov (United States)

    Turut, A.; Ejderha, K.; Yildirim, N.; Abay, B.

    2016-04-01

    The Ni/p-InP Schottky diodes (SDs) have been prepared by DC magnetron sputtering deposition. After the diode fabrication, they have been thermally annealed at 700 °C for 1 min in N2 atmosphere. Then, the current-voltage characteristics of the annealed and non-annealed (as-deposited) SDs have been measured in the measurement temperature range of 60-400 K with steps of 20 K under dark conditions. After 700 °C annealing, an improvement in the ideality factor value has been observed from 60 to 200 K and the barrier height (BH) value approximately has remained unchanged in the measurement temperature range of 200-400 K. The BH of the annealed diode has decreased obeying the double-Gaussian distribution (GD) of the BHs with decreasing measurement temperature from 200 to 60 K. The BH for the as-deposited diode has decreased with decreasing temperature obeying the single-GD over the whole measurement temperature range. An effective Richardson constant value of 54.21 A/cm2K2 for the as-deposited SD has been obtained from the modified Richardson plot by the single-GD plot, which is in very close agreement with the value of 60 A/K2cm2 for p-type InP. The series resistance value of the annealed SD is lower than that of the non-annealed SD at each temperature and approximately has remained unchanged from 140 to 240 K. Thus, it can be said that an improvement in the diode parameters has been observed due to the thermal annealing at 700 °C for 1 min in N2 atmosphere.

  14. Proton-exchanged LiNbO(3) waveguides: relevance of atmospheric environment during annealing.

    Science.gov (United States)

    Loni, A; De La Rue, R M

    1992-08-20

    The relevance of the type of atmosphere used during the annealing of proton-exchanged LiNbO(3) planar waveguides is discussed. The experimental evidence, based on a comparison of the refractive-index profiles of waveguides annealed under wet O(2), dry O(2), or ambient atmospheres, with various gas flow rates, suggests that the atmosphere type does not influence the properties of the resulting waveguide.

  15. Effect of Triple Annealing Treatment on Stress Relaxation of Ti-6Al-4V Alloy

    Institute of Scientific and Technical Information of China (English)

    Yong LIU; Jingchuan ZHU; Zhongda YIN; Mingwei LI

    2004-01-01

    The effect of triple annealing on stress relaxation of Ti-6Al-4V alloy as well as the microstructure after stress relaxation were studied. The results showed that triple annealing treatment enhanced the resistance of stress relaxation performance, and when the temperature was rising, this effect became notable. The stress relaxation deformation mechanism is of dislocation creep at 400℃ and recovery creep at 600℃.

  16. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  17. Laser annealing of sputter-deposited -SiC and -SiCN films

    Indian Academy of Sciences (India)

    M A Fraga; M Massi; I C Oliveira; F D Origo; W Miyakawa

    2011-12-01

    This work describes the laser annealing of -SiC and -SiCN films deposited on (100) Si and quartz substrates by RF magnetron sputtering. Two samples of -SiCN thin films were produced under different N2/Ar flow ratios. Rutherford backscattering spectroscopy (RBS), Raman analysis and Fourier transform infrared spectrometry (FTIR) techniques were used to investigate the composition and bonding structure of as-deposited and laser annealed SiC and SiCN films.

  18. Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing

    Science.gov (United States)

    2016-06-07

    position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution...967 mercury overpressure needed to maintain the surface morphologies and composition of HgCdTe, a cap layer of ZnTe or ZnSe was used for these...proper surface morphology could be main- tained. The cycle annealing process was also com- pared with our standard device annealing process in terms of

  19. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal); Ben Sedrine, N.; Rodrigues, J.; Correia, M.R.; Monteiro, T. [Departamento de Física e I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Boćkowski, M. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw (Poland); Hoffmann, V.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Lorenz, K., E-mail: lorenz@ctn.tecnico.ulisboa.pt [IPFN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal)

    2016-07-15

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p–n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  20. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; B Tripathi; M Singh; Y K Vijay

    2007-02-01

    In this paper, we present preparation and characterization of Al–Sb bilayer thin films. Thin films of thicknesses, 3000/1000 Å and 3000/1500 Å, were obtained by the thermal evaporation (resistive heating) method. Vacuum annealing and rapid thermal annealing methods were used to mix bilayer thin film structure. Results obtained from optical band gap data and Rutherford back scattering spectrometry showed mixing of Al–Sb bilayer system.

  1. Modification of n-Si Characteristics by Annealing and Cooling at Different Rates

    Directory of Open Access Journals (Sweden)

    Subhi K. Salih

    2003-01-01

    for samples annealed at lower than 550°C. For samples annealed at higher temperatures, quenching gave better dark-current density vs. potential plots. SEM measurements showed parallel results to these findings. Enhanced surface textures were observed for slowly cooled wafers from temperatures below 550°C. Samples quenched from temperatures above 550°C showed better surfaces than slowly cooled counterparts.

  2. Influence of melt annealing on rheological and electrical properties of compatibilized multiwalled carbon nanotubes in polypropylene

    Science.gov (United States)

    Nasti, Giuseppe; Ambrogi, Veronica; Cerruti, Pierfrancesco; Gentile, Gennaro; Di Maio, Rosa; Carfagna, Cosimo

    2014-05-01

    Pristine and surface functionalized multiwalled carbon nanotubes (MWCNT) were melt mixed with a polypropylene (PP) polymer matrix. Rheology, morphology, electrical conductivity and mechanical properties of the nanocomposites were evaluated for different MWCNT loadings. Melt annealing effect on properties was also investigated. It was found that both surface functionalization of MWCNT and thermal annealing were able to favor a better dispersion of the particles, inducing the formation of a percolative network.

  3. Optical characterization of antimony-based bismuth-doped thin films with different annealing temperatures

    Institute of Scientific and Technical Information of China (English)

    Xinmiao Lu; Yiqun Wu; Yang Wang; Jinsong Wei

    2011-01-01

    Antimony-b ased bismuth-doped thin film,a new kind of super-resolution mask layer,is prepared by magnetron sputtering.The structures and optical constants of the thin films before and after annealing are examined in detail.The as-deposited film is mainly in an amorphous state.After annealing at 170-370℃,it is converted to the rhombohedral-type of structure.The extent of crystallization increased with the annealing temperature.When the thin film is annealed,its refractive index decreased in the most visible region,whereas the extinction coefficient and reflectivity are markedly increased.The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.As demand for ultrahigh-density information storage continues to grow the recording mark size in optical memory is reduced to the nanometer scale [1- 4].Exceeding the optical diffraction limit with traditional optical storage technology has become a challenge[5-6].%Antimony-based bismuth-doped thin film, a new kind of super-resolution mask layer, is prepared by magnetron sputtering. The structures and optical constants of the thin films before and after annealing are examined in detail. The as-deposited film is mainly in an amorphous state. After annealing at 170-370℃, it is converted to the rhombohedral-type of structure. The extent of crystallization increased with the annealing temperature. When the thin film is annealed, its refractive index decreased in the most visible region, whereas the extinction coefficient and reflectivity are markedly increased. The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.

  4. Quantum-Inspired Genetic Algorithm Based on Simulated Annealing for Combinatorial Optimization Problem

    OpenAIRE

    Wanneng Shu

    2009-01-01

    Quantum-inspired genetic algorithm (QGA) is applied to simulated annealing (SA) to develop a class of quantum-inspired simulated annealing genetic algorithm (QSAGA) for combinatorial optimization. With the condition of preserving QGA advantages, QSAGA takes advantage of the SA algorithm so as to avoid premature convergence. To demonstrate its effectiveness and applicability, experiments are carried out on the knapsack problem. The results show that QSAGA performs well, without premature conve...

  5. Annealing effects on electrical properties of pure and tin-doped indium oxide thin films.

    Science.gov (United States)

    Kato, Kazuhiro; Omoto, Hideo; Yonekura, Masaaki

    2012-12-01

    The annealing effects on the properties of ITO and pure In2O3 thin films have been investigated. The thin films were deposited with various O2 flow ratios to total gas flow by pulsed dc magnetron sputtering. The post-deposition annealing of the thin films was carried out for 30 minutes at various temperatures ranging up to 500 degrees C in air. It was found through the comparison of the carrier density of ITO and In2O3 thin films that the carrier electrons of the ITO thin films came from both of the dopant Sn and oxygen vacancies under the annealing less than 400 degrees C. Therefore, the ITO thin films deposited with lower O2 flow ratio exhibited higher carrier density due to many oxygen vacancies; in consequence, they exhibited lower resistivity at the annealing up to 400 degrees C. On the other hand, the carrier density of ITO thin films was almost identical regardless of O2 flow ratio when they were annealed at 500 degrees C. This fact indicates that most carrier electrons of the ITO thin films were brought by the dopant Sn at the annealing temperature of 500 degrees C. However, the ITO thin films deposited with lower O2 flow ratio exhibited higher Hall mobility; as a result, they showed lower resistivity at the annealing of 500 degrees C. Atomic force microscope, X-ray diffraction and X-ray reflectivity measurements revealed that the ITO thin films deposited with lowe O2 flow ratio exhibited dense structure even after they were annealed at 500 degrees C. Hence, the carrier electrons of the dense ITO thin films deposited with low O2 flow ratio can conduct better, as a result, the ITO thin films exhibited high Hall mobility and low resistivity.

  6. Effects of thermal annealing on structural and magnetic properties of thin Pt/Cr/Co multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Satpati, B. [Center for Advanced Material Processing, Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209 (India); Oskar Liedke, Maciej [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Gupta, A. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452 017 (India); Som, T., E-mail: tsom@iopb.res.i [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2010-11-15

    Thermal stability of thin Pt/Cr/Co multilayers and the subsequent changes in their structural, magnetic, and magneto-optical properties are reported. We observe CoCrPt ternary alloy phase formation due to annealing at temperatures about 773 K, which is accompanied by enhancement in the coercivity value. In addition, 360{sup o} domain wall superimposed on a monodomain like background has been observed in the pristine multilayer, which changes into a multidomain upon annealing at 873 K.

  7. Analysis of thermal stresses induced in silicon during xenon arc lamp flash annealing

    Science.gov (United States)

    Bentini, G. G.; Correra, L.

    1983-04-01

    Evaluation of thermal stresses induced on silicon wafers during flash annealing with incoherent light from a xenon lamp has been performed. The thermally induced stresses have been computed taking into account that the slip planes, in silicon crystal, are {111} and the slip directions in the plane are . The computed stresses have been compared with the yield stress of the material, to determine the threshold of damage introduction by the annealing process. For the light flash durations shorter than 500 μsec, a preheating of the sample is necessary to obtain a good annealing of a 1000 Å implanted layer without defects introduction. A relationship among flash duration, preheating temperature and flash energy density has been established allowing the identification of the best annealing conditions. The computed results have been compared with experimental annealing data obtained on silicon, phosphorus implanted at 10 keV, 1.5×1015 at/cm2 and irradiated with an original flash annealing system set up in our laboratory.

  8. Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Castro, V. de; Monge, M.A.; Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2008-05-31

    Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T {<=} 623 K. In the temperature range 823-1323 K, these voids' growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.

  9. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    Science.gov (United States)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  10. Laser surface annealing technique of aged Inconel 718 by laser beam irradiation

    Science.gov (United States)

    Liu, Liufa; Hirose, Akio; Kobayashi, Kojiro F.

    2003-03-01

    Laser was employed to anneal a thin surface layer of aged Inconel 718 by dissolving the strengthening phase, γ". The HE (Hydrogen Embrittlement) resistance of the alloy was improved via such laser surface annealing (LSA) processes. To establish a general LSA technique for engineer applications, experimental LSA processes were conducted to study the effects of the laser process parameters on the formation of the annealed surface layers, and applicable process parameter ranges were obtained. Next, a numerical method was developed for predicting the formation of the laser annealed surface layers in the following steps. Because only the γ" phase was dissolved in the LSA process, the dissolution kinetics of this phase was studied via thermal cycling experiments, and it was proved to follow an Avrami equation. FEM (Finite Element Method) simulations were conducted to calculate the thermal distribution in each laser annealed surface layer, and thermal history data were extracted every certain depth. The volume fractions of the γ" phase at these depths were calculated using these thermal history data based on the deduced Avrami equation. Using a developed relationship between the hardness variation of the alloy and the volume fraction variation of the γ" phase, the hardness distribution in the annealed surface layer and this layer's thickness were calculated. The predicted applicable laser process parameter ranges were obtained. These calculated results were compared with their corresponding experimental results. The good agreements between the calculated and measured results suggested that this numerical prediction approach is feasible for engineer applications.

  11. Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy

    Science.gov (United States)

    Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser

    2014-12-01

    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.

  12. Optical bandgap modeling of thermal annealed ZnO:Ga thin films using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Eun; Moon, Pyung; Yun, Ilgu [School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Kim, Sungyeon; Myoung, Jae-Min [Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Jang, Hyeon Woo; Bang, Jungsik [LG Chem, Ltd., Research Park, 104-1 Moonji-Dong, Yuseng-Gu, Daejeon 305-380 (Korea)

    2010-07-15

    In this paper, the thermal annealing process modeling for the optical bandgap of ZnO:Ga thin films for transparent conductive oxide was presented using neural network (NNets) based on error backpropagation (BPNN) algorithm and multilayer perceptron (MLP). The thermal annealing process of ZnO:Ga thin films were analyzed by general factorial experimental design. The annealing temperature and film thickness were considered as input factors. To model the nonlinear annealing process, 6 experiments were trained by BPNN which has 2-4-1 structures and 2 additional samples were experimented to verify the predicted models. The output response model on optical bandgap and carrier concentration of ZnO:Ga thin films trained by BPNN was represented by surface plot of response surface model. Based on the modeling results, NNets can provide sufficient correspondence between the predicted output values and the measured. The optical bandgap variation of ZnO:Ga thin films by annealing is due to increased carrier concentration and explained by Burstein-Moss effect. The thermal annealing process is nonlinear and complex but the output response can be predicted by the NNets model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Influence of annealing on chain entanglement and molecular dynamics in weak dynamic asymmetry polymer blends.

    Science.gov (United States)

    Lin, Yu; Tan, Yeqiang; Qiu, Biwei; Shangguan, Yonggang; Harkin-Jones, Eileen; Zheng, Qiang

    2013-01-17

    The influence of annealing above the glass transition temperature (T(g)) on chain entanglement and molecular dynamics of solution-cast poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) blends was investigated via a combination of dynamic rheological measurement and broadband dielectric spectroscopy. Chain entanglement density increases when the annealing temperature and/or time increases, resulting from the increased efficiency of chain packing and entanglement recovery. The results of the annealing treatment without cooling revealed that the increase of the entanglement density occurred during the annealing process instead of the subsequent cooling procedure. Annealing above T(g) exerts a profound effect on segmental motion, including the transition temperature and dynamics. Namely, T(g) shifts to higher temperatures and the relaxation time (τ(max)) increases due to the increased entanglement density and decreased molecular mobility. Either T(g) or τ(max) approaches an equilibrium value gradually, corresponding to the equilibrium entanglement density that might be obtained through the theoretical predictions. However, no obvious distribution broadening is observed due to the unchanged heterogeneous dynamics. Furthermore, side group rotational motion could be freely achieved without overcoming the chain entanglement resistance. Hence, neither the dynamics nor the distribution width of the subglass relaxation (β- and γ-relaxation) processes is affected by chain entanglement resulting from annealing, indicating that the local environment of the segments is unchanged.

  14. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2016-04-01

    Full Text Available The present work reports the influence of zinc oxide (ZnO seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  15. Using Whole Annealing Genetic Algorithms for the Turbine Cascade Inverse Design Problem

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Tubine cascade optimum design,the typical non-convex optimal problem,has long been a design challenge in the engineering fields.The new type hybrid Genetic Algorithms-whole annealing Genetic Algorithms have been developed in this paper,Simulated annealing selection and non-uniform mutation are adopted in the whole annealing Genetic Algorithms.Whole annealing Genetic Algorithms optimal performance have been tested through mathematical test functions.On this basis,turbine cascade inverse design using whole annealing Genetic Algorithms hae been presented.The B-Spline function is applied to represent the cascade shape,C-type grid and Godunov scheme are adopted to analysis the cascade aerodynamic performance.The optimal problem aims to obtain an cascade shape from different initial cascade through the given target pressure distribution.The optimum cascade shape is in well agreement with the target cascade shape.The numerical results show that the whole annealing Genetic Algorithms are the powerful optimum tools for turbine optimum design or other complex engineering design problems.

  16. Influence of Annealing on Microstructure and Photoluminescence Properties of Al-Doped ZnO Films

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effect of annealing temperature and time on the microstructure and photoluminescence (PL) properties of Al doped ZnO thin films deposited on Si (100) substrates by sol-gel method was investigated. An X-ray diffraction (XRD) was used to analyze the structural properties of the thin films. All the thin films have a preferential c-axis orientation, which are enhances in the annealing process. It is found from the PL measurement that near band edge (NBE) emission and deep-level (DL) emissions are observed in as-grown ZnO∶Al thin films. However, the intensity of DLE is much smaller than that of NBE. Enhancement of NBE is clearly observed after thermal annealing in air and the intensity of NBE increases with annealing temperature. Results also show that the PL spectrum is dependent not only on the processing temperature but also on the processing time. The DLE related defects can not be removed by annealing, and on the contrary, the annealing conditions actually favor their formation.

  17. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    Science.gov (United States)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  18. Annealing strengthening of pre-deformed Mg–10Gd–3Y–0.3Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [The Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Xi’an Technological University, Xi’an, Shaanxi 710021 (China); Wang, Zhaoqiang; Ma, Xiaoguang [The Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Xi’an Technological University, Xi’an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048 (China); Lei, Yaping; Yan, Wen [The Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Xi’an Technological University, Xi’an, Shaanxi 710021 (China)

    2015-09-05

    Highlights: • Gd has larger strengthening effect than that of Y. • Strengthening effect increases with increase of twin density. • Too long annealing time at low temperature decreases the strength slightly. • Segregation of solute atoms at twin boundary is unstable at high temperature. - Abstract: In the present work, pre-deformed Mg–10Gd–3Y–0.3Zr solid solution alloy was annealed, followed by subsequent compression, and the interaction between solutes and twin boundaries was analyzed. It is found that the segregation of solute atoms to deformation twin boundaries during annealing leads to the increase in strength of Mg–10Gd–3Y–0.3Zr alloy, and Gd solute atom has a larger strengthening effect than that of Y. The strengthening effect increases with increase of twin density, annealing time and annealing temperature. However, too long annealing time at low temperature decreases the strength slightly due to the recovery. It is verified that the ordered segregation of solute atoms at the deformation twin boundary becomes unstable at high temperatures, which gives rise to the rapid decrease in the strength.

  19. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  20. Effect of annealing on the magnetic properties of ball milled NiO powders

    Energy Technology Data Exchange (ETDEWEB)

    Kisan, Bhagaban [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Saravanan, P. [Defence Metallurgical Research laboratory, Hyderabad 500058 (India); Layek, Samar; Verma, H.C. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Hesp, David; Dhanak, Vinod [Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Krishnamurthy, Satheesh [Materials Engineering, The Open University, Milton Keynes MK7 6AA (United Kingdom); Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2015-06-15

    We report systematic investigations on structural and magnetic properties of nanosized NiO powders prepared by the ball milling process followed by systematic annealing at different temperatures. Both as-milled and annealed NiO powders exhibit face centered cubic structure, but average crystallite size decreases (increases) with increasing milling time (annealing temperature). Pure NiO exhibits antiferromagnetic nature, which transforms into ferromagnetic one with moderate moment at room temperature with decreasing crystallite size. The on-set of ferromagnetic behavior in the as-milled powders was observed at higher temperatures (>750 K) as compared to bulk Ni (~630 K). On the other hand, annealing of as-milled powders showed a large reduction in magnetic moment and the rate of decrease of moment strongly depends on the milling conditions. The observed properties are discussed on the basis of crystallite size variation, defect density, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. - Highlights: • Preparation of fine NiO powder using top-to-bottom approach using planetary ball mill. • Effect of milling on instituting room temperature ferromagnetism with size reduction. • Stability of ferromagnetic properties at high temperatures in milled NiO powders • Effect of annealing process on the structural properties of milled NiO powders. • Understanding the origin of ferromagnetism at 300 K in NiO powders through annealing.

  1. Effect of annealing on phase sequence and their composition in the Pt-coated Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Khumalo, Z.M., E-mail: zakhele@tlabs.ac.za [Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Materials Research Department, National Research Foundation, iThemba LABS, P.O. Box 722, Somerset West (South Africa); Topić, M. [Materials Research Department, National Research Foundation, iThemba LABS, P.O. Box 722, Somerset West (South Africa); Comrie, C.M. [Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Materials Research Department, National Research Foundation, iThemba LABS, P.O. Box 722, Somerset West (South Africa); Blumenthal, M. [Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Pineda-Vargas, C.A.; Bucher, R. [Materials Research Department, National Research Foundation, iThemba LABS, P.O. Box 722, Somerset West (South Africa); Kisslinger, K. [Center for Functional Nanomaterials, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY USA (United States)

    2014-11-01

    Highlights: • Platinum coatings were prepared using electron beam evaporator. • The phase analysis revealed the presence of the MoPt{sub 2} and MoPt. • At low annealing time, the MoPt{sub 2} phase appeared to have more Pt content. • The MoPt{sub 2} phase disappeared as the annealing time increases. • It is believed that the MoPt phase was growing at the expense of the MoPt{sub 2}. - Abstract: The phase formation sequence and the composition of phases induced by thermal annealing in a platinum (Pt) coated molybdenum (Mo) system were investigated by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM). The X-ray diffraction study of a 0.2 μm thick platinum layer deposited on a Mo substrate and annealed at temperatures between 800 °C and 900 °C for different periods of time shows the formation of MoPt{sub 2} and MoPt phases. It was also found that these phases nucleate sequentially and the MoPt{sub 2} phase becomes unstable at 900 °C after a longer annealing time of 8 h. Rutherford backscattering spectroscopy and transmission electron microscopy showed that the coating thickness approximately doubled after thermal annealing, from 0.22 μm to 0.46 μm, due to the formation of the Pt–Mo phases.

  2. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  3. Effect of annealing and pressure on microstructure of cornstarches with different amylose/amylopectin ratios.

    Science.gov (United States)

    Liu, Hongsheng; Yu, Long; Simon, George; Zhang, Xiaoqing; Dean, Katherine; Chen, Ling

    2009-02-17

    This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and (13)C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.

  4. Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi2Te3.

    Science.gov (United States)

    Hor, Y S; Qu, D; Ong, N P; Cava, R J

    2010-09-22

    The electrical properties of single crystals of p-type Bi(2)Te(3) are shown to be tuned by annealing as-grown crystals in elemental Te vapor at temperatures in the range of 400-420 °C. While as-grown nominally stoichiometric Bi(2)Te(3) has p-type conductivity below room temperature, Te vapor annealed Bi(2)Te(3) shows a cross over from p- to n-type behavior. The temperature dependent resistivity of the Te annealed crystals shows a characteristic broad peak near 100 K. Applied magnetic fields give rise to a large low temperature magnetothermoelectric effect in the Te annealed samples and enhance the low temperature peak in the resistivity. Further, Te annealed Bi(2)Te(3) shows a large positive magnetoresistance, ∼ 200% at 2 K, and ∼ 15% at room temperature. The annealing procedure described can be employed to optimize the properties of Bi(2)Te(3) for study as a topological insulator.

  5. Surface morphology changes of graphene on flexible PET substrate upon thermal annealing.

    Science.gov (United States)

    Samal, Monica; Lee, Jong Min; Park, Won Il; Yi, Dong Kee; Paik, Ungyu; Lee, Chang-Lyoul

    2011-11-01

    The performance of a polymer photovoltaic device using multilayered graphene on an amorphous PET substrate as the electrode was studied. The changes in surface morphology of graphene coated polyethylene terephthalate (PETG) substrate upon thermal annealing were investigated by atomic force microscopy (AFM), field emission scanning electron microscope (FE-SEM) and current-voltage characteristics. The root mean square (RMS) roughness of PETG substrate before annealing was 36.5 nm that decreased to 11.5 nm after 10 min thermal annealing at 110 degrees C. The mean grain size of the substrate decreased from 2301 nm2 to 848 nm2. The PETG surface became smooth when thermally annealed as the voids created by the bubbles in the graphene layer were filled up with thermal expansion of the PET substrate. However, cracks present initially on the graphene due to surface stress between the graphene and PET layer grew further upon annealing that deteriorated the device performance. This study on the graphene surface morphology change upon annealing and the consequent drop in device performance vis-à-vis an ITO glass electrode shows potential drawback of solar cell device fabrication on such flexible substrates.

  6. Effect of annealing temperature on hardness, thickness and phase structure of carbonitrided 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    El-Hossary, F.M.; Negm, N.Z.; Khalil, S.M.; Abed El-Rahman, A.M.; Raaif, M. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt); Maendl, S. [Leibniz-Institute fuer Oberflaechenmodifizierung, Leipzig (Germany)

    2010-05-15

    Carbonitriding of AISI 304 austenitic stainless steel was performed at a plasma-processing power of 450 W using inductively coupled radio frequency (rf) plasma in a gas mixture of 50% N{sub 2} and 50% C{sub 2}H{sub 2}. The rate of carbonitriding, microhardness, phase structure of the compound layer, surface microstructure and cross-section morphology were studied before and after the annealing process. At the annealing temperature up to 800 C, the microhardness values of the compound zones decrease, while the associated values of the diffused zones increase. Little change was found in the thickness of the compound and diffused zones when the carbonitrided samples were annealed up to 400 C. However, at a higher annealing temperature, the thicknesses of both zones increase. The {gamma}-Fe austenite is the main crystalline phase that can be detected by X-ray diffraction. As the annealing temperature increases up to 500 C, X-ray spectra show {alpha}-Fe and Fe{sub 5}C{sub 2} phases. Nitrogen diffuses more deeply from the near surface to the interior of the treated sample as the annealing temperature increases up to 800 C and this might explain the extent of carbonitrided thickness and the enhanced microhardness of the diffused zone. (orig.)

  7. Luminescence and structural properties of ZnO thin films annealing in air

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R; Martinez, J [Centro de Investigacion de Dispositivos Semiconductores, BUAP, Puebla, Pue. C.P. 72570 (Mexico); Esparza, A [Centro de Ciencias Aplicadas y Desarrollo de TecnologIa - UNAM. C.P. 04510, Mexico D.F (Mexico); Kryshtab, T [Departamento de Ciencias de Materiales, ESFM - IPN, Mexico D.F (Mexico); Juarez, G; Solache, H; Andraca, J; Pena, R, E-mail: rbaca02006@yahoo.com.mx

    2010-02-15

    All ZnO thin films deposited on (001) silicon substrates by DC reactive magnetron sputtering were annealed in air atmosphere with different times at 800deg. C. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD investigation showed that ZnO phase was hexagonal wurtzite structure growing along the (002) direction. The as grown ZnO films presented macrostrain and microstrain caused a shift of the line diffraction (002) and a broadening respectively. However after 1 hour annealing these strains disappear. The grain size of ZnO films increased with an increase of annealing time. The as-deposited reactive sputtering ZnO films resulted semi-insulating with poor PL response. After high temperature annealing in air, the crystallinity and the PL response considerably improved, but their semi-insulating property also increased. The PL spectra of the annealed samples showed well defined transitions close to the near-band-edge and a wide visible deep-level band emission (430-640 nm). The main interest of this work was to enhance the PL response and to identify the origin of deep-level luminescence bands. The AFM, PL and XRD results indicated that the ZnO films annealing have potential applications in optoelectronic devices.

  8. The Annealing-Induced Shape Deformation of Hydrothermal-Grown ZnO Nanorods

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhong-Kui; DUANMU Qing-Duo; ZHAO Dong-Xu; WANG Li-Dan; SHEN De-Zhen

    2012-01-01

    The shape deformation of hydrothermal-grown ZnO nanorods is observed. After annealing at high temperature, hexagonal ZnO nanorods change to become cylinder-like ones. The adjacent nanorods tend to connect to each other to form one nanostructure. Photoluminescence measurements show that a sample annealed at 600°C has a strong ultraviolet emission with a very weak visible emission, and with increasing annealing temperature the visible emission becomes more intense. It can be concluded from analyses of the morphological changes that the surface reaction between the doped C and ZnO is the main reason for the shape deformation of the ZnO nanorods.%The shape deformation of hydrothermal-grown ZnO nanorods is observed.After annealing at high temperature,hexagonal ZnO nanorods change to become cylinder-like ones.The adjacent nanorods tend to connect to each other to form one nanostructure.Photoluminescence measurements show that a sample annealed at 600℃ has a strong ultraviolet emission with a very weak visible emission,and with increasing annealing temperature the visible emission becomes more intense.It can be concluded from analyses of the morphological changes that the surface reaction between the doped C and ZnO is the main reason for the shape deformation of the ZnO nanorods.

  9. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    Science.gov (United States)

    Zhou, Zhengping; Liu, Guoliang

    2017-02-02

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions.

  10. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  11. Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Farshidi, M.H., E-mail: farshidi@um.ac.ir [Department of Materials Science and Metallurgical Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Kazeminezhad, M. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Miyamoto, H. [Department of Mechanical Engineering, Doshisha University, Kyotanabe City, Kyoto (Japan)

    2015-07-29

    This study is aimed to realize evolution of microstructure and mechanical properties of aluminum 6061 alloy tube subjected to Severe Plastic Deformation (SPD) and subsequent annealing. For this purpose, the tube is initially processed by different passes of an SPD process called Tube Channel Pressing (TCP) and then subjected to a subsequent annealing at 473 °K for 2 h. Afterwards, tension test is used for the evaluation of mechanical properties while Electron Back-Scattered Diffraction (EBSD) equipped Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are utilized for the microstructural characterizations. Results show that the Continuous Static Recrystallization (CSRX) is the main restoration phenomenon during annealing of aluminum 6061 alloy, even after imposing a moderate plastic strain. For instance, CSRX has been observed during annealing treatment after imposing an equivalent plastic strain as low as 1. However, the used annealing treatment causes different microstructural variations in specimens depending on the pass number of TCP. As an illustration, while the average grain size impressively decreases due to annealing of 1 pass TCPed specimen, it moderately increases after annealing of 5 passes TCPed specimen. This is due to development of a bimodal microstructure after 5 pass of TCP which leads to a different evolution of microstructure during successive annealing. It is also notable that TCPed and annealed specimens show higher strength and ductility compared with as TCPed specimens which is attributed to the occurrence of precipitation hardening besides restoration phenomenon during the annealing treatment.

  12. Mechanical Properties and Microstructure Evolution of Cold-deformed High-nitrogen Nickel-free Austenitic Stainless Steel during Annealing

    Institute of Scientific and Technical Information of China (English)

    XU Mingzhou; WANG Jianjun; LIU Chunming

    2012-01-01

    The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test,micro hardness test,and Transmission Electron Microscope (TEM).The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃,while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃.Annealing temperature had stronger effect on mechanical properties than annealing time.TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min,but the size and density of precipitates had no noticeable change with annealing temperature and time.Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min,and its scale increased with annealing temperature.Nanosized annealing twins were observed.The mechanisms that controlled the mechanical behaviors of the steel were discussed.

  13. Effect of annealing on the characteristics of Au/Ni50Fe50 bilayer films grown on glass

    Institute of Scientific and Technical Information of China (English)

    Hao Qian; Hong Qiu; Xiaobai Chen; Yue Tian; Ping Wu; Fengping Wang; Liqing Pan

    2007-01-01

    Sputter-deposited Au/Ni50Fe50 bilayer films were annealed in a vacuum of 5×10-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field emission scanning electron microscopy, X-ray diffractometry, a four-point probe technique, and an alternating gradient magnetometer. When the annealing temperature and time reached 723 K and 90 min, Ni and Fe atoms markedly diffused into the Au layer. The grain size of the Au layer did not change markedly with the annealing condition. As the annealing time was 30 min and the annealing temperature exceeded 573 K, the resistance of the bilayer film increased with increasing the annealing temperature. Furthermore, the resistance of the bilayer film annealed at 723 K for 90 min was lower than that of the bilayer film annealed at 723 K for 30 min. All the bilayer films showed magnetic hysteresis loops. The as-deposited bilayer film showed a hard magnetization. The bilayer film represented an easy magnetization with increasing the annealing temperature. The Au/Ni50Fe50 film that annealed at 723 K for 90 min had the lowest saturation magnetization.

  14. A Quantum Annealing Computer Team Addresses Climate Change Predictability

    Science.gov (United States)

    Halem, M. (Principal Investigator); LeMoigne, J.; Dorband, J.; Lomonaco, S.; Yesha, Ya.; Simpson, D.; Clune, T.; Pelissier, C.; Nearing, G.; Gentine, P.; Fang, B.; Shehab, A.; Radov, Asen; Tikak, N.; Prouty, Roy; Harrison, Kenneth

    2016-01-01

    The near confluence of the successful launch of the Orbiting Carbon Observatory2 on July 2, 2014 and the acceptance on August 20, 2015 by Google, NASA Ames Research Center and USRA of a 1152 qubit D-Wave 2X Quantum Annealing Computer (QAC), offered an exceptional opportunity to explore the potential of this technology to address the scientific prediction of global annual carbon uptake by land surface processes. At UMBC,we have collected and processed 20 months of global Level 2 light CO2 data as well as fluorescence data. In addition we have collected ARM data at 2sites in the US and Ameriflux data at more than 20 stations. J. Dorband has developed and implemented a multi-hidden layer Boltzmann Machine (BM) algorithm on the QAC. Employing the BM, we are calculating CO2 fluxes by training collocated OCO-2 level 2 CO2 data with ARM ground station tower data to infer to infer measured CO2 flux data. We generate CO2 fluxes with a regression analysis using these BM derived weights on the level 2 CO2 data for three Ameriflux sites distinct from the ARM stations. P. Gentine has negotiated for the access of K34 Ameriflux data in the Amazon and is applying a neural net to infer the CO2 fluxes. N. Talik validated the accuracy of the BM performance on the QAC against a restricted BM implementation on the IBM Softlayer Cloud with the Nvidia co-processors utilizing the same data sets. G. Nearing and K. Harrison have extended the GSFC LIS model with the NCAR Noah photosynthetic parameterization and have run a 10 year global prediction of the net ecosystem exchange. C. Pellisier is preparing a BM implementation of the Kalman filter data assimilation of CO2 fluxes. At UMBC, R. Prouty is conducting OSSE experiments with the LISNoah model on the IBM iDataPlex to simulate the impact of CO2 fluxes to improve the prediction of global annual carbon uptake. J. LeMoigne and D. Simpson have developed a neural net image registration system that will be used for MODIS ENVI and will be

  15. Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots

    Institute of Scientific and Technical Information of China (English)

    Alireza Samavati; Z. Othaman; S. K. Ghoshal; M. K. Mustafa

    2015-01-01

    The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9%to 2.7%) due to post-annealing at 650 ◦C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650◦C) samples reveal pyramidal-shaped QDs (density∼0.26×1011 cm−2) and dome-shape morphologies with relatively high density∼0.92 × 1011 cm−2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ∼0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge–Ge optical phonon mode which shifts towards higher frequency compared with those of bulk counterpart. Experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated.

  16. Impact on molecular organization of amylopectin in starch granules upon annealing.

    Science.gov (United States)

    Vamadevan, Varatharajan; Bertoft, Eric; Soldatov, Dmitriy V; Seetharaman, Koushik

    2013-10-15

    This study investigated the influence of the internal structure of amylopectin on annealing (3h, 24h) of starches from four different types of amylopectin (Bertoft, Koch, & Aman, 2012; Bertoft, Piyachomkwan, Chatakanonda, & Sriroth, 2008). Regardless of the starch source and incubation time, annealing significantly increased the onset gelatinization temperature (To) and narrowed and deepened the amylopectin endotherm. However, the extent of the change in the melting temperature (Tm) and the enthalpy of gelatinization (ΔH) differed among the types. In terms of the To and Tm, starches from type 1 (oat, rye, barley, and waxy barley) showed the most significant response to annealing. The Tm of starches belonging to type 2 (waxy maize, rice, waxy rice, and sago) remained unchanged after 3h of annealing. Type 1 and type 2 starches with the lowest gelatinization temperatures showed the greatest increase in melting temperature after annealing. However, type 3 (tapioca, mung bean, and arrowroot) and type 4 (potato, waxy potato, canna, and yam) starches were not in line with these observations. Instead, starches from type 3 and type 4 showed a pronounced increase in the ΔH. The inter-block chain length (IB-CL) (distance between tightly branched units within a cluster) correlated positively (r=0.93, pannealing. These data indicate that a short IB-CL affects the optimum registration of double helices within the crystalline lamellae. The relationship between the gelatinization parameters before and after annealing suggests that type 1 and 2 starches might possess a high number of unpacked double helices (type 1>type 2) compared to other types. Longer IB-CLs, which facilitate the parallel packing of splayed double helices, and the lengthening of double helices likely increased the ΔH in type 3 and type 4 starches. It is concluded that annealing can be used as a probe for visualizing the organization of glucan chains (alignment of double helices/degree of perfection) within

  17. Development of titania nanotube arrays: The roles of water content and annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ratnawati, E-mail: rnwt63@yahoo.co.id [Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Chemical Engineering Department, Institut Teknologi Indonesia, Tangerang Selatan 15320 (Indonesia); Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id [Chemistry Department, Faculty of Mathematics and Science, Universitas Indonesia, Depok 16424 (Indonesia); Slamet, E-mail: slamet@che.ui.ac.id [Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia)

    2015-06-15

    The effect of water content in the electrolyte solution during annealing process in the synthesis and modification of titania nanotube arrays (TNTAs) by anodic oxidation process has been investigated. Variations in annealing technique that leading to some specific properties of the TNTAs produced have been examined. Doped-TNTAs were obtained by the in-situ anodic oxidation method in glycerol containing fluoride solution followed by annealing to induce crystallization. FESEM and SEM results indicated that TNTAs with inner diameters of 49–80 nm, wall thicknesses from 28 to 42 nm and lengths from 1407 to 1570 nm were synthesized. At water content of 25 v% in the electrolyte solution, self-organized with vertical, ordered of TNTAs with relatively uniform diameter was observed. Suitable morphology of TNTAs such as well developed tubes, vertically oriented, highly ordered, long with optimal diameter and wall thickness of TNTAs could suppress recombination of electrons–holes and, therefore, increase photoelectrochemical properties. Annealing with H{sub 2}/Ar is found to be efficient for introducing dopant C and N into the lattice of TNTAs to form Ti–O–C and N–Ti–O (FTIR analysis). Therefore, the reducing band gap can be obtained (UV–Vis DRS analysis). Annealing under H{sub 2}/Ar of as-synt TNTAs with water content of 25 v% in the electrolyte solution produced anatase phase (XRD analysis) and showed optimal condition in producing the highest photocurrent density. - Highlights: • Water content of 25 v%, annealing with 20% H{sub 2} produced highest photocurrent of TNTAs. • Vertically oriented, long with optimal wall thickness of TNTAs increase photocurrent. • Annealing with H{sub 2}/Ar plays an effective role in reducing the band gap.

  18. Annealing induced structural evolution and electrochromic properties of nanostructured tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ching-Lin [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei City 110, Taiwan, ROC (China); Wang, Chun-Kai [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Wang, Sheng-Chang [Department of Mechanical Engineering, Southern Taiwan University, Tainan 710, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: JLH888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2013-12-31

    The effect of microstructure on the optical and electrochemical properties of nanostructured tungsten oxide films was evaluated as a function of annealing temperature. The films using block copolymer as the template were prepared from peroxotungstic acid (PTA) by spin-coating onto the substrate and post-annealed at 250–400 °C to form tungsten oxide films with nanostructure. The microstructure of the films was measured by X-ray diffraction and surface electron microscopy. The films annealed at temperatures below 300 °C are characterized by amorphous or nanocrystalline structures with a pore size of less than 10 nm. The evaluated annealing temperature caused a triclinic crystalline structure and microcracks. Cyclic voltammetry measurements were performed in a LiClO{sub 4}-propylene carbonate electrolyte. The results showed that the ion inserted capacity were maximized for films annealed at 300 °C and decreased with the increasing of annealing temperature. The electrochromic properties of the nanostructured tungsten oxide films were evaluated simultaneously by potentiostat and UV–vis spectroscopy. The films annealed at 300 °C exhibit high transmission modulation (∆T ∼ 40%) at λ = 633 nm and good kinetic properties. As a result, the correlation between the microstructure and kinetic properties was established, and the electrochromic properties have been demonstrated. - Highlights: • Surfactant-assisted WO{sub 3} films have been prepared by sol–gel method. • Nanostructure of porous WO{sub 3} film is retained after crystallization. • Kinetic properties of WO{sub 3} can be improved by nanostructure and crystallinity.

  19. INFLUENCE OF ANNEALING TEMPERATURE ON CHARACTERISTICS OF BISMUTH DOPED ZINC OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    Sirirat Tubsungnoen Rattanachan

    2013-01-01

    Full Text Available In this study, Bismuth (Bi doped ZnO thin films were deposited on quartz substrates by a sol-gel spin coating method and annealed at different annealing temperatures of 200, 300, 400, 500, 600 and 700°C, respectively. Structural and optical properties of nanocrystalline Bi-doped ZnO film on quartz were investigated by using X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM and UV-VIS spectrophotometer. The high annealing temperature of 700°C as a critical temperature causes the crystallographic reorientation plane in ZnO:Bi nanostructure mostly due to the initial formation of the polycrystalline phase with the inter-grain segregation of Bi dopant atoms. Bi-incorporating ZnO films with an increase in annealing temperature resulted in a blue wavelength shift of the photon absorption edge. The optical band gap of the films was increased from 3.27 eV to 3.34 eV. By decreasing the annealing temperatures from 700 to 200°C, the grain size of Bi-doped ZnO decreased from 18 nm to 8 nm. The effect of the annealing temperature on the electrical conductivity had been considered. The low electrical conductivity of 0.9 (Ω.cm-1 was obtained for ZnO:0.2 film annealed at 600°C with good nano-crystallization. However, the Bi-doped ZnO films prepared by cost-effective spin coating technique provided to have a very high photon absorption coefficient (104-105 cm-1 and did not appreciably affect the optical transparency. ZnO films doped with 0.2% at. Bi can be used as a high resistive buffer layer for solar cell application.

  20. Influence of Rapid Thermal Annealing on Carrier Dynamics in GaInNAs/GaAs Multiple Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; YANG Jie; XIA Su-Jing; LI Xiang; TANG Wu

    2011-01-01

    The excitation intensity and time-resolved photoluminescence spectroscopy are used to investigate the impact of annealing on the carrier dynamics in the Ga0.66In0.34N0.013As0.987 /GaAs multiple quantum well structure grown by metalorganic chemical vapor deposition.The measurement of excitation intensity photoluminescence (PL),performed for as-grown and annealed samples at different temperatures,indicates that the localized potential has come down slightly after annealing but does not alter the fact that PL emission at low temperature is dominated by localized exciton recombination.In contrast,free carrier recombination is magnified by post-grown annealing at room temperature.Our results show that the decay times are 0.587 and 0.327ns at 10K for the as-grown and annealed samples,and radiative decay times also shorten significantly after annealing at all temperatures.Hence the improvement of luminescence efficiency after annealing is caused by the reduction of localization and enhancement of radiative recombination rate.The reduction of the density of nonradiative centers is demonstrated indirectly after annealing.Recently,GaInNAs alloys have attracted an increasing amount of attention,driven by not only their potential applications in various electronic and optoelectronics devices but also their intriguing physical properties.[1] It has been demonstrated that the optical quality of GaInNAs/GaAs quantum wells can be improved by rapid thermal annealing (RTA).[2,3]%The excitation intensity and time-resolved photoluminescence spectroscopy are used to investigate the impact of annealing on the carrier dynamics in the Ga0.66ln0.34N0.013As0.987/GaAs multiple quantum well structure grown by metalorganic chemical vapor deposition. The measurement of excitation intensity photoluminescence (PL), performed for as-grown and annealed samples at different temperatures, indicates that the localized potential has come down slightly after annealing but does not alter the fact that PL

  1. Fabrication of TiO2 Nanofilm Photoelectrodes on Ti Foil by Ti Ion Implantation and Subsequent Annealing

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2014-01-01

    Full Text Available The TiO2 photoelectrodes fabricated on the substrate of Ti foils by Ti ions implantation and subsequent annealing at different temperatures were applied for water splitting. The size of TiO2 nanoparticles increased with annealing temperatures, and the GIXRD patterns and Raman spectra demonstrate that the phase of TiO2 turns to rutile at high temperature. The photoelectrochemical (PEC and X-ray photoelectron spectroscopy (XPS spectra of the valence band demonstrate that the samples annealed at 400 and 500°C show the n-type property. The sample annealed at 600°C shows the weak p-type TiO2 property. For the sample annealed at 700°C, the negative photocurrent is main, which mainly performs the p-type property of TiO2. The IPCE values indicate that the absorption edges are red shifted with the increase of annealing temperatures.

  2. Effects of hydrothermal annealing on characteristics of CuInS2 thin films by SILAR method

    Science.gov (United States)

    Shi, Yong; Xue, Fanghong; Li, Chunyan; Zhao, Qidong; Qu, Zhenping; Li, Xinyong

    2012-07-01

    CuInS2 thin films have been deposited by successive ionic layer absorption and reaction (SILAR) method, then annealed in a Na2S solution (denoted as hydrothermal annealing) at 200 °C for different time. The effect of hydrothermal annealing on the properties of the films was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical absorption spectroscopy. The XRD, TEM and SEM results indicate that well-crystallized CuInS2 films could be obtained after annealing in 0.1 mol/L Na2S solution for 1.5 h. The annealed CuInS2 films were slightly S-rich and the direct band gap varied from 1.32 to 1.58 eV as the annealing time increased from 0.5 h to 2 h.

  3. Effect of PostNitride Annealing on Wear and Corrosion Behavior of Titanium Alloy Ti-6Al-4V

    Science.gov (United States)

    Anandan, C.; Mohan, L.

    2016-10-01

    Titanium alloy, Ti-6Al-4V, was plasma nitrided using RF plasma with 100% N at 800 °C and annealed at 850 °C in vacuum. XRD and XPS studies show the formation of titanium nitrides after nitriding and redistribution of nitrogen after annealing. Potentiodynamic polarization and electrochemical impedance spectroscopy studies in Hank's solution show that nitriding decreases the corrosion resistance of the substrate and postnitride annealing improves the corrosion resistance of the nitrided samples. After nitriding, wear rate has decreased by an order of magnitude in reciprocating wear experiments and decreased further in annealed samples in comparison with that of substrate. Thus, postnitride annealing improves both corrosion and wear resistance of the nitrided sample. These improvements are attributed to redistribution of nitrogen and formation of a thin oxide layer on the sample due to annealing.

  4. High dopant activation of phosphorus in Ge crystal with high-temperature implantation and two-step microwave annealing

    Science.gov (United States)

    Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi

    2016-09-01

    In this letter, high-temperature ion implantation and low-temperature microwave annealing were employed to achieve high n-type active concentrations, approaching the solid solubility limit, in germanium. To use the characteristics of microwave annealing more effectively, a two-step microwave annealing process was employed. In the first annealing step, a high-power (1200 W; 425 °C) microwave was used to achieve solid-state epitaxial regrowth and to enhance microwave absorption. In the second annealing step, contrary to the usual process of thermal annealing with higher temperature, a lower-power (900 W; 375 °C) microwave process was used to achieve a low sheet resistance, 78Ω/◻, and a high carrier concentration, 1.025 × 1020 P/cm3, which is close to the solid solubility limit of 2 × 1020 P/cm3.

  5. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    Science.gov (United States)

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  6. Investigation the cause of plasma treatment for low temperature annealed dye-sensitized solar cells

    Science.gov (United States)

    Zen, Shungo; Komatsu, Yuta; Ono, Ryo

    2015-09-01

    Dye-sensitized solar cells (DSSCs) require annealing of TiO2photoelectrodes at 450 C to 550 C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low temperature annealing technique of TiO2 photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 C to 150 C for a TiO2 paste containing an organic binder. Here, we investigated the cause of plasma treatment via the Nyquist diagram (Cole-Cole plot) of DSSCs. The Nyquist diagram was masured with a frequency response analyzer (NF Corporation, FRA5022) under 100 mW/cm2 illumination of a calibrated xenon lamp (Hamamatsu L2274, 150W). The lifetime of the electrons, the effective electron diffusion coefficient, and the electron diffusion length of TiO2 photoelectrodes were determined by analyzing the Nyquist diagrams. As a result of analyzing the Nyquist diagrams, it was shown that plasma treatment can reduce the electron transport resistance and promote the necking of Hot UV annealed TiO2 nanoparticles. This work was supported by Grant-in-Aid for JSPS Fellows.

  7. Investigation of annealing temperature effect on magnetron sputtered cadmium sulfide thin film properties

    Science.gov (United States)

    Akbarnejad, E.; Ghorannevis, Z.; Abbasi, F.; Ghoranneviss, M.

    2016-12-01

    Cadmium sulfide (CdS) thin films are deposited on the fluorine doped tin oxide coated glass substrate using the radio frequency magnetron sputtering setup. The effects of annealing in air on the structural, morphological, and optical properties of CdS thin film are studied. Optimal annealing temperature is investigated by annealing the CdS thin film at different annealing temperatures of 300, 400, and 500 °C. Thin films of CdS are characterized by X-ray diffractometer analysis, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR spectrophotometer and four point probe. The as-grown CdS films are found to be polycrystalline in nature with a mixture of cubic and hexagonal phases. By increasing the annealing temperature to 500 °C, CdS film showed cubic phase, indicating the phase transition of CdS. It is found from physical characterizations that the heat treatment in air increased the mean grain size, the transmission, and the surface roughness of the CdS thin film, which are desired to the application in solar cells as a window layer material.

  8. Effect of Annealing Ambience on the Chemical Stability of Zr-Si-N Diffusion Barrier

    Institute of Scientific and Technical Information of China (English)

    SONGZhong-xiao; WANGYuan; XUKe-wei; LIUChun-liang

    2004-01-01

    Zr-Si-N films were deposited by RF magnetron sputtering (MS) technique. A Cu film on the top of Zr-Si-N films was prepared by DC pulsed magnetron sputtering. The Cu/Zr-Si-N systems were annealed in vacuum and N2/H2 gasmixture at 800℃, respectively. The structure of the films were characterized by X-ray diffraction (XRD), Auger electron spectroscopy (AES) and four-point probe method. The sheet resistances of the Cu/Zr-Si-N/Si contact systems annealed in N2/H2 gas mixture were lower than those of the specimens annealed in vacuum at 800℃. The residual oxygen contamination from vacuum annealing ambience influences the sheet resistances of the Cu/Zr-Si-N/Si contact systems due to residual oxygen contamination and/or voids in Cu films. Though thermal stabilities of the Cu/Zr-Si-N/Si systems were maintained up to 800℃ when annealed in vacuum and N2/H2 gas mixture, the changes of thermal stability of specimens were noticeable. The vacuum can accelerate the oxidation and decomposition of Zr-Si-N barrier. On the contrary, N2/H2 gas mixture prevent from the Zr-Si-N barrier oxidation and decomposition.

  9. Effect of Annealing Ambience on the Chemical Stability of Zr-Si-N Diffusion Barrier

    Institute of Scientific and Technical Information of China (English)

    SONG Zhong-xiao; WANG Yuan; XU Ke-wei; LIU Chun-liang

    2004-01-01

    Zr-Si-N films were deposited by RF magnetron sputtering (MS) technique. A Cu film on the top of Zr-Si-N films was prepared by DC pulsed magnetron sputtering. The Cu/Zr-Si-N systems were annealed in vacuum and N2/H2 gas mixture at 800℃, respectively. The structure of the films were characterized by X-ray diffraction (XRD), Auger electron spectroscopy (AES) and four-point probe method. The sheet resistances of the Cu/Zr-Si-N/Si contact systems annealed in N2/H2 gas mixture were lower than those of the specimens annealed in vacuum at 800℃. The residual oxygen contamination from vacuum annealing ambience influences the sheet resistances of the Cu/Zr-Si-N/Si contact systems due to residual oxygen contamination and/or voids in Cu films. Though thermal stabilities of the Cu/Zr-Si-N/Si systems were maintained up to 800℃ when annealed in vacuum and N2/H2 gas mixture, the changes of thermal stability of specimens were noticeable. The vacuum can accelerate the oxidation and decomposition of Zr-Si-N barrier. On the contrary, N2/H2 gas mixture prevent from the Zr-Si-N barrier oxidation and decomposition.

  10. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  11. Influence of Annealing and UV Irradiation on Hydrophilicity of Ag-TiO Nanostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Fanming Meng

    2012-01-01

    Full Text Available Ag-TiO2 nanostructured thin films with silver content of 5 vol% have been deposited on silicon, glass, and quartz substrates by RF magnetron sputtering and annealed in ambient air at 900°C for 15, 30, 60, 90, and 120 min. Their crystal structure, surface morphology, and hydrophilicity have been characterized by X-ray diffractometer, atomic force microscope, and water contact angle apparatus, respectively. The influence of annealing time and UV irradiation time on hydrophilic property of Ag-TiO2 thin films have been studied in detail. It is shown that annealing time influences crystal structure of Ag-TiO2 thin films. The unannealed film is amorphous and shows poor hydrophilicity. With the increase of annealing time from 15 to 120 min, the grain-size slowly increases and tends to uniformity. A suitable annealing time can significantly enhance the hydrophilic behavior of Ag-TiO2 films. Water contact angle decreases with the increase of irradiation time. The mechanism of hydrophilicity has been proposed and can be attributed to the increase of oxygen anion radicals O2− and reactive center of surface Ti3+.

  12. Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule

    KAUST Repository

    Liang, Faming

    2014-04-03

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.

  13. Annealing before gate metal deposition related noise performance in AlGaN/GaN HEMTs

    Institute of Scientific and Technical Information of China (English)

    Pang Lei; Pu Yan; Liu Xinyu; Wang Liang; Li Chengzhan; Liu Jian; Zheng Yingkui; Wei Ke

    2009-01-01

    For a further improvement of the noise performance in AlGaN/GaN HEMTs, reducing the relatively high gate leakage current is a key issue. In this paper, an experiment was carried out to demonstrate that one method during the device fabrication process can lower the noise. Two samples were treated differently after gate recess etching: one sample was annealed before metal deposition and the other sample was left as it is. From a comparison of their Ig-Vg characteristics, a conclusion could be drawn that the annealing can effectively reduce the gate leakage current. The etching plasma-induced damage removal or reduction after annealing is considered to be the main factor responsible for it. Evidence is given to prove that annealing can increase the Schottky barrier height. A noise model was used to verify that the annealing of the gate recess before the metal deposition is really effective to improve the noise performance of AlGaN/GaN HEMTs.

  14. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  15. Effect of annealing on two different niobium-clad stainless steel PEMFC bipolar plate materials

    Institute of Scientific and Technical Information of China (English)

    Sung-Tae HONG; Dae-Wook KIM; Yong-Joo YOU; K.Scott WEIL

    2009-01-01

    Niobium (Nb)-clad stainless steels(SS) produced via roll bonding are being considered for use in the bipolar plates of polymer electrolyte membrane fuel celI(PEMFC) stacks. Because the roll bonding process induces substantial work hardening in the constituent materials, thermal annealing is used to restore ductility to the clad sheet so that it can be subsequently blanked, stamped and dimpled in forming the final plate component. Two roll bonded materials, niobium clad 340L stainless steel (Nb/340L SS) and niobium clad 434 stainless steel (Nb/434 SS) were annealed under optimized conditions prescribed by the cladding manufacturer. Comparative mechanical testing conducted on each material before and after annealing shows significant improvement in ductility in both cases. However, corresponding microstructural analyses indicate an obvious difference between the two heat treated materials. During annealing, an interlayer with thick less than 1 μm forms between the constituent layers in the Nb/340L SS, whereas no interlayer is found in the annealed Nb/434 SS material. Prior work suggests that internal defects potentially can be generated in such an interlayer during metal forming operations. Thus, Nb/434 SS may be the preferred candidate material for this application.

  16. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaoming; Li, Xingji, E-mail: lxj0218@hit.edu.cn; Yang, Jianqun; Rui, Erming

    2014-01-21

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (I{sub B}) decreases with the increasing annealing temperature, while the collector current (I{sub C}) remains invariable. The current gain varies slightly, when the annealing temperature (T{sub A}) is lower than 400 K, while varies rapidly at T{sub A}<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V{sub 2}(−/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V{sub 2}(−/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  17. Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Vinci, Walter; Albash, Tameem; Lidar, Daniel A.

    2017-02-01

    The performance of open-system quantum annealing is adversely affected by thermal excitations out of the ground state. While the presence of energy gaps between the ground and excited states suppresses such excitations, error correction techniques are required to ensure full scalability of quantum annealing. Quantum annealing correction (QAC) is a method that aims to improve the performance of quantum annealers when control over only the problem (final) Hamiltonian is possible, along with decoding. Building on our earlier work [S. Matsuura et al., Phys. Rev. Lett. 116, 220501 (2016), 10.1103/PhysRevLett.116.220501], we study QAC using analytical tools of statistical physics by considering the effects of temperature and a transverse field on the penalty qubits in the ferromagnetic p -body infinite-range transverse-field Ising model. We analyze the effect of QAC on second (p =2 ) and first (p ≥3 ) order phase transitions, and construct the phase diagram as a function of temperature and penalty strength. Our analysis reveals that for sufficiently low temperatures and in the absence of a transverse field on the penalty qubit, QAC breaks up a single, large free-energy barrier into multiple smaller ones. We find theoretical evidence for an optimal penalty strength in the case of a transverse field on the penalty qubit, a feature observed in QAC experiments. Our results provide further compelling evidence that QAC provides an advantage over unencoded quantum annealing.

  18. Unraveling the enhanced Oxygen Vacancy Formation in Complex Oxides during Annealing and Growth

    Science.gov (United States)

    Hensling, Felix V. E.; Xu, Chencheng; Gunkel, Felix; Dittmann, Regina

    2017-01-01

    The reduction of oxides during annealing and growth in low pressure processes is a widely known problem. We hence investigate the influence of mere annealing and of growth in vacuum systems to shed light on the reasons behind the reduction of perovskites. When comparing the existing literature regarding the reduction of the perovskite model material SrTiO3 it is conspicuous that one finds different oxygen pressures required to achieve reduction for vacuum annealing and for chemically controlled reducing atmospheres. The unraveling of this discrepancy is of high interest for low pressure physical vapor depositions of thin films heterostructures to gain further understanding of the reduction of the SrTiO3. For thermal annealing, our results prove the attached measurement devices (mass spectrometer/ cold cathode gauge) to be primarily responsible for the reduction of SrTiO3 in the deposition chamber by shifting the thermodynamic equilibrium to a more reducing atmosphere. We investigated the impact of our findings on the pulsed laser deposition growth at low pressure for LaAlO3/SrTiO3. During deposition the reduction triggered by the presence of the laser plume dominates and the impact of the measurement devices plays a minor role. During post annealing a complete reoxidization of samples is inhibited by an insufficient supply of oxygen.

  19. Annealing Characteristics of Ultrafine Grained Low-Carbon Steel Processed by Differential Speed Rolling Method

    Science.gov (United States)

    Hamad, Kotiba; Ko, Young Gun

    2016-05-01

    The annealing behavior of ultrafine grained ferrite in low-carbon steel (0.18 wt pct C) fabricated using a differential speed rolling (DSR) process was examined by observing the microstructural changes by electron backscatter diffraction and transmission electron microscopy. For this purpose, the samples processed by 4-pass DSR at a roll speed ratio of 1:4 for the lower and upper rolls, respectively, were annealed isochronally at temperatures ranging from 698 K to 898 K (425 °C to 625 °C) for 1 hour. The deformed samples exhibited a complex microstructure in the ferrite phase consisting of an equiaxed structure with a mean grain size of ~0.4 µm and a lamellar structure with a mean lamellar width of ~0.35 µm. The texture evolved during deformation was characterized by the rolling and shear components with specific orientations. After annealing at temperatures lower than 798 K (525 °C), the aspect ratio of the deformed grains tended to shift toward a unit corresponding to the equiaxed shape, whereas the grain size remained unchanged as the annealing temperature increased. At temperatures above 798 K (525 °C), however, some grains with a low dislocation density began to appear, suggesting that the starting temperature of static recrystallization in the severely deformed ferrite grains was 798 K (525 °C). The annealing texture of the present sample after heat treatment showed a uniform fiber texture consisting of α- and γ-components.

  20. Neutron-enhanced annealing of ion-implantation induced damage in silicon heated by nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Chayahara, A.; Mokuno, Y.; Tsubouchi, N.; Horino, Y. [National Institute of Advanced Industrial Science and Technology (AIST), AIST Kansai, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Xu, Q.; Sato, K. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Yasuda, K.; Ishigami, R. [The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga, Fukui 914-0192 (Japan)

    2014-09-01

    Highlights: •Neutron-enhanced annealing was observed for irradiation damage in Si below 90 °C. •The irradiation was performed in a nuclear reactor without intentional heating. •Reduction of damage peaks was detected by Rutherford backscattering/channeling. •The annealing efficiency was comparable to that of ion-beam annealing. -- Abstract: The effect of neutron irradiation on recovery (annealing) of irradiation damage has been investigated for self-ion implanted Si. A damage layer was introduced by 200 keV Si{sup +} implantation to a fluence of 5 × 10{sup 14} Si/cm{sup 2} at room temperature. The damaged samples were neutron-irradiated to 3.8 × 10{sup 19} n/cm{sup 2} (fast neutron), without intentional heating, in the core of the Kyoto University Reactor. During neutron irradiation, the samples were heated only by nuclear reactions, and the irradiation temperature was estimated to be less than 90 °C. The damage levels of the samples were characterized by Rutherford backscattering with channeling. Reduction of damage peaks as a result of neutron irradiation was clearly observed in the samples. The annealing efficiency was calculated to be 0.44 defects/displacement.

  1. Influence of annealing on stain hardening behaviour and fracture properties of a cryorolled Al 2014 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dhal, A.; Panigrahi, S.K., E-mail: skpanigrahi@iitm.ac.in; Shunmugam, M.S.

    2015-10-01

    The influence of annealing on strength, ductility, strain hardening, plastic instability and fracture behaviour are studied in the present work on a cryorolled Al 2014 alloy by tensile test, transmission electron microscopy, macrograph analysis and fractography study. Investigations on the cryorolled alloy have been done for different annealing temperatures in the range of 100–400 °C and the results obtained are correlated with the microstructural evolution, precipitation behaviour and post failure analysis. Study reveals a complex trend in ductility and strain hardening behaviour as a result of simultaneous occurrence of dislocation annihilation, recrystallization and precipitation evolution during annealing. By investigations of fractured samples, dominant mode of fracture is found to be shear deformation and upon annealing the fracture mechanism is affected jointly by propagation of microvoids and shear deformation due to combined action of precipitation and microstructural evolution. Yield strength is increased by 4 times after cryorolling and retained after annealing up to 100 °C. It even remains higher than the base material up to 350 °C, due to the combined effect of precipitation hardening and thermal stability of microstructure.

  2. The Effect of Rapid Thermal Annealing Towards the Performance of Screen-Printed Si Solar Cell

    Directory of Open Access Journals (Sweden)

    Shahrul Anizan

    2011-01-01

    Full Text Available Problem statement: Solar cells are used to capture the photons which generate the energy. However the efficiency of the cells to turn the amount of photon to electricity needs to be high and so the cells enhancement is needed. This involved the whole process of the developing of the cells, thus annealing process is one of the important steps that needs to be optimised. Approach: Only Si solar cells will be discussed and the processes involved would be metal contact screen printing and metal paste co-firing. The contacts were first screen printed with Al paste for the rear side and Ag paste for the front side of the cell. Cells are then fired in the annealing furnace using selected temperature profile. Few sets of temperature profiles were used in every cycle. Results: After the IV characteristics were measured such as Voc, Isc, Pmax and fill factor, it shows that when higher annealing temperature of the profile was used, all the parameter will increase accordingly. However, profile with the highest annealing temperature will burn the paste as it will decrease the quality of the cell. This is considered as over heat to the paste. Conclusion: So by optimising the thermal treatment of the annealing process does improve the performance of the Si solar cell.

  3. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    Directory of Open Access Journals (Sweden)

    Juan Frausto-Solis

    2016-01-01

    Full Text Available A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP instances. This new approach has four phases: (i Multiquenching Phase (MQP, (ii Boltzmann Annealing Phase (BAP, (iii Bose-Einstein Annealing Phase (BEAP, and (iv Dynamical Equilibrium Phase (DEP. BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  4. Effect of annealing temperature on wettability of TiO2 nanotube array films

    Science.gov (United States)

    2014-01-01

    Highly ordered TiO2 nanotube array (TN) films were prepared by anodization of titanium foil in a mixed electrolyte solution of glycerin and NH4F and then annealed at 200°C, 400°C, 600°C, and 800°C, respectively. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), water contact angle (WCA), and photoluminescence (PL). It was found that low temperature (below 600°C) has no significant influence on surface morphology, but the diameter of the nanotube increases from 40 to 50 nm with increasing temperature. At 800°C, the nanotube arrays are completely destroyed and only dense rutile film is observed. Samples unannealed and annealed at 200°C are amorphous. At 400°C, anatase phase appears. At 600°C, rutile phase appears. At 800°C, anatase phase changes into rutile phase completely. The wettability of the TN films shows that the WCAs for all samples freshly annealed at different temperatures are about 0°. After the annealed samples have been stored in air for 1 month, the WCAs increase to 130°, 133°, 135°, 141°, and 77°, respectively. Upon ultraviolet (UV) irradiation, they exhibit a significant transition from hydrophobicity to hydrophilicity. Especially, samples unannealed and annealed at 400°C show high photoinduced hydrophilicity. PMID:25426006

  5. Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Directory of Open Access Journals (Sweden)

    Chuan Lung Chuang

    2015-01-01

    Full Text Available Indium tin oxide (ITO thin films were grown on glass substrates by direct current (DC reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.

  6. EFFECT OF ANNEALING ON DAMPING CAPACITIES OF AS-CAST ZA27 ALLOY

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhang; J.C. Wang; H.Z. Liu; X.F. Guo

    2006-01-01

    ZA27 alloy was prepared by casting with permanent mold and then annealed at 250℃for 1-4h.The damping capacity of the alloy was measured using a testing apparatus based on the cantilever beam technique. It was found that the as-cast ZA27 alloy possesses high damping capacity with the value of 1.3 × 10-3 at 320Hz. After annealed at 250℃ for 1h, the damping capacity decreases to 1.1 × 10-3 and then remains constant even when the annealing time is increased to 4h. The microstructure of the as-cast ZA27 alloy consists of large dendrites of Al-rich primary α-phases, eutectoid (α + η) and nonequilibrium eutectic phases (α + η + ε). After annealing at 250℃ for 1h, the ε phase disappears due to dissolution into the matrix, and the spacing between the flakes of eutectoid increases. The further increase in the annealing time has little effect on the spacing. The damping mechanism of the alloy was discussed considering the thermoelastic damping and defect damping. The value of thermoelastic damping accounts only for 7%-8% in the overall damping in cantilever beam damping measurements and the damping capacity of the ZA27 alloy came mainly from defect damping.

  7. Influence of Annealing on Physical Properties of CdO Thin Films Prepared by SILAR Method

    Institute of Scientific and Technical Information of China (English)

    B. Gokul; P. Matheswaran; R. Sathyamoorthy

    2013-01-01

    Cadmium oxide (CdO) thin films were prepared by successive ionic layer adsorption and reaction (SILAR) method and annealed at 250-450 ℃ for 2 h.The prepared films were characterized by X-ray diffraction (XRD),optical spectroscopy,scanning electron microscopy (SEM) and Hall effect measurement.The XRD analysis reveals that the films were polycrystalline with cubic structure.Both crystallinity and the grain size were found to increase with increasing annealing temperature.SEM analysis shows the porous nature of the surface with spherical nanoclusters.Energy dispersive spectroscopic analysis (EDS) confirmed the presence of Cd and O elements without any additional impurities.The films exhibited maximum transmittance (82%-86%) in infra-red (IR) region.Transmittance was found to decrease with increasing annealing temperature and the estimated band gap energy (Eg) was in the range of 2.24-2.44 eV.Hall effect measurement shows an increase in carrier concentration and a decrease in resistivity with increasing annealing temperature.The carrier concentration (N) and resistivity (ρ) of about 1.26 × 1022 cm 3 and 8.71 × 10 3 Ω cm are achieved for the film annealed at 450 ℃ for 2 h.

  8. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  9. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  10. Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ngoepe, P.N.M., E-mail: phuti.ngoepe@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Meyer, W.E.; Diale, M.; Auret, F.D.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2012-05-15

    The optoelectronic characteristics of Ni/Au Schottky photodiodes based on Al{sub 0.35}Ga{sub 0.65}N were investigated. The transmission of the Ni (50 A)/Au (50 A) layer was determined by evaporating it on a quartz substrate. As evaporated, the transmission coefficient in the 200-350 nm wavelength range was found to be 43 to 48%. Annealing at temperatures of up to 400 Degree-Sign C did not influence the transmission coefficient. After annealing at 500 Degree-Sign C, the transmission coefficient increased from 50 to 68% over the 200-350 nm range. The reverse bias current was optimised in terms of annealing temperature and was found to be as low as 1.94 Multiplication-Sign 10{sup -13} A after annealing at 400 Degree-Sign C for a 0.6 mm diameter contact. The Schottky barrier heights increased with annealing temperature reaching as high as 1.46 and 1.89 eV for I-V and C-V measurements, respectively. The quantum efficiency was measured to be 20.5% and the responsivity reached its peak of 0.046 A/W at 275 nm. The cut-off wavelength was 292 nm.

  11. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent

    Indian Academy of Sciences (India)

    S Satapathy; Santosh Pawar; P K Gupta; K B R Varma

    2011-07-01

    The -phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both and -phase PVDF films by varying preparation temperature using DMSO solvent. The -phase PVDF films were annealed at 70, 90, 110, 130 and 160°C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90°C for 5 h, maximum percentage of -phase appears in PVDF thin films. The -phase PVDF films completely converted to -phase when they were annealed at 160°C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90°C for 5 h, have maximum percentage of -phase. The -phase PVDF shows a remnant polarization of 4.9 C/cm2 at 1400 kV/cm at 1 Hz.

  12. Effect of external electric field on morphology of copper phthalocyanine-fullerene blended films during annealing

    Science.gov (United States)

    Parhi, Anukul Prasad; Iyer, S. Sundar Kumar

    2016-03-01

    The thin-film morphology and segregated phases of constituents in blends of organic semiconductors play an important role in determining the performance of devices fabricated with these constituents. In this study, we explored the effect of an external electric field applied during annealing on the morphology and phase of blended films of two popular organic semiconductors, copper pthalocyanine (CuPc) and buckminsterfullerene (C60). Films of different blend ratios annealed at various temperatures in both the presence and absence of an electric field were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. The characteristics of annealed pristine CuPc films were also included for comparison. The observed changes in the properties of the blended films following the annealing, including the abrupt phase segregation of the blended constituents in the films, are discussed. The polarizability of the molecules was calculated using density functional theory (DFT) to explain the interaction, stacking, and segregation of the molecules in the blend. The results showed that application of an electric field during annealing of the blended films is an additional control parameter that can help tune the properties of the blended film. [Figure not available: see fulltext.

  13. Enhancement in visible luminescence from nanocomposite ZnO-SiOx thin films due to annealing

    Science.gov (United States)

    Kumar, V. V. Siva; Kanjilal, D.

    2014-01-01

    The annealing induced enhancement in visible photoluminescence (PL) from nanocomposite (nc) ZnO-SiOx thin films was investigated. Nc ZnO-SiOx thin films consisting of ZnO nanocrystals in silica matrix were grown by depositing the films using radio frequency (rf) reactive co-sputtering and post-annealing them at temperatures of 350°C and 500°C in high vacuum and air. These films were characterized by Fourier transform infrared (FTIR), (PL) spectroscopy and UV-Vis spectrophotometry measurements. Thin films were also deposited on transmission electron microscopy (TEM) grids in almost identical conditions. The TEM measurement of the thin film deposited on TEM grid shows the formation of ZnO nanocrystals with a size distribution from 3.0 nm to 6.8 nm (+/-0.2 nm) in silica matrix. The UV-Vis spectra of the films show absorption features of ZnO and Zn2SiO4 phases in the films. The visible PL emission intensity and peak width increased in the annealed films. The results suggest increase in the number and size distribution of the ZnO nanocrystals in silica matrix due to the annealing resulting in increase in visible PL emission. The results of vacuum annealed films indicate that these films can be useful in the development of wide band visible light emitting devices using this material.

  14. Effects of recrystallization annealing on mechanical properties of cold-rolled PdNi5 wires

    Directory of Open Access Journals (Sweden)

    Aleksandra Ivanović

    2016-03-01

    Full Text Available The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.

  15. Microstructural Evolution in Cold-Rolled Squeeze-Cast SiCw/Al Composites during Annealing

    Institute of Scientific and Technical Information of China (English)

    Wenlong ZHANG; Dezun WANG; Zhongkai YAO; Mingyuan GU

    2004-01-01

    A 15 vol. Pct SiCw/Al composite was fabricated by a squeeze cast route followed by hot extrusion in the extrusion ratio of 18:1 and cold rolling to 50%. Microstructural evolution in the cold rolled composite during annealing was studied using macrohardness measurement and transmission electron microscopy (TEM). It was found that, during cold rolling the plastic flow of the matrix was restricted by the whiskers around them along the rolling direction, which resulted in different microstructure from near whiskers to far away. The cold rolled composite exhibited different microstructural development on 1 h annealing at different temperatures. Under annealing at about 100℃, recovery reaction occurred obviously and the introduction of SiC whiskers resulted in enhanced recovery reaction. Under annealing above about 200℃, recrystallization (growth of nuclei by high-angle grain boundary migration) and extended recovery took place simultaneously. When annealing temperature was increased up to 500℃, recrystallization fully took place in the cold rolled microstructure. The starting temperature of recrystallization was about 200℃. Whiskers played a role in stimulating the nucleation of recrystallization.

  16. Platinum-assisted post deposition annealing of the n-Ge/Y2O3 interface

    Science.gov (United States)

    Zimmermann, C.; Bethge, O.; Lutzer, B.; Bertagnolli, E.

    2016-07-01

    The impact of annealing temperature and annealing duration on the interface properties of n-Ge/Y2O3/Pt MOS-capacitors is investigated employing an ultrathin catalytically acting Pt-layer. X-ray photoelectron spectroscopy analysis has been used to verify an enhanced growth of GeO2 and thermally stabilizing yttrium germanate at the n-Ge/Y2O3 interface induced by an oxygen post deposition annealing (PDA). Especially at 500 °C and 550 °C high quality Ge/Y2O3 interfaces have been achieved resulting in very low interface trap density of 7.41*1010 eV-1 cm-2. It is shown that either a short oxygen annealing at higher temperatures (550 °C) or a long time annealing at lower temperatures (450 °C) are appropriate to realize low interface trap density (D it). It turns out that a Pt-assisted PDA in combination with a final PMA are needed to reduce hysteresis width significantly and to bring flat band voltages toward ideal values.

  17. Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy

    Science.gov (United States)

    Yang, Tsung-Han; Huang, Rong-Tang; Wu, Cheng-An; Chen, Fu-Rong; Gan, Jon-Yiew; Yeh, Jien-Wei; Narayan, Jagdish

    2009-12-01

    In this letter, we have reported on initial stages of atomic ordering in ZrTaTiNbSi amorphous films during annealing. The atomic ordering and structure evolution were studied in Zr17Ta16Ti19Nb22Si26 amorphous films as a function of annealing temperature in the temperature range from 473 to 1173 K. Up to annealing temperature of 1173 K, the films retained amorphous structure, but the degree of disorder is increased with the increase in temperature. The formation of Si-M covalent bonds, which contributed to the local atomic arrangement, occurred in the initial stages of ordering. The bonding reactions between Si and other metal species explain the anomalous structural changes which were observed in x-ray diffraction and transmission electron microscopy. We discuss the stages of phase transformation for amorphous films as a function of annealing temperature. From these results, we propose that annealing leads to formation of random Si-M4 tetrahedron, and two observed rings, a first and second in the electron diffraction patterns compared to M-M and Si-M bond length, respectively.

  18. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    Science.gov (United States)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  19. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C

    2014-01-20

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microstructure and variable emittance property of annealed La-Sr-Mn-O films

    Institute of Scientific and Technical Information of China (English)

    JIANG Shaoqun; MA XinXin; TANG Guangze; WANG Zehua; WANG Gang; ZHOU Zehua

    2011-01-01

    The La-Sr-Mn-O films were deposited on Si(100) substrates by DC magnetron sputtering and followed by air annealing at 973 Kfor 1 h. The microstructure and temperature dependence of total hemispherical emittance (εH) of the annealed La-Sr-Mn-O films prepared at various processing parameters were investigated. The results indicated the films deposited at lower sputtering pressure and lower O2/(O2+Ar)volume proportion (Ro) were present in rhombohedral perovskite structure and the length of Mn-O bond was shorter. The metal-insulator transition temperature (TMI) was higher. All of the annealed films showed the unique feature of variable emittance based on metal-insulator transition. The films showed low emittance at low temperature but high emittance at high temperature. Moreover, the εH significantly changed in the vicinity of TMI. The variability of total hemispherical emittance (△ε) and the temperature range with obvious emittance change could be adjusted by changing the processing parameters. The △ε could be 0.45 and △ε/ε355 (ε355 is the εH at 355K) exceeded 50% for the annealed La-Sr-Mn-O films. Therefore, the annealed La-Sr-Mn-O films showed much potential for thermal control applications as smart thermochromic variable emittance materials.

  1. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro [YUMEX INC., 400 Itoda, Yumesaki, Himeji, Hyogo 671-2114 (Japan); Ishihara, Tsuguo; Izumi, Hirokazu [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira, Suma, Kobe 654-0037 (Japan)

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  2. Effect of annealing process on TiN/TiC bilayers grown by pulsed arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Rivera, L., E-mail: lramosr@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia); Escobar, D.; Benavides-Palacios, V.; Arango, P.J.; Restrepo-Parra, E. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia)

    2012-08-15

    In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 Degree-Sign C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 Degree-Sign C, TiO{sub 2} phase begun to appear and it was well observed at 500 Degree-Sign C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.

  3. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2016-04-01

    Full Text Available The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs, as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  4. Small angles X-ray diffraction and Mössbauer characterization of annealed Tb/Fe multilayer

    Indian Academy of Sciences (India)

    O M Lemine

    2011-02-01

    The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing temperature. After annealing at 873 K, a clear total mixing of the multilayers by interdiffusion has been evidenced. The results are compared with the effect of ion irradiation in the same system.

  5. Influence of Oxygen in Sputtering and Annealing Processes on Properties of ZnO:Ag Films Deposited by rf Sputtering

    Institute of Scientific and Technical Information of China (English)

    DUAN Li; GAO Wei

    2011-01-01

    ZnO:Ag films were prepared by rf sputtering on Si substrates.A detailed study on as-grown and annealed films was carried out using x-ray diffraction(XRD).The results indicate that the film crystalline quality and the Ag doping efficiency were both influenced by oxygen in the sputtering and annealing atmosphere.The optimum conditions are found. Ultraviolet and green emissions of annealed ZnO:Ag films were observed at room temperature.Photoluminescence results show that oxygen in annealing atmosphere reduces the deep-level defects in ZnO:Ag and increases the film quality .

  6. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    Due to structural and textural heterogeneities and a high content of stored energy, annealing of nanostructured metals is difficult to control in order to avoid non-uniform coarsening and recrystallization. The present research demonstrates a method to homogenize the structure by annealing at low...... temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4...

  7. Effect of annealing on the microstructures and Vickers hardness at room temperature of intermetallics in Mo-Si system

    Institute of Scientific and Technical Information of China (English)

    YANG Haibo; LI Wei; SHAN Aidang; WU Jiansheng

    2004-01-01

    The microstructures and Vickers hardness at room temperature of arc-melting processed intermetallics of Mo5Si3-MoSi2 hypoeutectic alloy and hypereutectic alloy annealed at 1200℃ for different time were investigated. Lamellar structure consisted of Mo5Si3 (D8m) phase and MoSi2 (C11b) phase was observed in all the alloys. For Mo5Si3-MoSi2 hypoeutectic alloy, the lamellar structure was found only after annealing and developed well with fine spacing on the order of hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96 h, the well-developed lamellar structure was destroyed. For Mo5Si3-MoSi2 hypereutectic alloy, the lamellar structure was found both before and after annealing. However the volume fraction and spacing of the lamellar structure did not change significantly before and after annealing. The effects of the formation, development and destruction of lamellar structure on Vickers hardness of alloys were also investigated. When Mo5Si3-MoSi2 hypoeutectic alloy annealed at 1200℃ for 48 h, the Vickers hardness was improved about 19% compared with that without annealing and formation of lamellar structure. The highest Vickers hardness of Mo5Si3-MoSi2 hypereutectic was increasing about 18% when annealing at 1200℃ for 48 h.

  8. Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT)

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Smith, York R.; Ray, Rupashree S.; Misra, Mano

    2014-12-01

    The article demonstrates the influence of annealing temperature on the supercapacitance behavior of iron oxide nanotube synthesized on pure iron substrate by electrochemical anodization process. Anodization was performed in an ethylene glycol solution containing 3% H2O and 0.5 wt. % NH4F. The as-anodized nanotubes were annealed in an ambient atmosphere at various temperatures ranging from 200 to 700 °C for a fixed duration of time (2 h). The morphology and crystal phases developed after anodization and subsequent annealing processes were examined using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and X-ray photospectroscopy (XPS). Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) experiments were performed in 1 M Li2SO4 to evaluate the electrochemical capacitance properties of the oxide nanotube electrodes. It was found that the electrode annealed at 300 °C exhibited superior electrochemical capacitance compared to the electrodes annealed at other temperatures. The highest specific capacitance achieved after annealing at 300 °C was about 314 mF cm-2. The electrodes annealed at 200, 500, 600 and 700 °C displayed much lower specific capacitance compared to those annealed at 300 and 400 °C. Galvanostatic charge-discharge experiments conducted on some of the annealed electrodes demonstrated excellent cycle stability with more than 80% capacitance retention after 1000 charge-discharge cycles.

  9. Effect of Annealing Treatment on Erosion-Corrosion of Zr-Based Bulk Metallic Glass in Saline-Sand Slurry

    Science.gov (United States)

    Ji, Xiulin; Shan, Yiping; Chen, Yueyue; Wang, Hui

    2016-06-01

    Bulk metallic glass (BMG) may be a good candidate to solve the erosion-corrosion (E-C) problems of marine pumps in sand-containing seawater. Since annealing treatment is an effective way to improve plasticity of BMGs, the effect of annealing treatment on E-C wear of Zr-based BMG in saline-sand slurry was investigated. All of the annealed BMG samples were crystallized and the quantity of (Zr, Cu) phase increased but that of Al4Cu9 phase decreased with the increase of annealing temperature from 360 to 480 °C. Accordingly, annealing treatment enhances plasticity of the as-cast BMG at the cost of hardness and corrosion resistance. Moreover, 480 °C annealed BMG sample possesses the highest hardness and the lowest corrosion current density in all of the annealed BMG samples. Using a slurry pot erosion tester, the E-C wear of the as-cast and annealed BMG samples was studied under different impingement angles, impact velocities, and concentrations in saline-sand slurry. With the improvement of plasticity, 480 °C annealed BMG sample exhibits the best E-C wear resistance under high impingement angle, high impact velocity, and high sand concentration.

  10. Effect of annealing on proton irradiated AlGaN/GaN based micro-Hall sensors

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmane, A.; Takahashi, H.; Tashiro, T. [Dept. of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ko, P. J.; Okada, H.; Sandhu, A. [Dept. of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan and Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi Universit (Japan); Sato, S.; Ohshima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-cho, Takasaki, Gunma 370-1292 (Japan)

    2014-02-20

    The effect of annealing at 673 K on irradiated micro-Hall sensors irradiated with protons at 380keV and fluences of 10{sup 14}, 10{sup 15} and 10{sup 16} protons/cm{sup 2} is reported. Cathodoluminescence measurements were carried out at room temperature before and after annealing and showed improvement in the band edge band emission of the GaN layer. After annealing a sensor irradiated by 10{sup 15} protons/cm{sup 2} the device became operational with improvements in its magnetic sensitivity. All irradiated sensors showed improvement in their electrical characteristics after annealing.

  11. Mechanisms of High Coercivity in Ni/NiO Composite Films by Post Annealing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A coercivity as large as 2.4 kOe has been achieved in the Ni/NiO composite film after an annealing under a magnetic field of 10 kOe and an O2 partial pressure of 0.001 torr. The coercivity was attributed to the strong exchange coupling of Ni and NiO. Small grain size of Ni and NiO was observed after the post-annealing. The enhanced coercivity is probably associated with the domain wall pinning by local energy minima, the distribution of Ni and NiO, and the domain structure in the interface of Ni/NiO generated under the presence of the magnetic field during the post-annealing.

  12. Study of annealing effects in In–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; Y K Vijay

    2007-04-01

    The thin films of In–Sb having different thicknesses of antimony keeping constant thickness of indium was deposited by thermal evaporation method on ITO coated conducting glass substrates at room temperature and a pressure of 10-5 torr. The samples were annealed for 1 h at 433 K at a pressure of 10-5 torr. The optical transmission spectra of as deposited and annealed films have been carried out at room temperature. The variation in optical band gap with thickness was also observed. Rutherford back scattering and X-ray diffraction analysis confirms mixing of bilayer system. The transverse – characteristic shows mixing effect after annealing at 433 K for 1 h. This study confirms mixing of bilayer structure of semiconductor thin films.

  13. Recovery of IR luminescence in photobleached bismuth-doped fibers by thermal annealing

    Science.gov (United States)

    Firstov, S. V.; Firstova, E. G.; Alyshev, S. V.; Khopin, V. F.; Riumkin, K. E.; Melkumov, M. A.; Guryanov, A. N.; Dianov, E. M.

    2016-08-01

    The effect of annealing temperature on the luminescent properties of bismuth-doped fibers bleached by 532 nm laser radiation was investigated. The photoluminescence (PL) measurements were performed in pristine and photobleached samples which were thermally annealed at various temperatures ranging from 100 to 900 °C and slowly cooled. We observed that the intensity of the PL band at 1700 nm in the photobleached fibers recovered its pre-bleached level. Moreover, it was shown that a significant increase of the PL level could be achieved using the special annealing regime. Thereby, we obtained the experimental evidence of a thermally activated recovery process of the PL intensity showing that photoinduced changes of PL in bismuth-doped fibers are completely reversible. The mechanism of the thermal recovery of the PL is discussed.

  14. Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As

    Institute of Scientific and Technical Information of China (English)

    Li Yan-Yong; Wang Hua-Feng; Cao Yu-Fei; Wang Kai-You

    2013-01-01

    We investigated the effect of low temperature annealing on magnetic anisotropy in 7-nm ultrathin Ga0.94Mn0.06As devices by measuring the angle-dependent planar Hall resistance (PHR).Obvious hysteresis loops were observed during the magnetization reversal through the clockwise and counterclockwise rotations under low magnetic fields (below 1000 Gs,1 Gs =10-4 T),which can be explained by competition between Zeeman energy and magnetic anisotropic energy.It is found that the uniaxial anisotropy is dominant in the whole measured ferromagnetic range for both the as-grown ultrathin Ga0.94Mn0.06As and the annealed one.The cubic anisotropy changes more than the uniaxial anisotropy in the measured temperature ranges after annealing.This gives a useful way to tune the magnetic anisotropy of ultrathin (Ga,Mn)As devices.

  15. Electrical activation of ultra-shallow B and BF 2 implanted silicon by flash anneal

    Science.gov (United States)

    Yoo, Woo Sik; Kang, Kitaek

    2005-08-01

    Ultra-shallow ion implanted Si wafers, both with and without Ge pre-amorphization, were annealed using xenon arc flash lamps. The duration of flash illumination was controlled between 1 ms and 20 ms. Changes in sheet resistance and dopant profiles after flash anneal were measured and investigated, along with crystal defect densities. Sheet resistance was measured using a four-point probe. Dopant depth profiling and defect characterization were done using secondary ion mass spectroscopy (SIMS) and cross-sectional transmission electron microscopy (XTEM). Sheet resistance values of 250-350 Ω/sq. at a junction depth of 24 nm (at B concentration of 1.0 × 1018 cm-3) were achieved. No significant dopant diffusion was observed after the Xe arc flash lamp annealing.

  16. Enhanced magnetocrystalline anisotropy of Fe30Co70 nanowires by Cu additives and annealing

    Science.gov (United States)

    Palmero, Ester M.; Salikhov, Ruslan; Wiedwald, Ulf; Bran, Cristina; Spasova, Marina; Vázquez, Manuel; Farle, Michael

    2016-09-01

    The use of 3d transition metal-based magnetic nanowires (NWs) for permanent magnet applications requires large magnetocrystalline anisotropy energy (MAE), which in combination with the NWs’ magnetic shape anisotropy yields magnetic hardening and an enhancement of the magnetic energy product. Here, we report on the significant increase in MAE by 125 kJ m-3 in Fe30Co70 NWs with diameters of 20-150 nm embedded in anodic aluminum oxide templates by adding 5 at.% Cu and subsequent annealing at 900 K. Ferromagnetic resonance (FMR) reveals that this enhancement of MAE is twice as large as the enhancement of MAE in annealed, but undoped NWs. X-ray diffraction (XRD) analysis suggests that upon annealing the immiscible Cu in FeCo NWs causes a crystal reorientation with respect to the NW axis with a considerable distortion of the bcc FeCo lattice. This strain is most likely the origin of the strongly enhanced MAE.

  17. Note: Development of fast heating inert gas annealing apparatus operated at atmospheric pressure

    Science.gov (United States)

    Das, S. C.; Majumdar, A.; Shripathi, T.; Hippler, R.

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCNx) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  18. Giant magnetoimpedance effect of ac-dc Joule annealed electroplated NiFe/Cu composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaatshoar, M.; Shokri, B. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Azad, N. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Faculty of Science, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Banitaba, M.H. [Departments of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this article, we investigate the influence of ac-dc Joule annealing of NiFe microtubes on their giant magnetoimpedance effect. NiFe magnetic layers were electroplated onto 100-{mu}m-diameter copper wires and then submitted to dc or ac-dc current annealing for 8 minutes. Both annealing and cooling down processes were performed in argon atmosphere. Results show that the presence of ac part of Joule treatment leads to higher induced anisotropy and increases the MI ratio. It is conjectured that the ac component through wall movement and moment fluctuation increases the tendency of the magnetic domains to lie circumferentially. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Ion Beam Surface Modification of Y-TZP and Effects of Subsequent Annealing

    Institute of Scientific and Technical Information of China (English)

    Y.Motohashi; T.Shibata; S.Harjo; T.Sakuma; M.Ishihra; S.Baba; K.Sawa

    2004-01-01

    Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show superplasticity at high temperatures, were irradiated using 130 MeV Zr+11 ions in the TANDEM accelerator facility at Tokai Research Establishment, JAERI. The irradiation induced atomic displacement damage was analyzed by TRIM code. Changes in the mechanical properties and fracture behavior caused by the ion irradiation and the effects of subsequent annealing were studied. The distribution of micro-indentation depth as a function of the indentation position from the irradiated surface to the specimen interior was also examined. The occurrence of compressive residual stresses and increases in hardness and fracture toughness were found in the as-irradiated surface region of the specimen. The subsequent annealing revealed that these quantities were decreased gradually with raising the annealing temperature. Probable causes of the generation of the residual stress and the changes in mechanical properties and fracture mode due to the irradiation are discussed.

  20. Localized in situ cladding annealing for post-fabrication trimming of silicon photonic integrated circuits.

    Science.gov (United States)

    Spector, Steven; Knecht, Jeffrey M; Juodawlkis, Paul W

    2016-03-21

    We report the use of localized annealing via in situ heaters to induce a semi-permanent change in the refractive index of the cladding in ring resonator filters. When compared to other methods for post-fabrication trimming, this method has the advantage that no additional equipment, other than a supply of electrical power, is necessary to cause the index change. Two cladding materials were used: hydrogen silsesquioxane (HSQ) for samples that were externally annealed, and PECVD oxide for samples that were annealed with in situ heaters. The resonant wavelengths could be adjusted by as much as 3.0 nm and 1.7 nm for the HSQ and PECVD cladded filters, respectively. The trimming of a 5 channel, single ring filter bank, and a single, double ring filter is demonstrated.