WorldWideScience

Sample records for annealed proton exchanged

  1. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO3

    International Nuclear Information System (INIS)

    Sun, Jian; Xu, Chang-qing

    2015-01-01

    Infrared spectra of OH − groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO 3 (MgO:LiNbO 3 ) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO 3 crystals were recorded and analyzed. Comparing with none-doped APE LiNbO 3 crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO 3 slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO 3 waveguides was proposed

  2. Theoretical study of annealed proton-exchanged Nd $LiNbO_{3}$ channel waveguide lasers with variational method

    CERN Document Server

    De Long Zhang; Yuan Guo Xie; Guilan, Ding; Yuming, Cui; Cai He Chen

    2001-01-01

    The controllable fabrication parameters, including anneal time, initial exchange time, channel width, dependences of TM/sub 00/ mode size, corresponding effective refractive index, effective pump area, and coupling efficiency between pump and laser modes in z-cut annealed proton-exchanged (APE) Nd:LiNbO/sub 3/ channel waveguide lasers were studied by using variational method. The effect of channel width on the surface index increment and the waveguide depth was taken into account. The features of mode size and effective refractive index were summarized, discussed, and compared with previously published experimental results. The effective pump area, which is directly proportional to threshold pump power, increases strongly, slightly, and very slightly with the increase of anneal time, channel width, and initial exchange time, respectively. However, the coupling efficiency, which is directly proportional to slope efficiency, remains constant (around 0.82) no matter what changes made to these parameters. The var...

  3. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  4. Annealing of proton-damaged GaAs and 1/f noise

    NARCIS (Netherlands)

    Chen, X.Y.; Folter, de L.C.

    1997-01-01

    GaAs layers were grown by MBE. The layers were then damaged by 3 MeV proton irradiation and later annealed. We performed Hall effect and low-frequency noise measurements at temperatures between 77 K and 300 K after each step. Several generation - recombination noise components created by proton

  5. Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector

    International Nuclear Information System (INIS)

    Jain, R.K.; Kumar, Ashok; Singh, B.K.

    2012-01-01

    Highlights: ► We calibrate CR-39 detector with very low energy protons. ► We establish linear relationship between track diameter and time/energy up to 200 keV. ► We determine activation energy of annealing using different models. ► We justify concept of single annealing activation energy in CR-39. - Abstract: In this paper threshold of the registration sensitivity of very low energy proton in CR-39 is investigated. Irradiation of CR-39 (poly-allyl-diglycol carbonate) was carried out with very low energy mono energetic protons of 20–60 keV from a mini proton accelerator. Nearly 10 4 /cm 2 fluence of protons was used. The variation of track diameter with etching time as well as proton energy response curve was carefully calibrated. The bulk and track etch rates were measured by using proton track diameters. Bulk etch rate was also measured by the thickness of removed surface layer. The thermal annealing of proton track at temperatures ranging from 100 to 200 °C in CR-39 was studied by several models. Activation energy of annealed CR-39 detectors was calculated by slope of track etch rate and temperature plot. The data of proton tracks of 200, 250 and 300 keV from 400 kV Van-de-Graaff accelerator was also used and compared with the track diameters of different energies of proton.

  6. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  7. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    Science.gov (United States)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  8. Proton channels and exchangers in cancer.

    Science.gov (United States)

    Spugnini, Enrico Pierluigi; Sonveaux, Pierre; Stock, Christian; Perez-Sayans, Mario; De Milito, Angelo; Avnet, Sofia; Garcìa, Abel Garcìa; Harguindey, Salvador; Fais, Stefano

    2015-10-01

    Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    Science.gov (United States)

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  10. Solvent Exchange Rates of Side-chain Amide Protons in Proteins

    International Nuclear Information System (INIS)

    Rajagopal, Ponni; Jones, Bryan E.; Klevit, Rachel E.

    1998-01-01

    Solvent exchange rates and temperature coefficients for Asn/Gln side-chain amide protons have been measured in Escherichia coli HPr. The protons of the eight side-chain amide groups (two Asn and six Gln) exhibit varying exchange rates which are slower than some of the fast exchanging backbone amide protons. Differences in exchange rates of the E and Z protons of the same side-chain amide group are obtained by measuring exchange rates at pH values > 8. An NOE between a side-chain amide proton and a bound water molecule was also observed

  11. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  12. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  13. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  14. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Savkliyildiz, Ilyas [Rutgers University (United States)

    2016-08-15

    S−200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10{sup 20} cm{sup −2} peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation {sup 4}He and {sup 3}H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  15. Moessbauer study of proton-exchanged LiNbO3:Fe

    International Nuclear Information System (INIS)

    Engelmann, H.; Andler, G.; Dezsi, I.

    1990-01-01

    Topotactic proton exchange (Li against H) can be achieved by treating LiBnO 3 with appropriate acids. In order to investigate the effect of proton exchange on Fe-impurities we studied LiNbO 3 :Fe powder material treated in sulphuric acid and LiNbO 3 :Fe single crystals treated in benzoic acid by Moessbauer spectroscopy. During the topotactic ion exchange only the Li-ions are exchanged for protons, whereas the Fe-impurities are retained in the material. (orig.)

  16. The influence of post-annealing treatment on the wettability of Ag+/Na+ ion-exchanged soda-lime glasses

    International Nuclear Information System (INIS)

    Razzaghi, Ahmad; Maleki, Maniya; Azizian-Kalandaragh, Yashar

    2013-01-01

    In this paper, the effect of thermal annealing and the duration of ion-exchange on the wetting parameters of the Ag + /Na + ion-exchanged glasses have been reported. The analysis of wetting angle in different post-annealing temperatures shows that the wetting angle is increased by increasing the annealing temperature. The wetting parameters of Ag + /Na + ion-exchanged glasses at different ion-exchanged periods of time have been also investigated. Scanning electron microscopy (SEM), UV–Visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for determination of surface morphology and composition analysis of the prepared samples. The results of SEM show changes in the surface of the samples for different post-annealing temperatures. The optical characterization using UV–Vis spectroscopy shows an increase in the intensity of the absorption peak with increasing the ion-exchange duration. The FTIR spectroscopy confirms the formation of silver oxide material on the surface of Ag + /Na + ion-exchanged glasses.

  17. Temperature behavior and annealing of insulated gate transistors subjected to localized lifetime control by proton implantation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Love, R.P.; Chang, M.F.; Dyer, R.F.

    1987-01-01

    Localized lifetime control by proton implantation can result in a considerable improvement (as much as an order of magnitude or more) in the trade-off between device turn-off time and forward voltage when compared with the unlocalized method of electron irradiation. The physical mechanisms responsible for the qualitative temperature dependences are identified: MOS channel resistance for forward voltage, carrier capture cross-section for turn-off time, and generation and diffusion components of leakage current. Since no catastrophic or unrecoverable behavior is observed, normal device operation within the tested temperature range is possible. Isothermal annealing curves of turn-off time measured after annealing, and corresponding to a few hours annealing time, reveal that a constant turn-off time is reached after about an hour. The constant value increases with temperature, but is still below the unimplanted value after 4 h at 525 0 C. The turn-off time was verified to be constant even after 24 h of annealing at 200 0 C. Lifetime control by proton implantation seems to be more thermally stable than that caused by electron irradiation. (author)

  18. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-01-01

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40 0 C for a tightly bound 15 N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads

  19. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Liying Ma

    2017-12-01

    Full Text Available Based on a previously developed polyamide proton conductive macromolecule, the nano-scale structure of the self-assembled proton conductive channels (PCCs is adjusted via enlarging the nano-scale pore size within the macromolecules. Hyperbranched polyamide macromolecules with different size are synthesized from different monomers to tune the nano-scale pore size within the macromolecules, and a series of hybrid membranes are prepared from these two micromoles to optimize the PCC structure in the proton exchange membrane. The optimized membrane exhibits methanol permeability low to 2.2 × 10−7 cm2/s, while the proton conductivity of the hybrid membrane can reach 0.25 S/cm at 80 °C, which was much higher than the value of the Nafion 117 membrane (0.192 S/cm. By considering the mechanical, dimensional, and the thermal properties, the hybrid hyperbranched polyamide proton exchange membrane (PEM exhibits promising application potential in direct methanol fuel cells (DMFC.

  20. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  1. Effect of Annealing Temperature on Broad Luminescence of Silver-Exchanged Zeolites Y and A

    Science.gov (United States)

    Gui, Sa Chu Rong; Lin, H.; Bao, W.; Wang, W.

    2018-05-01

    The annealing temperature dependence of luminescence properties of silver (Ag)-exchanged zeolites Y and A was studied. It was found that the absorbance and excitation/emission bands are strongly affected by the thermal treatments. With increase in annealing temperature, the absorbance of Ag in zeolite Y increases at first and then decreases. However, the position of the excitation/emission band in zeolite Y was found to be insensitive to the annealing temperature. In contrast, the excitation/emission bands in zeolite A are particularly sensitive to the annealing temperature. The difference of such temperature dependence in zeolites Y and A may be due to the different microporous structure of the two minerals. Moreover, the fact that this dependence is not observed in Ag-exchanged zeolite Y is likely to be due to the difficulty in dehydration of zeolite Y in air or due to the weak Ag+-Ag+ interaction in zeolite Y.

  2. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  3. Annealing enhancement effect by light illumination on proton irradiated Cu(In, Ga)Se2 thin-film solar cells

    International Nuclear Information System (INIS)

    Kawakita, Shirou; Imaizumi, Mitsuru; Matsuda, Sumio; Yamaguchi, Masafumi; Kushiya, Katsumi; Ohshima, Takeshi; Itoh, Hisayoshi

    2002-01-01

    In this paper, we investigated the high radiation tolerance of copper indium gallium di-selenide (CIGS) thin-film solar cells by conducting in situ measurements of short circuit current and open circuit voltage of CIGS thin-film solar cells during and after proton irradiation under short circuit condition. We found that the annealing rate of proton-induced defects in CIGS thin-film solar cells under light illumination with an AM0 solar simulator is higher than that under dark conditions. The activation energy of proton-induced defects in the CIGS thin-film solar cells with (without) light illumination is 0.80 eV (0.92 eV), which implies on enhanced defect annealing rate in CIGS thin-film solar cells due to minority-carrier injection. (author)

  4. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  5. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Science.gov (United States)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  6. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  7. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  8. Plasma Deposited Thin Iron Oxide Films as Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lukasz JOZWIAK

    2017-02-01

    Full Text Available The possibility of using plasma deposited thin films of iron oxides as electrocatalyst for oxygen reduction reaction (ORR in proton exchange membrane fuel cells (PEMFC was examined. Results of energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS analysis indicated that the plasma deposit consisted mainly of FeOX structures with the X parameter close to 1.5. For as deposited material iron atoms are almost exclusively in the Fe3+ oxidation state without annealing in oxygen containing atmosphere. However, the annealing procedure can be used to remove the remains of carbon deposit from surface. The single cell test (SCT was performed to determine the suitability of the produced material for ORR. Preliminary results showed that power density of 0.23 mW/cm2 could be reached in the tested cell.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14406

  9. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    Science.gov (United States)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  10. Aprotic solvent systems provide mechanistic windows for biomolecular reactions: nucleic acid proton exchange

    International Nuclear Information System (INIS)

    McConnell, B.; Tan, A.

    1986-01-01

    Detection of general acid-base catalysis of proton transfer reactions in aqueous cytidine (or adenosine) is completely obscured by the highly reactive endocyclic protonated species of the nucleobase, whose amino proton lifetime is much shorter than that of the neutral form. In aqueous solution, protonation of the nucleobase always accompanies protonation of the buffer catalyzing exchange. However, in DMSO/water mixtures this is not the case; aqueous protonated acetate or chloroacetate can be added to cytidine in DMSO solutions without further dissociation of the buffer or significant protonation of cytidine N-3. Under these conditions general acid catalysis is observed, which involves an H-bonded complex between cytidine (N-3) and the buffer acid. Increased amino proton exchange in response to H-bond donation to C(N-3) is further suggested by increased 1 H NMR saturation-recovery rates with the formation of G-C base-pairs in DMSO and by the inverse dependence of amino proton exchange on nucleoside concentration

  11. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  12. Proton exchange in systems: Glucose-water and uric acid-water

    International Nuclear Information System (INIS)

    Maarof, S.

    2007-01-01

    It is clear that formation of glucose-water and uric acid-water solutions is related in principle to interaction accepter - donor between hydrogen atom in water and oxygen atom in glucose or uric acid. The proton exchange in hydrogen bond system is an integral process and it goes by tunnel mechanism (transfer of proton within the hydrogen bridge in these structures). Proton exchange process goes very quickly at low concentrations for glucose and uric acid solutions, because these compounds are able to form more than one hydrogen bond, which helps the proton transfer within obtained structure. However, at its high concentrations, the process becomes very slow due to higher viscosity of its solutions, which result in break down of the structures, and more hydrogen bonds. (author)

  13. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  14. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.

    Science.gov (United States)

    Mayo, S L; Baldwin, R L

    1993-11-05

    Amide (NH) proton exchange rates were measured in 0.0 to 0.7 M guanidinium chloride (GdmCl) for 23 slowly exchanging peptide NH protons of ribonuclease A (RNase A) at pH* 5.5 (uncorrected pH measured in D2O), 34 degrees C. The purpose was to find out whether GdmCl induces exchange through binding to exchange intermediates that are partly or wholly unfolded. It was predicted that, when the logarithm of the exchange rate is plotted as a function of the molarity of GdmCl, the slope should be a measure of the amount of buried surface area exposed to GdmCl in the exchange intermediate. The results indicate that these concentrations of GdmCl do induce exchange by means of a partial unfolding mechanism for all 23 protons; this implies that exchange reactions can be used to study the unfolding and stability of local regions. Of the 23 protons, nine also show a second mechanism of exchange at lower concentrations of GdmCl, a mechanism that is nearly independent of GdmCl concentration and is termed "limited structural fluctuation."

  15. Probing water structure and transport in proton exchange membranes

    NARCIS (Netherlands)

    Ling, X.

    2018-01-01

    Proton exchange membrane fuel cells (PEMFCs) have attracted tremendous attention as alternative energy sources because of their high energy density and practically zero greenhouse gas emission - water is their only direct by-product. Critical to the function of PEMFCs is fast proton and water

  16. Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy.

    Science.gov (United States)

    Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Supuran, Claudiu T; Fais, Stefano

    2017-12-23

    Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

  17. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  18. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  19. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  20. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  1. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  2. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  3. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  4. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    Science.gov (United States)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  5. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  6. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1984-01-01

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x10 13 at/cm 2

  7. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca2+ exchangers

    OpenAIRE

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a ...

  8. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0±1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼10(4)s(-1) at pH 7.4 and 37°C, the activation energy, 50.2kJ/mol and its pH dependence at 1.1°C was fitted to: k (s(-1))=520+6.5×10(7)[H(+)]+3.0×10(9)[OH(-)]. Copyright © 2014. Published by Elsevier Inc.

  9. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  10. Tritium-proton exchange on fresh and oxidized lecithin

    International Nuclear Information System (INIS)

    Schreiber, J.

    1978-01-01

    A method for exchange labelling of acid protons in lecithin and for their quantitative determination is described. The suitability of the method is discussed using both lecithin monohydrate and autoxidation products as examples. (author)

  11. Cross-lined PEEK proton exchange membranes for fuel cell - Conference Poster

    CSIR Research Space (South Africa)

    Luo, H

    2009-07-01

    Full Text Available The low-cost cross-linked Polyetheretherketone (PEEK) proton exchange membranes were prepared via the simple route. The membranes exhibited similar electrochemical properties as compared with commercial Nafion. The membranes were highly proton...

  12. Exchange bias behavior in Ni{sub 50.0}Mn{sub 35.5} In{sub 14.5} ribbons annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, T. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sato Turtelli, R.; Groessinger, R. [Institut fur Festkoerperphysik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Sanchez, M.L.; Santos, J.D.; Rosa, W.O.; Prida, V.M. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Escoda, Ll.; Sunol, J.J. [Campus de Montilivi, Universidad de Girona, edifici PII, Lluis Santalo s/n. 17003 Girona (Spain); Koledov, V. [Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow 125009 (Russian Federation); Hernando, B., E-mail: grande@uniovi.es [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2012-10-15

    Heusler alloy Ni{sub 50.0}Mn{sub 35.5}In{sub 14.5} ribbons were prepared by melt-spinning technique. Several short time annealings were carried out in order to enhance the exchange bias effect in this alloy ribbon. The magnetic transition temperature increases with the annealing, compared to the as-spun sample, however no significant differences in respective Curie temperatures were observed for austenite and martensite phases in such annealed samples. Exchange bias effect is observed at low temperatures for all samples and practically vanishes at 60 K for the as-spun sample, whereas for the annealed ribbons it vanishes at 100 K.

  13. Proton exchange mechanism of synthesizing CdS quantum dots in nafion

    International Nuclear Information System (INIS)

    Nandakumar, P.; Vijayan, C.; Murti, Y.V.G.S.; Dhanalakshmi, K.; Sundararajan, G.

    1999-01-01

    Nanocrystals of CdS are synthesized in the proton exchange membrane nafion in different sizes in the range 1.6 to 6 nm. To understand the process leading to the formation of these quantum dots, we have probed the proton exchange by ac conductance measurements in the frequency range 100 Hz to 13 MHz. Nafion shows good electrical conductivity due to proton transport probably via the Grothus mechanism. Incorporation of cadmium ions by replacement of the hydrogen ions in the sulphonic acid group resulted in a large decrease in conductance indicating the reduction of the mobile carrier density. The conductivity plots all show strong frequency dependence with higher conductance towards the higher frequencies where a near-flat frequency response is seen. After the formation of CdS clusters, there is a partial recovery of conductance corresponding to the reinstatement of the protonic carriers on the side groups. The conductivity of the nafion films embedded with the semiconductor quantum dots exhibits a size-dependence with the highest conductivity obtained for the largest clusters. These findings lend clear experimental evidence for the model of synthesis of quantum dots in nafion by the exchange mechanism. (author)

  14. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  15. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  16. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  17. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    Science.gov (United States)

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  18. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.

    Science.gov (United States)

    Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M

    2004-05-01

    The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.

  19. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons. Copyright © 2014 John Wiley & Sons, Ltd.

  20. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  1. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  2. A new ion exchange behavior of protonated titanate nanotubes after deprotonation and the study on their morphology and optical properties

    International Nuclear Information System (INIS)

    Zhang Huibin; Cao Lixin; Liu Wei; Su Ge

    2012-01-01

    Graphical abstract: The morphological transformation of protonated titanate nanotubes under alkali solution before ion exchange (a) and after ion exchange (b). Highlights: ► A novel ion exchange behavior of protonated titanate nanotubes after deprotonation. ► The exchangeability of protonated titanate nanotubes are not as inert as past reported. ► The tube walls of H 2 Ti 3 O 7 nanotubes is observed to get loosened after ion exchange. ► The paper proves a new and easy way to modify protonated titanate nanotubes. - Abstract: After the deprotonation of protonated titanate nanotubes (H 2 Ti 3 O 7 ), we observed a novel ion exchange behavior on them. In the past literatures, protonated titanate nanotubes prepared via hydrothermal method have been reported with a poor exchangeability which may due to the chemical bonding of interlayer protons to nearby oxygen atoms. However, in this experiment under alkali environment (pH > 10), protonated titanate nanotubes exhibited a vast ion exchange capacity toward [Co(NH 3 ) 6 ] 2+ . This interesting phenomenon is contrary to the past reports which found protonated titanate nanotubes hardly could be ionexchanged by objective cations. This paper proves the deprotonation process on H 2 Ti 3 O 7 nanotubes sufficiently facilitates the diffusion of metal complex cations into protonated titanate nanotubes and significantly changes their ion exchange capacity. As a consequence of cabalt intercalting via ion exchange, the tube wall of H 2 Ti 3 O 7 nanotubes is observed to get loosened. Additionally, the exciton concentrations corresponding to the nanotube surface states are discussed in the paper.

  3. Correlation between morphology, water uptake, and proton conductivity in radiation-grafted proton-exchange membranes

    DEFF Research Database (Denmark)

    Balog, Sandor; Gasser, Urs; Mortensen, Kell

    2010-01-01

    An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship...

  4. Advantages of Chemical Exchange-Sensitive Spin-Lock (CESL) Over Saturation Transfer (CEST) for Hydroxyl- and Amine-Water Proton Exchange Studies

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-01-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange (IMEX) processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, its sensitivity is not optimal, and more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the property of CEST signals is compared to a CE-sensitive spin-locking (CESL) technique irradiating at the labile proton frequency. Firstly, using a higher power and shorter irradiation in CE-MRI yields i) increasing selectivity to faster chemical exchange rates by higher sensitivity to faster exchanges and less sensitivity to slower CE and magnetization transfer processes, and ii) decreasing in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher-power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Secondly, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with asymmetric population approximation (CEAPA), which can be used for quantitative CE-MRI, and validated by simulations of Bloch-McConnell equations and phantom experiments. Lastly, in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 of 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of IMEX protons. PMID:25199631

  5. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  6. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  7. Two-dimensional analytical model of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Liu, Jia Xing; Guo, Hang; Ye, Fang; Ma, Chong Fang

    2017-01-01

    In this study, a two-dimensional full cell analytical model of a proton exchange membrane fuel cell is developed. The analytical model describes electrochemical reactions on the anode and cathode catalyst layer, reactants diffusion in the gas diffusion layer, and gases flow in the gas channel, etc. The analytical solution is derived according to the basic physical equations. The performance predicted by the model is in good agreement with the experimental data. The results show that the polarization mainly occurs in the cathode side of the proton exchange membrane fuel cell. The anodic overpotential cannot be neglected. The hydrogen and oxygen concentrations decrease along the channel flow direction. The hydrogen and oxygen concentrations in the catalyst layer decrease with the current density. As predicted by the model, concentration polarization mainly occurs in the cathode side. - Highlights: • A 2D full cell analytical model of a proton exchange membrane fuel cell is developed. • The analytical solution is deduced according to the basic equations. • The anode overpotential is not so small that it cannot be neglected. • Species concentration distributions in the fuel cell is obtained and analyzed.

  8. Accurate Quantitation of Water-amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection Scheme

    International Nuclear Information System (INIS)

    Hwang, Tsang-Lin; Zijl, Peter C.M. van; Mori, Susumu

    1998-01-01

    Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from Cα protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135 o (x) 120 o (-x) 110 o (x) 110 o (-x) 120 o (x) 135 o (-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system

  9. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    Science.gov (United States)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  10. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  11. On the importance of exchangeable NH protons in creatine for the magnetic coupling of creatine methyl protons in skeletal muscle

    NARCIS (Netherlands)

    Kruiskamp, M.J.; Nicolaij, K.

    2001-01-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the

  12. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    International Nuclear Information System (INIS)

    Tolstikhina, Inga Yu.; Kato, Daiji

    2010-01-01

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  13. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  14. Hydrogen/deuterium exchange of multiply-protonated cytochrome c ions

    International Nuclear Information System (INIS)

    Wood, T.D.; Guan, Ziqiang; O'Connor, P.B.

    1995-01-01

    Low resolution measurements show gaseous multiply-protonated cytochrome c ions undergo hydrogen/deuterium (H/D) exchange with pseudo first-order kinetics at three distinct exchange levels, suggesting the co-existence of gaseous protein conformations. Although exchange levels first increase with increasing charge values, they decrease at the highest charge values, consistent with solution-phase behavior of cytochrome c, where the native structure unfolds with decreasing pH until folding into a compact A-state at lowest pH. High resolution measurements indicate the presence of at least six H/D exchange levels. Infrared (IR) laser heating and fast collisions via quadrupolar excitation (QE) increase H/D exchange levels (unfolding) while charge-stripping ions to lower charge values can increase or decrease H/D exchange levels (unfolding or folding). Wolynes has suggested studying proteins in vacuo could play an important role in delineating the contributions various forces play in the protein folding process, provided appropriate comparisons can be made between gas-phase and solution-phase structures

  15. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  16. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available and separating the fuel from oxidant. A polyperfluorosulfonic acid ionomer Nafion? (developed by Dupont) is the mostly used proton exchange membrane in PEMFCs, because of its high proton conductivity and excellent chemical stability [3, 4]. However, the high...-Methyl-2-pyrrolidinone. After the solution was homogenized by stirring, the polymer solution was cast on a glass Petri dish. The solvent was then removed in a vacuum oven at 130 ?C. The membrane was peeled off from the Petri dish. Thereafter...

  17. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    OpenAIRE

    Sezgin, Sinan; Sinirlioglu, Deniz; Muftuoglu, Ali Ekrem; Bozkurt, Ayhan

    2014-01-01

    Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride) (PVDF) and proton conductivity of poly(1-vinyl-1,2,4-triazole) (PVTri) were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA) at differe...

  18. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  19. Effects of stereochemistry on the rates of hydrogen--deuterium exchange of protons α to the nitrosamino group

    International Nuclear Information System (INIS)

    Fraser, R.R.; Ng, L.K.

    1976-01-01

    Measurement of the rates of exchange of four benzylic protons of rigid dibenzazepine were made in tert-butyl alcohol-O-d containing potassium tert-butoxide at several concentrations. Each pseudoaxial proton exchanged 100-fold faster than its geminal partner (pseudoequatorial), likely as a result of a stereoelectronic effect. Each syn proton exchanged 1000-fold faster than the anti proton in the same biaryl environment. The lack of any significant effect of added crown either on the rate of exchange of either a syn or an antiproton indicates lack of involvement of the counterion. A suggested explanation for the unusual preference for syn exchange in this work is based on the symmetry properties of the anionic intermediate. This intermediate, like butadiene dianion, has an attractive interaction between the terminal atoms of the four-atom π system in the highest occupied molecular orbital (HOMO). This explanation is similar to that of Epiotis and co-workers, which accounts for the well-established preferential stability of cis over trans dihalo and dialkoxy ethylenes

  20. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  1. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  2. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  3. CAPSTONE SENIOR DESIGN - SUPRAMOLECULAR PROTON EXCHANGE MEMBRANES FOR FUEL CELLS

    Science.gov (United States)

    In order to assume a leading role in the burgeoning hydrogen economy, new infrastructure will be required for fuel cell manufacturing and R&D capabilities. The objective of this proposal is the development of a new generation of advanced proton exchange membrane (PEM) technol...

  4. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...

  6. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  7. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  8. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  9. High temperature proton exchange membranes prepared from epoxycyclohexylethyltrimethoxysilane and amino trimethylene phosphonic acid as anhydrous proton conductors

    International Nuclear Information System (INIS)

    Chen, Cheng; Shen, Chunhui; Kong, Gengjin; Gao, Shanjun

    2013-01-01

    High temperature anhydrous proton exchange membranes based on phosphonic acid were prepared from epoxycyclohexylethyltrimethoxysilane (EHTMS) and amino trimethylene phosphonic acid (ATMP) by sol–gel process. The structures and properties of membranes with different phosphonic acid content were extensively characterized by FTIR, TG-DSC and XRD. Their proton conductivity under dry condition was also investigated under different temperature. The results show that the proton conductivity of the prepared membranes strongly depends on temperature, and the proton conductivity ranges from 8.81 × 10 −5 S cm −1 at 20 °C to 4.65 × 10 −2 S cm −1 at 140 °C under anhydrous condition. It indicates that the increasing temperature is favorable for congregating of the grafted–PO 3 H 2 and increasing of the proton mobility. In addition, from the results of AFM images, it was confirmed that the continuous distribution of phosphonic acid groups is favorable for the formation of the proton transport channel, which can significantly enhance the proton conductivity of the membranes. Highlights: ► Hybrid membranes of Epoxycyclohexylethyltrimethoxysilane and Amino trimethylene phosphonic acid. ► The proton conductivity is 4.65 × 10 −2 S cm −1 at 140 °C under anhydrous condition. ► Continuous uniform distributions of phosphonic acid groups can be observed by AFM. ► There could be hydrogen bond network within high temperature membranes

  10. High temperature proton exchange membranes prepared from epoxycyclohexylethyltrimethoxysilane and amino trimethylene phosphonic acid as anhydrous proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China); Shen, Chunhui, E-mail: shenchunhui@whut.edu.cn [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China); Kong, Gengjin; Gao, Shanjun [Department of Polymer Materials and Engineering, School of Material Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070 (China)

    2013-06-15

    High temperature anhydrous proton exchange membranes based on phosphonic acid were prepared from epoxycyclohexylethyltrimethoxysilane (EHTMS) and amino trimethylene phosphonic acid (ATMP) by sol–gel process. The structures and properties of membranes with different phosphonic acid content were extensively characterized by FTIR, TG-DSC and XRD. Their proton conductivity under dry condition was also investigated under different temperature. The results show that the proton conductivity of the prepared membranes strongly depends on temperature, and the proton conductivity ranges from 8.81 × 10{sup −5} S cm{sup −1} at 20 °C to 4.65 × 10{sup −2} S cm{sup −1} at 140 °C under anhydrous condition. It indicates that the increasing temperature is favorable for congregating of the grafted–PO{sub 3}H{sub 2} and increasing of the proton mobility. In addition, from the results of AFM images, it was confirmed that the continuous distribution of phosphonic acid groups is favorable for the formation of the proton transport channel, which can significantly enhance the proton conductivity of the membranes. Highlights: ► Hybrid membranes of Epoxycyclohexylethyltrimethoxysilane and Amino trimethylene phosphonic acid. ► The proton conductivity is 4.65 × 10{sup −2} S cm{sup −1} at 140 °C under anhydrous condition. ► Continuous uniform distributions of phosphonic acid groups can be observed by AFM. ► There could be hydrogen bond network within high temperature membranes.

  11. Mechanisms of aluminium-induced crystallization and layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers.

    Science.gov (United States)

    Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J

    2009-06-01

    Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.

  12. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  13. Poly(dA-dT).poly(dA-dT) two-pathway proton exchange mechanism. Effect of general and specific base catalysis on deuteration rates

    International Nuclear Information System (INIS)

    Hartmann, B.; Leng, M.; Ramstein, J.

    1986-01-01

    The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results

  14. The annealing of interstitial carbon atoms in high-resistivity n-type silicon after proton irradiation

    CERN Document Server

    Kuhnke, M; Lindström, G

    2002-01-01

    The annealing of interstitial carbon C sub i after 7-10 MeV and 23 GeV proton irradiations at room temperature in high-resistivity n-type silicon is investigated. Deep level transient spectroscopy is used to determine the defect parameters. The annealing characteristics of the impurity defects C sub i , C sub i C sub s , C sub i O sub i and VO sub i suggest that the mobile C sub i atoms are also captured at divacancy VV sites at the cluster peripheries and not only at C sub s and O sub i sites in the silicon bulk. The deviation of the electrical filling characteristic of C sub i from the characteristic of a homogeneously distributed defect can be explained by an aggregation of C sub i atoms in the environment of the clusters. The capture rate of electrons into defects located in the cluster environment is reduced due to a positive space charge region surrounding the negatively charged cluster core. The optical filling characteristic of C sub i suggests that the change of the triangle-shaped electric field dis...

  15. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  16. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides – SrTiO3(100), CaTiO3(100) and WO3(100) – are suggested for the subsequent reduction step....

  17. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  18. Molecular dynamics simulation of radiation grafted FEP films as proton exchange membranes: Effects of the side chain length

    DEFF Research Database (Denmark)

    Li, Xue; Zhao, Yang; Li, Weiwei

    2017-01-01

    In order to study the microstructure of the prepared potential proton exchange membrane (PEM), molecular dynamics (MD) simulations were used to lucubrate the transport behavior of water molecules and hydronium ions inside the hydrated sulfonated styrene grafted fluorinated ethylene propylene (FEP...... whereas larger water clusters formed. The results of the mean square displacements (MSDs) show that the proton conductivities of the membranes with the proposed side chain lengths were about three fifths of the experimental data, of which the membrane with side chain length of 7 sulfonic styrene units...... was supposed to exhibit the highest proton conductivity, that is 115.69 mS cm-1. All of the supposed membrane models presented good proton conductivity that could definitely meet the application requirements of the proton exchange membranes. The MD simulations can provide an insight to the chain structure...

  19. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  20. A perturbative treatment of double gluon exchange in γ*-proton DIS

    International Nuclear Information System (INIS)

    Kharraziha, H.

    2000-04-01

    A new model for the exchange of two gluons between the virtual photon and the proton, in non-diffractive deeply inelastic electron-proton scattering, is developed and studied. This model relies on a perturbative calculation, previously applied to diffraction, and a general result from Regge theory. As a first application of the model, we study corrections to the momentum transfer to the quark-anti-quark pair, at the photon-vertex. We find a significant enhancement of the cross-section at ∝Q 2 momentum transfers, and large negative corrections for small momentum transfers. The implication of this result for jet-distributions measured at HERA, is discussed. (orig.)

  1. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  2. Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR.

    Directory of Open Access Journals (Sweden)

    Andrei T Alexandrescu

    Full Text Available Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen-deuterium exchange technique to look at amide proton solvent protection in the fibrils. In this technique, partially exchanged fibrils are dissolved in 95% DMSO and information about amide proton occupancy in the fibrils is determined from DMSO-denatured monomers. Hydrogen exchange lifetimes at pH 7.6 and 37°C vary between ∼5 h for the unstructured N-terminus to 600 h for amide protons in the two β-strands that form inter-molecular hydrogen bonds between amylin monomers along the length of the fibril. Based on the protection data we conclude that residues A8-H18 and I26-Y37 comprise the two β-strands in amylin fibrils. There is variation in protection within the β-strands, particularly for strand β1 where only residues F15-H18 are strongly protected. Differences in protection appear to be due to restrictions on backbone dynamics imposed by the packing of two-layers of C2-symmetry-related β-hairpins in the protofilament structure, with strand β1 positioned on the surface and β2 in the interior.

  3. Increased CEST specificity for amide and fast-exchanging amine protons using exchange-dependent relaxation rate.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2018-02-01

    Chemical exchange saturation transfer (CEST) imaging of amides at 3.5 ppm and fast-exchanging amines at 3 ppm provides a unique means to enhance the sensitivity of detection of, for example, proteins/peptides and neurotransmitters, respectively, and hence can provide important information on molecular composition. However, despite the high sensitivity relative to conventional magnetic resonance spectroscopy (MRS), in practice, CEST often has relatively poor specificity. For example, CEST signals are typically influenced by several confounding effects, including direct water saturation (DS), semi-solid non-specific magnetization transfer (MT), the influence of water relaxation times (T 1w ) and nearby overlapping CEST signals. Although several editing techniques have been developed to increase the specificity by removing DS, semi-solid MT and T 1w influences, it is still challenging to remove overlapping CEST signals from different exchanging sites. For instance, the amide proton transfer (APT) signal could be contaminated by CEST effects from fast-exchanging amines at 3 ppm and intermediate-exchanging amines at 2 ppm. The current work applies an exchange-dependent relaxation rate (R ex ) to address this problem. Simulations demonstrate that: (1) slowly exchanging amides and fast-exchanging amines have distinct dependences on irradiation powers; and (2) R ex serves as a resonance frequency high-pass filter to selectively reduce CEST signals with resonance frequencies closer to water. These characteristics of R ex provide a means to isolate the APT signal from amines. In addition, previous studies have shown that CEST signals from fast-exchanging amines have no distinct features around their resonance frequencies. However, R ex gives Lorentzian lineshapes centered at their resonance frequencies for fast-exchanging amines and thus can significantly increase the specificity of CEST imaging for amides and fast-exchanging amines. Copyright © 2017 John Wiley & Sons

  4. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    Science.gov (United States)

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  5. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells

    NARCIS (Netherlands)

    Celebi, S.; Nijhuis, T.A.; Schaaf, van der J.; Bruijn, de F.A.; Schouten, J.C.

    2011-01-01

    Homogeneous deposition precipitation (HDP) of nickel has been investigated for the growth of carbon nanofibers (CNFs) on carbon paper for use in proton exchange membrane fuel cells as a gas diffusion layer. Selective CNF growth on only one side of carbon paper is required to transfer the generated

  7. Hydrogen-exchange kinetics of the indole NH proton of the buried tryptophan in the constant fragment of the immunoglobulin light chain

    International Nuclear Information System (INIS)

    Kawata, Y.; Goto, Y.; Hamaguchi, K.; Hayashi, F.; Kobayashi, Y.; Kyogoku, Y.

    1988-01-01

    The constant fragment of the immunoglobulin light chain (type λ) has two trytophyl residues at positions 150 and 187. Trp-150 is buried in the interior, and Trp-187 lies on the surface of the molecule. The hydrogen-deuterium exchange kinetics of the indole NH proton Trp-150 were studied at various pH values at 25 0 C by 1 H nuclear magnetic resonance. Exchange rates were approximately first order in hydroxyl ion dependence above pH 8, were relatively independent of pH between pH 7 and 8, and decreased below pH 7. On the assumption that the exchange above pH 8 proceeds through local fluctuations of the protein molecule, the exchange rates between pH 7 and 8 through global unfolding were estimated. The exchange rate constant within this pH range at 25 0 C thus estimated was consistent with that of the global unfolding of the constant fragment under the same conditions as those reported previously. The activation energy for the exchange process at pH 7.8 was the same as that for the unfolding process by 2 M guanidine hydrochloride. The exchange rates of backbone NH protons were almost the same as that of the indole NH proton of Trp-150 at pH 7.l. These observations also indicated that the exchange between pH 7 and 8 occurs through global unfolding of the protein molecule and is rate-limited by the unfolding. At around pH 9, on the other hand, the activation energy for the exchange process of the indole NH proton of Trp-150 was smaller than that for the unfolding process, and the exchange rates differed according to the different signals of backbone NH protons. These findings together with the pH dependence of the rate constant indicated that exchange due to local fluctuations is predominant above pH 8

  8. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.

    2011-01-01

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  9. Investigation of Chemical Exchange at Intermediate Exchange Rates using a Combination of Chemical Exchange Saturation Transfer (CEST) and Spin-Locking methods (CESTrho)

    Science.gov (United States)

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2011-01-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer (CEST) and T1ρ magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. PMID:22009759

  10. Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho).

    Science.gov (United States)

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2012-07-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(ρ) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. Copyright © 2011 Wiley Periodicals, Inc.

  11. Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    International Nuclear Information System (INIS)

    Gow, J P D; Smith, P H; Hall, D J; Holland, A D; Murray, N J; Pool, P

    2015-01-01

    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at −35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 10 8 protons · cm −2 . The CCD236 is a large area (4.4 cm 2 ) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation

  12. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro.

    Science.gov (United States)

    Goerke, Steffen; Zaiss, Moritz; Bachert, Peter

    2014-05-01

    Chemical exchange saturation transfer (CEST) enables indirect detection of small metabolites in tissue by MR imaging. To optimize and interpret creatine-CEST imaging we characterized the dependence of the exchange-rate constant k(sw) of creatine guanidinium protons in aqueous creatine solutions as a function of pH and temperature T in vitro. Model solutions in the low pH range (pH = 5-6.4) were measured by means of water-exchange (WEX)-filtered ¹H NMR spectroscopy on a 3 T whole-body MR tomograph. An extension of the Arrhenius equation with effective base-catalyzed Arrhenius parameters yielded a general expression for k(sw) (pH, T). The defining parameters were identified as the effective base-catalyzed rate constant k(b,eff) (298.15 K) = (3.009 ± 0.16) × 10⁹  Hz l/mol and the effective activation energy E(A,b,eff)  = (32.27 ± 7.43) kJ/mol at a buffer concentration of c(buffer)  = (1/15) M. As expected, a strong dependence of k(sw) on temperature was observed. The extrapolation of the exchange-rate constant to in vivo conditions (pH = 7.1, T = 37 °C) led to the value of the exchange-rate constant k(sw)  = 1499 Hz. With the explicit function k(sw) (pH, T) available, absolute-pH CEST imaging could be realized and experimentally verified in vitro. By means of our calibration method it is possible to adjust the guanidinium proton exchange-rate constant k(sw) to any desired value by preparing creatine model solutions with a specific pH and temperature. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  14. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  15. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    Science.gov (United States)

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  17. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  18. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  19. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Myriam James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  20. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes

    Science.gov (United States)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao

    2014-03-01

    Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.

  1. Projection of the annealing behavior of irradiated Si sensors in the LHC environment

    CERN Document Server

    Chatterji, S; Bhardwaj, N; Chauhan, S S; Choudhary, B C; Gupta, P; Jha, M; Kumar, A; Naimuddin, M; Ranjan, K; Shivpuri, R K; Srivastava-Ajay, K

    2004-01-01

    The study of the radiation tolerance and subsequent annealing effects on p+-n-n+ silicon micro strip detectors has been performed as a part of R&D program for the preshower detector in the CMS experiment. CMS silicon strip sensors were irradiated with 24 GeV protons at CERN proton synchrotron (PS) to a total fluence of 3*10/sup 14/ p/cm/sup 2 /. Sensors were stored in freezer after irradiation and I-V and C-V measurements were carried out. Variation in full depletion voltage and leakage current have been studied as a function of annealing time. The breakdown performance of the device actually improves after irradiation due to the beneficial effect of type-inversion. The breakdown voltage increases further with annealing time. However, the leakage current increases tremendously just after irradiation. As the sensors are annealed, there is a drop in leakage current. The rate of annealing is observed to be temperature dependent. Hence in terms of leakage current, it seems that room temperature annealing is b...

  2. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... been investigated. The fuel cell stack used in this model is developed using a Ballard PEMFC [1], so that the equations used in the stack modeling are derived from the experimental data. The stack can produce 3 to 15 kilowatt electricity depending on the number of cells used in the stack. Some...

  3. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ gases. A case study...

  4. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  5. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts

    OpenAIRE

    Brault , Pascal

    2016-01-01

    Review article; International audience; The present review is describing recent advances in plasma deposition and treatment of low temperature proton exchange membrane fuel cells electrocatalysts. Interest of plasma processing for growth of platinum based, non-precious and metal free electrocatalysts is highlighted. Electrocatalysts properties are tentatively correlated to plasma parameters.

  6. Multiphase Simulations and Design of Validation Experiments for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2013-01-01

    Proton exchange membrane fuel cells directly convert into electricity the chemical energy of hydrogen and oxygen from air. The by-products are just water and waste heat. Depending on the operating conditions the water may be in the liquid or gas phase, and liquid water can hence plug the porous m...

  7. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  8. Proton exchange membrane fuel cell operation and degradation in short-circuit.

    OpenAIRE

    Silva , R.E.; Harel , F.; Jemei , S.; Gouriveau , Rafael; Hissel , Daniel; Boulon , L.; Agbossou , K.

    2013-01-01

    International audience; Hybridization of proton exchange membrane fuel cells (PEMFC) and ultra capacitors (UC) are considered as an alternative way to implement high autonomy, high dynamic, and reversible energy sources. PEMFC allow high efficiency and high autonomy, however their dynamic response is limited and this source does not allow recovering energy. UC appears to be a complementary source to fuel cell systems (FCS) due to their high power density, fast dynamics, and reversibility. A d...

  9. Construction and evaluation of a proton exchange fuel cell

    International Nuclear Information System (INIS)

    Gutierrez, Omar; Monsalve, Carlos; Trujillo, Gonzalo; Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2005-01-01

    One design of a hydrogen proton exchange membrane fuel cell (PEMFC) is proposed. Porous carbon supported platinum electrodes were manufactured by impregnation, reduction and hot-press methods; noble metal loading of 0.4 mg/cm 2 was achieved. The conditions to obtain the porous support were: composition of 15 % Teflon and 85 % carbon, pressure of 100 Kgf/cm 2 , temperature of 300 Celsius degrade and 20 minutes of hot-pressing. The pattern of gas flow distribution was made possible by machined interdigitated channels into conductor graphite plates. Several tests were run varying the load resistance to obtain the polarization curves. Comparison with a commercial PEMFC is also made

  10. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  11. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  12. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    Directory of Open Access Journals (Sweden)

    Sinan Sezgin

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride (PVDF and proton conductivity of poly(1-vinyl-1,2,4-triazole (PVTri were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and 1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TAx membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA3 showed a maximum proton conductivity of 6×10-3 Scm−1 at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA3 extended over 4.0 V.

  13. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  14. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its....... In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles. Keywords: proton exchange membrane fuel cells (PEMFCs); Helium Ion Microscopy (HIM...

  15. Optical annealing of CaF2:Mn for cooled optically stimulated luminescence

    International Nuclear Information System (INIS)

    Miller, S.D.; Stahl, K.A.; Endres, G.W.R.; McDonald, J.C.

    1989-01-01

    Optical annealing of the cooled optically stimulated luminescence in CaF 2 :Mn at room temperature has been demonstrated. The laser of choice for optical annealing of CaF 2 : Mn is a 326 nm helium-cadmium ultraviolet laser. A complete cycle of readout and annealing of the CaF 2 :Mn cooled optically stimulated dosemeters can now be accomplished without heating the dosemeters above room temperature. This annealing work represents the next step toward creating a proton-recoil-based fast neutron dosimetry system based on the cooled optically stimulated luminescence technique. (author)

  16. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  17. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  18. Internal humidifying of PEM [Proton Exchange Membrane] fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Staschewski, D [Karlsruhe Research Center (FZK), Karlsruhe (Germany). Inst. for Neutron Physics and Reactor Technics

    1996-12-01

    Hydrogen fuel cells (FC) for vehicular traction should stand out for a car-specific lightweight design. As regards PEMFC systems containing proton exchange membranes, this quality can be considerably improved by introducing porous bipolar plates which are conditioned by a water loop and deliver hot humidifying water to the adjacent membrane-electrode assembly (MEA). According to the principle of internal humidification here indicated special fuel cells based on sintered fiber and powder graphite were manufactured at FZK on a semi-technical scale. Self-made Pt/C electrodes hotpressed onto Nafion resulted in currents up to 200 A with pure oxygen as oxidant, providing the precondition for detailed studies of turnover and drainage rates within a monocell test arrangement. (author)

  19. ψ (2 S ) versus J /ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

    Science.gov (United States)

    Ma, Yan-Qing; Venugopalan, Raju; Watanabe, Kazuhiro; Zhang, Hong-Fei

    2018-01-01

    We argue that the large suppression of the ψ (2 S ) inclusive cross section relative to the J /ψ inclusive cross section in proton-nucleus (p+A) collisions can be attributed to factorization breaking effects in the formation of quarkonium. These factorization breaking effects arise from soft color exchanges between charm-anticharm pairs undergoing hadronization and comoving partons that are long lived on time scales of quarkonium formation. We compute the short distance pair production of heavy quarks in the color glass condensate (CGC) effective field theory and employ an improved color evaporation model (ICEM) to describe their hadronization into quarkonium at large distances. The combined CGC+ICEM model provides a quantitative description of J /ψ and ψ (2 S ) data in proton-proton (p+p) collisions from both RHIC and the LHC. Factorization breaking effects in hadronization, due to additional parton comovers in the nucleus, are introduced heuristically by imposing a cutoff Λ , representing the average momentum kick from soft color exchanges, in the ICEM. Such soft exchanges have no perceptible effect on J /ψ suppression in p+A collisions. In contrast, the interplay of the physics of these soft exchanges at large distances, with the physics of semihard rescattering at short distances, causes a significant additional suppression of ψ (2 S ) yields relative to that of the J /ψ . A good fit of all RHIC and LHC J /ψ and ψ (2 S ) data, for transverse momenta P⊥≤5 GeV in p+p and p+A collisions, is obtained for Λ ˜10 MeV.

  20. Optimization of 7-T Chemical Exchange Saturation Transfer Parameters for Validation of Glycosaminoglycan and Amide Proton Transfer of Fibroglandular Breast Tissue

    NARCIS (Netherlands)

    Dula, Adrienne N.; Dewey, Blake E.; Arlinghaus, Lori R.; Williams, Jason M.; Klomp, DWJ; Yankeelov, Thomas E.; Smith, Seth

    Purpose: To (a) implement simulation-optimized chemical exchange saturation transfer (CEST) measurements sensitive to amide proton transfer (APT) and glycosaminoglycan (GAG) hydroxyl proton transfer effects in the human breast at 7 T and (b) determine the reliability of these techniques for

  1. The mass balance of a Proton Exchange Membrane Fuel Cell (PEMFC)

    International Nuclear Information System (INIS)

    Miloud, S.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    A Proton Exchange Membrane Fuel Cell (PEMFC), operating at low temperature uses a simple chemical process to combine hydrogen and oxygen into water, producing electric current and heat during the electrochemical reaction. This work concern on the theoretical consideration of the mass balance has been evaluated to predict the mass flow rate of the both gases (hydrogen/oxygen), the water mass balance, and the heat transfer in order to design a single cell PEMFC stack with a better flow field distributor on the performance of Polymer Electrolyte membrane fuel cells

  2. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  3. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Supramaniam [Princeton Univ., NJ (United States); Lee, Seung-Jae [Princeton Univ., NJ (United States); Costamagna, Paola [Princeton Univ., NJ (United States); Yang, Christopher [Princeton Univ., NJ (United States); Adjemian, Kevork [Princeton Univ., NJ (United States); Bocarsly, Andrew [Princeton Univ., NJ (United States); Ogden, Joan M. [Princeton Univ., NJ (United States); Benziger, Jay [Princeton Univ., NJ (United States)

    2000-05-01

    In this project we investigated the experimental performance of three new classes of membranes, composites of perfluorosulfonic acid polymers with heteropolyacides, hydrated oxides and fast proton conducting glasses, which are promising candidates as electrolytes for proton exchange membrane fuel cells (PEMFCs), capable of operation at temperatures above 120°C. The motivations for PEMFC's operation at this temperature are to: 1) minimize the CO poisoning problem (adsorption of CO onto the platinum catalyst is greatly reduced at these temperatures), 2) find better solutions for the water and thermal management problems in proton exchange membrane fuel cells, 3) find potentially lower cost materials for proton exchange membranes. We prepared and characterized a variety of novel membrane materials. The most promising of these have been evaluated for performance in a single, small area (5cm2) fuel cell run on hydrogen and oxygen. Our results establish the technical feasibility of PEMFC operation above 120°C.

  4. Halogen–Metal Exchange on Bromoheterocyclics with Substituents Containing an Acidic Proton via Formation of a Magnesium Intermediate

    Directory of Open Access Journals (Sweden)

    Qingqiang Tian

    2017-11-01

    Full Text Available A selective and practical bromine–metal exchange on bromoheterocyclics bearing substituents with an acidic proton under non-cryogenic conditions was developed by a simple modification of an existing protocol. Our protocol of using a combination of i-PrMgCl and n-BuLi has not only solved the problem of intermolecular quenching that often occurred when using alkyl lithium alone as the reagent for halogen–lithium exchange, but also offered a highly selective method for performing bromo–metal exchange on dibrominated arene compounds through chelation effect.

  5. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  6. Molecular simulations of hydrated proton exchange membranes. The structure

    Energy Technology Data Exchange (ETDEWEB)

    Marcharnd, Gabriel [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie; Bordeaux Univ., Talence (France). Dept. of Chemistry; Bopp, Philippe A. [Bordeaux Univ., Talence (France). Dept. of Chemistry; Spohr, Eckhard [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie

    2013-01-15

    The structure of two hydrated proton exchange membranes for fuel cells (PEMFC), Nafion {sup registered} (Dupont) and Hyflon {sup registered} (Solvay), is studied by all-atom molecular dynamics (MD) computer simulations. Since the characteristic times of these systems are long compared to the times for which they can be simulated, several different, but equivalent, initial configurations with a large degree of randomness are generated for different water contents and then equilibrated and simulated in parallel. A more constrained structure, analog to the newest model proposed in the literature based on scattering experiments, is investigated in the same way. One might speculate that a limited degree of entanglement of the polymer chains is a key feature of the structures showing the best agreement with experiment. Nevertheless, the overall conclusion remains that the scattering experiments cannot distinguish between the several, in our view equally plausible, structural models. We thus find that the characteristic features of experimental scattering curves are, after equilibration, fairly well reproduced by all systems prepared with our method. We thus study in more detail some structural details. We attempt to characterize the spatial and size distribution of the water rich domains, which is where the proton diffusion mostly takes place, using several clustering algorithms. (orig.)

  7. Vacancy-type defects in electron and proton irradiated ZnO and ZnS

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Logar, B.; Baumann, H.

    1997-01-01

    A study aimed at investigating basic properties of radiation induced effects in ZnO and ZnS has been presented. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on polycrystalline samples. For ZnO it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics and several annealing stages were observed, related to the annealing of variously sized vacancy complexes. The lifetime in defected, proton irradiated polycrystalline ZnS samples, grown by chemical vapour deposition, indicates the formation of large defect complexes. The annealing of proton irradiated ZnS in air at temperatures between 650 C and 750 C leads to significant oxidation and transformation into ZnO. 10 refs, 2 figs, 1 tab

  8. Vacancy-type defects in electron and proton irradiated ZnO and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Puff, W.; Logar, B. [Technische Univ., Graz (Austria). Inst. fuer Kernphysik; Mascher, P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Biology; Balogh, A.G. [Technische Hochschule Darmstadt (Germany); Baumann, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    1997-10-01

    A study aimed at investigating basic properties of radiation induced effects in ZnO and ZnS has been presented. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on polycrystalline samples. For ZnO it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics and several annealing stages were observed, related to the annealing of variously sized vacancy complexes. The lifetime in defected, proton irradiated polycrystalline ZnS samples, grown by chemical vapour deposition, indicates the formation of large defect complexes. The annealing of proton irradiated ZnS in air at temperatures between 650 C and 750 C leads to significant oxidation and transformation into ZnO. 10 refs, 2 figs, 1 tab.

  9. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Shao, Meng; Zhu, Xin-Jian; Cao, Hong-Fei; Shen, Hai-Feng

    2014-01-01

    The commercial viability of PEMFC (proton exchange membrane fuel cell) systems depends on using effective fault diagnosis technologies in PEMFC systems. However, many researchers have experimentally studied PEMFC (proton exchange membrane fuel cell) systems without considering certain fault conditions. In this paper, an ANN (artificial neural network) ensemble method is presented that improves the stability and reliability of the PEMFC systems. In the first part, a transient model giving it flexibility in application to some exceptional conditions is built. The PEMFC dynamic model is built and simulated using MATLAB. In the second, using this model and experiments, the mechanisms of four different faults in PEMFC systems are analyzed in detail. Third, the ANN ensemble for the fault diagnosis is built and modeled. This model is trained and tested by the data. The test result shows that, compared with the previous method for fault diagnosis of PEMFC systems, the proposed fault diagnosis method has higher diagnostic rate and generalization ability. Moreover, the partial structure of this method can be altered easily, along with the change of the PEMFC systems. In general, this method for diagnosis of PEMFC has value for certain applications. - Highlights: • We analyze the principles and mechanisms of the four faults in PEMFC (proton exchange membrane fuel cell) system. • We design and model an ANN (artificial neural network) ensemble method for the fault diagnosis of PEMFC system. • This method has high diagnostic rate and strong generalization ability

  10. Deep-inelastic electron-proton diffraction

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1995-11-01

    Recent measurements by the H1 collaboration at HERA of the cross section for deep-inelastic electron-proton scattering in which the proton interacts with minimal energy transfer and limited 4-momentum transfer squared are presented in the form of the contribution F 2 D(3) to the proton structure function F 2 . By parametrising the cross section phenomenologically in terms of a leading effective Regge pole exchange and comparing the result with a similar parametrisation of hadronic pp physics, the proton interaction is demonstrated to be dominantly of a diffractive nature. The quantitative interpretation of the parametrisation in terms of the properties of an effective leading Regge pole exchange, the pomeron (IP), shows that there is no evidence for a 'harder' BFKL-motivated IP in such deep-inelastic proton diffraction. The total contribution of proton diffraction to deep-inelastic electron-proton scattering is measured to be ∝10% and to be rather insensitive to Bjorken-x and Q 2 . A first measurement of the partonic structure of diffractive exchange is presented. It is shown to be readily interpreted in terms of the exchange of gluons, and to suggest that the bulk of diffractive momentum transfer is carried by a leading gluon. (orig.)

  11. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes.

    Science.gov (United States)

    Scofield, Megan E; Liu, Haiqing; Wong, Stanislaus S

    2015-08-21

    The rising interest in fuel cell vehicle technology (FCV) has engendered a growing need and realization to develop rational chemical strategies to create highly efficient, durable, and cost-effective fuel cells. Specifically, technical limitations associated with the major constituent components of the basic proton exchange membrane fuel cell (PEMFC), namely the cathode catalyst and the proton exchange membrane (PEM), have proven to be particularly demanding to overcome. Therefore, research trends within the community in recent years have focused on (i) accelerating the sluggish kinetics of the catalyst at the cathode and (ii) minimizing overall Pt content, while simultaneously (a) maximizing activity and durability as well as (b) increasing membrane proton conductivity without causing any concomitant loss in either stability or as a result of damage due to flooding. In this light, as an example, high temperature PEMFCs offer a promising avenue to improve the overall efficiency and marketability of fuel cell technology. In this Critical Review, recent advances in optimizing both cathode materials and PEMs as well as the future and peculiar challenges associated with each of these systems will be discussed.

  12. Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NHX and Human Sodium Proton Exchanger (NHE Homologs in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    P. Hima Kumari

    2018-05-01

    Full Text Available Na+ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX and sodium-proton exchanger (NHE-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na+/H+ exchanger activity binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein–protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL- CBL interacting protein kinases (CIPK pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.

  13. Development of the sulphonated poly(2,6-Dimethyl-1,4-Phenylene Oxide) membranes for proton exchange membranes fuel cells

    International Nuclear Information System (INIS)

    Ebrasu, Daniela; Petreanu, Irina; Iordache, Ioan; Stefanescu, Ioan; Gaspar, Costinela-Laura; Militaru, Daniela

    2008-01-01

    Full text: Fuel cells have the potential to become an important energy conversion technology. Research efforts directed toward the widespread commercialization of fuel cells have accelerated the developing of new types of Proton Exchange Membranes (also termed 'polymer electrolyte membranes') (PEM). Common issues critical to all high performance proton exchange membranes include: - high protonic conductivity; - low electronic conductivity; - low permeability to fuel and oxidant; - low water transport through diffusion and electro-osmosis; - oxidative and hydrolytic stability; - good mechanical properties in both the dry and hydrated states; - cost; and capability for fabrication into Membrane Electrode Assemblies (MEAs). In this sense we choose to use poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) as basis for development of new PEM membranes. The membranes were prepared by lamination from solution (Doctor Balde) method in controlled atmosphere (preliminary vacuum 0.003 Torr and/or nitrogen). FTIR spectra of the sulphonated polymers prove the sulphonic groups presence according the literature. Ionic exchange capacity (IEC) have the values 1.15-3.6 meq/g. TGA-DSC analysis put in evidence the thermal degradation of the sulphonated polymers at about 120 deg. C. These properties of the sulphonated PPO are in accordance of the requirements for PEM membranes and indicate that this polymer is suitable for PEM Fuel cells. (authors)

  14. Fluorinated poly(ether sulfone) ionomers with disulfonated naphthyl pendants for proton exchange membrane applications

    Science.gov (United States)

    Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen

    2018-06-01

    Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.

  15. On the necessity of taking into account the contribution of multiphoton exchanges into electron-proton deep inelastic scattering

    International Nuclear Information System (INIS)

    Savrin, V.I.

    1979-01-01

    The hypothesis that the multiphoton exchanges give a substantial contribution to the electron-proton inclusive scattering is formulated. The hypothesis explains the observed violation of the Bjorken scaling law. As it is shown, the mechanism of such intensification of multiple exchanges may by connected with the properties of the processes of hadron multiproduction in the deep inelastic field. This results in the necessity to calculate the inclusive cross section in all electromagnetic coupling constant orders. This has been done in the framework of the density matrix method. As a result the deep inelastic scattering cross section calculated without application of the perturbation theory reveals a new property of the scaling invariance and leads to the natural relationship of structural functions with electromagnetic proton form-factors on the exclusive threshold

  16. Vacancy-type defects in electron and proton irradiated II-VI compounds

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Balogh, A.G.; Baumann, H.

    1997-01-01

    In this contribution, the authors present a study aimed at investigating the basic properties of radiation induced defects in ZnS and ZnO and the influence of the atmosphere on the annealing characteristics of the defects. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on both single- and polycrystalline samples, irradiated with 3 MeV protons or 1 MeV electrons. For ZnS it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics. The annealing of proton irradiated ZnS in air leads to significant oxidation and eventual transformation into ZnO

  17. Defect recovery in proton irradiated Ti-modified stainless steel probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, J.; Abhaya, S.; Rajaraman, R.; Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102 (India); Nair, K.G.M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102 (India)], E-mail: kgmn@igcar.gov.in; Sundar, C.S.; Raj, Baldev [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102 (India)

    2009-02-28

    The defect recovery in proton irradiated Ti-modified D9 steel has been studied by positron annihilation isochronal and isothermal annealing measurements. D9 samples have been irradiated with 3 MeV protons followed by isochronal annealing at various temperatures in the range of 323 to 1273 K. The dramatic decrease in positron annihilation parameters, viz. positron lifetime and Doppler S-parameter, around 500 K indicates the recovery of vacancy-defects. A clear difference in the recovery beyond 700 K is observed between solution annealed and cold worked state of D9 steel due to the precipitation of TiC in the latter. Isothermal annealing studies have been carried out at the temperature wherein vacancies distinctly migrate. Assuming a singly activated process for defect annealing, the effective activation energy for vacancy migration is estimated to be 1.13 {+-} 0.08 eV.

  18. Design of flow-field patterns for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Rosli, M.I.; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    Fuel cells are electrochemical devices that produce electricity at high efficiency without combustion. Fuel cells are emerging as viable candidates as power sources in many applications, including road vehicles, small-scale power stations, and possibly even portable electronics. This paper addresses the design of flow-field patterns for proton exchange membrane fuel cell (PEMFC). The PEMFC is a low-temperature fuel cell, in which a proton conductive polymer membrane is used as the electrolyte. In PEMFC, flow-field pattern is one important thing that effects the performance of PEMFC. This paper present three types of flow-field pattern that will be consider to be testing using CFD analysis and by experimental. The design look detail on to their shape and dimension to get the best pattern in term of more active electrode area compare to electrode area that will be used. Another advantage and disadvantage for these three type of flow-field patterns from literature also compared in this paper

  19. Controlling fuel crossover and hydration in ultrathin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts

    DEFF Research Database (Denmark)

    Wang, Rujie; Zhang, Wenjing (Angela); He, Gaohong

    2014-01-01

    and provided in situ hydration inside Nafion membranes to maintain their proton conductivity level. Furthermore, LDH nanosheets reinforced the Nafion membranes, with 181% improvement in tensile modulus and 166% improvement in yield strength. In a hydrogen fuel cell running with dry fuel, the membrane......An ultra-thin proton exchange membrane with Pt-nanosheet catalysts was designed for a self-humidifying fuel cell running on H2 and O2. In this design, an ultra-thin Nafion membrane was used to reduce ohmic resistance. Pt nanocatalysts were uniformly anchored on exfoliated, layered double hydroxide...

  20. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  1. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  2. Investigation of water distribution in proton exchange membrane fuel cells via Terahertz imaging

    International Nuclear Information System (INIS)

    Thamboon, P.; Buaphad, P.; Thongbai, C.; Saisud, J.; Kusoljariyakul, K.; Rhodes, M.W.; Vilaithong, T.

    2011-01-01

    Coherent transition radiation in a THz regime generated from a femtosecond electron bunch is explored for its potential use in imaging applications. Due to water sensitivity, the THz imaging experiment is performed on a proton exchange membrane fuel cell (PEMFC) to assess the ability to quantify water in the flow field of the cell. In this investigation, the PEMFC design and the experimental setup for the THz imaging is described. The results of the THz images in the flow field are also discussed.

  3. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  4. Compact modeling of a telecom back-up unit powered by air-cooled proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Gao, Xin; Kær, Søren Knudsen

    2018-01-01

    Applications of proton exchange membrane fuel cells (PEMFC’s) are expanding in portable, automotive and stationary markets. One promising application is the back-up power for telecommunication applications in remote areas where usually air-cooled PMEFC’s are used. An air-cooled PEMFC system is much...

  5. Development and Validation of a Simple Analytical Model of the Proton Exchange Membrane Fuel Cell (Pemfc) in a Fork-Lift Truck Power System

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2013-01-01

    In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage overpotent......In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage...

  6. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  7. Determination of the equilibrium micelle-inserting position of the fusion peptide of gp41 of human immunodeficiency virus type 1 at amino acid resolution by exchange broadening of amide proton resonances

    International Nuclear Information System (INIS)

    Chang, D.-K.; Cheng, S.-F.

    1998-01-01

    The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH-] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary

  8. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    Science.gov (United States)

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  9. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  10. Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Longyong; Zhang, Chunjie; Kang, Sen; Tan, Ning; Xiao, Guyu; Yan, Deyue [College of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2010-03-15

    A series of novel sulfonated poly(arylene thioether phosphine oxide)s with hexafluoroisopropylidene moieties (sPTPOF) were prepared by polycondensation of sulfonated bis(4-fluorophenyl)phenyl phosphine oxide and bis(4-fluorophenyl)phenyl phosphine oxide with 4,4'-(hexafluoroisopropylidene) diphenthiol. The incorporation of hexafluoroisopropylidene moieties to the resulting polymers is effective to increase the hydrophobicity of non-sulfonated segments and to decrease the swelling while maintaining high proton conductivity. For instance, sPTPOF-100 showed a proton conductivity of 0.090 S/cm as well as a swelling of 5.3% at 80 C. In addition, the sPTPOF polymers exhibited excellent thermal properties and oxidative stability. AFM phase images illustrated that the sPTPOF membranes show a special nanophase-separated morphology, namely, the connectivity of ionic channels increased obviously but their width only slightly increased with increasing sulfonation degree. This special microstructure is favorable for promoting proton transport and restraining the swelling. The sPTPOF polymers are a promising material for proton exchange membranes. (author)

  11. Charge-exchange breakup of the deuteron with the production of two protons and spin structure of the amplitude of the nucleon charge transfer reaction

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Lyuboshits, V.L.; Lyuboshits, V.V.; Piskunov, N.M.

    1999-01-01

    In the framework of the impulse approximation, the relation between the effective cross section of the charge-exchange breakup of a fast deuteron d + a → (pp) + b and the effective cross section of the charge transfer process n + a → p + b is discussed. In doing so, the effects of the proton identity (Fermi-statistics) and of the Coulomb and strong interactions of protons in the final state are taken into account. The distribution over relative momenta of the protons, produced in the charge-exchange process d + p → (pp) + n in the forward direction, is investigated. At the transfer momenta being close to zero the effective cross section of the charge-exchange breakup of a fast deuteron, colliding with the proton target, is determined only by the spin-flip part of the amplitude of the charge transfer reaction n + p → p + n at the zero angle. It is shown that the study of the process d + p → (pp) + n in a beam of the polarized (aligned) deuterons allows one, in principle, to separate two spin-dependent terms in the amplitude of the charge transfer reaction n + p → p + n, one of which does not conserve and the other one conserves the projection of the nucleon spin onto the direction of momentum at the transition of the neutron into the proton

  12. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Ghaffarian, Seyed Reza [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Hasani Sadrabadi, Mohammad Hossein [Faculty of Social and Economics Science, Alzahra University, Tehran (Iran); Heidari, Mahdi [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Moaddel, Homayoun [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2010-01-15

    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g{sup -1}, and 0.145 S cm{sup -1}, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the exfoliated structure of OMMT in the macromolecular matrices. The S-PES nanocomposite membrane with 3.0 wt% of OMMT content showed the maximum selectivity parameter of about 520,000 S s cm{sup -3} which is related to the high conductivity of 0.051 S cm{sup -1} and low methanol permeability of 9.8 x 10{sup -8} cm{sup 2} s{sup -1}. Furthermore, single cell DMFC fuel cell performance test with 4 molar methanol concentration showed a high power density (131 mW cm{sup -2}) of the nanocomposite membrane at the optimum composition (40% of sulfonation and 3.0 wt% of OMMT loading) compared to the Nafion {sup registered} 117 membrane (114 mW cm{sup -2}). Manufactured nanocomposite membranes thanks to their high selectivity, ease of preparation and low cost could be suggested as the ideal candidate for the direct methanol fuel cell applications. (author)

  13. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  14. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  15. A Review on Cold Start of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zhongmin Wan

    2014-05-01

    Full Text Available Successful and rapid startup of proton exchange membrane fuel cells (PEMFCs at subfreezing temperatures (also called cold start is of great importance for their commercialization in automotive and portable devices. In order to maintain good proton conductivity, the water content in the membrane must be kept at a certain level to ensure that the membrane remains fully hydrated. However, the water in the pores of the catalyst layer (CL, gas diffusion layer (GDL and the membrane may freeze once the cell temperature decreases below the freezing point (Tf. Thus, methods which could enable the fuel cell startup without or with slight performance degradation at subfreezing temperature need to be studied. This paper presents an extensive review on cold start of PEMFCs, including the state and phase changes of water in PEMFCs, impacts of water freezing on PEMFCs, numerical and experimental studies on PEMFCs, and cold start strategies. The impacts on each component of the fuel cell are discussed in detail. Related numerical and experimental work is also discussed. It should be mentioned that the cold start strategies, especially the enumerated patents, are of great reference value on the practical cold start process.

  16. On the Effect of Clamping Pressure and Method on the Current Mapping of Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Zhou, Fan; Kær, Søren Knudsen

    The degradation of the electrochemical reaction of the proton exchange membrane water electrolysis (PEMWE) can be characterized using in-situ current mapping measurements (CMM). CMM is significantly affected by the amount of clamping pressure and method. In this work the current is mapped...

  17. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  18. An annealing study of charge collection efficiency on Float-Zone p-on-n ministrip sensors irradiated with 24 GeV/c protons and 20 MeV neutrons

    International Nuclear Information System (INIS)

    Pacifico, N.; Dolenc-Kittelmann, I.; Gabrysch, M.; Moll, M.; Lucas, C.

    2015-01-01

    Float-Zone n-bulk p-readout silicon sensors are currently operated in the tracking layers of many High Energy Physics experiments, where they are exposed to moderate to high fluences of hadrons. Though n-readout sensors, either with p or n bulk, are available and are offering an improved radiation hardness, p-on-n sensors are still widely used and are e.g. installed in the present ATLAS and CMS experiments at CERN. Their radiation hardness and long-term performance are therefore of high interest to the detector community. We present here a study performed on these sensors after irradiation with 24 GeV/c protons and 20 MeV neutrons to fluences ranging from 1⋅10 14 to 1⋅10 15 n eq /cm 2 . The sensors were then investigated for charge collection efficiency after different isothermal annealing steps in order to understand the performance evolution of the sensor with annealing time. Additional measurements were performed for the highest neutron fluence by means of the Edge-TCT technique, to assess the electric field configuration within the sensor. The irradiation and the annealing scenarios were chosen to represent the radiation damage scenario over the expected lifetime of the LHC detectors (and even further) and to assess the effect of unplanned annealing due to potentially longer warm shutdowns or cooling problems

  19. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  20. Radiation annealing in Ag and Au due to energetic displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Merkle, K.L.

    1975-01-01

    Radiation annealing due to energetic displacement cascades has been studied in Ag and Au. Thin film specimens, 2500 A, were doped to various concentrations of Frenkel pair defects by irradiating with 150 keV protons at temperatures below 10 K. Subsequently, the specimens were irradiated below 10 K with energetic, approximately 540 keV, self-ions. Electrical resistivity measurements were used to monitor the concentration of defects as a function of dose. In Au, approximately 5 percent of the doped-in Frenkel pairs, annealed during the 540 keV Au irradiation. The annealing volume associated with individual cascades was found to be 2.1 x 10 -16 cm 3 . In Ag approximately 5 percent of the doped-in defects annealed during a 500 keV Ag irradiation and the annealing volume of the cascade was found to be 5 x 10 -16 cm 3 . In addition, the effects of doping concentration and specimen temperature during doping were investigated

  1. Proton magnetic resonance study of the influence of chemical modification, mutation, quaternary state, and ligation state on dynamic stability of the heme pocket in hemoglobin as reflected in the exchange of the proximal histidyl ring labile proton

    International Nuclear Information System (INIS)

    Han, K.H.; La Mar, G.N.; Nagai, K.

    1989-01-01

    Proton nuclear magnetic resonance spectroscopy has been utilized to investigate the rates of exchange with deuterium of the proximal histidyl ring protons in a series of chemically modified and mutated forms of Hb A. Differences in rates of exchange are related to differences in the stability of the deformed or partially unfolded intermediates from which exchange with bulk solvent takes place. Each modified/mutated Hb exhibited kinetic subunit heterogeneity in the reduced ferrous state, with the alpha subunit exhibiting faster exchange than the beta subunit. Modification or mutation resulted in significant increases in the His F8 ring NH exchange rates primarily for the affected subunit and only if the modification/mutation occurs at the allosterically important alpha 1 beta 2 subunit interface. Moreover, this enhancement in exchange rate is observed primarily in that quaternary state of the modified/mutated Hb in which the modified/substituted residue makes the intersubunit contact. This confirms the importance of allosteric constraints in determining the dynamic properties of the heme pocket. Using modified or mutated Hbs that can switch between the alternate quaternary states within a given ligation state or ligate within a given quaternary state, we show that the major portion of the enhanced exchange rate in R-state oxy Hb relative to T-state deoxy Hb originates from the quaternary switch rather than from ligation. However, solely ligation effects are not negligible. The exchange rates of the His F8 ring labile protons increase dramatically upon oxidizing the iron to the ferric state, and both the subunit kinetic heterogeneity and the allosteric sensitivity to the quaternary state are essentially abolished

  2. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI.

    Science.gov (United States)

    Haris, Mohammad; Nanga, Ravi Prakash Reddy; Singh, Anup; Cai, Kejia; Kogan, Feliks; Hariharan, Hari; Reddy, Ravinder

    2012-11-01

    Creatine (Cr), phosphocreatine (PCr) and adenosine-5-triphosphate (ATP) are major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7-8 times higher than PCr and ATP. A higher exchange rate in Cr was associated with lower pKa value, suggesting faster dissociation of its amine protons compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high-resolution proton imaging of Cr without contamination from PCr. Potential applications of these finding are discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings

    International Nuclear Information System (INIS)

    Oyarce, Alejandro; Gonzalez, Carlos; Lima, Raquel Bohn; Lindström, Rakel Wreland; Lagergren, Carina; Lindbergh, Göran

    2014-01-01

    Highlights: •The performance of a direct sorbitol fuel cell was evaluated at different temperatures. •The performance was compared to the performance of a direct glucose fuel cell. •The mass specific peak power density of the direct sorbitol fuel cell was 3.6 mW mg −1 totalcatalystloading at 80 °C. •Both sorbitol and glucose fuel cell suffer from deactivation. -- Abstract: Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm −2 PtRu/C at the anode and 0.3 mg cm −2 Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 °C was 3.2 mW mg −1 catalyst and 3.5 mW mg −1 catalyst , respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode

  4. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  5. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  6. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  7. A review on the effect of proton exchange membranes in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimnejad

    2014-03-01

    Full Text Available Microorganisms in microbial fuel cells (MFC liberate electrons while the electron donors are consumed. In the anaerobic anode compartment, substrates such as carbohydrates are utilized and as a result bioelectricity is produced in the MFC. MFCs may be utilized as electricity generators in small devices such as biosensors. MFCs still face practical barriers such as low generated power and current density. Recently, a great deal of attention has been given to MFCs due to their ability to operate at mild conditions and using different biodegradable substrates as fuel. The MFC consists of anode and cathode compartments. Active microorganisms are actively catabolized to carbon sources, therefore generating bioelectricity. The produced electron is transmitted to the anode surface but the generated protons must pass through the proton exchange membrane (PEM in order to reach the cathode compartment. PEM as a key factor affecting electricity generation in MFCs has been investigated here and its importance fully discussed.

  8. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  9. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  10. Thermo-economic analysis of proton exchange membrane fuel cell fuelled with methanol and methane

    International Nuclear Information System (INIS)

    Suleiman, B.; Abdulkareem, A.S.; Musa, U.; Mohammed, I.A.; Olutoye, M.A.; Abdullahi, Y.I.

    2016-01-01

    Highlights: • Modified proton exchange membrane fuel cell was reported. • Thermolib software was used for the simulation of PEM fuel cell configurations. • Optimal operating parameters at 50 kW output of each process were determined. • Thermo-economic analysis is the most efficient way of process selection. • Methane system configuration has been identified as the best preferred PEM fuel cell. - Abstract: Exergy and economic analysis is often used to find and identify the most efficient process configuration for proton exchange membrane fuel cell from the thermo-economic point of view. This work gives an explicit account of the synergetic effect of exergetic and economic analysis of proton exchange membrane fuel cell (PEMFC) using methanol and methane as fuel sources. This was carried out through computer simulation using Thermolib simulation toolbox. Data generated from the simulated model were subsequently used for the thermodynamic and economic analysis. Analysis of energy requirement for the two selected processes revealed that the methane fuelled system requires the lower amount of energy (4.578 kJ/s) in comparison to the methanol fuelled configuration which requires 180.719 J/s. Energy analysis of both configurations showed that the principle of energy conservation was satisfied while the result of the exergy analysis showed high exergetic efficiency around major equipment (heat exchangers, compressors and pumps) of methane fuelled configuration. Higher irreversibility rate were observed around the burner, stack, and steam reformer. These trends of exergetic efficiency and irreversibility rate were observed around equipment in the methanol fuelled system but with lower performance when compared with the methane fuelled process configuration. On the basis of overall exergetic efficiency and lost work, the methanol system was more efficient with lower irreversibility rate of 547.27 kJ/s and exergetic efficiency of 34.44% in comparison with the methane

  11. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2011-01-01

    A numerical model of a proton exchange membrane fuel cell (PEMFC) cathode with a tapered channel design has been developed in order to examine the dynamic behavior of liquid water transport. Three-dimensional, transient simulations employing the level-set method (available in COMSOL 3.5a, a

  12. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  13. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  14. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  15. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  16. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  17. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  18. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  19. Diluted melt proton exchange slab waveguides in LiNbO3: A new fabrication and characterization method

    DEFF Research Database (Denmark)

    Veng, Torben; Skettrup, Torben

    1997-01-01

    A method of dilute-melt proton exchange employing a mixture of glycerol and KHSO4 with lithium benzoate added is used to fabricate planar waveguides in c-cut LiNbO3. With this exchange melt system the waveguide refractive index profiles can be fabricated with a high degree of reproducibility...... the waveguide refractive index profile from the measured mode indices is introduced. The main advantage of this characterization method compared with other methods is that it also applies to single-mode waveguides. Using the new characterization method we investigate in detail the relation between waveguide...

  20. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  1. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  2. Parameterisation of radiation effects on CVD diamond for proton irradiation

    International Nuclear Information System (INIS)

    Hartjes, F.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.

    1999-01-01

    The paper reviews measurements of the radiation hardness of CVD diamond for 24 GeV/c proton irradiation at fluences up to 5 * 10 15 protons/cm 2 . The results not only show radiation damage but also an annealing effect that is dominant at levels around 10 15 protons/cm 2 . A model describing both effects is introduced, enabling a prediction of the distribution curve of the charge signal for other levels

  3. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  4. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris

    2017-05-18

    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  5. Radiation damage and annealing of lithium-doped silicon solar cells

    Science.gov (United States)

    Statler, R. L.

    1971-01-01

    Evidence has been presented that a lithium-diffused crucible-grown silicon solar cell can be made with better efficiency than the flight-quality n p 10 ohms-cm solar cell. When this lithium cell is exposed to a continuous radiation evironment at 60 C (electron spectrum from gamma rays) it has a higher power output than the N/P cell after a fluence equivalent to 1 MeV. A comparison of annealing of proton- and electron-damage in this lithium cell reveals a decidedly faster rate of recovery and higher level of recoverable power from the proton effects. Therefore, the lithium cell shows a good potential for many space missions where the proton flux is a significant fraction of the radiation field to be encountered.

  6. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  7. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  8. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  9. Antimony Doped Tin Oxides and Their Composites with Tin pyrophosphates as Catalyst Supports for Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...... based on tin pyrophosphates as the catalyst support. The materials showed an overall conductivity of 0.57 S cm−1 at 130 °C under the water vapor atmosphere with a contribution of the proton conduction. Using this composite support, iridium oxide nanoparticle catalysts were prepared and characterized...

  10. Low-temperature positron-lifetime studies of proton-irradiated silicon

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1990-01-01

    The positron-lifetime technique has been used to identify defects created in high-purity single-crystal silicon by irradiation with 12-MeV protons at 15 K, and the evolution of the defects has been studied by subsequent annealings between 20 and 650 K. Two clear annealing steps were seen...... in the samples, the first starting at 100 K and the other at 400 K. The first is suggested to be a result of the migration of free, negatively charged monovacancies, and the second is connected to the annealing of some vacancy-impurity complexes, probably negatively charged vacancy-oxygen pairs. The specific...

  11. Parameterisation of radiation effects on CVD diamond for proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hartjes, F.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M

    1999-08-01

    The paper reviews measurements of the radiation hardness of CVD diamond for 24 GeV/c proton irradiation at fluences up to 5{sup *}10{sup 15} protons/cm{sup 2}. The results not only show radiation damage but also an annealing effect that is dominant at levels around 10{sup 15} protons/cm{sup 2}. A model describing both effects is introduced, enabling a prediction of the distribution curve of the charge signal for other levels.

  12. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  13. Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer

    CSIR Research Space (South Africa)

    Hou, S

    2017-11-01

    Full Text Available The performance of the proton exchange membrane fuel cell (PEMFC) is significantly improved through introducing nitrogen-doped carbon nanotubes (NCNTs) into the catalyst layer (CL) and microporous layer (MPL) of the membrane electrode assembly (MEA...

  14. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Cour, Morten la; Ming Lui, Ge

    2000-01-01

    Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange......Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange...

  15. CFD simulation of fuel cell proton exchange membrane multichannel

    International Nuclear Information System (INIS)

    Argota, Raúl; García, Lázaro; Torre, Raciel de la; González, Daniel

    2015-01-01

    Hydrogen has several applications that make the strongest candidate for implementation as an energy carrier in the future sustainable scenario. Current hydrogen production is based on fossil fuels that have a high contribution to air pollution. The imminent depletion of fossil fuels and high emissions of greenhouse gases that cause consumption has brought the world to consider energy scenarios that are more environmentally friendly and yet profitable. The use of hydrogen as an energy carrier generally occurs with good application prospects. Fuel cells have attracted great interest for its application mainly in the transport sector. The fuel cell PEM proton exchange membrane which convert chemical energy stored in hydrogen into electrical energy directly and efficiently, with water as a byproduct, have the ability to reduce emissions and dependence on fossil fuels. A model for multiple cell PEM five channels using the ANSYS software CFD occurs. Performance analysis and optimization of the thermodynamic and geometric parameters of the fuel cell is performed. It was analyzed the overall electrical performance and assessed performance by local current density, flow and temperatures. (full text)

  16. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    Science.gov (United States)

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exchange-Mediated Contrast in CEST and Spin-Lock Imaging

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F.; Gore, John C.

    2014-01-01

    PURPOSE Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. METHODS Simulations and experimental measurements at 9.4T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. RESULTS The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate to fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CONCLUSION CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ dependent acquisitions can be employed to selectively portray protons of specific exchange rates. PMID:24239335

  18. Exchange-mediated contrast in CEST and spin-lock imaging.

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F; Gore, John C

    2014-01-01

    Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. >2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates. © 2013.

  19. Comparison of proton and phosphorous ion implantation-induced intermixing of InAs/InP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Tan, H H; Jagadish, C [Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2007-05-02

    We report and compare proton and phosphorous ion implantation-induced intermixing of InAs/InP quantum dots (QDs). After ion implantation at 20-300 deg. C, the QDs are rapid thermally annealed at 850 deg. C for 30 s. Proton implantation induces less energy shift than P ion implantation for a given concentration of atomic displacements due to the more efficient dynamic annealing of the defects created by protons. The implantation-induced energy shift reaches a maximum value of about 260 meV for a dose of 5 x 10{sup 12} ions cm{sup -2} in the P ion implanted QDs, which also show narrower PL linewidths compared to the proton implanted QDs. We also report the effects of an InGaAs top cap layer on the ion implantation-induced QD intermixing and show that defect production and annihilation processes evolve differently in InGaAs and InP layers and vary with the implantation temperature. When the implantation is performed at higher temperatures, the energy shift of the P ion implanted QDs capped with an InP layer increases due to the reduction in larger defect cluster formation at higher temperatures, while the energy shift of the proton implanted QDs decreases due to increased dynamic annealing irrespective of their cap layers.

  20. Microalgae dewatering based on forward osmosis employing proton exchange membrane.

    Science.gov (United States)

    Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In

    2017-11-01

    In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  2. Pt nanoparticle-reduced graphene oxide nanohybrid for proton exchange membrane fuel cells.

    Science.gov (United States)

    Park, Dae-Hwan; Jeon, Yukwon; Ok, Jinhee; Park, Jooil; Yoon, Seong-Ho; Choy, Jin-Ho; Shul, Yong-Gun

    2012-07-01

    A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

  3. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  4. A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films

    Science.gov (United States)

    Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing

    2009-07-01

    A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.

  5. Ring-Substituted Benzohydroxamic Acids: 1H, 13C and 15N NMR Spectra and NHOH Proton Exchange

    Czech Academy of Sciences Publication Activity Database

    Schraml, Jan; Tkadlecová, M.; Pataridis, S.; Soukupová, Ludmila; Blechta, Vratislav; Roithová, Jana; Exner, Otto

    2005-01-01

    Roč. 43, č. 7 (2005), s. 535-542 ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA203/03/1566; GA AV ČR(CZ) IAA4072605; GA AV ČR(CZ) IAA4072005; GA MŠk(CZ) LB98233 Institutional research plan: CEZ:AV0Z40720504 Keywords : proton exchange * substituent effects * chemical shifts Subject RIV: CC - Organic Chemistry Impact factor: 1.553, year: 2005

  6. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  7. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    Science.gov (United States)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton

  8. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells

    Science.gov (United States)

    Liu, Chien-Pan; Dai, Chi-An; Chao, Chi-Yang; Chang, Shoou-Jinn

    2014-03-01

    In this study, we report the synthesis and the characterization of poly (vinyl alcohol) based proton conducting membranes. In particular, we describe a novel physically and chemically PVA/HFA (poly (vinyl alcohol)/hexafluoroglutaric acid) blending membranes with BASANa (Benzenesulfonic acid sodium salt) and GA (Glutaraldehyde) as binary reaction agents. The key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane is found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. The proton conductivities and the methanol permeability of all the membranes are in the range of 10-3-10-2 S cm-1 and 10-8-10-7 cm2 s-1, respectively, depending on its binary crosslinking density, and it shows great selectivity compared with those of Nafion®-117. The membranes display good mechanical properties which suggest a good lifetime usage of the membranes applied in DMFCs.

  9. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of); Saouab, Abdelghani [Department of Mechanical Engineering, University of Le Havre, Place Robert Schuman, BP 4006, 76610 Le Havre (France); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of)

    2010-02-25

    The preparation and characterization of high-surface-area ruthenium oxide (RuO{sub 2})/multi-walled carbon nanotubes (MWCNTs) composite electrodes for use in supercapacitors is reported in this work. The RuO{sub 2}/MWCNTs composites were prepared by the polyol process of RuO{sub 2} into MWCNTs and by Ru annealing in air before mixed with MWCNTs. The chemically oxidized and annealed Ru nanoparticles contribute a pseudocapacitance to the electrodes and dramatically improve the energy storage characteristics of the MWCNTs. These composites annealed at 200 deg. C demonstrate specific capacitances in excess of 130 F/g in comparison to 80 F/g for pristine MWCNTs. The annealing temperature is found to play an important role, as it affects the electrochemical performance of annealed RuO{sub 2}/MWCNTs composites critically due to its influence on the diffusion of protons into the structure.

  10. Neutron-proton bremsstrahlung experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koster, J.E. (Los Alamos National Lab., NM (United States)); Nelson, R.O. (Los Alamos National Lab., NM (United States)); Schillaci, M.E. (Los Alamos National Lab., NM (United States)); Wender, S.A. (Los Alamos National Lab., NM (United States)); Mayo, D. (Univ. of California at Davis, CA (United States)); Brady, F.P. (Univ. of California at Davis, CA (United States)); Romero, J. (Univ. of California at Davis, CA (United States)); Krofcheck, D. (Lawrence Livermore National Lab., CA (United States)); Blann, M. (Lawrence Livermore National Lab., CA (United States)); Anthony, P. (Lawrence Livermore National Lab., CA (United States)); Brown, V.R. (Lawrence Livermore National Lab., CA (United States)); Hansen, L. (Lawrence Livermore National Lab., CA (United States)); Pohl, B. (Lawrence Livermore National Lab., CA (United States)); Sangster, T.C. (Lawrence Livermore National Lab., CA (United States)); Nifenecker, H. (Inst. des Sciences Nucleaires, Grenoble (France)); Pinston,

    1993-06-01

    It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a proton is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 400 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma ray angles of around 90 relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays. (orig.)

  11. Development and testing of the proton exchange membrane fuel cell (PEMFC) for stationary generation; Desenvolvimento e ensaios de uma celula a combustivel de polimero solido (PEMFC) para geracao estacionaria

    Energy Technology Data Exchange (ETDEWEB)

    Ellern, Mara; Boccuzzi, Cyro Vicente [ELETROPAULO, Sao Caetano, SP (Brazil)], e-mail: mara.ellern@aes.com; Ett, Gerhard; Saiki, Gerson Yukio; Janolio, Gilberto [ELECTROCELL, Sao Paulo, SP (Brazil); Jardini, Jose Antonio [Universidade de Sao Paulo (USP), SP (Brazil)

    2004-07-01

    PEM (Proton Exchange Membrane) fuel cell uses a simple chemical reaction to combine hydrogen and oxygen into water, producing electric current in the process. It works something like reversed electrolysis: at the anode, hydrogen molecules give up electrons, forming hydrogen ions (this process is made possible by the platinum catalyst). The proton exchange membrane allows protons to flow through, but not electrons. As a result, the hydrogen ions flow directly through the proton exchange membrane to the cathode, while the electrons flow through an external circuit. As they travel to the cathode through the external circuit, the electrons produce electrical current. At the cathode, the electrons and hydrogen ions combine with oxygen to form water. In a fuel cell, hydrogen's natural tendency to oxidize and form water produces electricity and useful work. No pollution is produced and the only byproducts are water and heat. The huge advance on materials development combined with the growth demand of lower impact on environment is placing the fuel cells on the top of the most promising technologies world-wide. They are becoming in medium term feasible alternatives for energy generators up to energy plants of few MW. (author)

  12. Does oxidative stress affect the activity of the sodium-proton exchanger?

    Science.gov (United States)

    Bober, Joanna; Kedzierska, Karolina; Kwiatkowska, Ewa; Stachowska, Ewa; Gołembiewska, Edyta; Mazur, Olech; Staniewicz, Zdzisław; Ciechanowski, Kazimierz; Chlubek, Dariusz

    2010-01-01

    Accumulation of reactive oxygen species (ROS) takes place in patients with chronic renal failure (CRF). Oxidative stress causes disorders in the activity of the sodium-proton exchanger (NHE). Studies on NHE in CRF produced results that are discrepant and difficult to interpret. The aim of this study was to demonstrate that oxidative stress had an effect on the activity of NHE. We enrolled 87 subjects divided into 4 groups: patients with CRF treated conservatively; patients with CRF hemodialyzed without glucose--HD-g(-); patients with CRF hemodialyzed with glucose--HD-g(+); controls (C). The activity of NHE, the rate of proton efflux V(max), Michaelis constant (Km), and the concentration of thiobarbituric acid-reactive substances (TBARS, an indicator of oxidative stress) in plasma, as well as the concentration of reduced glutathione in blood were determined. The concentration of TBARS was significantly higher in hemodialyzed patients before and after dialysis and in patients with CRF on conservative treatment in comparison with group C. TBARS in plasma correlated negatively with VpH(i)6.4 in group C and with V(max) and VpH(i)6.4 after HD in group HD-g(-). We found that the concentration of creatinine correlated with TBARS (p < 0.0001; r = +0.51) in the conservatively treated group. We observed a marked oxidative stress and decreased NHE activity when dialysis was done without glucose, whereas patients dialyzed with glucose demonstrated a relatively low intensity of oxidative stress.

  13. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  15. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  16. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  17. A simple electric circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  18. Investigations of the temperature distribution in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Jung, Chi-Young; Shim, Hyo-Sub; Koo, Sang-Man; Lee, Sang-Hwan; Yi, Sung-Chul

    2012-01-01

    A two-dimensional, non-isothermal model of a proton exchange membrane fuel cell was implemented to elucidate heat balance through the membrane electrode assembly (MEA). To take local utilization of platinum catalyst into account, the model was presented by considering the formation of agglomerated catalyst structure in the electrodes. To estimate energy balance through the MEA, various modes of heat generation and depletion by reversible/irreversible heat release, ohmic heating and phase change of water were included in the present model. In addition, dual-pathway kinetics, that is a combination of Heyrovsky–Volmer and Tafel–Volmer kinetics, were employed to precisely describe the hydrogen oxidation reaction. The proposed model was validated with experimental cell polarization, resulting in excellent fit. The temperature distribution inside the MEA was analyzed by the model. Consequently, a thorough investigation was made of the relation between membrane thickness and the temperature distribution inside the MEA.

  19. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    Science.gov (United States)

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID

  20. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    Science.gov (United States)

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  1. Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)

  2. Enhancements of the critical currents of YBaCuO single crystals by neutron (n) and proton (p) irradiation

    International Nuclear Information System (INIS)

    Vlcek, B.M.; Frischherz, M.C.; Vishwanathan, H.K.; Welp, U.; Crabtree, G.W.; Kirk, M.A.

    1992-01-01

    We present results of magnetization hysteresis and T c measurements of neutron and proton irradiated YBaCuO single crystals. The crystals used for comparison were irradiated to a fluence of 2x10 7 n/cm 2 (n,E > 0.1MeV) and 1x10 16 p/cm 2 (p,E=3.5MeV). The critical currents at 1T and 10K are enhanced by a factor of 5 for the neutron irradiated and a factor of 9 for the proton irradiated sample respectively. After irradiation the crystals were annealed at 100, 200 and 300C for 8h each in air. Following each annealing step the critical temperature and the magnetization hysteresis at 10 and 70K was measured. Upon annealing, we observe a decrease of the critical currents, which is more pronounced for the proton irradiated sample. This decrease is related to the removal of point defects or their small clusters. Thus, their contribution to pinning can be studied. The critical temperature decreases after both types of irradiation by about 0.5K and is fully recovered after annealing

  3. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application

    International Nuclear Information System (INIS)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F.; Cantao, Mauricio P.

    2005-01-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  4. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  5. The role of protonation in protein fibrillation

    DEFF Research Database (Denmark)

    Jeppesen, Martin D; Westh, Peter; Otzen, Daniel E

    2010-01-01

    Many proteins fibrillate at low pH despite a high population of charged side chains. Therefore exchange of protons between the fibrillating peptide and its surroundings may play an important role in fibrillation. Here, we use isothermal titration calorimetry to measure exchange of protons between...... buffer and the peptide hormone glucagon during fibrillation. Glucagon absorbs or releases protons to an extent which allows it to attain a net charge of zero in the fibrillar state, both at acidic and basic pH. Similar results are obtained for lysozyme. This suggests that side chain pKa values change...

  6. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  7. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  8. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  9. Studies of radiation damage in silicon sensors and a measurement of the inelastic proton--proton cross-section at 13 TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00360674; Ward, Patricia

    This thesis presents studies of radiation damage in silicon sensors for the new ATLAS tracker at the high-luminosity LHC, calibrations of the LHC luminosity scale, and a measurement of the proton--proton inelastic cross-section at 13 TeV~with ATLAS data. The studies of radiation damage are performed by comparing sensor performance before and after irradiation, and include annealing studies. The measured quantities include: leakage current, depletion depth, inter-strip isolation, and charge collection. Surface and bulk damage is studied by comparing the results of sensors irradiated with protons and neutrons. The observed degradation of performance suggests the current sensor design will endure the radiation damage expected over the lifetime of the experiment at the high-luminosity LHC. The luminosity is calibrated for the proton--proton, proton--lead, and lead--lead collisions delivered by the LHC during 2013 and 2015. The absolute luminosity scale is derived with the van der Meer method. The systematic unc...

  10. Sliding mode observer for proton exchange membrane fuel cell: automotive application

    Science.gov (United States)

    Piffard, Maxime; Gerard, Mathias; Fonseca, Ramon Da; Massioni, Paolo; Bideaux, Eric

    2018-06-01

    This work proposes a state observer as a tool to manage cost and durability issues for PEMFC (Proton Exchange Membrane Fuel Cell) in automotive applications. Based on a dead-end anode architecture, the observer estimates the nitrogen build-up in the anode side, as well as relative humidities in the channels. These estimated parameters can then be used at fuel cell management level to enhance the durability of the stack. This observer is based on transport equations through the membrane and it reconstructs the behavior of the water and nitrogen inside the channels without the need of additional humidity sensors to correct the estimate. The convergence of the output variables is proved with Lyapunov theory for dynamic operating conditions. The validation is made with a high-fidelity model running a WLTC (Worldwide harmonized Light vehicles Test Cycle). This observer provides the average values of nitrogen and relative humidities with sufficient precision to be used in a global real-time control scheme.

  11. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...

  12. Odderon and photon exchange in electroproduction of pseudoscalar mesons

    CERN Document Server

    Berger, Edgar R.; Dosch, Hans Gunter; Kilian, W.; Nachtmann, O.; Rueter, M.

    1999-01-01

    We investigate the reaction $e p \\to e PS X$ where PS denotes a pseudoscalar meson $\\pi^0, \\eta, \\eta'$, or $\\eta_c$ and X either a proton or resonance or continuum states into which the proton can go by diffractive excitation. At high energies photon and odderon exchange contribute to the reaction. The photon exchange contribution is evaluated exactly using data for the total virtual photon-proton absorption cross section. The odderon exchange contribution is calculated in nonperturbative QCD, using functional integral techniques and the model of the stochastic vacuum. For the proton we assume a quark-diquark structure as suggested by the small odderon amplitude in $pp$ and $p \\bar{p}$ forward scattering. We show that odderon exchange leads to a much larger inelastic than elastic PS production cross section. Observation of our reaction at HERA would establish the soft odderon as an exchange object on an equal footing with the soft pomeron and would give us valuable insight into both the nucleon structure and...

  13. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  14. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole).

    Science.gov (United States)

    Hazarika, Mousumi; Jana, Tushar

    2012-10-24

    In continuation (J. Phys. Chem. B2008, 112, 5305; J. Colloid Interface Sci. 2010, 351, 374) of our quest for proton exchange membrane (PEM) developed from polybenzimidazole (PBI) blends, novel polymer blend membranes of PBI and poly(1-vinyl-1,2,4-triazole) (PVT) were prepared using a solution blending method. The aim of the work was to investigate the effect of the blend composition on the properties, e.g., thermo-mechanical stability, swelling, and proton conductivity of the blend membranes. The presence of specific interactions between the two polymers in the blends were observed by studying the samples using varieties of spectroscopic techniques. Blends prepared in all possible compositions were studied using a differential scanning calorimetry (DSC) and exhibited a single T(g) value, which lies between the T(g) value of the neat polymers. The presence of a single composition-dependent T(g) value indicated that the blend is a miscible blend. The N-H···N interactions between the two polymers were found to be the driving force for the miscibility. Thermal stability up to 300 °C of the blend membranes, obtained from thermogravimetric analysis, ensured their suitability as PEMs for high-temperature fuel cells. The proton conductivity of the blend membranes have improved significantly, compared to neat PBI, because of the presence of triazole moiety, which acts as a proton facilitator in the conduction process. The blend membranes showed a considerably lower increase in thickness and swelling ratio than that of PBI after doping with phosphoric acid (PA). We found that the porous morphology of the blend membranes caused the loading of a larger amount of PA and, consequently, higher proton conduction with lower activation energy, compared to neat PBI.

  15. Recovery of 201Tl by ion exchange chromatography from proton bombarded thallium cyclotron targets

    International Nuclear Information System (INIS)

    Walt, T.N. van der; Naidoo, C.

    2000-01-01

    A method based on ion exchange chromatography is presented for the recovery of 201 Tl and its precursor 201 Pb from proton bombarded natural thallium cyclotron targets. After bombardment the target is dissolved in diluted nitric acid. Water, hydrazine and ammonium acetate are added to the solution and the lead radioisotopes separated from the thallium by cation exchange chromatography on a Bio-Rex 70 column. The sorbed lead radioisotopes are eluted with dilute nitric acid and the separation repeated on a second Bio-Rex 70 column. After elution of the remaining thallium the column is left for 32 hours and the 201 Tl formed by decay of 201 Pb is eluted with an ammonium acetate solution. The 201 Tl eluate is acidified with a HNO 3 -HBr-Br 2 mixture and the resulting solution is passed through an AG MP-1 anion exchanger column to remove any remaining lead isotopes. The 201 Tl is eluted with a hydrazine solution, the eluate evaporated to dryness and the 201 Tl finally dissolved in an appropriate solution to produce a 201 TlCl solution suitable for medical use. A high quality 201 Tl product is obtained containing ≤ 0.1 μg of Tl/mCi (37 MBq) 201 Tl. The radionuclidic impurities are less than the maximum values specified by the US Pharmacopoeia and the British Pharmacopoeia. (orig.)

  16. Comparative analysis of cation/proton antiporter superfamily in plants.

    Science.gov (United States)

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Rapid deuterium exchange-in time for probing conformational change

    International Nuclear Information System (INIS)

    Dharmasiri, K.; Smith, D.L.

    1995-01-01

    Isotopic exchange of protein backbone amide hydrogens has been used extensively as a sensitive probe of protein structure. One of the salient features of hydrogen exchange is the vast range of exchange rates in one protein. Isotopic exchange methods have been used to study the structural features including protein folding and unfolding (1), functionally different forms of proteins (2), protein-protein complexation (3), and protein stability parameter. Many backbone amide protons that are surface accessible and are not involved in hydrogen bonding undergo rapid deuterium exchange. In order to study, fast exchanging amide protons, fast exchange-in times are necessary

  18. Doping of 6H-SiC pn structures by proton irradiation

    International Nuclear Information System (INIS)

    Strel'chuk, Anatoly M.; Lebedev, Alexandre A.; Kozlovski, Vitali V.; Savkina, Natali S.; Davydov, Denis V.; Solov'ev, Viktor V.; Rastegaeva, Marina G.

    1999-01-01

    The influence of proton irradiation on current-voltage characteristics, N d - N a values and parameters of deep centres in 6H-SiC pn structures grown by sublimation epitaxy has been studied. The irradiation was carried out with 8 MeV protons in the range of doses from 10 14 to 10 16 cm -2 . Irradiation with a dose of 3.6x10 14 cm -2 leaves the voltage drop at high forward currents (10 A/cm 2 ) practically unchanged. For higher irradiation dose of 1.8x10 15 cm -2 , the forward voltage drop and the degree of compensation in the samples increased ; partial annealing of the radiation defects and partial recovery of the electrical parameters occurred after annealing at T∼400-800 K. Irradiation with a dose of 5.4x10 15 cm -2 resulted in very high resistance in forward biased pn structures which remained high even after heating to 500 deg. C. It is suggested that proton irradiation causes decreasing of the lifetime and formation of an i- or an additional p-layer

  19. Experimental measurement of proton penetration in silicon

    International Nuclear Information System (INIS)

    Castaing, C.; Baruch, P.; Picard, C.

    1974-01-01

    After proton implantation in silicon at high fluence, hydrogen precipitation in bubbles is induced by annealing. The stresses are so high that blister formation and peeling occur, leaving flat bottomed pits, with a depth equal to the projected proton range R(p). In this way R(p) was measured between 200 and 600keV, and compared with already published values, and with values computed through LSS (Lindhard, Scharff, and Schiott) theory, using a correct electronic stopping power. A table of ranges and standard deviations, computed in this way is given. The agreement with experimental results is excellent [fr

  20. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  1. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  2. Interfacial spin cluster effects in exchange bias systems

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R., E-mail: rc548@york.ac.uk; Vallejo-Fernandez, G.; O' Grady, K. [Department of Physics, The University of York, York YO10 5DD (United Kingdom)

    2014-05-07

    In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.

  3. A review on the performance and modelling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucetta, A., E-mail: abirboucetta@yahoo.fr; Ghodbane, H., E-mail: h.ghodbane@mselab.org; Bahri, M., E-mail: m.bahri@mselab.org [Department of Electrical Engineering, MSE Laboratory, Mohamed khider Biskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  4. Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers

    Directory of Open Access Journals (Sweden)

    Ana Belen Jorge

    2018-06-01

    Full Text Available Carbon nitride materials with graphitic to polymeric structures (gCNH were investigated as catalyst supports for the proton exchange membrane (PEM water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2 electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.

  5. Ionic liquids in proton exchange membrane fuel cells: Efficient systems for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Basso, Juliana; da Trindade, Leticia G.; Martini, Emilse M.A.; de Souza, Michele O.; de Souza, Roberto F. [Institute of Chemistry, UFRGS, Av. Bento Goncalves 9500, Porto Alegre 91501-970, P.O. Box 15003 (Brazil)

    2010-10-01

    Proton exchange membrane fuel cells (PEMFCs) are used in portable devices to generate electrical energy; however, the efficiency of the PEMFC is currently only 40%. This study demonstrates that the efficiency of a PEMFC can be increased to 61% when 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) ionic liquid (IL) is used together with the membrane electrode assembly (MEA). The results for ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride (BMI.Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) in aqueous solutions are better than those obtained with pure water. The current and the power densities with IL are at least 50 times higher than those obtained for the PEMFC wetted with pure water. This increase in PEMFC performance can greatly facilitate the use of renewable energy sources. (author)

  6. The dew point temperature as a criterion for optimizing the operating conditions of proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2012-01-01

    In this article an analytical method to calculate the dew point temperatures of the anode and cathode exit gas streams of a proton exchange membrane fuel cell is developed. The results of these calculations are used to create diagrams that show the dew point temperatures as function of the operat...... for conventional flow field plates. The diagrams presented here are created for completely dry inlet gases, but they can be easily corrected for a nonzero inlet relative humidity....

  7. Probing two-photon exchange with OLYMPUS

    International Nuclear Information System (INIS)

    Kohl, M.

    2014-01-01

    Two-photon exchange is believed to be responsible for the discrepancies in the proton electric to magnetic form factor ratio found with the Rosenbluth and polarization transfer methods. If this explanation is correct, one expects significant differences in the lepton-proton cross sections between positrons and electrons. The OLYMPUS experiment at DESY in Hamburg, Germany was designed to measure the ratio of unpolarized positron-proton and electron-proton elastic scattering cross sections over a wide kinematic range with high precision, in order to quantify the effect of two-photon exchange. The experiment used intense beams of electrons and positrons stored in the DORIS ring at 2.0 GeV interacting with an internal windowless hydrogen gas target. The current status of OLYMPUS will be discussed. (authors)

  8. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  9. Microstructural evolution of radiation induced defects in ZnO during isochronal annealing

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Balogh, A.G.

    1999-01-01

    In this study the authors discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing. The nominally undoped samples were irradiated either with 3 MeV protons to a fluence of 1.2 x 10 18 p/cm 2 or with 1 MeV electrons to a fluence of 1 x 10 18 e/cm 2 . The investigation was performed with positron lifetime and Doppler-Broadening measurements. The measurements were done at room temperature and in some cases down to 10 K to investigate the thermal dependence of the trapping characteristics of the positrons

  10. Probing color-singlet exchange at D0

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes

  11. Mechanism of protodesorption—exchange of heavy metal cations for protons in a heterophase system of H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}—cellulose sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.A.; Nikiforova, T.E., E-mail: tatianaenik@mail.ru; Loginova, V.A.; Koifman, O.I.

    2015-12-15

    Highlights: • Protodesorption takes place with participation of anions. • The interphase indicator MSO{sub 4} is used in ion exchange investigation. • In ion exchange process salt and acid participate in equivalent proportions. • In a protodesorption process proton acts in degree of ½. • M{sup 2+}/2Na{sup +} and M{sup 2+}/2H{sup +} exchanges take place in ion and molecular forms. - Abstract: The influence of pH on the distribution of metal cations [Cd(II), Cu(II), Fe(II), Ni(II), Zn(II)] in a four-component heterophase system (H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}–cellulose sorbent) was studied. Protodesorption of metal cations was studied with indicator and constant quantities of [MSO{sub 4}] salts and constant solvent–sorbent ratio. Linear dependence lgK{sub DM2+} = f(pH) with tgα = 1/2 of the K{sub DM2+} metal ions distribution coefficients from the acidity of the aqueous phase is observed in logarithmic coordinates. Depression of the exponent corresponding to proton involvement in protodesorption from 2 (theory) to 0.5 (experiment) indicates that anions of the aqueous phase are involved in the process of exchange of metal cation for proton on the anionic centers of the sorbent, which corresponds to participation of the salt and acid components of the system in molecular non-dissociated form in an equivalent proportion H{sub 2}SO{sub 4}/MSO{sub 4} = 1/1. Different behavior of the salt and acid components in ion exchange of cations for cations and cations for protons is due to the differences in the constraint coefficients of their molecular and ionic forms which must be taken into consideration in equations describing thermodynamics of the interphase exchange.

  12. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  13. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  14. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J.

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10 10 p/cm 2 ). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  15. Proton irradiation of liquid crystal based adaptive optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Buis, E.J., E-mail: ernst-jan.buis@tno.nl [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Berkhout, G.C.G. [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Love, G.D.; Kirby, A.K.; Taylor, J.M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hannemann, S.; Collon, M.J. [cosine Research BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands)

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10{sup 10}p/cm{sup 2}). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  16. Performance equations of proton exchange membrane fuel cells with feeds of varying degrees of humidification

    International Nuclear Information System (INIS)

    Hsuen, Hsiao-Kuo; Yin, Ken-Ming

    2012-01-01

    Performance equations that describe the dependence of cell potential on current density for proton exchange membrane fuel cells (PEMFCs) with feeds of varying degrees of humidification have been formulated in algebraic form. The equations are developed by the reduction of a one-dimensional multi-domain model that takes into account, in details, the transport limitations of gas species, proton migration and electron conduction, electrochemical kinetics, as well as liquid water flow within the cathode, anode, and membrane. The model equations for the anode and membrane were integrated with those of the cathode developed in the previous studies to form a complete set of equations for one-dimensional single cell model. Because the transport equations for the anode diffuser can be solved analytically, calculations of integrals are only needed in the membrane and the two-phase region of cathode diffuser. The proposed approach greatly reduces the complexity of the model equations, and only iterations of a single algebraic equation are required to obtain final solutions. Since the performance equations are originated from a mechanistic one-dimensional model, all the parameters appearing in the equations are endowed with a precise physical significance.

  17. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...

  18. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  19. Exclusive production of meson pairs and resonances in proton-proton collisions

    International Nuclear Information System (INIS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2013-01-01

    We report a study of the central exclusive production of π + π − and K + K − pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and ππ (KK) rescattering. We discuss a measurement of exclusive production of a scalar χ c0 meson via χ c0 →π + π − , K + K − decay. We find that the relative contribution of resonance states and the ππ (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f 2 (1270) meson production mediated by an effective tensor pomeron exchanges.

  20. Hydrogen--deuterium exchanges in nucleosides and nucleotides. A mechanism for exchange of the exocyclic amino hydrogens of adenosine

    International Nuclear Information System (INIS)

    Cross, D.G.; Brown, A.; Fisher, H.F.

    1975-01-01

    The pH dependence of the apparent first-order rate constant for the exchange of the exocyclic amino hydrogens of adenosine with deuterium from the solvent was measured by stopped-flow ultraviolet spectroscopy. This dependence shows acid catalysis, base catalysis, and spontaneous exchange at neutral pH values. A study of the effect of several buffers on the rates of exchange reveals both general acid and general base catalytic behavior for the exchange process. We propose a general mechanism for the exchange which requires N-1 protonated adenosine as an intermediate for the acid-catalyzed exchange and amidine anion for the base-catalyzed exchange. In both cases the rate-limiting step is the base-catalyzed abstraction of a proton from the exocyclic amino moiety. Evaluation of the rate constants predicts the equilibrium for the exocyclic amino/imino tautomers to be 6.3 x 10 3 :1. (U.S.)

  1. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  2. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher A.R. Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2005-08-01

    Using semi-empirical equations for modeling a proton exchange membrane fuel cell is proposed for providing a tool for the design and analysis of fuel cell total systems. The focus of this study is to derive an empirical model including process variations to estimate the performance of fuel cell without extensive calculations. The model take into account not only the current density but also the process variations, such as the gas pressure, temperature, humidity, and utilization to cover operating processes, which are important factors in determining the real performance of fuel cell. The modelling results are compared well with known experimental results. The comparison shows good agreements between the modeling results and the experimental data. The model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. (Author)

  3. Performance prediction of a proton exchange membrane fuel cell using the ANFIS model

    Energy Technology Data Exchange (ETDEWEB)

    Vural, Yasemin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Houldsworth Building, LS2 9JT Leeds (United Kingdom)

    2009-11-15

    In this study, the performance (current-voltage curve) prediction of a Proton Exchange Membrane Fuel Cell (PEMFC) is performed for different operational conditions using an Adaptive Neuro-Fuzzy Inference System (ANFIS). First, ANFIS is trained with a set of input and output data. The trained model is then tested with an independent set of experimental data. The trained and tested model is then used to predict the performance curve of the PEMFC under various operational conditions. The model shows very good agreement with the experimental data and this indicates that ANFIS is capable of predicting fuel cell performance (in terms of cell voltage) with a high accuracy in an easy, rapid and cost effective way for the case presented. Finally, the capabilities and the limitations of the model for the application in fuel cells have been discussed. (author)

  4. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  5. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  6. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  7. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jie; Lee, Seung Jae [Energy Lab, Samsung Advanced Institute of Technology, Mt. 14-1 Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2006-11-22

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T>=393K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (author)

  8. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    Science.gov (United States)

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  9. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., NM (United States); Lalk, T R [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Appleby, A J [Center for Electrochemical Studies and Hydrogen Research, Texas Engineering Experimentation Station, Texas A and M Univ., College Station, TX (United States)

    1998-02-01

    The processes, losses, and electrical characteristics of a Membrane-Electrode Assembly (MEA) of a Proton Exchange Membrane Fuel Cell (PEMFC) are described. In addition, a technique for numerically modeling the electrochemical performance of a MEA, developed specifically to be implemented as part of a numerical model of a complete fuel cell stack, is presented. The technique of calculating electrochemical performance was demonstrated by modeling the MEA of a 350 cm{sup 2}, 125 cell PEMFC and combining it with a dynamic fuel cell stack model developed by the authors. Results from the demonstration that pertain to the MEA sub-model are given and described. These include plots of the temperature, pressure, humidity, and oxygen partial pressure distributions for the middle MEA of the modeled stack as well as the corresponding current produced by that MEA. The demonstration showed that models developed using this technique produce results that are reasonable when compared to established performance expectations and experimental results. (orig.)

  10. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  11. Exchangers man the pumps

    Science.gov (United States)

    Barkla, Bronwyn J; Hirschi, Kendal D

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670

  12. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  13. Proton irradiation effects on gallium nitride-based devices

    Science.gov (United States)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  14. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  15. Nuclear techniques of analysis in diamond synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Prawer, S; Gonon, P; Walker, R; Dooley, S; Bettiol, A; Pearce, J [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs.

  16. Nuclear techniques of analysis in diamond synthesis and annealing

    International Nuclear Information System (INIS)

    Jamieson, D. N.; Prawer, S.; Gonon, P.; Walker, R.; Dooley, S.; Bettiol, A.; Pearce, J.

    1996-01-01

    Nuclear techniques of analysis have played an important role in the study of synthetic and laser annealed diamond. These measurements have mainly used ion beam analysis with a focused MeV ion beam in a nuclear microprobe system. A variety of techniques have been employed. One of the most important is nuclear elastic scattering, sometimes called non-Rutherford scattering, which has been used to accurately characterise diamond films for thickness and composition. This is possible by the use of a database of measured scattering cross sections. Recently, this work has been extended and nuclear elastic scattering cross sections for both natural boron isotopes have been measured. For radiation damaged diamond, a focused laser annealing scheme has been developed which produces near complete regrowth of MeV phosphorus implanted diamonds. In the laser annealed regions, proton induced x-ray emission has been used to show that 50 % of the P atoms occupy lattice sites. This opens the way to produce n-type diamond for microelectronic device applications. All these analytical applications utilize a focused MeV microbeam which is ideally suited for diamond analysis. This presentation reviews these applications, as well as the technology of nuclear techniques of analysis for diamond with a focused beam. 9 refs., 6 figs

  17. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles

    International Nuclear Information System (INIS)

    Wang, Jingtao; Bai, Huijuan; Zhang, Haoqin; Zhao, Liping; Chen, Huiling; Li, Yifan

    2015-01-01

    Highlights: • The concept of acid/base pairs was employed to design anhydrous PEMs. • Polydopamine-modified silica particles were uniformly dispersed in SPEEK membrane. • The membranes displayed enhancement in both stability and anhydrous proton conductivity. - Abstract: Novel anhydrous proton exchange membrane is (PEM) facilely prepared by embedding dopamine-modified silica nanoparticles (DSiOis 2 ) into sulfonated poly (ether ether ketone) (SPEEK) polymer matrix. DSiO 2 bearing -NH 2 /-NH- groups are synthesized inspired by the bioadhesion principle, which are uniformly dispersed within SPEEK membrane due to the good interfacial compatibility. The interfacial electrostatic attractions render unique rearrangement of the nanophase-separated structure and the chain packing of the resultant hybrid membranes. As a result, the thermal and mechanical stabilities as well as structural stability of the hybrid membranes are enhanced when compared to SPEEK control membrane. On the other hand, induced by the attractions, acid–base pairs are formed at the SPEEK/DSiOarewere 2 interface, where fast proton transfer via Grotthuss mechanism is expected. These features confer much higher proton conductivities on the DSiO 2 -filled membranes under both hydrated and anhydrous conditions, compared to those of the SPEEK control membrane and SiO 2 -filled membranes. Particularly, the hybrid membrane with 15 wt% DSiO 2 achieve the highest conductivities of 4.52achieveachieved × 10 −3 S cm −1 at 120 °C under anhydrous condition, which is much higher than the SPEEK control membrane and the commercial Nafion membrane (0.1iswas × 10 −3 S cm −1 ). The membrane with 9 wt% DSiO 2 show an open cell potential of 0.98showshowed V and an optimum power density of 111.7 mW cm −2 , indicative of its potential application in fuel cell under anhydrous condition

  18. Multi-dimensional modeling of CO poisoning effects on proton exchange membrane fuel cells (PEMFCs)

    International Nuclear Information System (INIS)

    Ju, Hyun Chul; Lee, Kwan Soo; Um, Suk Kee

    2008-01-01

    Carbon monoxide (CO), which is preferentially absorbed on the platinum catalyst layer of a proton exchange membrane fuel cell (PEMFC), is extremely detrimental to cell performance. Essentially, the carbon monoxide absorption diminishes the cell's performance by blocking and reducing the number of catalyst sites available for the hydrogen oxidation reaction. In order to obtain a full understanding of CO poisoning characteristics and remediate CO-poisoned PEMFCs, a CO poisoning numerical model is developed and incorporated into a fully three-dimensional electrochemical and transport coupled PEMFC model. By performing CFD numerical simulations, this paper clearly demonstrates the CO poisoning mechanisms and characteristics of PEMFCs. The predictive capability for CO poisoning effects enables us to find major contributors to CO tolerance in a PEMFC and thus successfully integrate CO-resistant fuel cell systems

  19. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    Science.gov (United States)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  20. Exclusive production of meson pairs and resonances in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lebiedowicz, Piotr [Institute of Nuclear Physics PAN, PL-31-342 Cracow (Poland); Szczurek, Antoni [Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland and University of Rzeszow, PL-35-959 Rzeszow (Poland)

    2013-04-15

    We report a study of the central exclusive production of {pi}{sup +}{pi}{sup -} and K{sup +}K{sup -} pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and {pi}{pi} (KK) rescattering. We discuss a measurement of exclusive production of a scalar {chi}{sub c0} meson via {chi}{sub c0}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} decay. We find that the relative contribution of resonance states and the {pi}{pi} (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f{sub 2} (1270) meson production mediated by an effective tensor pomeron exchanges.

  1. Tools for designing the cooling system of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Soupremanien, Ulrich; Le Person, Stéphane; Favre-Marinet, Michel; Bultel, Yann

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) requires a careful management of the heat distribution inside the stack. The proton exchange membrane is the most sensitive element of this thermal management and it must operate under specific conditions in order to increase the lifetime and also the output power of the fuel cell. These last decades, the enhancement of the output power of the PEMFC has led the manufacturers to greatly improve the heat transfer effectiveness for cooling such systems. In addition, homogenizing the bipolar plate temperature increases the lifetime of the system by limiting the occurrence of strong thermal gradients. In this context, using a fluid in boiling conditions to cool down the PEMFC seems to be very suitable for this purpose. In order to compare the thermal performances between a coolant used in single-phase flow or in boiling flow conditions, we have built an experimental set-up allowing the investigation of cooling flows for these two conditions. Moreover, the geometry of the cooling channels is one of the key parameters which allows the improvement of the thermal performances. Indeed, the size or the aspect ratio of these channels could be designed in order to decrease the thermal system response. The sizing of the fuel cell cooling system is of paramount importance in boiling flow conditions because it can modify, not only the pressure losses along the channel and the heat transfer coefficient like in a single-phase flow but also, the onset of nucleate boiling (ONB) and the dryout point or critical heat flux (CHF). Thus, in order to understand some heat transfer mechanisms, which are geometry-dependent, a parametric study was completed by considering flows in four different rectangular channels. Finally, this study allows a better insight on the optimization of the geometrical parameters which improve the thermal performances of a PEMFC, from a cooling strategy aspect point of view. - Highlights: ► Parameters for the using of a

  2. Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications

    International Nuclear Information System (INIS)

    Cappa, Francesco; Facci, Andrea Luigi; Ubertini, Stefano

    2015-01-01

    In this paper we compare the technical and economical performances of a high temperature proton exchange membrane fuel cell with those of an internal combustion engine for a 10 kW combined heat and power residential application. In a view of social innovation, this solution will create new partnerships of cooperating families aiming to reduce the energy consumption and costs. The energy system is simulated through a lumped model. We compare, in the Italian context, the total daily operating cost and energy savings of each system with respect to the separate purchase of electricity from the grid and production of the thermal energy through a standard boiler. The analysis is carried out with the energy systems operating with both the standard thermal tracking and an optimized management. The latter is retrieved through an optimization methodology based on the graph theory. We show that the internal combustion engine is much more affected by the choice of the operating strategy with respect to the fuel cell, in terms long term profitability. Then we conduct a net present value analysis with the aim of evidencing the convenience of using a high temperature proton exchange membrane fuel cell for cogeneration in residential applications. - Highlights: • Fuel cells are a feasible and economically convenient solution for residential CHP. • Control strategy is fundamental for the economical performance of a residential CHP. • Flexibility is a major strength of the fuel cell CHP.

  3. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  4. A novel proton exchange membrane fuel cell based power conversion system for telecom supply with genetic algorithm assisted intelligent interfacing converter

    International Nuclear Information System (INIS)

    Kaur, Rajvir; Krishnasamy, Vijayakumar; Muthusamy, Kaleeswari; Chinnamuthan, Periasamy

    2017-01-01

    Highlights: • Proton exchange membrane fuel cell based telecom tower supply is proposed. • The use of diesel generator is eliminated and battery size is reduced. • Boost converter based intelligent interfacing unit is implemented. • The genetic algorithm assisted controller is proposed for effective interfacing. • The controller is robust against input and output disturbance rejection. - Abstract: This paper presents the fuel cell based simple electric energy conversion system for supplying the telecommunication towers to reduce the operation and maintenance cost of telecom companies. The telecom industry is at the boom and is penetrating deep into remote rural areas having unreliable or no grid supply. The telecom industry is getting heavily dependent on a diesel generator set and battery bank as a backup for continuously supplying a base transceiver station of telecom towers. This excessive usage of backup supply resulted in increased operational expenditure, the unreliability of power supply and had become a threat to the environment. A significant development and concern of clean energy sources, proton exchange membrane fuel cell based supply for base transceiver station is proposed with intelligent interfacing unit. The necessity of the battery bank capacity is significantly reduced as compared with the earlier solutions. Further, a simple closed loop and genetic algorithm assisted controller is proposed for intelligent interfacing unit which consists of power electronic boost converter for power conditioning. The proposed genetic algorithm assisted controller would ensure the tight voltage regulation at the DC distribution bus of the base transceiver station. Also, it will provide the robust performance of the base transceiver station under telecom load variation and proton exchange membrane fuel cell output voltage fluctuations. The complete electric energy conversion system along with telecom loads is simulated in MATLAB/Simulink platform and

  5. Annealing effect on magnetic property and recording performance of [FePt/MgO]n perpendicular magnetic recording media

    International Nuclear Information System (INIS)

    Suzuki, Takao; Zhang, Zhengang; Singh, Amarendra K.; Yin, Jinhua; Perumal, A.; Osawa, Hiroshi

    2005-01-01

    Granular-type FePt perpendicular magnetic recording media with (001)-texture, obtained by annealing FePt/MgO multilayer films, are fabricated onto 2.5-in glass discs. For the sake of spin-stand testing, the coercivity of FePt films is carefully modulated by controlling the annealing conditions. With annealing, exchange coupling between FePt grains is decreased, indicated by the reductions in α value and activation volume. FePt ordering process is dependent on initial FePt/MgO multilayer structures, which governs the optimum annealing condition regarding coercivities and α(=4π(dM/dH)H=Hc). The SNR ratio exhibits a sensitive dependence on initial FePt/MgO multilayer structures as well as annealing conditions

  6. Radiation damage in silicon exposed to high-energy protons

    International Nuclear Information System (INIS)

    Davies, Gordon; Hayama, Shusaku; Murin, Leonid; Krause-Rehberg, Reinhard; Bondarenko, Vladimir; Sengupta, Asmita; Davia, Cinzia; Karpenko, Anna

    2006-01-01

    Photoluminescence, infrared absorption, positron annihilation, and deep-level transient spectroscopy (DLTS) have been used to investigate the radiation damage produced by 24 GeV/c protons in crystalline silicon. The irradiation doses and the concentrations of carbon and oxygen in the samples have been chosen to monitor the mobility of the damage products. Single vacancies (and self-interstitials) are introduced at the rate of ∼1 cm -1 , and divacancies at 0.5 cm -1 . Stable di-interstitials are formed when two self-interstitials are displaced in one damage event, and they are mobile at room temperature. In the initial stages of annealing the evolution of the point defects can be understood mainly in terms of trapping at the impurities. However, the positron signal shows that about two orders of magnitude more vacancies are produced by the protons than are detected in the point defects. Damage clusters exist, and are largely removed by annealing at 700 to 800 K, when there is an associated loss of broad band emission between 850 and 1000 meV. The well-known W center is generated by restructuring within clusters, with a range of activation energies of about 1.3 to 1.6 eV, reflecting the disordered nature of the clusters. Comparison of the formation of the X centers in oxygenated and oxygen-lean samples suggests that the J defect may be interstitial related rather than vacancy related. To a large extent, the damage and annealing behavior may be factorized into point defects (monitored by sharp-line optical spectra and DLTS) and cluster defects (monitored by positron annihilation and broadband luminescence). Taking this view to the limit, the generation rates for the point defects are as predicted by simply taking the damage generated by the Coulomb interaction of the protons and Si nuclei

  7. Second-order optical nonlinearities in dilute melt proton exchange waveguides in z-cut LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben; Pedersen, Kjeld

    1996-01-01

    Planar optical waveguides with different refractive indices are made in z-cut LiNbO3 with a dilute proton exchange method using a system of glycerol containing KHSO4 and lithium benzoate. The optical second-order susceptibilities of these waveguides are measured by detecting the 266 nm reflected...... second-harmonic signal generated by a 532 nm beam directed onto the waveguide surface. It is found for this kind of waveguides that in the waveguide region all the second-order susceptibilities take values of at least 90% of the original LiNbO; values for refractive index changes less than similar to 0...

  8. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  9. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  10. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  11. Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    International Nuclear Information System (INIS)

    Torre Valdés, Ing. Raciel de la; García Parra, MSc. Lázaro Roger; González Rodríguez, MSc. Daniel

    2015-01-01

    This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it's necessary to modify the expression that describes the electrolyte ionic conductivity. It's found that the device performance has got a great sensibility to pressure, temperature, reactant humidification and oxygen concentration variations. (author)

  12. On the Experimental Investigation of the Clamping Pressure Effects on the Proton Exchange Membrane Water Electrolyser Cell Performance

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Frensch, Steffen Henrik; Kær, Søren Knudsen

    2017-01-01

    energy sources. The proton exchange membrane water electrolyser(PEMWE) is the most candidate technology to produce hydrogen from renewable energysources. PEMWE cell splits water into hydrogen and oxygen when an electric current is passedthrough it. Electrical current forces the positively charged ions...... to migrate to negatively chargedcathode, where hydrogen is reduced. Meanwhile, oxygen is produced at the anode sideelectrode and escape as a gas with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such asincreased operating temperature and cathode...

  13. Poly (fluorenyl ether ketone) ionomers containing separated hydrophilic multiblocks used in fuel cells as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-01-15

    A series of sulfonated poly(fluorenyl ether ketone) with different hydrophilic block lengths were synthesized via a two-step one-pot polymerization from 9,9'-bis(4-Hydroxypheyl) fluorine, 3,3'-disulfonated-4,4'-difluorobenzophenone, and 4,4'-difluorobenzophenone. The resulting sulfonated block polymers with high inherent viscosity (0.8-1.37 dL/g) were very soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. Transmission electron microscope (TEM) was used to examine the microstructure of the membranes and the results revealed that significant hydrophilic/hydrophobic microphase separation was produced. The effects of the multiblock structure and/or length were investigated by comparison of the properties of the multiblock copolymer and the corresponding random structure. The multiblock structure can provide enhanced proton transport, especially under partially hydrated conditions. The as-made membranes can also exhibit better oxidative stability and single cell performance than random copolymer. The multiblock structure design method provides a useful way to prepare proton exchange membrane used in PEM fuel cells. (author)

  14. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...

  15. Experimental study of commercial size proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Yan, Wei-Mon; Wang, Xiao-Dong; Lee, Duu-Jong; Zhang, Xin-Xin; Guo, Yi-Fan; Su, Ay

    2011-01-01

    Commercial sized (16 x 16 cm 2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX (registered) PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm -2 Pt and cathode catalyst layer with 0.6 mg cm -2 Pt and Ru or GORE-TEX (registered) PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm -2 Pt and cathode catalyst layer at 0.4 mg cm -2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.

  16. Chemical exchange rotation transfer imaging of intermediate-exchanging amines at 2 ppm.

    Science.gov (United States)

    Zu, Zhongliang; Louie, Elizabeth A; Lin, Eugene C; Jiang, Xiaoyu; Does, Mark D; Gore, John C; Gochberg, Daniel F

    2017-10-01

    Chemical exchange saturation transfer (CEST) imaging of amine protons exchanging at intermediate rates and whose chemical shift is around 2 ppm may provide a means of mapping creatine. However, the quantification of this effect may be compromised by the influence of overlapping CEST signals from fast-exchanging amines and hydroxyls. We aimed to investigate the exchange rate filtering effect of a variation of CEST, named chemical exchange rotation transfer (CERT), as a means of isolating creatine contributions at around 2 ppm from other overlapping signals. Simulations were performed to study the filtering effects of CERT for the selection of transfer effects from protons of specific exchange rates. Control samples containing the main metabolites in brain, bovine serum albumin (BSA) and egg white albumen (EWA) at their physiological concentrations and pH were used to study the ability of CERT to isolate molecules with amines at 2 ppm that exchange at intermediate rates, and corresponding methods were used for in vivo rat brain imaging. Simulations showed that exchange rate filtering can be combined with conventional filtering based on chemical shift. Studies on samples showed that signal contributions from creatine can be separated from those of other metabolites using this combined filter, but contributions from protein amines may still be significant. This exchange filtering can also be used for in vivo imaging. CERT provides more specific quantification of amines at 2 ppm that exchange at intermediate rates compared with conventional CEST imaging. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).

    Science.gov (United States)

    Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T

    2018-05-13

    To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P exchange rate was well fit (R 2  = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  19. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Process modeling of the impedance characteristics of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Rezaei Niya, Seyed Mohammad; Phillips, Ryan K.; Hoorfar, Mina

    2016-01-01

    Highlights: • The impedance of the PEM fuel cell is analytically calculated. • The measured impedances are presented for different operating conditions. • The high frequency arc in the measured Nyquist plot is related to the anode. • The intermediate frequency arc is related to the cathode. • The low frequency arc and high frequency resistance are related to the membrane. - Abstract: A complete process modeling of the impedance characteristics of the proton exchange membrane fuel cells is presented. The impedance of the cell is determined analytically and the resultant equivalent circuit is calculated. The model predictions are then compared against the measured impedances in different current densities, operating temperatures and anode and cathode relative humidities. It is shown that the model predicts the Nyquist plots in all different operating conditions extremely well. Next, the trends observed in the Nyquist plots reported in the literature are compared against the model predictions. The result of this comparison confirms the accuracy of the model. Using the verified model, various arcs in the Nyquist plots are separated and related to the fuel cell physical parameters.

  1. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  2. Partially fluorinated electrospun proton exchange membranes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a novel porous membrane layer, to a novel method for producing a membrane, and the membranes produced by the novel method. The present invention further relates to a fuel cell comprising the porous layer, as well as any use of the porous layer in a fuel cell or in...... copolymer, and wherein at least one side chain of the graft copolymer comprises a polymerization product of a polymerizable proton donor group or a precursor thereof....

  3. Si exfoliation by MeV proton implantation

    International Nuclear Information System (INIS)

    Braley, Carole; Mazen, Frédéric; Tauzin, Aurélie; Rieutord, François; Deguet, Chrystel; Ntsoenzok, Esidor

    2012-01-01

    Proton implantation in silicon and subsequent annealing are widely used in the Smart Cut™ technology to transfer thin layers from a substrate to another. The low implantation energy range involved in this process is usually from a few ten to a few hundred of keV, which enables the separation of up to 2 μm thick layers. New applications in the fields of 3D integration and photovoltaic wafer manufacturing raise the demand for extending this technology to higher energy in order to separate thicker layer from a substrate. In this work, we propose to investigate the effect of proton implantation in single crystalline silicon in the 1–3 MeV range which corresponds to a 15–100 μm range for the hydrogen maximum concentration depth. We show that despites a considerably lower hydrogen concentration at R p , the layer separation is obtained with fluence close to the minimum fluence required for low energy implantation. It appears that the fracture propagation in Si and the resulting surface morphology is affected by the substrate orientation. Defects evolution is investigated with Fourier Transform Infrared Spectroscopy. The two orientations reveal similar type of defects but their evolution under annealing appears to be different.

  4. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH.

    Science.gov (United States)

    Behera, Manaswini; Jana, Partha S; More, Tanaji T; Ghangrekar, M M

    2010-10-01

    Performance of microbial fuel cells (MFCs), fabricated using an earthen pot (MFC-1) and a proton exchange membrane (MFC-2), was evaluated while treating rice mill wastewater at feed pH of 8.0, 7.0 and 6.0. A third MFC (MFC-3), fabricated using a proton exchange membrane (PEM), was operated as control without pH adjustment of the acidic raw wastewater. Maximum chemical oxygen demand (COD) removal efficiencies of 96.5% and 92.6% were obtained in MFC-1 and MFC-2, respectively, at feed pH of 8.0. MFC-3 showed maximum COD removal of 87%. The lignin removal was 84%, 79%, and 77% and the phenol removal was 81%, 77%, and 76% in MFC-1, MFC-2, and MFC-3, respectively. Maximum sustainable volumetric power was obtained at feed pH of 8.0, and it was 2.3 W/m(3) and 0.53 W/m(3), with 100 ohm external resistance, in MFC-1 and MFC-2, respectively. The power was lower at lower feed pH. MFC-3 generated lowest volumetric power (0.27 W/m(3)) as compared to MFC-1 and MFC-2. More effective treatment of rice mill wastewater and higher energy recovery was demonstrated by earthen pot MFC as compared to MFC incorporated with PEM. 2010 Elsevier B.V. All rights reserved.

  5. ERDA study of H incorporated into lithium niobate optical layers

    CERN Document Server

    Budnev, N M; Pelicon, P; Spirkova-Hradilova, J; Kolarova-Nekvindova, P; Turcicova, H

    2000-01-01

    Hydrogen concentration depth profiles in the proton-exchange treated LiNbO/sub 3/ samples were determined by means of the ERDA (elastic recoil detection analysis) method. The ERDA measurements with 1.8 MeV helium ions were performed using reflection geometry with Al foils used for the separation of the recoiled nuclei from the scattered projectiles. The study clearly showed that the substitutional (H:Li) mechanism, which prevails in the Z-cuts, is accompanied by interstitial diffusion of H into the substrates for the X-cuts. It was also confirmed that the post-exchange annealing not only stabilized the optical properties of the samples, but enlarged the differences between both crystallographically different types of the wafers, leading to more diffused H-profiles for the Z-cuts than for the X-cuts. Plasma treatment of the Z-cut leads to shallower hydrogen containing layers than those in the APE (annealed proton exchange) ones. (7 refs).

  6. A theoretical study of alkane protonation in HF/SbF5 superacid system

    Directory of Open Access Journals (Sweden)

    Esteves Pierre M.

    2000-01-01

    Full Text Available Ab initio calculations for the protonation of the C-H and C-C bonds of methane, ethane, propane and isobutane by a superacid moiety was carried out. For the C-H protonation (H/H exchange the transition state resembles an H-carbonium ion coordinated with the superacid. The activation energy for the H/H exchange was about 16 kcal.mol-1, at B3LYP/6-31++G** + RECP (Sb level, regardless the type of C-H bond being protonated. For the C-C protonation the activation energy depends on the structure of the hydrocarbon and was always higher than the activation energy for C-H protonation, indicating a higher steric demand.

  7. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  8. Modelling of proton and metal exchange in the alginate biopolymer.

    Science.gov (United States)

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2005-10-01

    Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at alpha=0.5, are log K H=3.686+/-0.005, DeltaG 0=-21.04+/-0.03 kJ mol(-1), DeltaH 0=4.8+/-0.2 kJ mol(-1) and TDeltaS 0=35.7+/-0.3 kJ mol(-1), at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between DeltaG and TDeltaS was found, TDeltaS=-9.5-1.73 DeltaG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.

  9. Exergoeconomic analysis of vehicular PEM (proton exchange membrane) fuel cell systems with and without expander

    International Nuclear Information System (INIS)

    Sayadi, Saeed; Tsatsaronis, George; Duelk, Christian

    2014-01-01

    In this paper we perform an exergoeconomic analysis to a PEM (proton exchange membrane) vehicular fuel cell system used in the latest generation of environmentally friendly cars. Two alternative configurations of a fuel cell system are considered (with and without an expander), and two alternative design concepts for each configuration: BoL (Begin of Life) and EoL (End of Life). The system including an expander generates additional power from the exhaust gases leaving the fuel cell stack, which might increase the system efficiency. However the total investment costs for this case are higher than for the other system configuration without an expander, due to the investment costs associated with the expander and its accessories. The fuel cell stack area in the EoL-sized systems is larger than in the BoL-sized systems. A larger stack area on one hand raises the investment costs, but on the other hand decreases the fuel consumption due to a higher cell efficiency. In this paper, exergoeconomic analyses have been implemented to consider a trade-off between positive and negative effects of using an expander in the system and to select the proper design concept. The results from the exergoeconomic analysis show that (a) an EoL-sized system with an expander is the most cost effective system, (b) the compression and humidification of air are very expensive processes, (c) the stack is by far the most important component from the economic viewpoint, and (d) the thermodynamic efficiency of almost all components must be improved to increase the cost effectiveness of the overall system. - Highlights: • Two vehicular PEM (proton exchange membrane) fuel cell system configurations are studied in this paper. • Exergoeconomics has been performed to compare these two system configurations. • The compression and humidification of air are very expensive processes. • The stack is by far the most important component from the economic viewpoint. • The thermodynamic efficiencies

  10. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Raja Abid

    2013-01-01

    A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell...... stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell...... voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water-ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32-33% in the inner loop and 60-65% in the outer loop for all ranges of current...

  11. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    The dissociation of virtual photons, γ * p→ Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q 2 > 2 GeV 2 and γ * p centre-of-mass energies 40 X > 2 GeV, where M X is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and Φ, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q 2 and x P , the fraction of the proton's momentum carried by the diffractive exchange, as well as β, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  12. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    Science.gov (United States)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  13. Invariant mass spectroscopy of {sup 19,17}C and {sup 14}B using proton inelastic and charge-exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Y., E-mail: satou@phya.snu.ac.k [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Fukuda, N. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Sugimoto, T.; Kondo, Y.; Matsui, N.; Hashimoto, Y.; Nakabayashi, T.; Okumura, Y.; Shinohara, M. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Motobayashi, T.; Yanagisawa, Y.; Aoi, N.; Takeuchi, S.; Gomi, T.; Togano, Y. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Kawai, S. [Department of Physics, Rikkyo University, Tokyo (Japan); Sakurai, H. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Ong, H.J.; Onishi, T.K. [Department of Physics, University of Tokyo, Tokyo (Japan)

    2010-03-01

    The neutron-rich carbon isotopes {sup 19,17}C and the boron isotope {sup 14}B have been investigated, respectively, by the proton inelastic and charge-exchange reactions on a liquid hydrogen target at around 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to map the energy spectrum above the neutron decay threshold of the residual nuclei. New states on carbon isotopes are reported. An experimental capability of extracting beta-decay strengths via forward angle (p,n) cross sections on unstable nuclei is shown.

  14. Proton implantation effect on (SUS-316) stainless steel

    International Nuclear Information System (INIS)

    Das, A.K.; Ishigami, R.; Kamal, I.

    2015-01-01

    Microstructural damage and nano hardness of the industrial grade stainless steel (SUS-316) have been studied under proton (H + ) implanted condition applying different doses at room temperature. The implantation scheme such as proton energy, fluence, irradiation time, and penetration depth in the target materials were estimated by Monte Carlo Simulation Code SRIM-2008. In the simulation, the parameters were chosen in such a way that the damage density (displacement per atom or dpa) would be uniform up to certain depth from the surface. X-ray diffraction study of the annealed samples prior to the proton implantation showed the austenitic fcc structure and no significant change was observed after proton implantation in it. Microstructural observation made by Scanning Transmission Electron Microscopy (STEM) revealed that 1 dpa of proton-irradiation induced the structural damage extended up to 1 μm depth from the surface. The nano hardness study showed that the hardness level of the irradiated samples increased monotonically with the irradiation doses. Proton dose of 1 dpa caused 65% increment of hardness level on average in case of uniformly irradiated samples. It was realized that the increment of hardness was a consequence of microstructural damages caused by the formation of interstitial dislocation loops in the sample matrix keeping the lattice structure unaffected

  15. Neutron-Proton Scattering Experiments at ANKE-COSY

    Science.gov (United States)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  16. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  17. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2013-01-01

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  18. Annealing of defects in indium antimonide after ion bombardment

    International Nuclear Information System (INIS)

    Bogatyrev, V.A.; Kachurin, G.A.

    1977-01-01

    Indium antimonide electric properties are investigated after ion bombardment of different mass (with energy of 60 and 300 keV) and isochrone annealing in the 20-450 deg C temperature range. It is shown that 100-150 deg C n- type stable layers are formed after proton irradiation at room temperature only. Indium antimonide exposure by average mass ions under the same conditions and also by helium ions of 300 keV energy brings to p-type layer formation with high hole concentration. Subsequent heating at the temperature over 150 deg C results in electron conductivity of irradiated layers. Electron volume density and mobility efficiency reaches 10 18 cm -3 and 10 4 cm 2 /Vs respectively. N-type formed layers are stable up to 350 deg C allowing its usage for n-p transition formation admitting thermal treatment. Analysis is given of defect behaviour peculiarities depending upon the irradiation and annealing conditions. Hole conductivity in irradiated indium antimonide is supposed to be stipulated by regions of disorder, while electron conductivity - by relatively simpler disorders

  19. Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; El-Toony, M.M.; Abdel-Hamed, M.O.

    2013-01-01

    Simultaneous gamma irradiation was used effectively for grafting facilitation of glycidyl methacrylate (GMA) and styrene (Sty) onto polyvinylidine fluoride (PVDF). Grafting percent was 122 when monomers ratio are 30% Sty and 70% GMA at 20 KGy gamma irradiation dose. Characterization of the membrane was performed using FT-IR, ion exchange capacity (IEC), water uptake. Mechanical behavior such as tensile strength was studied while morphological structure of the membrane was carried out by scan electron microscope (SEM). The membrane with degree of grafting 122% showed higher IEC (1.2 m mol/cm) than those of Nafion membrane with corresponding proton conductivity of 5.7 × 10 −2 S/cm similar to it. Operating the fuel cell unit showed higher voltage of the prepared membranes than that of Nafion 211. The prepared membranes stability for 300 h work approved their applicability from the cost benefit point of view

  20. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  1. Na+-H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies.

    Science.gov (United States)

    Bkaily, Ghassan; Jacques, Danielle

    2017-10-01

    Cardiomyopathy is found in patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, which are linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects are not limited to DMD but are also present in mild BMD. The hereditary cardiomyopathic hamster of the UM-X7.1 strain is a particular experimental model of heart failure (HF) leading to early death in muscular dystrophy (dystrophin deficiency and sarcoglycan mutation) and heart disease (δ-sarcoglycan deficiency and dystrophin mutation) in human DMD. Using this model, our previous work showed a defect in intracellular sodium homeostasis before the appearance of any apparent biochemical and histological defects. This was attributed to the continual presence of the fetal slow sodium channel, which was also found to be active in human DMD. Due to muscular intracellular acidosis, the intracellular sodium overload in DMD and BMD was also due to sodium influx through the sodium-hydrogen exchanger NHE-1. Lifetime treatment with an NHE-1 inhibitor prevented intracellular Na + overload and early death due to HF. Our previous work also showed that another proton transporter, the voltage-gated proton channel (Hv1), exists in many cell types including heart cells and skeletal muscle fibers. The Hv1 could be indirectly implicated in the beneficial effect of blocking NHE-1.

  2. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    Science.gov (United States)

    2015-04-29

    1   1.1.2   Proton exchange membrane fuel cells ( PEMFCs ) ......................... 3   1.1.3   Alkaline fuel cells (AFCs...160   xi LIST OF FIGURES Figure 1.1:   Schematic diagram of a PEMFC ...according to the type of electrolyte they use. Nowadays, there are six major types of fuel cells: proton-exchange membrane fuel cells ( PEMFCs ), hydroxide

  3. Precipitation in Zr-2.5Nb enhanced by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cann, C. D.; So, C. B.; Styles, R. C.; Coleman, C. E.

    1993-08-15

    A 3.6 MeV proton irradiation of annealed Zr-2.5Nb has been performed to determine whether proton irradiation will enhance the precipitation of Nb-rich {beta}-phase precipitates within the {alpha}-grains. a transmission electron microscope examination of a foil after irradiation at 770 K for 18 h and at 720 K for 264.5 h to a total damage of 0.94 dpa revealed a fine dispersion of precipitates within the {alpha}-grains. Electron diffraction analysis of the precipitates found they have lattice plane spacings consistent with the Nb-rich {beta}-phase. This result is in agreement with the {beta}phase precipitation observed following neutron irradiation, and thus it supports the use of proton irradiation to simulate neutron-irradiation effects in Zr-2.5Nb.

  4. Precipitation in Zr-2.5Nb enhanced by proton irradiation

    International Nuclear Information System (INIS)

    Cann, C.D.; So, C.B.; Styles, R.C.; Coleman, C.E.

    1993-08-01

    A 3.6 MeV proton irradiation of annealed Zr-2.5Nb has been performed to determine whether proton irradiation will enhance the precipitation of Nb-rich β-phase precipitates within the α-grains. a transmission electron microscope examination of a foil after irradiation at 770 K for 18 h and at 720 K for 264.5 h to a total damage of 0.94 dpa revealed a fine dispersion of precipitates within the α-grains. Electron diffraction analysis of the precipitates found they have lattice plane spacings consistent with the Nb-rich β-phase. This result is in agreement with the βphase precipitation observed following neutron irradiation, and thus it supports the use of proton irradiation to simulate neutron-irradiation effects in Zr-2.5Nb

  5. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  6. Preliminary Study of the Use of Sulphonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC

    Directory of Open Access Journals (Sweden)

    Dani Permana

    2018-02-01

    Full Text Available Sulfonated polyether ether ketone (SPEEK was utilized as a proton exchange membrane (PEM in Microbial Fuel Cell (MFC. The SPEEK performance in producing electricity had been observed in MFC using wastewater and glucose as substrates. The MFC with catering and tofu wastewater produced maximum power density about 0.31 mW/m2 and 0.03 mW/m2, respectively, lower that of MFC with tapioca average power density of 39.4 W/m2 over 48 h. The power density boosted because of the presence of Saccharomyces cerevisiae as inoculum. The study using of S. cerevisiae and Acetobacter acetii, separately, were also conducted in with glucose as substrate. The MFC produced an average power densities were 7.3 and 6.4 mW/m2 for S. cerevisiae and A. acetii, respectively. The results of this study indicated that SPEEK membrane has the potential usage in MFCs and can substitute the commercial membrane, Nafion. Article History: Received: Juni 14th 2017; Received: Sept 25th 2017; Accepted: December 16th 2017; Available online How to Cite This Article: Putra, H.E., Permana, D and Djaenudin, D. (2018 Preliminary Study of the Use of Sulfonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC. International Journal of Renewable Energy Development, 7(1, 7-12. https://doi.org/10.14710/ijred.7.1.7-12

  7. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2008-12-15

    The dissociation of virtual photons, {gamma}{sup *}p{yields} Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q{sup 2}> 2 GeV{sup 2} and {gamma}{sup *}p centre-of-mass energies 40 2 GeV, where M{sub X} is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and {phi}, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q{sup 2} and x{sub P}, the fraction of the proton's momentum carried by the diffractive exchange, as well as {beta}, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  8. The effects of electron and proton radiation on GaSb infrared solar cells

    Science.gov (United States)

    Gruenbaum, P. E.; Avery, J. E.; Fraas, L. M.

    1991-01-01

    Gallium antimonide (GaSb) infrared solar cells were exposed to 1 MeV electrons and protons up to fluences of 1 times 10(exp 15) cm (-2) and 1 times 10(exp 12) cm (-2) respectively. In between exposures, current voltage and spectral response curves were taken. The GaSb cells were found to degrade slightly less than typical GaAs cells under electron irradiation, and calculations from spectral response curves showed that the damage coefficient for the minority carrier diffusion length was 3.5 times 10(exp 8). The cells degraded faster than GaAs cells under proton irradiation. However, researchers expect the top cell and coverglass to protect the GaSb cell from most damaging protons. Some annealing of proton damage was observed at low temperatures (80 to 160 C).

  9. New NMR method for measuring the difference between corresponding proton and deuterium chemical shifts: isotope effects on exchange equilibria

    International Nuclear Information System (INIS)

    Saunders, M.; Saunders, S.; Johnson, C.A.

    1984-01-01

    A convenient and accurate method is described for measuring the difference between a proton frequency and the corresponding deuterium frequency in its deuterated analogue relative to a reference system by using the deuterium lock in a Fourier-transform NMR spectrometer. This measurement is a sensitive way of measuring equilibrium isotope effects for hydrogen-deuterium exchange. A value of 1.60 per H-D pair is obtained for the equilibrium 2H 3 O + + 3D 2 O in equilibrium 2D 3 O + + 3H 2 O at 30 0 C in aqueous perchloric acid (HClO 4 ). 7 references, 2 tables

  10. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao

    2011-01-01

    The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations....... The performance loss was recovered when switching from the HCl solution back to pure water in the air humidifier. Under an accelerated aging performance test conducted through potential cycling between 0.9 V and 1.2 V, the PBI-based fuel cell initially containing 0.5 NaCl mg cm−2 on the cathode catalyst layer...

  11. Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan, Zhongmin; Liu, Jing; Luo, Zhiping; Tu, Zhengkai; Liu, Zhichun; Liu, Wei

    2013-01-01

    Highlights: ► Operation characteristics in a dead-ended PEM fuel cell were addressed. ► Modified flow channel was used to realize water removal. ► A novel method by condensing the moisture in the stack end was introduced. - Abstract: In this paper, the operation characteristic of a dead-ended proton exchange membrane fuel cell (PEMFC) placed with vertical orientation is investigated. The relationship between the channel geometry and the wettability of the gas diffusion layer (GDL) surface is theoretically analyzed. Based on the theoretical analysis, straight flow channels with 2.0 mm width and 1.0 mm depth are used for the experimental investigation and the moisture is condensed at the stack end to improve water removal. The results show that the designed fuel cell can operate for about 1 h at 800 mA cm −2 and the performance of the cell decreases with the increase in the operation temperature. Moreover, the recovered liquid water is corresponded closely to the theoretical values

  12. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  13. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  14. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  15. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  16. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Ratnayake, A.; Robinson, J. [Tyne Engineering Inc., Burlington, ON (Canada)

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  17. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  18. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  19. Grazing incidence small angle X-ray scattering study of silver nanoparticles in ion-exchanged glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong, E-mail: 57399942@qq.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Gu, Xiaohua [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Zhonghua, E-mail: wuzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-15

    The size and distribution of silver nanoparticles in ion-exchanged silicate glass induced by thermal treatments in air at different temperatures were investigated by means of grazing incidence small angle X-ray scattering technique, X-ray diffraction and optical absorption spectra. Silver–sodium ion exchange of soda-lime silicate glasses was done at 350 °C for 240 min, then the samples were treated by thermal annealing in air at different temperatures 400, 500 and 550 °C, respectively, for 1 h. After the annealing treatment above 400 °C for 1 h, smaller Ag nanoparticles occurred, together with bigger ones. Both dissolution of smaller Ag nanoparticles and diffusion of larger ones are discussed in these stages of annealing in this contribution.

  20. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  1. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  2. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  3. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    Science.gov (United States)

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ 3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  4. Charge exchange in a divertor plasma with excited particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Lisitsa, V.S.; Pigarov, A.Y.

    1988-01-01

    A model is constructed for the dynamics of neutral atoms and multicharged ions in a tokamak plasma. The influence of cascade excitation on charge exchange and ionization is taken into account. The effective rates of the resonant charge exchange of a proton with a hydrogen atom, the nonresonant charge exchange of a helium atom with a proton, and that of an α particle with atomic hydrogen are calculated as functions of the parameters of the divertor plasma in a tokamak. The charge exchange H + +He→H+He + can represent a significant fraction (∼30%) of the total helium ionization rate. Incorporating the charge exchange of He 2+ with atomic hydrogen under the conditions prevailing in the divertor plasma of the INTOR reactor can lead to substantial He 2+ →He + conversion and thereby reduce the sputtering of the divertor plates by helium ions

  5. Water-Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Boeckmann, Anja; Juy, Michel; Bettler, Emmanuel; Emsley, Lyndon; Galinier, Anne; Penin, Francois; Lesage, Anne

    2005-01-01

    We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T 2 ' -selective 1 H- 13 C- 13 C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T 2 ' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13 C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates

  6. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Gao, Lin; Korzeniewski, Carol; Matzke, Carolyn

    2005-07-01

    The apparent proton conductivity inside a nanochannel can be enhanced by orders of magnitude due to the electric double layer overlap. A nanochannel filled with an acidic solution is thus a micro super proton conductor, and an array of such nanochannels forms an excellent proton conductive membrane. Taking advantage of this effect, a new class of proton exchange membrane is developed for micro fuel cell applications.

  7. Development of Less Water-Dependent Radiation Grafted Proton Exchange Membranes for Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M M; Ahmad, A; Saidi, H; Dahlan, K Z.M. [Institute of Hydrogen Economy, Energy Research Alliance (ERA), International Campus, Univeristi Teknologi Malaysia, Jalan Semarak, Kuala Lumpur (Malaysia); Radiation Processing Division, Malaysian Nuclear Agency, Bangi, Kajang (Malaysia)

    2012-09-15

    The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel cell operated above 100{sup o}C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were evaluated and the in situ performance was tested in a single H{sub 2}/O{sub 2} fuel cell under dynamic conditions and compared with a similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the variation in G% and temperature (30-130{sup o}C). The performance of 34 and 49% grafted and doped membranes was tested in a single fuel cell at 130{sup o}C under dynamic conditions with 146 and 127 mW/cm{sup 2} power densities. The polarization, power density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell operation above 100 deg. C. (author)

  8. Performance of Density Functional Theory Procedures for the Calculation of Proton-Exchange Barriers: Unusual Behavior of M06-Type Functionals.

    Science.gov (United States)

    Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo

    2014-09-09

    We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.

  9. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  10. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  11. Anisotropic amplification of proton transport in proton exchange membrane fuel cells

    Science.gov (United States)

    Thimmappa, Ravikumar; Fawaz, Mohammed; Devendrachari, Mruthyunjayachari Chattanahalli; Gautam, Manu; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2017-07-01

    Though graphene oxide (GO) membrane shuttles protons under humid conditions, it suffer severe disintegration and anhydrous conditions lead to abysmal ionic conductivity. The trade-off between mechanical integrity and ionic conductivity challenge the amplification of GO's ionic transport under anhydrous conditions. We show anisotropic amplification of GO's ionic transport with a selective amplification of in plane contribution under anhydrous conditions by doping it with a plant extract, phytic acid (PA). The hygroscopic nature of PA stabilized interlayer water molecules and peculiar geometry of sbnd OH functionalities around saturated hydrocarbon ring anisotropically enhanced ionic transport amplifying the fuel cell performance metrics.

  12. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  13. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  14. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  15. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  16. Reactions and Diffusion During Annealing-Induced H(+) Generation in SOI Buried Oxides

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Fleetwood, D.M.; Vanheusden, K; Warren, W.L.

    1999-01-01

    We report experimental results suggesting that mobile protons are generated at strained Si-O-Si bonds near the Si/SiO 2 interface during annealing in forming gas. Our data further suggest that the presence of the top Si layer plays a crucial role in the mobile H + generation process. Finally, we show that the diffusion of the reactive species (presumably H 2 or H 0 ) towards the H + generation sites occurs laterally along the buried oxide layer, and can be impeded significantly due to the presence of trapping sites in the buried oxide

  17. SiO2-TiO2-P2O5 meso porous coatings for proton exchange membranes fuel cells

    International Nuclear Information System (INIS)

    Castro, Y.; Mosa, J.; Duran, A.

    2014-01-01

    The article describes the preparation of meso porous SiO 2 -TiO 2 -P 2 O 5 coatings by Sol-Gel process combined to EISA method for using as proton exchange membranes fuel cells. Tetraethyl orthosilicate (TEOS), methyl triethoxysilane (MTES), titanium tetrachloride (TiCl 4 ) and phosphorus trichloride (PCl 3 ) have used as precursors and cetyl trimethylammonium bromide (CTAB) as porous generator agent. Films were deposited by immersion technique controlling the relative humidity at 40 and 20-70% and treated at 400 to 500 degree centigrade for 15, 30, 45 and 60 min. The variation of the refractive index and thickness have studied as a function of temperature and sintering time as well as the pore volume and density of the coatings by spectroscopic ellipsometry. Moreover, the hydrophobic/hydrophilic character of the coatings has been studied by Transform Infrared Spectroscopy (FTIR) and by contact angle measurements, following the loss of methyl groups with the temperature and sintering time. The results show that these parameters are crucial to obtain coatings with high porosity and low contact angle, important to obtain high proton conductivity conditions. The sintering conditions were fixed to 400 degree centigrade/60 min. Conductivity measurements at four points show high proton conductivity, 0,16 and 0,85 S/cm, up and down ramp, respectively, at 80 degree centigrade and 80 % of humidity. These coatings are good candidates for PEMFC membranes, if they are deposited onto electrodes. (Author)

  18. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  19. Charge-exchange processes in a divertor plasma with account for excited particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Lisitsa, V.S.; Pigarov, A.Yu.

    1988-01-01

    A model describing dynamics of neutral atoms and multicharge ions in tokamak plasma, taking account of cascade excitation effect on charge exchange and ionization processes, is constructed. Dependences of effective rate of processes of proton charge exchange on hydrogen atom and non-resonance helium atom charge exchange on proton and α-particle- on atomic hydrogen on tokamak divertor plasma parameters are calculated. It is shown that H + +He→H-He + charge exchange can make up a notable shave (∼30%) in full helium ionization rate. Accounting for Ge 2+ charge exchange on atomic hydrogen under INTOR reactor divertor plasma conditions can lead to substantial He 2+ →He + conversion and thus increase diverter plate sputtering by helium ions

  20. Leading proton production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    The semi-inclusive reaction e + p→e + Xp was studied with the ZEUS detector at HERA using an integrated luminosity of 12.8 pb -1 . The final-state proton, which was detected with the ZEUS leading proton spectrometer, carried a large fraction of the incoming proton energy, x L >0.32, and its transverse momentum squared satisfied p T 2 2 ; the exchanged photon virtuality, Q 2 , was greater than 3 GeV 2 and the range of the masses of the photon-proton system was 45 L , p T 2 , Q 2 and the Bjorken scaling variable, x. (orig.)

  1. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  2. Study of coupled heat and water transfer in proton exchange membrane fuel cells by the way of internal measurements

    International Nuclear Information System (INIS)

    Thomas, A; Maranzana, G; Didierjean, S; Dillet, J; Lottin, O

    2012-01-01

    Measurements of electrode temperatures within a proton exchange membrane fuel cell were performed using platinum wires. A temperature difference of 7°C between the electrodes and the bipolar plates was observed for a cell operating at a current density of 1.5 A.cm −2 . These measurements show a strong non-uniformity of the temperature profile through membrane electrode assembly (MEA) that future phenomenological models must take into account. In addition, the simultaneous measurements of heat and water flux through the MEA leads to the conclusion that produced water crosses the diffusion layer in vapor phase. A very simple heat transfer model is proposed.

  3. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC....

  4. Estimation of contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianhong; Liu, Ying; Song, Haimin; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Zhou, Yuanyuan; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2006-11-22

    The contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) is an important factor contributing to the power loss in proton exchange membrane (PEM) fuel cells. At present there is still not a well-developed method to estimate such contact resistance. This paper proposes two effective methods for estimating the contact resistance between the BPP and the GDL based on an experimental contact resistance-pressure constitutive relation. The constitutive relation was obtained by experimentally measuring the contact resistance between the GDL and a flat plate of the same material and processing conditions as the BPP under stated contact pressure. In the first method, which was a simplified prediction, the contact area and contact pressure between the BPP and the GDL were analyzed with a simple geometrical relation and the contact resistance was obtained by the contact resistance-pressure constitutive relation. In the second method, the contact area and contact pressure between the BPP and GDL were analyzed using FEM and the contact resistance was computed for each contact element according to the constitutive relation. The total contact resistance was then calculated by considering all contact elements in parallel. The influence of load distribution on contact resistance was also investigated. Good agreement was demonstrated between experimental results and predictions by both methods. The simplified prediction method provides an efficient approach to estimating the contact resistance in PEM fuel cells. The proposed methods for estimating the contact resistance can be useful in modeling and optimizing the assembly process to improve the performance of PEM fuel cells. (author)

  5. Proton conduction based on intracrystalline chemical reaction

    International Nuclear Information System (INIS)

    Schuck, G.; Lechner, R.E.; Langer, K.

    2002-01-01

    Proton conductivity in M 3 H(SeO 4 ) 2 crystals (M=K, Rb, Cs) is shown to be due to a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction: alternation between the association of the monomers [HSeO 4 ] 1- and [SeO 4 ] 2- resulting in the dimer [H(SeO 4 ) 2 ] 3- (H-bond formation) and the dissociation of the latter into the two monomers (H-bond breaking). By a combination of quasielastic neutron scattering and FTIR spectroscopy, reaction rates were obtained, as well as rates of proton exchange between selenate ions, leading to diffusion. The results demonstrate that this reaction plays a central role in the mechanism of proton transport in these solid-state protonic conductors. (orig.)

  6. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  7. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  8. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  9. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  10. Parallel simulated annealing algorithms for cell placement on hypercube multiprocessors

    Science.gov (United States)

    Banerjee, Prithviraj; Jones, Mark Howard; Sargent, Jeff S.

    1990-01-01

    Two parallel algorithms for standard cell placement using simulated annealing are developed to run on distributed-memory message-passing hypercube multiprocessors. The cells can be mapped in a two-dimensional area of a chip onto processors in an n-dimensional hypercube in two ways, such that both small and large cell exchange and displacement moves can be applied. The computation of the cost function in parallel among all the processors in the hypercube is described, along with a distributed data structure that needs to be stored in the hypercube to support the parallel cost evaluation. A novel tree broadcasting strategy is used extensively for updating cell locations in the parallel environment. A dynamic parallel annealing schedule estimates the errors due to interacting parallel moves and adapts the rate of synchronization automatically. Two novel approaches in controlling error in parallel algorithms are described: heuristic cell coloring and adaptive sequence control.

  11. Effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Tong Liuniu; Wang Yichao; He Xianmei; Han Huaibin; Xia Ailin; Hu Jinlian

    2012-01-01

    We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr 2+ ions substituting for Zn 2+ ions without any detectable secondary phase in as-synthesized Zn 0.97 Cr 0.03 O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization M s as well as an increase of coercivity of H 2 -annealed Zn 0.97 Cr 0.03 O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy H o may play an important role in the origin of H 2 -annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles. - Graphical Abstract: The H 2 -annealing induced enhancement of room temperature ferromagnetism in Cr-doped ZnO nanoparticles is observed. It is found that the field-cooled M-T curves can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H 2 -annealed Zn 0.97 Cr 0.03 O:H nanoparticles are almost doubled upon H 2 -annealing. The PL data show evidence that the hydrogen related shallow donor defect or/and defect complexes may be responsible for it. Display Omitted Highlights: ► The H 2 -annealing induced a large enhancement of

  12. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Hyung Kyu Kim

    2015-12-01

    Full Text Available This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES proton exchange membranes (PEMs for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa and low water swelling (λ < 15 even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  13. Very fast simulated re-annealing

    OpenAIRE

    L. Ingber

    1989-01-01

    Draft An algorithm is developed to statistically find the best global fit of a nonlinear non-convex cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing schedule for ‘‘temperature’’ T decreasing exponentially in annealing-time k, T = T0 exp(−ck1/D). The introduction of re-annealing also permits adaptation to changing sensitivities in the multidimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing, ...

  14. Effect of Elevated Temperature Annealing on Nafion/SiO2 Composite Membranes for the All-Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Sixiu Zeng

    2018-04-01

    Full Text Available Conducting Nafion/SiO2 composite membranes were successfully prepared using a simple electrostatic self-assembly method, followed by annealing at elevated temperatures of 240, 270, and 300 °C. Membrane performance was then investigated in vanadium redox flow batteries (VRB. These annealed composite membranes demonstrated lower vanadium permeability and a better selectivity coefficient than pure Nafion membranes. The annealing temperature of 270 °C created the highest proton conductivity in the Nafion/SiO2 composite membranes. The microstructures of these membranes were analyzed using transmission electron microscopy, small-angle X-ray scattering, and positron annihilation lifetime spectroscopy. This study revealed that exposure to high temperatures resulted in an increase in the free volumes of the composite membranes, resulting in improved mechanical and chemical behavior, with the single cell system containing composite membranes performing better than systems containing pure Nafion membranes.

  15. Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths

    International Nuclear Information System (INIS)

    Wang Xiaodong; Huang Yuxian; Cheng, C.-H.; Jang, J.-Y.; Lee, D.-J.; Yan, W.-M.; Su Ay

    2009-01-01

    The optimal cathode flow field design of a single serpentine proton exchange membrane fuel cell is obtained by adopting a combined optimization procedure including a simplified conjugate-gradient method (SCGM) and a completely three-dimensional, two-phase, non-isothermal fuel cell model. The cell output power density P cell is the objective function to be maximized with channel heights, H 1 -H 5 , and channel widths, W 2 -W 5 as search variables. The optimal design has tapered channels 1, 3 and 4, and diverging channels 2 and 5, producing 22.51% increment compared with the basic design with all heights and widths setting as 1 mm. Reduced channel heights of channels 2-4 significantly enhance sub-rib convection to effectively transport oxygen to and liquid water out of diffusion layer. The final diverging channel prevents significant leakage of fuel to outlet via sub-rib convection from channel 4. Near-optimal design without huge loss in cell performance but is easily manufactured is discussed.

  16. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-06-01

    Full Text Available The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC that are based on micro-electro-mechanical systems (MEMS. The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  17. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems

    Science.gov (United States)

    Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin

    2017-08-01

    Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called "fault tolerant control" (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.

  18. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...... based on the relaxation time in order to have the same average current density of (0.55 Acm-2 ) for all the cells. Cell 5, with a relaxation time of 2 min performs best and shows lower degradation rate of 36 μVh-1 compared to other load cycling cells with smaller relaxation times. The cell operated...

  19. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  20. Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells

    Science.gov (United States)

    Phillips, Richard S.

    Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt

  1. Synthesis, crystal structure, and H/D exchange of the inside protonated form of the cage imine 4,8,12-triaza-1-azoniatricyclo[6.6.3.2(4,12)]nonadec-1(15)-ene. A model for proton transfer through an aliphatic membrane

    DEFF Research Database (Denmark)

    Springborg, Johan; Nielsen, Bente; Olsen, Carl Erik

    2002-01-01

    belonging to the triazacyclononane entity. The imine double bond is situated between the N-atom of the triazacyclononane entity and the C-atom belonging to one of the three trimethylene bridges. The imine 2 is stable in acidic solution and the inside coordinated proton is very robust in acidic solution......, which gave K-im = 1.57(1) x 10(-5) M at 25 degreesC, DeltaSdegrees = -83(1) J mol(-1) K-1 and DeltaHdegrees = 2,6(3) kJ mol(-1) at 1 = 1.0 M (NaCl). The inside coordinated proton in 3 is labile in basic solution and the rate for NH/ND exchange was determined by H-1 NMR at three different temperatures....... The reaction followed the expression k(obs) = k(ex)[OD-] with k(ex) = 0.0978(30) dm(3) mol (1) s(-1) at 25 degreesC, DeltaSdegrees = 87(4) J mol(-1) K-1, and DeltaHdegrees = 104.9(11) kJ mol(-1) at I = 1.0 M (NaCl). The exchange rate is more than 5 x 106 times faster than that of the parent saturated cage 1...

  2. A nuclear magnetic relaxation study of hydrogen exchange and water dynamics in aqueous systems

    International Nuclear Information System (INIS)

    Lankhorst, D.

    1983-01-01

    In this thesis exchange of water protons in solutions of some weak electrolytes and polyelectrolytes is studied. Also the dynamical behaviour of water molecules in pure water is investigated. For these purposes nuclear magnetic resonance relaxation measurements, in solutions of oxygen-17 enriched water, are interpreted. The exchange rate of the water protons is derived from the contribution of 1 H- 17 O scalar coupling to the proton transverse relaxation rate. This rate is measured by the Carr-Purcell technique. (Auth.)

  3. Novel results on fluence dependence and annealing behaviour of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at IMB-CNM (Institut de Microelectronica de Barcelona) subjected to proton irradiation at CERN for high energy physics applications. The evolution of full depletion voltage and leakage current with fluence, as well as their annealing behaviour with time, were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  4. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  5. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties

    International Nuclear Information System (INIS)

    Li, Yongli; Nguyen, Quang Trong; Schaetzel, Pierre; Lixon-Buquet, Camille; Colasse, Laurent; Ratieuville, Vincent

    2013-01-01

    Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid–base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13–34 kJ mol −1 , which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton–water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends

  6. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  7. Crosslinked poly(ether ether ketone): cost-effective proton exchange ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... such as their high cost, poor proton conductivity and high fuel permeability at temperature above 80. ◦. C, which stimu- lated the ..... swells or becomes water soluble and loses its dimensional sta- bility. The water uptake of the ...

  8. Controlling the microstructure and associated magnetic properties of Ni0.2Mn3.2Ga0.6 melt-spun ribbons by annealing

    Directory of Open Access Journals (Sweden)

    Mahmud Khan

    2017-05-01

    Full Text Available Here we report on the structural and magnetic properties of Ni0.2Mn3.2Ga0.6 melt-spun ribbons. The as-spun ribbons were found to exhibit mixed cubic phases that transform to non-cubic structure upon annealing. Additionally, an amorphous phase was found to co-exist in all ribbons. The SEM images show that minor grain formation occurs on the as-spun ribbons. However, the formation of extensive nano-grains was observed on the surfaces of the annealed ribbons. While the as-spun ribbons exhibit predominantly paramagnetic behavior, the ribbons annealed under various thermal conditions were found to be ferromagnetic with a Curie temperature of about 380 K. The ribbons annealed at 450 °C for 30 minutes exhibit a large coercive field of about 2500 Oe. The experimental results show that the microstructure and associated magnetic properties of the ribbons can be controlled by annealing techniques. The coercive fields and the shape of the magnetic hysteresis loops vary significantly with annealing conditions. Exchange bias effects have also been observed in the annealed ribbons.

  9. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  10. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  11. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  12. Neutron–Proton Scattering Experiments at ANKE–COSY

    Directory of Open Access Journals (Sweden)

    Rathmann F.

    2010-04-01

    Full Text Available The nucleon–nucleon interaction (NN is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN–scattering experiments. While the EDDA experiment has dramatically improved the proton–proton date base, information on spin observables in neutron–proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi–free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → {pp}n deuteron charge–exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin– dependent parts of the neutron–proton charge–exchange amplitudes. Our measurement of the deuteron–proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  13. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yang Daijun; Ma Jianxin; Xu Lin; Wu Minzhong; Wang Haijiang

    2006-01-01

    The effects of NO x on the performance of proton exchange membrane (PEM) fuel cell were investigated through the introduction of a mixture containing NO and NO 2 , in a ratio of 9:1, into the cathode stream of a single PEM fuel cell. The NO x concentrations used in the experiments were 1480 ppm, 140 ppm and 10 ppm, which cover a range of three orders. The experimental results obtained from the tests of durability, polarization, reversibility and electrochemical impedance spectroscopy (EIS) showed a detrimental effect of NO x on the cell performance. The electrochemical measurements results suggested that the impacts of NO x are mainly resulted from the superposition of the oxygen reduction reaction (ORR), NO and HNO 2 oxidation reactions, and the increased cathodic impedance. Complete recovery of the cell performance was reached after operating the cell with clean air and then purging with N 2 for hours

  14. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  16. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    Science.gov (United States)

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  17. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Husnain, G

    2009-01-01

    Mn ions were implanted into GaN thin films with six doses ranging from 10 14 to 5 x 10 16 cm -2 and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M s and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  18. Annealing effects on the structural, optical and magnetic properties of Mn implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Sharif, Rehana [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Husnain, G, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2009-07-07

    Mn ions were implanted into GaN thin films with six doses ranging from 10{sup 14} to 5 x 10{sup 16} cm{sup -2} and the samples were subsequently annealed isochronically in three steps at 800, 850 and 900 deg. C. Structural, optical and magnetic properties of the implanted samples were studied after each annealing. X-ray diffraction measurements exhibited new peaks on the lower angle side of the main GaN peak which are attributed to the implantation induced damage as well as the formation of a GaMnN phase. A dose dependent decrease in the optical band gap and an increase in the Urbach tail were observed from optical transmission measurements. The clear magnetic hysteresis loops were recorded by the magnetometer which revealed the room temperature ferromagnetic ordering in all the implanted samples. Unusual behaviour in the magnetic measurements was observed when saturation magnetic moment decreased in all the samples with an increase in annealing temperature from 850 to 900 deg. C. This is explained by the out-diffusion of Mn atoms from the samples during high temperature annealing. Annealing temperature of 850 deg. C for Mn implanted GaN has been suggested as suitable since the samples annealed at this temperature exhibited maximum M{sub s} and minimum Urbach energy. Bound magnetic polarons are suggested to be the origin of room temperature ferromagnetic exchange in the samples. XPS measurements indicated that the Mn ions have been incorporated into the wurtzite structure of the host lattice by substituting the Ga sites.

  19. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  20. J/Ψ and φ Electro-production in Pomeron Exchange Model

    International Nuclear Information System (INIS)

    Liu Baorong; Tan Zhenqiang; Gu Yunting; He Xiaorong; Zhou Lijuan; Ma Weixing

    2007-01-01

    Based on Pomeron exchange model, J/Ψ and φ production in electro-proton interaction are investigated with both linear and non-linear Pomeron trajectory. The experimental differential cross sections measured as a function of the kinematic variable Q 2 ,W and t are reproduced successfully in the model. Our conclusions are that the Pomeron exchange model is a successful description of J/Ψ and φ electro-productions on the proton, and that the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory.

  1. On the exchange term of the interacting boson-fermion hamiltonian

    International Nuclear Information System (INIS)

    Gelberg, A.

    1983-01-01

    The exchange term of the Interacting Boson Fermion Model is investigated by using I. Talmi's method based on the shell model. A quadrupole operator of a three-proton system is formed; the protons are quadrupole-coupled to the neutron-bosons. Seniority conserving and seniority non conserving terms are considered. The particle number dependence of the parameters is investigated for the single-j shell. The relation between exchange and direct, seniority non conserving terms is examined. Approximate formulas are given for the multi-j shell. (orig.)

  2. Family symmetries and proton decay

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Kaplan, D.B.

    1994-01-01

    The proton decay modes p → K 0 e + and p → K 0 μ + may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q 1 Q 1 Q 2 L 1,2 ), where Q i and L i are i th generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p → K 0 ell + are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification

  3. A parallel simulated annealing algorithm for standard cell placement on a hypercube computer

    Science.gov (United States)

    Jones, Mark Howard

    1987-01-01

    A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.

  4. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent...

  5. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  6. Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reaction

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta M.; Dahl, Søren; Chorkendorff, Ib

    2012-01-01

    The interaction between metals and support is investigated in the case of 50 Å Pt and 50 Å Ru films deposited on a HOPG substrate. The films are prepared by electron beam physical vapor deposition and annealed in UHV to temperatures up to 700 °C. The equilibrium hydrogen exchange rate between...... adsorbed and gas phase at 1 bar is measured before and after annealing. The rate is measured in the temperature range of 40–200 °C at 1 bar, by utilization of the H-D exchange reaction. Experiments are performed on fresh cleaved and sputtered HOPG, which give similar results. We find that annealing...... the films from 150 up to 700 °C increases the amount of carbon present in the films up to 95%, as derived by surface analysis, indicating the formation of a carbon layer on top of the metal films. The exchange rate decreases dramatically with increasing carbon content on the films for both metals, pointing...

  7. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  8. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  9. Novel results on fluence dependence and annealing behavior of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A J D

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at the Institut de Microelectronica de Barcelona (IMB-CNM) subjected to proton irradiation at CERN, Switzerland, for high-energy physics (HEP) applications. The evolution of full depletion voltage and leakage current with fluence as well as their annealing behavior with time were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  10. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  11. Platinum catalysts recovery of the proton exchange membrane fuel cell; Recuperacao de catalisadores de platina da celula a combustibel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, S.H.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de Processamento de Residuos

    2006-07-01

    Currently, platinum is the most feasible catalyst for the Proton Exchange Membrane Fuel Cells - PEMFC. Along with platinum's significant importance in this energy system are the high cost of this noble metal and its detrimental effects on the environment. Therefore, recycling this material seems as an alternative to decrease its impacts on the environment and, at the same time, to provide a reduction of the system's costs. A search was conducted for literature and studies about platinum recycling methods. However, only two techniques of platinum recovery, which are still in development, were found. In face of this situation, a recovery method of platinum from deactivated Membrane Electrode Assembly - MEA's was developed, with attention to aspects related to the environment and the necessary requirements for its primary recycling. The results found showed a high recovery ratio and a possibility to reintroduce this metal into the production cycle. (author)

  12. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    International Nuclear Information System (INIS)

    Kramberger, G.; Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M.

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of Φ eq =3x10 15 cm -2 . The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  13. Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, G., E-mail: Gregor.Kramberger@ijs.s [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Cindro, V.; Dolenc, I.; Mandic, I.; Mikuz, M.; Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, SI-1000 Ljubljana (Slovenia)

    2010-01-01

    A set of 44 pad detectors produced on p- and n-type MCz and Fz wafers was irradiated with 23 GeV protons, 200 MeV pions and reactor neutrons up to the equivalent fluences of PHI{sub eq}=3x10{sup 15}cm{sup -2}. The evolution of the full depletion voltage and the leakage current were monitored during short- and long-term annealing. At selected representative annealing steps, charge collection measurements were performed for all samples with LHC speed electronics. Measurements of full depletion voltage, leakage current and charge collection efficiency were compared for different irradiation particles and silicon materials.

  14. Kinetic aspects of the growth of platelets and voids in H implanted Si

    International Nuclear Information System (INIS)

    Grisolia, J.; Cristiano, F.; Ben Assayag, G.; Claverie, A.

    2001-01-01

    We have undertaken a systematic and quantitative study of the extended defects formed after high-dose proton implantation in silicon. This study is based on the transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) experiments to 'follow' the thermal evolution of platelets and voids for a large variety of annealing conditions up to 900 deg. C. Up to about 500 deg. C, only platelets are observed and, as the anneal proceeds, they grow in size and reduce their density through the conservative exchange of hydrogen (H) atoms. On the contrary, above 500 deg. C, H starts to diffuse out of the defect-rich region and this out-diffusion can be completed after 700 deg. C anneals. Concurrently, platelets tend to disappear and voids appear. Above 700 deg. C anneals, hydrogen cannot be detected anymore in the layers and only voids remain. Upon time, they also grow in size and reduce their density. This is again attributed to the Ostwald ripening of voids which involves now vacancy diffusion from small voids to large ones. In summary, we have shown that platelets and voids both undergo quasi-conservative ripening upon annealing; at low-temperature (LT) platelets exchange the H atoms they are composed of while at high-temperature voids exchange vacancies

  15. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  16. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  17. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yan Weimon; Duan Yuanyuan; Weng Fangbor; Jung Guobin; Lee Chiyuan

    2010-01-01

    This work numerically investigates the effect of the channel size on the cell performance of proton exchange membrane (PEM) fuel cells with serpentine flow fields using a three-dimensional, two-phase model. The local current densities in the PEM, oxygen mass flow rates and liquid water concentrations at the interface of the cathode gas diffusion layer and catalyst layer were analyzed to understand the channel size effect. The predictions show that smaller channel sizes enhance liquid water removal and increase oxygen transport to the porous layers, which improve cell performance. Additionally, smaller channel sizes also provide more uniform current density distributions in the cell. However, as the channel size decreases, the total pressure drops across the cell increases, which leads to more pump work. With taking into account the pressure losses, the optimal cell performance occurs for a cell with a flow channel cross-sectional area of 0.535 x 0.535 mm 2 .

  18. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell.

    Science.gov (United States)

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-13

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life.

  19. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  20. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition

    Science.gov (United States)

    Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.

    2017-08-01

    The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.

  1. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  2. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Kannan, R., E-mail: rksrsrk@gmail.com [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Material Sciences & Engineering, Cornell University, Ithaca, NewYork-14853 (United States); Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Sivakumar, M. [School of Physics, Alagappa University, Karaikudi-630004 (India)

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  3. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  4. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  5. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane

    International Nuclear Information System (INIS)

    Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Rahimi, Z.

    2017-01-01

    In this paper, firstly sulfonated polyethersulfone (SPES) was synthesized from polyethersulfone (PES) with sulfonation by chlorosulfonic acid as a sulfonating agent dissolved in concentrated sulfuric acid. PES/SPES blend proton exchange membranes (PEMs) were prepared at four different compositions with the non-solvent induced phase separation technique as alternative materials to Nafion membrane for application in a microbial fuel cell (MFC). The prepared PEMs were characterized by FTIR spectroscopy, AFM, SEM, contact angle, water uptake and oxygen permeability. Performances of the fabricated PEMs and commercial Nafion 117 were evaluated in a dual chamber MFC for treating of wastewater and electricity generation. Maximum generated power and current of the fabricated membranes were 58.726 mWm −2  at current density of 317.111 mAm −2 , while it was 45.512 mWm −2  at 228.673 mAm −2 for Nafion 117 at the similar experimental condition. The observed properties of low biofouling, low oxygen permeability, high power generation, high COD removal and coulombic efficiency (CE) indicated that the SPES membrane has potential to improve significantly the productivity of MFCs. - Highlights: • Sulfonated PES (SPES) was synthesized by chlorosulfonic acid in concentrated H 2 SO 4 . • PES/SPES blend proton exchange membranes (PEMs) were prepared for use in MFC. • Performance of PEMs and commercial Nafion 117 were tested to treat of wastewater. • Maximum generated power and current of SPES membrane was higher than Nafion 117.

  6. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang; Dillard, David A.; Case, Scott W. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 (United States); Ellis, Michael W. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238 (United States); Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P. [Fuel Cell Research Lab, GM R and D, General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472-0603 (United States)

    2009-12-01

    In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion {sup registered} NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 C, 2%RH extruded Ion Power {sup registered} N111-IP membranes have a longer lifetime than Gore trademark -Select {sup registered} 57 and Nafion {sup registered} NRE-211 membranes. (author)

  7. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  8. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based...... effects are similar for all the test cases, namely, CO alone, methanol alone and a mix of the two, suggesting that effects of methanol may include oxidation into CO on the catalyst layer....... on experimental evaluation of electrochemical impedance spectroscopy measurements were used to quantify the changes caused by different contamination levels. The changes are generally in good agreement with what is found in the literature. It is shown that an increased level of CO contamination resulted...

  10. Spin-isospin excitation of 3He with three-proton final state

    Science.gov (United States)

    Ishikawa, Souichi

    2018-01-01

    Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.

  11. Proton irradiation induced defects in Cd and Zn doped InP

    International Nuclear Information System (INIS)

    Rybicki, G.C.; Williams, W.S.

    1993-01-01

    Proton irradiation induced defects in Zn and Cd doped InP have been studied by deep level transient spectroscopy, (DLTS). After 2 MeV proton irradiation the defects H4 and H5 were observed in lightly Zn doped InP, while the defects H3 and H5 were observed in more heavily Zn and Cd doped InP. The defect properties were not affected by the substitution of Cd for Zn, but the introduction rate of H5 was lower in Cd doped InP. The annealing rate of defects was also higher in Cd doped InP. The use of Cd doped InP may thus result in an InP solar cell with even greater radiation resistance

  12. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  13. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  14. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  15. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  16. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  17. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  18. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry

    Science.gov (United States)

    Inman, Kristopher; Wang, Xia; Sangeorzan, Brian

    Internal temperatures in a proton exchange membrane (PEM) fuel cell govern the ionic conductivities of the polymer electrolyte, influence the reaction rate at the electrodes, and control the water vapor pressure inside the cell. It is vital to fully understand thermal behavior in a PEM fuel cell if performance and durability are to be optimized. The objective of this research was to design, construct, and implement thermal sensors based on the principles of the lifetime-decay method of phosphor thermometry to measure temperatures inside a PEM fuel cell. Five sensors were designed and calibrated with a maximum uncertainty of ±0.6 °C. Using these sensors, surface temperatures were measured on the cathode gas diffusion layer of a 25 cm 2 PEM fuel cell. The test results demonstrate the utility of the optical temperature sensor design and provide insight into the thermal behavior found in a PEM fuel cell.

  19. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  20. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  1. Computational algorithm for molybdenite concentrate annealing

    International Nuclear Information System (INIS)

    Alkatseva, V.M.

    1995-01-01

    Computational algorithm is presented for annealing of molybdenite concentrate with granulated return dust and that of granulated molybdenite concentrate. The algorithm differs from the known analogies for sulphide raw material annealing by including the calculation of return dust mass in stationary annealing; the latter quantity varies form the return dust mass value obtained in the first iteration step. Masses of solid products are determined by distribution of concentrate annealing products, including return dust and benthonite. The algorithm is applied to computations for annealing of other sulphide materials. 3 refs

  2. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  3. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas....... Furthermore, the presence of irreducible liquid water is taken into account. In order to account for compression, porous media morphology variations are specified based on the gas diffusion layer (GDL) through-plane strain and intrusion which are stated as a function of compression. These morphology...... variations affect gas and liquid water transport, and hence liquid water distribution and the risk of blocking active sites. Hence, water transport is studied under GDL compression in order to investigate the qualitative effects. Two simulation cases are compared; one with and one without compression....

  4. The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan

    2018-01-26

    The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: •Stochastic model is proposed for coordinated scheduling of renewable energy sources. •The effect of combined heat and power is considered. •Hydrogen storage is considered for fuel cells. •Maximizing profits of micro grid is considered as objective function. •Considering the uncertainties of problem lead to profit increasing. -- Abstract: Nowadays, renewable energy sources and combined heat and power units are extremely used in micro grids, so it is necessary to schedule these units to improve the performance of the system. In this regard, a stochastic model is proposed in this paper to schedule proton exchange membrane fuel cell-combined heat and power, wind turbines, and photovoltaic units coordinately in a micro grid while considering hydrogen storage. Hydrogen storage strategy is considered for the operation of proton exchange membrane fuel cell-combined heat and power units. To consider stochastic generation of renewable energy source units in this paper, a scenario-based method is used. In this method, the uncertainties of electrical market price, the wind speed, and solar irradiance are considered. This stochastic scheduling problem is a mixed integer- nonlinear programming which considers the proposed objective function and variables of coordinated scheduling of PEMFC-CHP, wind turbines and photovoltaic units. It also considers hydrogen storage strategy and converts it to a mixed integer nonlinear problem. In this study a modified firefly algorithm is used to solve the problem. This method is examined on modified 33-bus distributed network as a MG for its performance.

  6. Exchange interaction in MnPt/FeCo sputtered multilayers

    International Nuclear Information System (INIS)

    Honda, S.; Nawate, M.; Norikane, T.

    2000-01-01

    MnPt single-layer films have been prepared on glass substrates by RF magnetron sputtering for studying the composition dependencies of resistivity and crystalline structure. In the as-deposited state, the resistivity increases with Mn content and reaches the maximum at 69 at%. By annealing, the resistivity of the films having the Mn content around 51 at% increases, closely relating to the growth of the ordered CuAu FCT-type MnPt crystals. For the both film structures of the glass/Cu/FeCo/MnPt/Cu and the glass/MnPt/FeCo/Cu, which have been sputter-deposited on glass substrates, the exchange interaction between MnPt and FeCo layers, and the coercivity of the FeCo layer have been examined as functions of the Mn content, the layer thickness and the annealing temperature. In the as-deposited state, the exchange field (H ex ) is nearly zero up to 75 at% of Mn content, above which the value of H ex increases and shows the maximum at 85 at%, in which the blocking temperature is about 100 deg. C. By annealing, the value of H ex increases for the films of Mn content around 40-60 at%, exhibiting the higher blocking temperature than 360 deg. C. The temperature stability has also been examined using the Rutherford backscattering spectrometry

  7. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  8. Effects of air exchange, temperature and slurry management on odorant emissions from pig production units and slurry tanks studied by proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.; Adamsen, A.P.S.; Liu, D.; Hansen, M.J.; Bildsoe, P. [Aarhus Univ., Tjele (Denmark). Dept. of Biosystems Engineering

    2010-07-01

    The factors affecting the variability of odorant emissions from intensive pig production facilities were examined using proton-transfer-reaction mass spectrometry (PTR-MS) to monitor emissions of odorants. Quantitative and time-resolved results for protonated ions representing hydrogen sulphide (H{sub 2}S), volatile organic sulphur compounds, organic amines, volatile carboxylic acids, carbonyls, phenols and indoles can be obtained. This study presented the results from PTRMS measurements of odorant emissions from finisher pig houses and finisher manure storage tanks. The measurements were performed at an experimental full-scale pig section with mechanical ventilation and at an experimental manure storage facility with controlled air exchange. Field measurements were taken during variable air exchange rates and temperatures, during finisher growth, and during emptying of the slurry pit. The results revealed a pronounced diurnal variation in emissions of odorants from the pig section with peaks in daytime coinciding with the highest ventilation rates and highest room temperatures. The highest emission rates were observed for H{sub 2}S and carboxylic acids. Based on odour threshold values, methanethiol and 4-methylphenol were estimated to contribute considerably to the odour nuisance. Discharging of the slurry pit led to reduced H{sub 2}S emissions, but peaks of H{sub 2}S were observed during manure handling.

  9. Diffractive deep-inelastic scattering with a leading proton at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

  10. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Manzo, Michele; Gallo, Katia, E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  11. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    Science.gov (United States)

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  12. Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups

    International Nuclear Information System (INIS)

    Lim, Youngdon; Seo, Dongwan; Hossain, Md. Awlad; Lee, Soonho; Lim, Jinseong; Jang, Hohyoun; Hong, Taehoon; Kim,; Kim, Whangi

    2014-01-01

    Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1 H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion

  13. Management of the Bohunice RPVs annealing procedures

    International Nuclear Information System (INIS)

    Repka, M.

    1994-01-01

    The program of annealing regeneration procedure of RPVs units 1 and 2 of NPP V-1 (EBO) realization in the year 1993, is the topic of this paper. In the paper the following steps are described in detail: the preparation works, the annealing procedure realization schedule and safety management: starting with zero conditions, assembling of annealing apparatus, annealing procedure, cooling down and disassembling procedure of annealing apparatus. At the end the programs of annealing of both RPVs including the dosimetry measurements are discussed and evaluated. (author). 3 figs

  14. Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik; Guiver, Michael D.; Ding, Jianfu [Institute for Chemical Process and Environmental Technology, National Research Council, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Kim, Yu.Seung; Pivovar, Bryan S. [Materials Physics and Applications, Sensors and Electrochemical Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-07-15

    The fuel cell performance (DMFC and H{sub 2}/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 0.5 M methanol was 145 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 136 mW cm{sup -2}. The power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 2.0 M methanol was 144.5 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 143 mW cm{sup -2}. (author)

  15. Analysis of pion production data measured by HADES in proton-proton collisions at 1.25 GeV

    International Nuclear Information System (INIS)

    Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y.; Balanda, A.; Dybczak, A.; Michalska, B.; Palka, M.; Przygoda, W.; Salabura, P.; Trebacz, R.; Belver, D.; Cabanelas, P.; Garzon, J.A.; Berger-Chen, J.C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Muenzer, R.; Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A.; Boehmer, M.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Siebenson, J.; Weber, M.; Boyard, J.L.; Hennino, T.; Liu, T.; Ramstein, B.; Finocchiaro, P.; Schmah, A.; Spataro, S.; Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y.C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Tarantola, A.; Teilab, K.; Galatyuk, T.; Gonzalez-Diaz, D.; Gumberidze, M.; Kornakov, G.; Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A.; Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Sturm, C.; Traxler, M.; Yurevich, S.; Iori, I.; Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J.; Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V.; Kuc, H.; Kuehn, W.; Metag, V.; Spruck, B.; Lebedev, A.; Parpottas, Y.; Tsertos, H.; Stroth, J.; Sarantsev, A.V.; Nikonov, V.A.

    2015-01-01

    Baryon resonance production in proton-proton collisions at a kinetic beam energy of 1.25 GeV is investigated. The multi-differential data were measured by the HADES Collaboration. Exclusive channels with one pion in the final state (npπ + and ppπ 0 ) were put to extended studies based on various observables in the framework of a one-pion exchange model and with solutions obtained within the framework of a partial wave analysis (PWA) of the Bonn-Gatchina group. The results of the PWA confirm the dominant contribution of the Δ(1232), yet with a sizable impact of the N (1440) and non-resonant partial waves. (orig.)

  16. Analysis of pion production data measured by HADES in proton-proton collisions at 1.25 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Agakishiev, G.; Belyaev, A.; Chernenko, S.; Fateev, O.; Ierusalimov, A.; Ladygin, V.; Vasiliev, T.; Zanevsky, Y. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Balanda, A.; Dybczak, A.; Michalska, B.; Palka, M.; Przygoda, W.; Salabura, P.; Trebacz, R. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Belver, D.; Cabanelas, P.; Garzon, J.A. [Univ. de Santiago de Compostela, LabCAF. F. Fisica, Santiago de Compostela (Spain); Berger-Chen, J.C.; Epple, E.; Fabbietti, L.; Lalik, R.; Lapidus, K.; Muenzer, R. [' ' Origin and Structure of the Universe' ' , Excellence Cluster, Garching (Germany); Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Blanco, A.; Fonte, P.; Lopes, L.; Mangiarotti, A. [Fisica Experimental de Particulas, LIP-Laboratorio de Instrumentacao e, Coimbra (Portugal); Boehmer, M.; Friese, J.; Gernhaeuser, R.; Jurkovic, M.; Kruecken, R.; Maier, L.; Siebenson, J.; Weber, M. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Boyard, J.L.; Hennino, T.; Liu, T.; Ramstein, B. [Univ. Paris-Sud, Universite Paris-Saclay, Institut de Physique Nucleaire, CNRS-IN2P3, Orsay Cedex (France); Finocchiaro, P.; Schmah, A.; Spataro, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Froehlich, I.; Goebel, K.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y.C.; Pechenova, O.; Rustamov, A.; Stroebele, H.; Tarantola, A.; Teilab, K. [Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Galatyuk, T.; Gonzalez-Diaz, D.; Gumberidze, M.; Kornakov, G. [Technische Universitaet Darmstadt, Darmstadt (Germany); Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Reshetin, A.; Sadovsky, A. [Russian Academy of Science, Institute for Nuclear Research, Moscow (Russian Federation); Heinz, T.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Lang, S.; Pechenov, V.; Pietraszko, J.; Schwab, E.; Sturm, C.; Traxler, M.; Yurevich, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Iori, I. [Sezione di Milano, Istituto Nazionale di Fisica Nucleare, Milano (Italy); Kaempfer, B.; Kotte, R.; Naumann, L.; Wendisch, C.; Wuestenfeld, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institut fuer Strahlenphysik, Dresden (Germany); Krasa, A.; Krizek, F.; Kugler, A.; Sobolev, Yu.G.; Tlusty, P.; Wagner, V. [Academy of Sciences of Czech Republic, Nuclear Physics Institute, Rez (Czech Republic); Kuc, H. [Jagiellonian University of Cracow, Smoluchowski Institute of Physics, Krakow (Poland); Univ. Paris-Sud, Universite Paris-Saclay, Institut de Physique Nucleaire, CNRS-IN2P3, Orsay Cedex (France); Kuehn, W.; Metag, V.; Spruck, B. [Justus Liebig Universitaet Giessen, II.Physikalisches Institut, Giessen (Germany); Lebedev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Parpottas, Y.; Tsertos, H. [University of Cyprus, Department of Physics, Nicosia (Cyprus); Stroth, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet, Institut fuer Kernphysik, Frankfurt (Germany); Sarantsev, A.V.; Nikonov, V.A. [PNPI, NRC ' ' Kurchatov Institute' ' , Gatchina (Russian Federation); Collaboration: HADES Collaboration

    2015-10-15

    Baryon resonance production in proton-proton collisions at a kinetic beam energy of 1.25 GeV is investigated. The multi-differential data were measured by the HADES Collaboration. Exclusive channels with one pion in the final state (npπ{sup +} and ppπ{sup 0}) were put to extended studies based on various observables in the framework of a one-pion exchange model and with solutions obtained within the framework of a partial wave analysis (PWA) of the Bonn-Gatchina group. The results of the PWA confirm the dominant contribution of the Δ(1232), yet with a sizable impact of the N (1440) and non-resonant partial waves. (orig.)

  17. Mathematical foundation of quantum annealing

    International Nuclear Information System (INIS)

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-01-01

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping

  18. Degradation of SiGe devices by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Hidenori; Hayama, Kiyoteru [Kumamoto National Coll. of Technology, Nishigoshi (Japan); Vanhellemont, J; Takami, Yasukiyo; Sunaga, Hiromi; Nashiyama, Isamu; Uwatoko, Yoshiya; Poortmans, J; Caymax, M

    1997-03-01

    The degradation and recovery behavior of strained Si{sub 1-x}Ge{sub x} diodes and heterojunction bipolar transistors (HBTs) by irradiated by protons are studied. The degradation of device performance and the generation of lattice defects are reported as a function of fluence and germanium content and also compared extensively with previous results obtained on electron and neutron irradiated devices. In order to study the recovery behavior of the irradiated devices, isochronal annealing is performed. The radiation source dependence of the degradation is discussed taking into account the number of knock-on atoms and the nonionizing energy loss (NIEL). (author)

  19. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Biset, S; Nieto Deglioumini, L; Basualdo, M [GIAIP-CIFASIS (UTN-FRRo-CONICET-UPCAM-UNR), BV. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina); Garcia, V M; Serra, M [Institut de Robotica i Informatica Industrial, C. Llorens i Artigas 4-6, 08028 Barcelona (Spain)

    2009-07-01

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process. (author)

  20. Placement by thermodynamic simulated annealing

    International Nuclear Information System (INIS)

    Vicente, Juan de; Lanchares, Juan; Hermida, Roman

    2003-01-01

    Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features

  1. Modernizing quantum annealing using local searches

    International Nuclear Information System (INIS)

    Chancellor, Nicholas

    2017-01-01

    I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques. (paper)

  2. Ensemble annealing of complex physical systems

    OpenAIRE

    Habeck, Michael

    2015-01-01

    Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is th...

  3. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  4. Photoluminescence study of high energy proton irradiation on Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonhyeong [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, June Hyuk [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Shin, Donghyeop [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Ahn, Byung Tae, E-mail: btahn@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Shin, Byungha, E-mail: byungha@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-03-31

    We have studied the effect of proton irradiation on Cu(In,Ga)Se{sub 2} (CIGS) thin films using photoluminescence (PL). We used a 10 MeV proton beam with varying doses from 10{sup 9} to 10{sup 12} cm{sup −2}. Intensity-dependent low temperature PL measurements suggest that the proton irradiation does not create a new defect level but instead changes the number of preexisting defects in the detection range of the PL system. By comparing PL spectra after the proton irradiation with those obtained after thermal annealing under inert gas as well as under hydrogen gas ambient, we find that the irradiation-induced change in the defect structure does not originate from the incorporation of hydrogen but from energetics of the irradiating particles. Electrical resistivity of the proton irradiated CIGS thin films is shown to decrease after the proton irradiation, and this is explained by the reduction of the concentration of compensating donor-like defects, specifically selenium vacancies, based on the PL results. - Highlights: • Photoluminescence study of 10 MeV proton irradiation on CIGS at 10 K. • Irradiation modified population of existing defects without introducing new levels. • Changes in CIGS by 10 MeV irradiation are due to energetics of irradiating protons.

  5. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  6. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  7. Neutron and proton optical potentials

    International Nuclear Information System (INIS)

    Hansen, L.F.

    1985-11-01

    The neutron and proton optical model potentials (OMP) are discussed in terms of microscopic (MOMP) and phenomenological (POMP) models. For the MOMP, two approaches are discussed, the nucleus matter approach [Jeukenne-Lejeune-Mahaux (JLM) and Brieva-Rook-von Geramb (BRVG), potentials] and the finite nuclei approach (Osterfeld and Madsen). For the POMP, the Lane charge-exchange potential and its validity over a wide mass range is reviewed. In addition to the Lane symmetry term, the Coulomb correction to both the real and imaginary parts of the OMP is discussed for the above models. The use of the OMP to calculate collective inelastic scattering and observed differences between the neutron- and proton-deformation parameters is also illustrated. 25 refs., 3 figs

  8. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  9. Electrochemical characterization of proton exchange membrane fuel cells; Caracterizacao eletroquimica de celulas a combustivel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    This paper describes the electrochemical behavior of a proton exchange membrane fuel cell in function of temperature and time of operation. Different polarization phenomena are considered in the 30 to 70 deg C temperature range, as well as the degradation of electrochemical behavior of the fuel cell analyzed up to 1260 hours of operation. The results show that there is a tendency for the experimental values approaching the theoretical as it increases the temperature of the membrane electrolyte. The electrochemical behavior of the PEMFC studied proved to be less stable at 70 deg C. On the other hand, at 30 deg C the fuel cell performance proved to be considerably lower than at other temperatures. Also, it was found that in certain current ranges occurs greater overlay in potential-current curves, and in some cases reversing between these curves depending on the electric current required for the data obtained at 60 and 70 deg C, indicating, perhaps, that at 70 deg C the characteristics of the electrolyte are slightly inferior to those at 70 deg C, corresponding to an electrolyte degradation. Additionally, for the system studied, we found that the rate of variation of the potential difference in function of the temperature is quite high at the beginning of the operation process and tends to stabilize in a level of around 2,3-2,5 {mu}V per minute for times greater than 330 hours of operation. (author)

  10. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    International Nuclear Information System (INIS)

    Rezazadeh, S.; Mirzaee, I.; Mehrabi, M.

    2012-01-01

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm 2 ) is modeled to the variation of pressure at the cathode side P C (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient α an , relative humidity of inlet fuel RH a and relative humidity of inlet air RH c which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states

  11. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  12. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  13. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Measurement of the left-right asymmetry in pion-proton radiative exchange and charge exchange scattering from 301 to 625 MeV/c on a transversely polarized target

    International Nuclear Information System (INIS)

    Kim, George Jung-Kwang.

    1988-05-01

    The left-right asymmetry A/sub N/ in π/sup /minus//p → γn has been measured at p/sub π = 301, 316, 427, 471, 547, 586, and 625 MeV/c using a transversely polarized target. The final-state neutron and gamma were detected in coincidence by two states of matching neutron and gamma detectors at gamma angles centered around 90/degree and 110/degree/ c.m. A gamma detector consisted of an array of 15 counters, each was 15/times/15/times/25 cm 3 block of lead-glass. A neutron detector consisted of 15 counters also, each one was a cylindrical plastic scintillator 7.6 cm in diameter and 45.7 cm long. The A/sub N/ results are compared with the predictions from the most recent single-pion photoproduction partial-wave analysis by Arai and Fujii. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use. A comparison is made with the 90/degree/recoil proton polarization data of the inverse reaction derived from γd scattering, there are substantial discrepencies. Charge exchange (π/sup /minus/p/ → γ/degree/n) events were the major yield in this experiment. Very precise values of the charge exchange analyzing power were obtained with an error of typically 3%. The charge exchange results are compared with the predictions from recent γn partial wave analyses. At the lower incident energies little difference is seen between the VPI, Karlsruhe-Helsinki, and CMU-LBL analyses, and there is excellent agreement with our experiment. From the onset of the Roper resonance the VPI solution is strongly favored

  15. Annealing effects in solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1981-01-01

    Current analyses of the annealing process in Solid State Track Recorders (SSTR) reveal fundamental misconceptions. The use of the Arrhenius equation to describe the decrease in track density resulting from annealing is shown to be incorrect. To overcome these deficiencies, generalized reaction rate theory is used to describe the annealing process in SSTR. Results of annealing experiments are used to guide this theoretical formulation. Within this framework, the concept of energy per etchable defect for SSTR is introduced. A general correlation between sensitivity and annealing susceptibility in SSTR is deduced. In terms of this general theory, the apparent correlation between fission track size and fission track density observed under annealing is readily explained. Based on this theoretical treatment of annealing phenomena, qualitative explanations are advanced for current enigmas in SSTR cosmic ray work

  16. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  17. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  18. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  19. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    Science.gov (United States)

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  20. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    K. Vogtt

    2005-08-01

    Full Text Available COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC and under high pressure conditions at low temperature (3.75 kbar, -13ºC. Moreover, the influence of co-solvents (sorbitol, urea on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.