WorldWideScience

Sample records for annealed magnesium silicate

  1. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  2. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  3. CO2 sequestration by magnesium silicate mineral carbonation in Finland

    International Nuclear Information System (INIS)

    Zevenhoven, R.; Kohlmann, J.

    2001-01-01

    Fixation Of CO 2 from fossil fuel combustion in the form of solid carbonates appears to be a realistic option for the capture and storage of this greenhouse gas. Vast amounts of magnesium silicate minerals exist worldwide that may be carbonated, with magnesium carbonate as stable and environmentally harmless product. Also in Finland magnesium silicate resources exist that could support Finnish commitments under the Kyoto Protocol. This paper describes the option Of CO 2 sequestration with magnesium silicates in Finland. Addressed are mineral resources, mineral quality and the mineral carbonation process, including some experimental results on magnesium silicate carbonation kinetics

  4. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  5. Dielectric properties of plasma sprayed silicates subjected to additional annealing

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/

  6. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis

    Directory of Open Access Journals (Sweden)

    Rajan Choudhary

    2015-06-01

    Full Text Available The present study focused on the synthesis of calcium magnesium silicate (akermanite, Ca2MgSi2O7 using eggshell biowaste (as calcium source, magnesium nitrate and tetraethyl orthosilicate (TEOS as starting materials. Sol–gel combustion method was adopted to obtain calcium magnesium silicate. Citric acid was used as a fuel (reducing agent and nitrate ions present in the metal nitrates acts as an oxidizing agent during combustion process. The characterization of synthesized calcium magnesium silicate was carried out by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR and scanning electron microscopy (SEM techniques. Calcium magnesium silicate crystallite size was observed in nano regime which can effectively mimic natural bone apatite composition. In-vitro bioactivity was investigated by immersing calcium magnesium silicate pellet in simulated body fluid (SBF for three weeks. Results show effective deposition of crystallized hydroxyapatite (HAP layer on its surface and predicting its possibilities for applications in hard tissue regeneration.

  7. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  8. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  9. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  10. Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

    DEFF Research Database (Denmark)

    Pongjanyakul, Thaned; Khunawattanakul, Wanwisa; Strachan, Clare J

    2013-01-01

    The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive...

  11. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  12. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  13. CO2 fixation using magnesium silicate minerals part 1: Process description and performance

    International Nuclear Information System (INIS)

    Fagerlund, Johan; Nduagu, Experience; Romão, Inês; Zevenhoven, Ron

    2012-01-01

    This paper describes a staged carbonation process for magnesium silicate mineral carbonation. This carbon dioxide capture and storage (CCS) alternative involves the production of magnesium hydroxide, followed by its carbonation in a pressurised fluidised bed (PFB) reactor. The goal is to utilise the heat of the carbonation reaction to drive the Mg(OH) 2 production step. The results show that Mg(OH) 2 can be produced successfully (up to 78% Mg extraction extent achieved so far) and efficiently from different serpentinite minerals from locations worldwide (Finland, Lithuania, Australia, Portugal…). From the extraction step, ammonium sulphate is recovered while iron oxides (from the mineral) are obtained as by-products. The carbonation step, while still being developed, resulted in >50%-wt conversion in 10 min (500 °C, 20 bar) for > 300 μm serpentinite-derived Mg(OH) 2 particles. Thus the reaction rate achieved so far is much faster than what is currently being considered fast in the field of mineral carbonation. -- Highlights: ► Magnesium silicate-based rock can sequester CO 2 as stable magnesium carbonate. ► Abundance of rock material offers a larger capacity than other CCS methods. ► Mg(OH) 2 production is followed by its carbonation in a pressurised fluidised bed. ► Carbonation reaches >50% in around 10 min for >0.3 mm particles. ► Mg(OH) 2 produced from different rock material show the same performance.

  14. Lysozyme-magnesium aluminum silicate microparticles: Molecular interaction, bioactivity and release studies

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Medlicott, Natalie J.; Rades, Thomas

    2015-01-01

    The objectives of this study were to investigate the adsorption behavior of lysozyme (LSZ) onto magnesium aluminum silicate (MAS) at various pHs and to characterize the LSZ–MAS microparticles obtained from the molecular interaction between LSZ and MAS. The results showed that LSZ could be bound...... onto the MAS layers at different pHs, leading to the formation of LSZ–MAS microparticles. The higher preparation pH permitted greater adsorption affinity but a lower adsorption capacity of LSZ onto MAS. LSZ could interact with MAS via hydrogen bonds and electrostatic forces, resulting in the formation...

  15. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  16. Ablation behavior and mechanism of boron nitride - magnesium aluminum silicate ceramic composites in an oxyacetylene combustion flame

    NARCIS (Netherlands)

    Cai, Delong; Yang, Zhihua; Yuan, Jingkun; Duan, Xiaoming; Wang, Shengjin; Ocelik, Vaclav; De Hossond, J. TH. M.; Jia, Dechang; Zhou, Yu

    2018-01-01

    In the present study, ablation behavior and properties of BN-MAS (magnesium aluminum silicate) composites impinged with an oxyacetylene flame at temperatures up to 3100 degrees C were investigated. As ablation time ranged from 5 to 30 s, the mass and linear ablation rates increased from 0.0027 g/s

  17. Corrosion and erosion properties of silicate and phosphate coatings on magnesium

    International Nuclear Information System (INIS)

    Ma, Y.; Nie, X.; Northwood, D.O.; Hu, H.

    2004-01-01

    Electrolytic plasma processing (EPP) is an emerging, environmentally friendly, surface engineering technique. In this study, we have utilized the EPP technique to deposit silicate and phosphate coatings on magnesium for both corrosion and erosion protection. Potentiodynamic polarization measurements were used to investigate the corrosion properties of the coated samples. A stirring device was also used for corrosion and erosion testing. Coated and uncoated samples were immersed in a 3.5 wt.% NaCl solution with SiO 2 sand in suspension and rotated at a given speed. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis were used to study surface morphology and chemical composition of the coatings before and after corrosion-erosion testing

  18. Aqueous deposition of calcium phosphates and silicate substituted calcium phosphates on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S. [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit; Lee, Boeun [Department of Bioengineering University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Attempts were made to deposit homogeneous films of calcium phosphates (CaPs) on two magnesium alloy systems, AZ31 and Mg-4Y, through an aqueous phosphating bath method. The deposition of silicate substituted CaPs by this aqueous method was also explored as silicate substitution is believed to increase the bioactivity of CaPs. The effect of doped and undoped coatings on the in vitro degradation and bioactivity of both alloy systems was studied. FTIR and EDX confirmed the deposition of Ca, P, and Si on both alloys and the coatings appeared to consist primarily biphasic mixtures of hydroxyapatite and {beta}-TCP. These largely inhomogeneous coatings, as observed by SEM, were not shown to have any significant effect on maintaining the physiological pH of the culture medium in comparison to the uncoated samples, as the pH remained approximately in the 8.4-8.7 range. Interestingly, despite similar pH profiles between the coated and uncoated samples, CaP coatings affected the degradation of both alloys. These doped and undoped calcium phosphate coatings were observed to decrease the degradation of AZ31 whereas they increased the degradation of Mg-4Y. In vitro studies on cell attachment using MC3T3-E1 mouse osteoblasts showed that between the uncoated alloys, Mg-4Y appeared to be the more biocompatible of the two. Silicate substituted CaP coatings were observed to increase the cell attachment on AZ31 compared to bare and undoped CaPs coated samples, but did not have as great of an effect on increasing cell attachment on Mg-4Y.

  19. Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2011-04-04

    Chitosan (CS), a positively charged polysaccharide, and magnesium aluminum silicate (MAS), a negatively charged clay with silicate layers, can electrostatically interact to form nanocomposite films. In this study, CS-MAS nanocomposite films were evaluated for use in tablet film coating. Effects of CS-MAS ratio and coating level on water uptake and drug release from the coated tablets were investigated. Surface and film matrix morphology of the coated film and the effect of enzymes in the simulated gastro-intestinal fluid on drug release were also examined. The results demonstrated that the CS-MAS coated tablets had a rough surface and a layered matrix film, whereas a smooth surface and dense matrix film on the CS coated tablets was found. However, the CS-MAS coated tablets provided fewer film defects than the CS coated tablets. Nanocomposite formation between CS and MAS could retard swelling and erosion of CS in the composite films in acidic medium. The higher MAS ratio of the CS-MAS coated tablets gave lower water uptake and slower drug release when compared with the CS coated tablets. Moreover, the CS-MAS films on the tablets presented good stability towards enzymatic degradation in simulated intestinal fluid. The release of drug from the CS-MAS coated tablets could be modulated by varying CS-MAS ratios and coating levels. Additionally, drug solubility also influenced drug release characteristics of the CS-MAS coated tablets. These findings suggest that the CS-MAS nanocomposites displays a strong potential for use in tablet film coating intended for modifying drug release from tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Lime and calcium-magnesium silicate in the ionic speciation of an Oxisol

    Directory of Open Access Journals (Sweden)

    João Arthur Antonangelo

    Full Text Available ABSTRACT Plant residues and certain fertilizers accelerate soil acidification and increase the levels of aluminum-Al+3 in soils under no-tillage (NT. Silicates act as acidity amendments and as a source of silicon as in H4SiO4. An increase in the pH of soil solution causes the deprotonation of H4SiO4 and generates the anionic form (H3SiO4−. The aim of this study was to evaluate the ionic speciation of Si, Al, Ca, Mg and K in aqueous extracts by means of a software calculation. Since 2006, a field experiment has been under way on an Oxisol under NT subjected to lime and calcium-magnesium silicate applications under four crop systems. The amendments were applied in Oct 2006 and in Oct 2011, aiming to raise base saturation to 70 %. Soil samples were collected in Oct 2013, at depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Both Ca and Mg formed complexes with dissolved organic carbon (DOC whereas the same was not observed for potassium. These three basic cations were mostly in their free forms regardless of treatment, while Al was mostly complexed with DOC even at the lowest depths (40-60 cm. The highest value of free Al form was 15 %. Si was almost 100 % as H4SiO4, and its activity was similar to its concentration in solution for all crop systems and at all depths, regardless of amendment applied. The percentages of H3SiO4− and Al-H3SiO42+ were irrelevant, providing more phytoavailable H4SiO4 in soil solution.

  1. Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass Gasification Products to Syngas

    Directory of Open Access Journals (Sweden)

    Scott L. Swartz

    2012-04-01

    Full Text Available Magnesium nickel silicate (MNS has been investigated as a catalyst to convert tars and light hydrocarbons to syngas (CO and H2 by steam reforming and CO2 reforming in the presence of H2S for biomass gasification process at NexTech Materials. It was observed that complete CH4 conversion could be achieved on MNS catalyst granules at 800–900 °C and a space velocity of 24,000 mL/g/h in a simulated biomass gasification stream. Addition of 10–20 ppm H2S to the feed had no apparent impact on CH4 conversion. The MNS-washcoated monolith also showed high activities in converting methane, light hydrocarbons and tar to syngas. A 1200 h test without deactivation was achieved on the MNS washcoated monolith in the presence of H2S and/or NH3, two common impurities in gasified biomass. The results indicate that the MNS material is a promising catalyst for removal of tar and light hydrocarbons from biomass gasified gases, enabling efficient use of biomass to produce power, liquid fuels and valuable chemicals.

  2. Magnesium

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Magnesium Fact Sheet for Consumers Have a question? Ask ... find out more about magnesium? Disclaimer What is magnesium and what does it do? Magnesium is a ...

  3. Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Livia Raquel C. Malheiros

    2015-01-01

    Full Text Available High-pressure torsion (HPT was used to impose severe plastic deformation on a magnesium alloy AZ31. The material was processed for 0.5, 1, 2, 3, 5 and 7 turns at room temperature under a pressure of 6.0 GPa. Samples were annealed for 1800 s at temperatures of 373 K, 423 K, 473 K, 573 K and 673 K. Microhardness tests and metallography were used to determine the evolution of strength and grain size as a function of the annealing temperature. The results show that recrystallization takes place at temperatures higher than 423 K. The annealing behavior is independent of the number of turns in HPT.

  4. Synthesis and characterization of phosphors based on calcium and magnesium silicates doped with europium and dysprosium

    International Nuclear Information System (INIS)

    Misso, Agatha Matos

    2016-01-01

    Ca and Mg silicates based phosphors were prepared by sol-gel method combined with the molten salts process. The gel of silica was obtained from Na 2 SiO 3 solution by using europium, dysprosium, calcium and magnesium chloride solutions. Therefore, those chlorides were homogeneously dispersed into the gel. The obtained gel was dried and heat treated to 900° C for 1h to allow the fusion of the present salts. Then it was water washed until negative test for Cl - , and dried. The reduction of the europium to Eu 2+ was performed under atmosphere of 5% of H 2 and 95% of Ar to 900° C for 3h, to reach CaMgSi 2 O 6 :Eu 2+ and CaMgSi 2 O 6 :Eu 2+ :Dy 3+ phosphors. Diopside was identified as main crystalline phase and quartz, as secondary phase from XRD (X-ray diffraction) patterns. SEM (scanning electron microscopy) micrographs, of the samples showed needles, spheres, leaves and rods of particles and agglomerates. Thermal analysis (TGA-DTGA) curves revealed that the crystallization temperature of CaMgSi 2 O 6 :Eu 2+ lies around 765° C. Photoluminescence spectroscopy of the phosphors was studied based on interconfigurational 4f N → 4f N-1 5d transition of Eu 2+ ion. The spectra of excitation showed 4f N → 4f N-1 5d transition of Eu 2+ ion broad band, related to the ligand to metal charge transfer transition (LMCT) O 2- (2p) → Eu 3+ in the 250 nm region, when the emission is monitored at 583,5 nm. It also presents the 4f ↔ 4f transitions of Eu 3+ ion bands, showing the 7 F 0 → 5 L 6 transition at 393 nm. From emission spectra with excitation monitored at 393 nm, it can be observed fine peaks between 570 and 750 nm which are characteristics of 5 D 0 → 7 F J (J = 0 - 5) transition of Eu 3+ ion, indicating that the Eu 3+ ion occupies a site with center of inversion. Finally, the obtained results indicate that the developed method is suitable to synthesize CaMgSi 2 O 6 :Eu 2+ and CaMgSi 2 O 6 :Eu 2+ :Dy 3+ phosphors, as it has been proposed. (author)

  5. Annealing effect on the ultrafast dynamics of Ag nanoparticles embedded in soda-lime silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dong Zhiwei [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China); National Key Laboratory of Tunable Lasers, Institute of Optical-Electronics, Harbin Institute of Technology, Harbin 150001 (China); Yang Xiucun; Li Zhihui [School of Materials Science and Engineering, Tongji University, Shanghai 200433 (China); You Guanjun; Yan Yongli [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China); Qian Shixiong, E-mail: sxqian@fudan.ac.c [Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433 (China)

    2009-08-01

    Ag nanoparticles embedded in soda-lime silicate glasses were fabricated by the ion-exchange technique. Effects of thermal treatment on the optical nonlinearity and ultrafast dynamics of Ag nanoparticles were investigated by applying time-resolved optical Kerr effect and pump-probe techniques. The results indicate that thermal treatment is an efficient method to improve the nonlinear optical performance of this kind of material.

  6. Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite

    Science.gov (United States)

    Xiong, Ting; Yuan, Xingzhong; Chen, Xiaohong; Wu, Zhibin; Wang, Hou; Leng, Lijian; Wang, Hui; Jiang, Longbo; Zeng, Guangming

    2018-01-01

    Water pollution is one of the forefront environmental problems. Due to the simplification, flexibility and low cost, the adsorption becomes one of the most fashionable technology and the exploitation of adsorbents has drawn greatly attention. In this study, a novel magnesium silicate-hydrothermal carbon composite (MS-C) was synthesized by facile hydrothermal carbonization and used to remove the cadmium (Cd(II)) and methylene blue (MB) from wastewater. It was shown that the porous and lump-like magnesium silicate (MS) was decorated with multiple hydrothermal carbon (HC) via the Csbnd Osbnd Si covalent bonding. Further, the adsorption behavior of Cd(II) and MB based on the MS, HC, and MS-C were systematically investigated. The equilibrium data of both Cd(II) and MB were fitted well with Langmuir model. Compared to pure MS and HC, the adsorption capacity of composite was significantly improved, accompanied by the maximum adsorption capacity of 108 mg/g for Cd(II) and 418 mg/g for MB, respectively. In the Cd(II)-MB binary system, the adsorption of Cd(II) was favored in comparison with that of MB. The removal of Cd(II) was mainly ascribed to electrostatic attraction and the ion exchange interaction. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction, π-π interaction and hydrogen bond. In view of these empirical results and real water treatment, the environmental friendly and low-cost MS-C holds a potential for separate or simultaneous removal of Cd(II) and MB in practical applications.

  7. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    Science.gov (United States)

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  8. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  9. Europium doped di-calcium magnesium di-silicate orange–red emitting phosphor by solid state reaction method

    Directory of Open Access Journals (Sweden)

    Ishwar Prasad Sahu

    2015-07-01

    Full Text Available A new orange–red europium doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Eu3+ phosphor was prepared by the traditional high temperature solid state reaction method. The prepared Ca2MgSi2O7:Eu3+ phosphor was characterized by X-ray diffractometer (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM with energy dispersive x-ray spectroscopy (EDX, fourier transform infrared spectra (FTIR, photoluminescence (PL and decay characteristics. The phase structure of sintered phosphor was akermanite type structure which belongs to the tetragonal crystallography with space group P4¯21m, this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca2MgSi2O7:Eu3+ phosphor was confirmed by EDX spectra. The PL spectra indicate that Ca2MgSi2O7:Eu3+ can be excited effectively by near ultraviolet (NUV light and exhibit bright orange–red emission with excellent color stability. The fluorescence lifetime of Ca2MgSi2O7:Eu3+ phosphor was found to be 28.47 ms. CIE color coordinates of Ca2MgSi2O7:Eu3+ phosphor is suitable as orange-red light emitting phosphor with a CIE value of (X = 0.5554, Y = 0.4397. Therefore, it is considered to be a new promising orange–red emitting phosphor for white light emitting diode (LED application.

  10. A novel pharmaceutical excipient: Coprecipitation of calcium and magnesium silicate using brine-seawater in date palm cellulose as an absorbing host

    Directory of Open Access Journals (Sweden)

    Mohammad Hamaidi

    2017-09-01

    Full Text Available This research aims to produce a cost competitive and innovative pharmaceutical additive with multi-purpose use in the pharmaceutical industry from Saudi Arabia natural resources and bio-wastes. The waste substance, brine, and the naturally occurring compound, sodium silica, were reacted together to produce water insoluble calcium and magnesium silicate salts [WISS]. The purity index WISS was compared with synthetic Mg silicae.The produced particle size was 1.994 µm. Date palm cellulose [DPC] with a high purity index [0.99] was produced from the biomass waste of date palm tree. DPC was used as a host for coprecipitation of synthetic calcium magnesium silicate within its intimate structures. The interaction between the cellulose polymer and silicates is physical in nature. WISS-DPC was more flowable than DPC. In SEM, the particles of DPC were fibrous and irregular in shape, while WISS-DPC showed more regular shape than DPC. Tablets prepared from WISS-DPC were harder and had lower disintegration time at all compression forces compared to those made from DPC. The produced excipient had excellent compaction and disintegration properties and could be used as a superdisintegrant and tablet binder in pharmaceutical industries.

  11. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  12. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Science.gov (United States)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang

    2016-11-01

    In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N2 adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m2/g), average pore width (7.13 nm) and pore volume (1.05 cm3/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe2O3 in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  13. Magnesium

    Science.gov (United States)

    Bechtel, H.; Bulian, W.; Bungardt, K.; Gürs, K.; Gürs, U.; Helling, W.; Kyri, H.; Laue, H. J.; Mahler, W.; Matting, A.; Meyer, F. R.; Mialki, W.; Ritter, F.; Ruge, J.; Saur, G.; Simon, W.; Strnat, K.; Weber, R.; Weigand, H. H.; Weik, H.; Ziesler, H.; Borchers, Heinz; Schmidt, Ernst

    Magnesium wird überwiegend durch Schmelzflußelektrolyse hergestellt. Das dabei anfallende Reinmagnesium hat einen Mg-Gehalt von etwa 99,9%. Hauptbeimengung ist das Eisen; Silizium und Aluminium sind nur in Spuren vorhanden. Der Anwendungsumfang des Reinmagnesiums ist gering; dagegen werden Magnesiumlegierungen zunehmend, insbesondere für den Druckguß verwendet. Neben den bis etwa zum Jahre 1950 allein gebräuchlichen Mg-Mn-, Mg-Al- und Mg-Al-Zn-Legierungen werden heute mehr und mehr die besonders warmfesten Legierungen mit Zusätzen von Zirkon, Thorium und Seltenen Erden hergestellt (siehe dazu auch Abschnitt Seltene Erden). Als Umhüllungsmaterial für Uranstäbe dient die Legierung Magnox A 12, die nach [H 3] neben 1 % Al noch geringe Mengen an Ca und Ba enthält. In den in Deutschland üblichen Kurzzeichen (DIN 1729) werden die chemischen Symbole und der ungefähre Gehalt der wichtigsten Legierungselemente angegeben. Gußlegierungen werden zusätzlich durch ein G (Sandguß oder Kokillenguß) oder ein D (Druckguß) gekennzeichnet (siehe Tab. 5).

  14. Influence of Thermal Annealing and a Glass Coating on the Strength of Soda-Lime-Silicate Glass

    Science.gov (United States)

    2017-11-01

    glass used in a variety of military ballistic armor applications. A mixture of glass powder and isopropyl alcohol was sprayed onto the tin side of as...temperature at 3 °C/min. Plates that were scratched showed a noticeable strength increase following the annealing process; however, the addition of

  15. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    Science.gov (United States)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  16. Chemical Stability between NiCr2O4 Material and Molten Calcium-Magnesium-Alumino-Silicate (CMAS at High Temperature

    Directory of Open Access Journals (Sweden)

    Zhuang Ma

    2017-12-01

    Full Text Available NiCr2O4 as a potential protection for thermal barrier coatings (TBCs against the attack of molten calcium-magnesium-alumino-silicate (CMAS was studied by a CMAS-contacting experiment. Atmospheric plasma sprayed coatings and sintered bulk materials were fabricated, covered with CMAS deposits, and exposed to 1200 °C for 24 h. Nano-sized CMAS-NiCr2O4 mixed powder was manufactured by ball milling and then conducted heat treatment under the same condition. The results show that no reacting product was found at the border between molten CMAS and NiCr2O4 and no element transportation occurred. It can be inferred that NiCr2O4 has outstanding chemical stability with the molten CMAS.

  17. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  18. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

    Energy Technology Data Exchange (ETDEWEB)

    Son, In Joon; Nakano, Hiroaki; Oue, Satoshi; Fukushima, Hisaaki; Horita, Zenji [Kyushu University, Fukuoka (Japan); Kobayashi, Shigeo [Kyushu Sangyo University, Fukuoka (Japan)

    2007-12-15

    The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AlCl{sub 3} and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at 100-400 A/m{sup 2} at 293 K in a solution containing 1.53 mol/L of H{sub 2}SO{sub 4} and 0.0185 mol/L of Al{sub 2}(SO{sub 4}){sub 3}. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. however, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy: the stresses remain in the anodic oxide films, increasing the likelihood of cracks. it is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be

  19. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

    International Nuclear Information System (INIS)

    Son, In Joon; Nakano, Hiroaki; Oue, Satoshi; Fukushima, Hisaaki; Horita, Zenji; Kobayashi, Shigeo

    2007-01-01

    The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AlCl 3 and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at 100-400 A/m 2 at 293 K in a solution containing 1.53 mol/L of H 2 SO 4 and 0.0185 mol/L of Al 2 (SO 4 ) 3 . The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. however, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy: the stresses remain in the anodic oxide films, increasing the likelihood of cracks. it is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in

  20. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Ae [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Abo-Mosallam, Hany A. [Glass Research Department, National Research Centre, Dokki, Cairo (Egypt); Lee, Hye-Young [Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Kim, Gyu-Ri [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Kim, Hae-Won [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Hae-Hyoung, E-mail: haelee@dku.edu [Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO{sub 2}-P{sub 2}O{sub 5}-CaO-ZnO-MgO{sub (1-X)}-SrO{sub X}-CaF{sub 2} (X = 0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X = 0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X = 0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues. - Highlights: • We developed multicomponent glass compositions for a novel aluminum-free glass ionomer cement (GIC). • The effects of MgO replacement with SrO in the glasses on the mechanical properties and cell proliferation were evaluated. • Substitution of MgO with SrO at low levels led to improvement of mechanical properties and cell viability of the cements. • Microstructural degradations in the cement matrix of the GICs with strontium at high levels were observed after aging.

  1. Structure, texture, and mechanical properties of an MA2-1hp magnesium alloy after two-stage equal-channel angular pressing and intermediate annealing

    Science.gov (United States)

    Serebryany, V. N.; Perezhogin, V. Yu.; Raab, G. I.; Kopylov, V. I.; Tabachkova, N. Yu.; Sirotinkin, V. P.; Dobatkin, S. V.

    2015-01-01

    The effect of two-stage equal-channel angular pressing (ECAP) on the microstructure, the texture, and the mechanical properties of an MA2-1hp magnesium alloy is analyzed. ECAP leads to the formation of a submicrocrystalline structure with an average grain size of 640 nm, which includes Mg17Al12 phase particles with an average grain size of 240 nm and a volume fracture of 5.5%. A scattered tilted basal texture forms after ECAP, and its experimental pole figures are used for calculating orientation distribution functions and determining the volume fractions of the main orientations and the Schmid factors for different deformation systems. An increased activation of basal slip is found after both the first and the second stages of ECAP. As a result of two-stage ECAP, the strength properties of the alloy that correspond to the minimum acceptable values achieved by direct compression are obtained. Ductility is 44 and 18% after the first stage of ECAP plus subsequent annealing and after the second stage, respectively, which is almost four and two times higher than the initial value. The resulting strength mechanical properties of the alloy after the first and the second ECAP stages are analyzed using the Hall-Petch relation.

  2. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    Science.gov (United States)

    2015-04-27

    hydrated cement paste constituent - calcium silicate hydrate (C-S-H) based on its material chemistry structure are studied following a molecular dynamics...2015 Approved for public release; distribution is unlimited. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H...1601 East Market Street Greensboro, NC 27411 -0001 ABSTRACT Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H

  3. An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application.

    Science.gov (United States)

    Birgani, Payam Moradi; Ranjbar, Navid; Abdullah, Rosniah Che; Wong, Kien Tiek; Lee, Gooyong; Ibrahim, Shaliza; Park, Chulhwan; Yoon, Yeomin; Jang, Min

    2016-12-15

    Considering the chemical properties of batik effluents, an efficient and economical treatment process was established to treat batik wastewater containing not only high levels of Si and chemical oxygen demand (COD), but also toxic heavy metals. After mixing the effluents obtained from the boiling and soaking steps in the batik process, acidification using concentrated hydrochloric acid (conc. HCl) was conducted to polymerize the silicate under acidic conditions. Consequently, sludge was produced and floated. XRD and FT-IR analyses showed that wax molecules were coordinated by hydrogen bonding with silica (SiO 2 ). The acidification process removed ∼78-95% of COD and ∼45-50% of Si, depending on the pH. In the next stage, magnesium oxide (MgO) was applied to remove heavy metals completely and almost 90% of the Si in the liquid phase. During this step, about 70% of COD was removed in the hydrogel that arose as a consequence of the crosslinking characteristics of the formed nano-composite, such as magnesium silicate or montmorillonite. The hydrogel was composed mainly of waxes with polymeric properties. Then, the remaining Si (∼300 mg/L) in the wastewater combined with the effluents from the rinsing steps was further treated using 50 mg/L MgO. As a final step, palm-shell activated carbon (PSAC) was used to remove the remaining COD to application developed could serve as an economical and effective treatment option for treating heavily polluted batik effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Silicate calculi, a rare cause of kidney stones in children.

    Science.gov (United States)

    Taşdemir, Mehmet; Fuçucuoğlu, Dilara; Özman, Oktay; Sever, Lale; Önal, Bülent; Bilge, Ilmay

    2017-02-01

    Urinary silicate calculi in humans are extremely rare. Reported cases of silicate calculi are mostly documented in adults and are commonly related to an excessive intake of magnesium trisilicate in food or drugs. Published studies on the presence of silicate calculi in children are scarce. Three cases of silicate kidney stones without prior silicate intake are reported. Two patients underwent surgical treatment, and the third patient was treated using conservative methods. Urinalysis revealed no underlying metabolic abnormalities. Analyses revealed that silicate was the major component of the stones. Siliceous deposits in urinary stones may be more common than anticipated, and the underlying pathophysiology remains to be clarified.

  5. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  6. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  7. 21 CFR 182.2437 - Magnesium silicate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437..., or explanation. This substance is generally recognized as safe when used in table salt in accordance...

  8. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Tsutsumi 1999; Xu et al 2008; Huang et al 2009). In vitro and in vivo investigations of a calcium magnesium silicate ... as a preparation process to produce homogeneous, very fine crystalline, unagglomerated, multicomponent oxide ... ing the oxides from sintering (Ekambaram and Patil 1995,. 1997; Chandrappa et al 1999).

  9. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  10. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  11. Magnesium tube hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Liewald, M.; Pop, R. [Institute for Metal Forming Technology (IFU), Stuttgart (Germany)

    2008-04-15

    Magnesium alloys reveal a good strength-to-weight ratio in the family of lightweight metals and gains potential to provide up to 30% mass savings compared to aluminium and up to 75 % compared to steel. The use of sheet magnesium alloys for auto body applications is however limited due to the relatively low formability at room temperature. Within the scope of this paper, extruded magnesium tubes, which are suitable for hydroforming applications, have been investigated. Results obtained at room temperature using magnesium AZ31 tubes show that circumferential strains are limited to a maximal value of 4%. In order to examine the influence of the forming temperature on tube formability, investigations have been carried out with a new die set for hot internal high pressure (IHP) forming at temperatures up to 400 C. Earlier investigations with magnesium AZ31 tubes have shown that fractures occur along the welding line at tubes extruded over a spider die, whereby a non-uniform expansion at bursting with an elongation value of 24% can be observed. A maximum circumferential strain of approx. 60% could be attained when seamless, mechanically pre-expanded and annealed tubes of the same alloy have been used. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at same time. Hence, seamless ZM21 tubes have been used in the current investigations. With these tubes, an increased tensile fracture strain of 116% at 350 C is observed as against 19% at 20 C, obtained by tensile testing of milled specimens from the extruded tubes. This behaviour is also seen under the condition of tool contact during the IHP forming process. To determine the maximum circumferential strain at different forming temperatures and strain rates, the tubes are initially bulged in a die with square cross-section under plane stress conditions. Thereafter, the tubes are calibrated by using an

  12. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  13. Study of the removal mechanism of magnesium from Al-Si liquid alloys using silica base minerals injection; Estudio del mecanismo de eliminacion de magnesio de aleaciones Al-Si en estado liquido mediante inyeccion de minerales base silice

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Arroyo, R.; Escobedo-Bocardo, J. C.; Hernande-Garcia, H. M.; Cortes-Hernandez, D. A.; Terrones-Maldonado, M.; Rodriguez-Pulido, A.; Hernandez-Pinero, J. L.

    2010-07-01

    In order to eliminate magnesium from an A 380 Al-Si alloy at 750 degree centigrade, the submerged powder injection method, using an inert carrier gas (Ar), was applied. The injected powders in the liquid aluminum bath were zeolite, silica and mixtures of zeolite-silica minerals. For each experiment the response variables were: eliminated magnesium versus injection time and quantity of drosses produced. Chemical analysis by atomic absorption spectrometry showed that mixtures of silica-zeolite 66:34 wt% have the best results with regarding to the removal magnesium from 1 to 0.0066 wt%. During the elimination of magnesium complex stoichiometry compounds were formed due to the reactions among zeolite, water steam and liquid aluminum. These compounds were analyzed by XRD, SEM and TEM. The results obtained, along with using the FactSage 6 thermodynamic software, allowed to elucidate the reaction mechanism between the minerals used and liquid aluminum. (Author)

  14. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  15. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  16. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  17. Silicate fertilizer and irrigation depth in corn production

    Directory of Open Access Journals (Sweden)

    Edvaldo Eloy Dantas Júnior

    2013-08-01

    Full Text Available Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.

  18. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  19. Effect of calcium and magnesium silicate on the growth of the castor oil plant subjected to salinity levels Efeito de silicato de cálcio e magnésio sobre o crescimento de plantas de mamoneira submetidas a níveis de salinidade

    Directory of Open Access Journals (Sweden)

    José Félix Brito Neto

    2012-12-01

    Full Text Available Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels. O estresse salino diminui o potencial osmótico da solução do solo causando estresse hídrico, provocando efeitos tóxicos nas plantas que resultam em injúrias no metabolismo e desordens nutricionais, comprometendo assim o crescimento das plantas, resultando em menor produção. O silicato de cálcio e magnésio pode desempenhar a mesma função do calcário, além de fornecer silício para as plantas, podendo ainda, contribuir para a resistência de plantas ao estresse salino. Nesse sentido, objetivou-se com esse trabalho avaliar o efeito do silicato de cálcio e magnésio no crescimento da mamoneira BRS Energia cultivada sob condições salinas. Avaliou-se a altura da planta, diâmetro do caule, número de folhas, área foliar, massa seca da parte aérea e da raiz e as características químicas do solo. Não houve interação entre os fatores níveis de salinidade e silicato sobre as variáveis analisadas. Houve rela

  20. Silicate Urolithiasis during Long-Term Treatment with Zonisamide

    Directory of Open Access Journals (Sweden)

    Satoru Taguchi

    2013-01-01

    Full Text Available Silicate urinary calculi are rare in humans, with an incidence of 0.2% of all urinary calculi. Most cases were related to excess ingestion of silicate, typically by taking magnesium trisilicate as an antacid for peptic ulcers over a long period of time; however, there also existed unrelated cases, whose mechanism of development remains unclear. On the other hand, zonisamide, a newer antiepileptic drug, is one of the important causing agents of iatrogenic urinary stones in patients with epilepsy. The supposed mechanism is that zonisamide induces urine alkalinization and then promotes crystallization of urine components such as calcium phosphate by inhibition of carbonate dehydratase in renal tubular epithelial cells. Here, we report a case of silicate urolithiasis during long-term treatment with zonisamide without magnesium trisilicate intake and discuss the etiology of the disease by examining the silicate concentration in his urine.

  1. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    Bernard, J.; Caillat, R.; Darras, R.

    1959-01-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [fr

  2. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  3. Magnesium Test

    Science.gov (United States)

    ... and Iron-binding Capacity (TIBC, UIBC) Trichomonas Testing Triglycerides Troponin Tryptase Tumor Markers Uric Acid Urinalysis Urine ... numbness or tingling. They can also affect calcium metabolism and exacerbate calcium deficiencies. Symptoms of excess magnesium ...

  4. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  5. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  6. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  7. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  8. Magnesium in diet

    Science.gov (United States)

    Diet - magnesium ... Magnesium is needed for more than 300 biochemical reactions in the body. It helps to maintain normal ... There is ongoing research into the role of magnesium in preventing and managing disorders such as high ...

  9. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  10. Silicate volcanism on Io

    Science.gov (United States)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  11. Magnesium: Nutrition and Homoeostasis

    OpenAIRE

    Jürgen Vormann

    2016-01-01

    The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant ri...

  12. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements on t...

  13. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  14. High-temperature silicate volcanism on Jupiter's moon Io

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Spencer, J.R.; Schubert, G.; Matson, D.L.; Lopes-Gautier, R.; Klaasen, K.P.; Johnson, T.V.; Head, J.W.; Geissler, P.; Fagents, S.; Davies, A.G.; Carr, M.H.; Breneman, H.H.; Belton, M.J.S.

    1998-01-01

    Infrared wavelength observations of Io by the Galileo spacecraft show that at last 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patea, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with thse high-temperature hot spots.

  15. Magnesium: Nutrition and Homoeostasis

    Directory of Open Access Journals (Sweden)

    Jürgen Vormann

    2016-05-01

    Full Text Available The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant risk factor for several diseases, including type-2 diabetes, cardiovascular diseases, arrhythmias, as well as general muscular and neurological problems. Therefore, an adequate magnesium supply would be of special benefit to our overall health.

  16. A SEED OF SOLAR FORSTERITE AND POSSIBLE NEW EVOLUTIONAL SCENARIO OF COSMIC SILICATES

    International Nuclear Information System (INIS)

    Kimura, Yuki; Nuth, Joseph A.

    2009-01-01

    Laboratory experiments suggest that magnesium silicide (Mg 2 Si) grains could be produced in the hydrogen dominant gas outflow from evolved stars in addition to amorphous oxide minerals. If the magnesium silicide grains were incorporated into the primitive solar nebula, the magnesium silicide would easily become forsterite (Mg 2 SiO 4 ) by oxidation as it reacted with the relatively oxygen-rich, solar composition gas. This hypothesis can explain the existence of abundant forsterite grains with solar oxygen composition in meteorites, i.e., magnesium silicide could be the precursor of much of the forsterite found in our solar system. In addition, if a significant fraction of the solar forsterite is derived from magnesium silicide, it could explain the apparent low abundance of presolar forsterite. Furthermore, the lower degree of crystallinity observed in silicates formed in outflows of lower mass-loss-rate stars might be caused by the formation of magnesium silicide in this relatively hydrogen-rich environment.

  17. Infrared processing of magnesium wrought alloys

    Energy Technology Data Exchange (ETDEWEB)

    Horton Jr, Joe A [ORNL; Blue, Craig A [ORNL; Muth, T [Manufacturing Sciences, Inc.; Bowles, Amanda L [ORNL; Agnew, Sean R [University of Virginia

    2005-01-01

    High density infrared (HDI) processing of magnesium alloy sheet allows rapid heat up and cool down and may facilitate a continuous cast/roll process, thereby reducing costs. In a previous study, a plasma arc lamp resulted in an anneal in seconds that compared well to a normal 1 h 500 C anneal. The current study on AZ31 used a bank of quartz infrared lamps both in a lab setting and in a demonstration test at a commercial facility (Manufacturing Sciences, Inc.). Typical reheats and anneals between rolling passes required 2 to 5 minutes for rolling 6 mm sheet down to 1 mm. Tensile tests showed comparable results to normal processing. The near surface microstructure was similar to the center of the sheets. No gross progressive or cumulative effect on mechanical properties was observed from pass to pass. Good surface quality with minimal edge cracking was produced.

  18. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  19. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  20. Nutrition and magnesium absorption

    OpenAIRE

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found ...

  1. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the ...

  2. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    Department of Physics, Lanzhou City University, Lanzhou 730070, China; School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China; State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China; Laboratory for Shock ...

  3. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density func- tional theory (DFT). The calculated ... is necessary for interpreting seismological information on earth's velocity structure at depth. That is, if one ... Computational methods. Quantum first principles calculations ...

  4. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    lable experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal ... experimental determination of elastic properties at extreme conditions is, however, not an easy task. ... Determination of thermal properties of MgSiO3 post- perovskite is of particular geophysical interest ...

  5. Nanostructure of Er3+ doped silicates.

    Science.gov (United States)

    Yao, Nan; Hou, Kirk; Haines, Christopher D; Etessami, Nathan; Ranganathan, Varadh; Halpern, Susan B; Kear, Bernard H; Klein, Lisa C; Sigel, George H

    2005-06-01

    We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

  6. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  7. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  8. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  9. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  10. Nanoconfined water in magnesium-rich phyllosilicates.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Durkin, Justin S.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Ockwig, Nathan W.; Cygan, Randall Timothy; Greathouse, Jeffery A.

    2009-10-01

    Inelastic neutron scattering, density functional theory, ab initio molecular dynamics, and classical molecular dynamics were used to examine the behavior of nanoconfined water in palygorskite and sepiolite. These complementary methods provide a strong basis to illustrate and correlate the significant differences observed in the spectroscopic signatures of water in two unique clay minerals. Distortions of silicate tetrahedra in the smaller-pore palygorskite exhibit a limited number of hydrogen bonds having relatively short bond lengths. In contrast, without the distorted silicate tetrahedra, an increased number of hydrogen bonds are observed in the larger-pore sepiolite with corresponding longer bond distances. Because there is more hydrogen bonding at the pore interface in sepiolite than in palygorskite, we expect librational modes to have higher overall frequencies (i.e., more restricted rotational motions); experimental neutron scattering data clearly illustrates this shift in spectroscopic signatures. Distortions of the silicate tetrahedra in these minerals effectively disrupts hydrogen bonding patterns at the silicate-water interface, and this has a greater impact on the dynamical behavior of nanoconfined water than the actual size of the pore or the presence of coordinatively-unsaturated magnesium edge sites.

  11. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Kyu Cho

    2012-07-01

    Full Text Available Potential of widespread industrial applications of magnesium has been realized in recent years. A variety of magnesium alloy matrix composites are now being studied for mechanical properties. Since magnesium is the lightest structural metal, it can replace aluminum in existing applications for further weight savings. This review presents an overview of hollow particle filled magnesium matrix syntactic composite foams. Fly ash cenospheres are the most commonly used hollow particles for such applications. Fly ash cenospheres primarily have alumino-silicate composition and contain a large number of trace elements, which makes it challenging to study the interfacial reactions and microstructure in these composites. Microstructures of commonly studied AZ and ZC series magnesium alloys and their syntactic foams are discussed. Although only a few studies are available on these materials because of the nascent stage of this field, a comparison with similar aluminum matrix syntactic foams has provided insight into the properties and weight saving potential of magnesium matrix composites. Analysis shows that the magnesium matrix syntactic foams have higher yield strength at the same level of density compared to most other metal matrix syntactic foams. The comparison can guide future work and set goals that need to be achieved through materials selection and processing method development.

  12. Evolution of silicate dust in interstellar, circumstellar and cometary environments: the role of irradiation and temperature

    International Nuclear Information System (INIS)

    Davoisne, Carine

    2006-01-01

    Due to the development of observational and analytical tools, our knowledge of the silicate dust has considerably increased these last years. Dust is formed around evolved stars and injected in the interstellar medium (ISM) in which it travels. Dust is then incorporated in the proto-planetary disks around young stars. During its life cycle, the silicate dust is subjected by numerous processes. The aim of this PhD work is firstly to study the chemical and morphological modifications of silicate dust in supernovae shock waves then to indicate its evolution when it is incorporated around young stars. We have developed low energy ion irradiations in situ in a photoelectron spectrometer (XPS). The chemical and morphological changes have been measured respectively by XPS and atomic force microscopy. We have also carried out thermal annealing under controlled atmosphere of amorphous silicates. The structural and chemical modifications have been observed by analytical transmission electron microscopy. We have shown that ion irradiation induces chemical and morphological changes in silicate. In the ISM, supernovae shock waves are thus a major process which could affect the silicate dust evolution. The microstructure obtained after thermal annealing strongly depends on oxygen fugacity. They often offer a good comparison with those observed in primitive materials present in our solar system. The recrystallization of amorphous interstellar precursors in the inner accretion disk is thus an efficient process to form crystalline silicates which are furthermore incorporated in small parent bodies (asteroids or comets). (author) [fr

  13. Raman spectroscopy for characterization of annealing of ion-implanted InP

    International Nuclear Information System (INIS)

    Myers, D.R.; Gourley, P.L.; Vaidyanathan, K.V.; Dunlap, H.L.

    1983-01-01

    Raman spectroscopy has been used as a noncontacting, nondestructive tool to evaluate the properties of Si + - and Be + implanted InP samples annealed at temperatures ranging from 600 to 750C using phospho-silicate glass (PSG) as the encapsulant. Carrier activation, carrier mobility and recovery of damage as a function of anneal temperature obtained from analysis of Raman data agree very well with independent electrical measurements. (author)

  14. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  15. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... silicate nanocomposites and their structure-properties relationship. In the first part of the thesis, thermoplastic layered silicates were obtained by extrusion. Different modification methods were tested to observe the intercalation treatment effect on the silicate-modifier interactions. The silicate...... modification was studied at different silicate/modifier ratios and properties were investigated for obtained nanocomposites with different amounts of modified layered silicate loadings. The obtained nanocomposites presented improved mechanical properties such as toughness, stiffness or a good balance between...

  16. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  17. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  18. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  20. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  1. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  2. Extracellular Calcium and Magnesium

    African Journals Online (AJOL)

    ABSTRACT. The cause of preeclampsia remains unknown and calcium and magnesium supplement are being suggested as means of prevention. The objective of this study was to assess magnesium and calcium in the plasma and cerebrospinal fluid of Nigerian women with preedamp sia and eclampsia. Setting was ...

  3. Magnesium in subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bergh, W.M. (Walter Marcel) van den

    2004-01-01

    The main objective of this thesis was to determine the role of serum magnesium in the pathophysiology after subarachnoid hemorrhage (SAH) and to assess the effect of magnesium treatment in reducing cerebral ischemia in experimental SAH and in improving clinical outcome in patients with

  4. Solubilities of magnesium sulfite

    Czech Academy of Sciences Publication Activity Database

    Nývlt, Jaroslav

    2001-01-01

    Roč. 66, č. 2 (2001), s. 509-512 ISSN 1418-2874 Institutional research plan: CEZ:AV0Z4032918 Keywords : magnesium sulfate * magnesium sulfite * metastable solid Subject RIV: CA - Inorganic Chemistry Impact factor: 0.545, year: 2001

  5. Constraints on Weathering from Riverine Magnesium Isotope Ratios

    DEFF Research Database (Denmark)

    Wiechert, Uwe; Ullmann, Clemens Vinzenz; Meixner, Anette

    Weathering of rocks and its impact on the atmospheric carbon budget have been calculated from chemical compositions of large rivers. Here we present chemical compositions and magnesium isotope ratios for the dissolved and suspended loads of the rivers Danube, Elbe, and Rhine, and investigate...... whether magnesium isotopes can contribute to the quantification of weathering rates in their catchments. The d26Mg of the dissolved and solid loads vary from -0.93 to -1.85 ‰ and -0.98 to +0.01 ‰ relative to the reference material DSM3, respectively. Although these rivers run through highly populated...... and industrialized regions, the d26Mg values mirror the lithologies of the catchment areas: the Danubian catchment is dominated by carbonatic lithologies and in the Danube dissolved magnesium exhibits the most negative d26Mg values between -1.85 and -1.70 ‰. The mainly siliceous catchment of the river Elbe causes...

  6. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A. [IITB-Monash Research Academy, IIT Bombay (India); Department of Metallurgical Engineering and Materials Science, IIT Bombay (India); Department of Materials Engineering, Monash University (Australia); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay (India); Nie, J.F. [Department of Materials Engineering, Monash University (Australia); Tewari, A., E-mail: asim.tewari@iitb.ac.in [Department of Mechanical Engineering, IIT Bombay (India)

    2016-04-15

    The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrasting behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.

  7. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy

    International Nuclear Information System (INIS)

    Tripathi, A.; Samajdar, I.; Nie, J.F.; Tewari, A.

    2016-01-01

    The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrasting behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.

  8. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  9. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  10. Magnesium for Crashworthy Components

    Science.gov (United States)

    Abbott, T.; Easton, M.; Schmidt, R.

    Most applications of magnesium in automobiles are for nonstructural components. However, the light weight properties of magnesium make it attractive in structural applications where energy absorption in a crash is critical. Because most deformation in a crash occurs as bending rather than simple tension or compression, the advantages of magnesium are greater than anticipated simply from tensile strength to weight ratios. The increased thickness possible with magnesium strongly influences bending behavior and theoretical calculations suggest almost an order of magnitude greater energy absorption with magnesium compared to the same weight of steel. The strain rate sensitivity of steel is of concern for energy absorption. Mild steels exhibit a distinct yield point which increases with strain rate. At strain rates typical of vehicle impact, this can result in strain localization and poor energy absorption. Magnesium alloys with relatively low aluminum contents exhibit strain rate sensitivity, however, this is manifest as an increase in work hardening and tensile / yield ratio. This behavior suggests that the performance of magnesium alloys in terms of energy absorption actually improves at high strain rates.

  11. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  12. Method for production of magnesium

    Science.gov (United States)

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  13. Discussion about magnesium phosphating

    OpenAIRE

    Pokorny, P.; Tej, P.; Szelag, P.

    2016-01-01

    The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO4)2・4H2O – bobierrite, or MgHPO4・3H2O – newberyite) coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and convention...

  14. Discussion about magnesium phosphating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO42・4H2O – bobierrite, or MgHPO4・3H2O – newberyite coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and conventional zinc phosphate coating are discussed.

  15. Castability of Magnesium Alloys

    Science.gov (United States)

    Bowles, A. L.; Han, Q.; Horton, J. A.

    There is intense research effort into the development of high pressure die cast-able creep resistant magnesium alloys. One of the difficulties encountered in magnesium alloy development for creep resistance is that many additions made to improve the creep properties have reportedly resulted in alloys that are difficult to cast. It is therefore important to have an understanding of the effect of alloying elements on the castability. This paper gives a review of the state of the knowledge of the castability of magnesium alloys.

  16. Natural Weathering Rates of Silicate Minerals

    Science.gov (United States)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  17. Synthesis of radium silicate

    International Nuclear Information System (INIS)

    Garibov, A.A; Agayev, T.N; Mansimov, Z.A

    2010-01-01

    Full text :One of the possible ways of implementation of the processes of molecular hydrogen radiologic of the elements in the differential heat of water as a catalyst for the collapse of the creation of a special nuclear reactors. A chemical process in radiation-4-oxide-silicon compounds, which is one of the radium, is of great importance. Research in the silicon-oxide-radiumun different activity-4 has been synthesized. As initial substances for the synthesis of tetra etiolate silicate and radium chloride solutions were used. At the same time to remove reaction products from the reaction intermediate in acetate acid was used. The intermediate product was reacted with ethyl alcohol ethyl acetate ether acetate acid that forms from the reaction of the temperature effect is broken. As a result, 4-oxide was initially pure silicon.

  18. Magnesium blood test

    Science.gov (United States)

    Magnesium - blood ... A blood sample is needed. ... When the needle is inserted to draw blood, some people feel slight pain. Others feel a prick or stinging. Afterward, there may be some throbbing or a slight bruise. This soon ...

  19. Magnesium and Osteoporosis

    OpenAIRE

    Ferda Özdemir; Meliha Rodoplu

    2004-01-01

    Osteoporosis (OP) is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady...

  20. [Magnesium and bronchopulmonary dysplasia].

    Science.gov (United States)

    Fridman, Elena; Linder, Nehama

    2013-03-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung disease that occurs in premature infants who have needed mechanical ventilation and oxygen therapy. BPD is defined as the presence of persistent respiratory symptoms, the need for supplemental oxygen to treat hypoxemia, and an abnormal chest radiograph at 36 weeks gestational age. Proinflammatory cytokines and altered angiogenic gene signaling impair prenatal and postnatal lung growth, resulting in BPD. Postnatal hyperoxia exposure further increases the production of cytotoxic free radicals, which cause lung injury and increase the levels of proinflammatory cytokines. Magnesium is the fourth most abundant metal in the body. It is commonly used for the treatment of preeclamsia, as well as for premature labor alleviation. Magnesium's role in BPD development is not clear. A significant association between high magnesium levels at birth and respiratory distress syndrome (RDS), pulmonary interstitial emphysema in the extremely low birth weight, respiratory failure, and later development BPD was found. Conversely, low magnesium intake is associated with lower lung functions, and hypomagnesemia was found in 16% of patients with acute pulmonary diseases. Magnesium is used for the treatment of asthmatic attacks. Magnesium deficiency in pregnant women is frequently seen due to low intake. Hypomagnesemia was also found among preterm neonates and respiratory distress syndrome (RDS). Experimental hypomagnesemia evokes an inflammatory response, and oxidative damage of tissues. These were accompanied by changes in gene expression mostly involved in regulation of cell cycle, apoptosis and remodeling, processes associated with BPD. It is rational to believe that hypomagnesemia can contribute to BPD pathogenesis.

  1. Electrodeposition of magnesium and magnesium/aluminum alloys

    Science.gov (United States)

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  2. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  3. Research of magnesium phosphosilicate cement

    Science.gov (United States)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  4. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  5. Radioanalysis of siliceous materials

    International Nuclear Information System (INIS)

    Das, H.A.

    2003-01-01

    Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)

  6. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    Science.gov (United States)

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Plasma ionized magnesium concentration following cardiopulmonary bypass].

    Science.gov (United States)

    Amaya, Fumimasa; Fukui, Michihiko; Tsuruta, Hiroshi; Kooguchi, Kunihiko; Shimosato, Goshun

    2002-06-01

    We performed a retrospective study to analyze plasma ionized magnesium concentration following cardiopulmonary bypass. Severe decrease of ionized magnesium concentration associated with frequent abnormal ECG sign was found in a patient with magnesium-free cardioplegia. Cardioplegia containing 16 mmol.l-1 of magnesium ion maintained ionized magnesium concentration within normal ranges without postoperative magnesium loading. Use of cardioplegia containing magnesium or adequate magnesium supplement is thought to be essential for patients receiving cardiopulmonary bypass.

  8. The Effect of Specific Surface Area of Chitin-Metal Silicate Coprocessed Excipient on the Chemical Decomposition of Cefotaxime Sodium.

    Science.gov (United States)

    Al-Nimry, Suhair S; Alkhamis, Khouloud A; Alzarieni, Kawthar Z

    2017-02-01

    Chitin-metal silicates are multifunctional excipients used in tablets. Previously, a correlation between the surface acidity of chitin-calcium and chitin-magnesium silicate and the chemical decomposition of cefotaxime sodium was found but not with chitin-aluminum silicate. This lack of correlation could be due to the catalytic effect of silica alumina or the difference in surface area of the excipients. The objective of this study was to investigate the effect of the specific surface area of the excipient on the chemical decomposition of cefotaxime sodium in the solid state. Chitin was purified and coprocessed with different metal silicates to prepare the excipients. The specific surface area was determined using gas adsorption. The chemical decomposition was studied at constant temperature and relative humidity. Also, the degradation in solution was studied. A correlation was found between the degradation rate constant and the surface area of chitin-aluminum and chitin-calcium silicate but not with chitin-magnesium silicate. This was due to the small average pore diameter of this excipient. Also, the degradation in solution was slower than in solid state. In conclusion, the stability of cefotaxime sodium was dependent on the surface area of the excipient in contact with the drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    Science.gov (United States)

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  10. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  11. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  12. 21 CFR 184.1434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  13. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    Science.gov (United States)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  14. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  15. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  16. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  17. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  18. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast at tempe......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...

  19. Corrosion Behavior of Simulated HLW Glass in the Presence of Magnesium Ion

    Directory of Open Access Journals (Sweden)

    Toshikatsu Maeda

    2011-01-01

    Full Text Available Static leach tests were conducted for simulated HLW glass in MgCl2 solution for up to 92 days to investigate the dissolution mechanism of HLW glass under coastal repository condition. Under the condition that magnesium ion exists in leachate, the dissolution rate of the glass did not decrease with time during leaching, while the rate decreased when the magnesium ion depleted in the leachate. In addition, altered layer including magnesium and silica was observed at the surface of the glass after the leach tests. The present results imply that dissolution of the glass is accompanied with formation of magnesium silicate consuming silica, a glass network former. As a consequence, the glass dissolved with an initial high dissolution rate.

  20. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  1. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  2. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    ting. It is used in industrial floorings, ship decks, railway passenger coach floorings, hospital floors, ammunition factory floors, missile silos and underground armament factories and bunkers. Recently, concrete of high compres- sive and tensile strength prepared with magnesium oxy- chloride cement and recycled rubber ...

  3. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  4. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  5. Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing

    Science.gov (United States)

    Svenson, Mouritz N.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2017-04-01

    Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a “forbidden glass” regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses.

  6. Elastic properties of silicate melts

    DEFF Research Database (Denmark)

    Clark, Alisha N.; Lesher, Charles E.

    2017-01-01

    Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts for the anoma......Low seismic velocity regions in the mantle and crust are commonly attributed to the presence of silicate melts. Determining melt volume and geometric distribution is fundamental to understanding planetary dynamics. We present a new model for seismic velocity reductions that accounts...... for the anomalous compressibility of silicate melt, rendering compressional wave velocities more sensitive to melt fraction and distribution than previous estimates. Forward modeling predicts comparable velocity reductions for compressional and shear waves for partially molten mantle, and for low velocity regions...

  7. Electrical Characterization of Ti-Silicate Films Grown by Atomic Layer Chemical Vapor Deposition

    Science.gov (United States)

    Lee, Seungjae; Yong, Kijung

    2007-08-01

    Electrical characterization was performed for Ti-silicate films, which were deposited by atomic layer chemical vapor deposition (ALCVD). Before the deposition of Ti-silicate films, the silicon substrates were pretreated differently using hydrofluoric acid (HF)-etching, chemical oxidation, and thermal oxidation. Regardless of the pretreatment methods, the grown films showed a highly smooth surface with rms below 0.52 nm. The electrical properties of the grown Ti-silicate films showed a strong dependence on the substrate pretreatments. The 5-nm-thick Ti-silicate films grown on hydrogen-passivated Si and chemically oxidized Si showed rather high leakage currents, whereas the films grown on thermally oxidized Si showed low leakage currents below 1× 10-7 A/cm2 at a bias of -1 V. All of the films showed a positive shift in the flatband voltage (VFB) upon annealing. Also, each film showed low a hysteresis below 180 mV and the hysteresis decreased upon annealing.

  8. Direct synthesis of organic silicates

    International Nuclear Information System (INIS)

    Gismalla, Hana Hassan

    2000-06-01

    Tetraethoxysilane was prepared using the direct synthetic procedure in presence of magnesium ethoxide, tin tetrachloride and tin oxide as catalysts. Magnesium ethoxide was prepared firstly, identified by spectral analysis and then used in the preparation of tetraethoxysilane. The method adopted is reliable and significant as far as synthetic routes are concerned. The product obtained was analysed using infra-red spectroscopy and gas-liquid chromatography, these indicated that the final reaction product can be obtained in high yield and purity. Spectral analysis obtained are in good agreement with reported data for tetraethoxysilane. (Author)

  9. Constraints on astronomical silicate dust

    International Nuclear Information System (INIS)

    Sorrell, W.H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form. 18 refs

  10. Constraints on astronomical silicate dust

    Science.gov (United States)

    Sorrell, Wilfred H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form.

  11. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  12. Intergranular area microalloyed aluminium-silicate ceramics fractal analysis

    Directory of Open Access Journals (Sweden)

    Purenović J.

    2013-01-01

    Full Text Available Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Fractal analysis of intergranular microstructure has included determination of ceramic grain fractal dimension by using Richardson method. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization. [Projekat Ministarstva nauke Republike Srbije, br. ON 172057 i br. III 45012

  13. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  14. Low brain magnesium in migraine

    International Nuclear Information System (INIS)

    Ramadan, N.M.; Halvorson, H.; Vande-Linde, A.; Levine, S.R.; Helpern, J.A.; Welch, K.M.

    1989-01-01

    Brain magnesium was measured in migraine patients and control subjects using in vivo 31-Phosphorus Nuclear Magnetic Resonance Spectroscopy. pMg and pH were calculated from the chemical shifts between Pi, PCr and ATP signals. Magnesium levels were low during a migraine attack without changes in pH. We hypothesize that low brain magnesium is an important factor in the mechanism of the migraine attack

  15. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  16. Authigenic Mineralization of Silicates at the Organic-water Interface

    Science.gov (United States)

    McEvoy, B.; Wallace, A. F.

    2015-12-01

    It is relatively common for some fraction of organic material to be preserved in the sedimentary rock record as disseminated molecular fragments. The survival of wholly coherent tissues from primarily soft-bodied organisms is far more unusual. However, the literature is now well- populated with spectacular examples of soft-tissue preservation ranging from a 2,600 year old human brain to the tissues of the Ediacaran biota that have survived ~600 million years. Some of the most exceptional examples of soft tissue preservation are from the Proterozoic-Cambrian transition, however, nearly all modes of fossil preservation during this time are debated. Clay mineral templates have been implicated as playing a role in several types of soft tissue preservation, including Burgess Shale and Beecher's Trilobite-type preservation, and more recently, Bitter Springs-type silicification. Yet, there is still much debate over whether these clay mineral coatings form during early stage burial and diagenesis, or later stage metamorphism. This research addresses this question by using in situ fluid cell Atomic Force Microscopy (AFM) to investigate the nucleation and growth of silicate minerals on model biological surfaces. Herein we present preliminary results on the deposition of hydrous magnesium silicates on self-assembled monolayers (-OH, -COOH, -CH3, and -H2PO3 terminated surfaces) at ambient conditions.

  17. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  18. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  19. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  20. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  1. Magnesium - distribution and basic metabolism

    African Journals Online (AJOL)

    Magnesium is extensively distributed in soil, water and plants. It is essential for ehzymatic reactions requiring adenosine triphosphate, and the recom- mended dietary allowance in man is 5 - 10 mg/kg/d. About 50% of magnesium in man is stored ~n bone, where it is regulated by parathyroid hormone'and. 1,25(OHb-D3.

  2. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  3. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  4. Magnesium in Prevention and Therapy

    Directory of Open Access Journals (Sweden)

    Uwe Gröber

    2015-09-01

    Full Text Available Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke, migraine headaches, and attention deficit hyperactivity disorder (ADHD.

  5. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  6. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    Science.gov (United States)

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A. E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-09-01

    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion or inherited from prior nebular fractionation. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.

  7. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions.

    Science.gov (United States)

    Hin, Remco C; Coath, Christopher D; Carter, Philip J; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A E; Willbold, Matthias; Leinhardt, Zoë M; Walter, Michael J; Elliott, Tim

    2017-09-27

    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion or inherited from prior nebular fractionation. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.

  8. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn,. Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were fol-.

  9. Management of the Bohunice RPVs annealing procedures

    International Nuclear Information System (INIS)

    Repka, M.

    1994-01-01

    The program of annealing regeneration procedure of RPVs units 1 and 2 of NPP V-1 (EBO) realization in the year 1993, is the topic of this paper. In the paper the following steps are described in detail: the preparation works, the annealing procedure realization schedule and safety management: starting with zero conditions, assembling of annealing apparatus, annealing procedure, cooling down and disassembling procedure of annealing apparatus. At the end the programs of annealing of both RPVs including the dosimetry measurements are discussed and evaluated. (author). 3 figs

  10. Pulsed Laser Annealing of Carbon

    Science.gov (United States)

    Abrahamson, Joseph P.

    This dissertation investigates laser heating of carbon materials. The carbon industry has been annealing carbon via traditional furnace heating since at least 1800, when Sir Humphry Davy produced an electric arc with carbon electrodes made from carbonized wood. Much knowledge has been accumulated about carbon since then and carbon materials have become instrumental both scientifically and technologically. However, to this day the kinetics of annealing are not known due to the slow heating and cooling rates of furnaces. Additionally, consensus has yet to be reached on the cause of nongraphitizability. Annealing trajectories with respect to time at temperature are observed from a commercial carbon black (R250), model graphitizable carbon (anthracene coke) and a model nongraphitizable carbon (sucrose char) via rapid laser heating. Materials were heated with 1064 nm and 10.6 im laser radiation from a Q-switched Nd:YAG laser and a continuous wave CO2 laser, respectively. A pulse generator was used reduce the CO2 laser pulse width and provide high temporal control. Time-temperature-histories with nanosecond temporal resolution and temperature reproducibility within tens of degrees Celsius were determined by spectrally resolving the laser induced incandescence signal and applying multiwavelength pyrometry. The Nd:YAG laser fluences include: 25, 50, 100, 200, 300, and 550 mJ/cm2. The maximum observed temperature ranged from 2,400 °C to the C2 sublimation temperature of 4,180 °C. The CO2 laser was used to collect a series of isothermal (1,200 and 2,600 °C) heat treatments versus time (100 milliseconds to 30 seconds). Laser heated samples are compared to furnace annealing at 1,200 and 2,600 °C for 1 hour. The material transformation trajectory of Nd:YAG laser heated carbon is different than traditional furnace heating. The traditional furnace annealing pathway is followed for CO2 laser heating as based upon equivalent end structures. The nanostructure of sucrose char

  11. Microstructure and optical properties of Pr3+-doped hafnium silicate films

    Science.gov (United States)

    2013-01-01

    In this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C. The HfO2 phase demonstrates a pronounced crystallization in tetragonal phase upon 950°C annealing. Pr3+ emission appeared at TA = 950°C, and the highest efficiency of Pr3+ ion emission was detected upon a thermal treatment at 1,000°C. Analysis of the PLE spectra reveals an efficient energy transfer from matrix defects towards Pr3+ ions. It is considered that oxygen vacancies act as effective Pr3+ sensitizer. Finally, a PL study of undoped HfO2 and HfSiOx matrices is performed to evidence the energy transfer. PMID:23336520

  12. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  13. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  14. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  15. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  16. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  17. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  18. Morphological, thermal and annealed microhardness ...

    Indian Academy of Sciences (India)

    Unknown

    blended with sugarcane bagasse which showed good me- chanical properties when investigated by SEM, thermal gravimetric analysis (TGA), DSC and tensile testing (Chiel- lini et al 2001). An increase in the engineering yield stress was observed, with a decline in tensile impact strength. With DSC on annealing, a small ...

  19. Morphological, thermal and annealed microhardness ...

    Indian Academy of Sciences (India)

    The present paper reports the preparation of full IPNs of gelatin and polyacrylonitrile. Various compositions of gluteraldehyde crosslinked gelatin and N,N′-methylene-bis-acrylamide crosslinked PAN were characterized by SEM and DSC techniques. The IPNs were also thermally pretreated by the annealing process.

  20. Níveis de silicato de cálcio e magnésio na produção das gramídeas Marandu e Tanzânia cultivadas em um Neossolo Quartzarênico Level of calcium and magnesium silicate in the yield of Marandu grass and Tanzania grass cultivated in one Quartzsandy Neosoil

    Directory of Open Access Journals (Sweden)

    Caio Augustus Fortes

    2008-02-01

    Full Text Available O estudo foi conduzido em casa-de-vegetação do Departamento de Ciência do Solo da Universidade Federal de Lavras, Lavras-MG, com o objetivo de avaliar o efeito da correção da acidez do solo, por meio da aplicação de níveis de silicato de Ca e Mg, na produção das gramíneas Brachiaria brizantha cv. Marandu e Panicum maximum cv. Tanzânia-1 cultivadas em solo Neossolo Quartzarênico ortic. O delineamento experimental utilizado foi blocos ao acaso, em esquema fatorial 2 x 5 com quatro repetições, sendo duas forrageiras e cinco níveis de saturação por bases (V% original, 40, 60, 80 e 100%. Cada unidade experimental correspondeu a um vaso sem furos, com capacidade para 4,0 dm³ de solo, totalizando 40 vasos. Foram avaliadas as produções de MS por corte (PMS e total (PTMS, a altura e o número de perfilhos. Não houve variação entre as gramíneas em altura de perfilhos. O Tanzânia foi superior ao Marandu em PMS e número de perfilhos. Houve aumento linear na PMS, PTMS e altura de perfilhos. Conclui-se que ambas as gramíneas responderam de forma positiva à elevação dos níveis de V%, em PMS, até 54,8%. O Tanzânia produziu mais MS em relação ao Marandu.This study was conducted in a greenhouse of the Soil Science Department at Universidade Federal de Lavras, Lavras-MG, with the purpose of evaluating the effect of the soil correction acidity, by the application of Ca and Mg silicate levels, in the production of grasses Brachiaria brizantha cv. Marandu and Panicum maximum cv. Tanzânia-1 cultivated in Quartzsandy Neosoil ortic. The experimental design was a randomized complete block, in 2 x 5 factorial scheme with four replicates, being two forages and five levels of base saturation (BS%; (original BS, 40, 60, 80 and 100%. Each experimental unit corresponded to a pot with a capacity of 4.0 dm³ of soil, totalizing 40 pots. The dry matter yield (DMY for cut and total (TDMY, height and number of tillers were evaluated. There were

  1. Radiosynoviorthesis with yttrium-90 silicate

    International Nuclear Information System (INIS)

    Reichel, H.; Bergmann, H.; Kolarz, G.; Thumb, N.; Vienna Univ.

    1979-01-01

    The results of the radiosynoviorthesis with yttrium-90 silicate in 36 joints, are reported. In comparison to the radiogold therapy in 64 joints, yttrium-90 was a little more effective. Additionally, the body distribution of radioactive yttrium after radiosynoviorthesis of knee joints, was measured in 6 patients. It could be shown that the uptake of the regional lymphnodes was between 4 and 5% of the yttrium administered. The radiation dose of the regional lymphnodes certainly exceeds 1000 rad. These results point to the importance of a careful selection of patients for radiosynoviorthesis. (author)

  2. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  3. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  4. Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing.

    Science.gov (United States)

    He, Qing; Das, Suprem R; Garland, Nathaniel T; Jing, Dapeng; Hondred, John A; Cargill, Allison A; Ding, Shaowei; Karunakaran, Chandran; Claussen, Jonathan C

    2017-04-12

    Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01-100 mM), a low detection limit (7 μM), minimal drift (8.6 × 10 -6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat.

  5. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    Energy Technology Data Exchange (ETDEWEB)

    Sopcak, T., E-mail: tsopcak@imr.saske.sk [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Medvecky, L.; Giretova, M.; Stulajterova, R.; Durisin, J. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Girman, V. [Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 04001 Kosice (Slovakia); Faberova, M. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia)

    2016-07-15

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~ 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.

  6. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  7. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  8. Studies on the Electrical and Optical Properties of Magnesium Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    T. G. Gopinathan

    2004-01-01

    Full Text Available Thin films of Magnesium Phthalocyanine (MgPc are prepared by thermal evaporation technique at a base pressure of 10-5 m.bar on thoroughly cleaned glass substrates kept at different constant temperatures. Films of thickness 2400 A.U. coated at room temperature are subjected to post deposition annealing in air by keeping them in a furnace at different constant temperatures, for one hour. The electrical conductivity studies are conducted in the temperature range 300 K to 525 K. The electrical conductivity is plotted as a function of absolute temperature. The conduction mechanism is observed to be hopping. The thermal activation energy is calculated in different cases and is observed to vary with substrate temperature and annealing temperature. A phase change is observed due to post-deposition annealing at around 523 K. The optical absorption studies are done in the UV-Visible region. The optical band gap energies of the samples are calculated.

  9. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  10. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  11. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  12. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  13. Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions

    Science.gov (United States)

    Wang, Yifeng; Nahon, Daniel; Merino, Enrique

    1994-12-01

    In both pedogenic and groundwater calcretes, calcium carbonate precipitates in voids, or displacing other grains, or replacing underlying parent silicates. Replacement textures are widespread in pedogenic calcrete. Many calcretes also contain magnesium layer silicates and minor chert. We present a reaction-transport model that accounts for the genesis of replacement in calcretes and for their mineralogy. Replacement is difficult to account for geochemically because it requires simultaneous removal of large amounts of silicates and import of also large amounts of CaCO 3. In the model the genesis of replacement is directly related to seasonally alternating dry-wet climates and to appropriate groundwater (or circulating soil water) compositions. In a dry season, water evaporation causes CaCO 3 and sepiolite (or attapulgite) to precipitate. If groundwater contains enough Mg 2+, sepiolite precipitation by the chemical-divide mechanism depletes SiO 2(aq), resulting in the dissolution of parent silicates. In the following wet season, sepiolite dissolves fast, and silica and cations are flushed away by rainwater, making room for CaCO 3 precipitation in the next dry season. As climate cycles repeat, CaCO 3 is accumulated and silicates are removed. The sepiolite (or attapulgite, or Mg-smectite) serves as a temporary storage of silica between seasons. If the groundwater contains too little aqueous Mg then the model predicts growth of calcium carbonate without removing silicates, thus producing void filling and or displacive textures instead of replacement. The model consists of a set of nonlinear partial differential equations taking account of mass conservation, dispersion, advection, rainwater infiltration, evaporation, and the kinetics of mineral reactions. The hydrodynamics of unsaturated media is applied in determining water flow in calcrete profiles. Wet/dry seasonal changes are incorporated by alternating the upper boundary conditions. The model successfully produces

  14. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  15. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  16. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  17. Magnesium for skeletal muscle cramps.

    Science.gov (United States)

    Garrison, Scott R; Allan, G Michael; Sekhon, Ravneet K; Musini, Vijaya M; Khan, Karim M

    2012-09-12

    Skeletal muscle cramps are common and often presented to physicians in association with pregnancy, advanced age, exercise or disorders of the motor neuron (such as amyotrophic lateral sclerosis). Magnesium supplements are marketed for the prophylaxis of cramps but the efficacy of magnesium for this indication has never been evaluated by systematic review. To assess the effects of magnesium supplementation compared to no treatment, placebo control or other cramp therapies in people with skeletal muscle cramps.   We searched the Cochrane Neuromuscular Disease Group Specialized Register (11 October 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (2011, Issue 3), MEDLINE (January 1966 to September 2011), EMBASE (January 1980 to September 2011), LILACS (January 1982 to September 2011), CINAHL Plus (January 1937 to September 2011), AMED (January 1985 to October 2011) and SPORTDiscus (January 1975 to September 2011). Randomized controlled trials (RCTs) of magnesium supplementation (in any form) to prevent skeletal muscle cramps in any patient group (i.e. all clinical presentations of cramp). We considered comparisons of magnesium with no treatment, placebo control, or other therapy. Two authors independently selected trials for inclusion and extracted data. Two authors assessed risk of bias. We attempted to contact all study authors and obtained patient level data for three of the included trials, one of which was unpublished. All data on adverse effects were collected from the included RCTs. We identified seven trials (five parallel, two cross-over) enrolling a total of 406 individuals amongst whom 118 cross-over participants additionally served as their own controls. Three trials enrolled women with pregnancy-associated leg cramps (N = 202) and four trials enrolled idiopathic cramp sufferers (N = 322 including cross-over controls). Magnesium was compared to placebo in six trials and to no treatment in one trial.For idiopathic cramps (largely older

  18. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  19. Preformulation studies on solid self-emulsifying systems in powder form containing magnesium aluminometasilicate as porous carrier.

    Science.gov (United States)

    Krupa, Anna; Szlęk, Jakub; Jany, Benedykt R; Jachowicz, Renata

    2015-06-01

    The influence of alkaline and the neutral grade of magnesium aluminometasilicate as a porous solid carrier for the liquid self-emulsifying formulation with ibuprofen is investigated. Ibuprofen is dissolved in Labrasol, then this solution is adsorbed on the silicates. The drug to the silicate ratio is 1:2, 1:4, and 1:6, respectively. The properties of formulations obtained are analyzed, using morphological, porosity, crystallinity, and dissolution studies. Three solid self-emulsifying (S-SE) formulations containing Neusilin SG2 and six consisting of Neusilin US2 are in the form of powder without agglomerates. The nitrogen adsorption method shows that the solid carriers are mesoporous but they differ in a specific surface area, pore area, and the volume of pores. The adsorption of liquid SE formulation on solid silicate particles results in a decrease in their porosity. If the neutral grade of magnesium aluminometasilicate is used, the smallest pores, below 10 nm, are completely filled with liquid formulation, but there is still a certain number of pores of 40-100 nm. Dissolution studies of liquid SEDDS carried out in pH = 1.2 show that Labrasol improves the dissolution of ibuprofen as compared to the pure drug. Ibuprofen dissolution from liquid SE formulations examined in pH of 7.2 is immediate. The adsorption of the liquid onto the particles of the silicate causes a decrease in the amount of the drug released. Finally, more ibuprofen is dissolved from S-SE that consist of the neutral grade of magnesium aluminometasilicate than from the formulations containing the alkaline silicate.

  20. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  1. Model Dust Envelopes Around Silicate Carbon Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-03-01

    Full Text Available We have modeled dust envelopes around silicate carbon stars using optical properties for a mixture of amorphous carbon and silicate dust grains paying close attention to the infrared observations of the stars. The 4 stars show various properties in chemistry and location of the dust shell. We expect that the objects that fit a simple detached silicate dust shell model could be in the transition phase of the stellar chemistry. For binary system objects, we find that a mixed dust chemistry model would be necessary.

  2. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  3. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.

    Science.gov (United States)

    Fiocco, L; Li, S; Stevens, M M; Bernardo, E; Jones, J R

    2017-03-01

    Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to

  4. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  5. High magnesium mobility in ternary spinel chalcogenides.

    Science.gov (United States)

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; Key, Baris; Richards, William D; Shi, Tan; Tian, Yaosen; Wang, Yan; Li, Juchuan; Ceder, Gerbrand

    2017-11-24

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. The development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. Here we demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door for the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.

  6. Effects of magnesium minerals representative of the Callovian-Oxfordian clay-stone on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Debure, M.

    2012-01-01

    Borosilicate glasses dissolution has been studied in presence of magnesium minerals. Those minerals (dolomite, illite, smectite...) belong to the Callovo-Oxfordian (COx) clay-stone layer, studied in France as a potential site for nuclear waste disposal. Such minerals contain magnesium, an element able to sustain glass alteration when it is available in solution. In the confined media of the wastes disposal, the solids reactivity controls the solution composition and can be the driving force of nuclear glass alteration. Experiments show that magnesium carbonates (hydro-magnesite and dolomite) increase in the glass alteration: the precipitation of magnesium silicates consumes silicon which slows down the formation of the glass passivating layer. The lower the magnesium mineral solubility, the lower the glass alteration. The purified clay phases (illite, smectite...) from the COx layer increase the glass alteration. Half the magnesium was replaced by sodium during the purification process. In such conditions, the effect of clay phases on glass alteration is in part due to the acidic pH-buffering effect of the clay fraction. The GRAAL model implemented in the geochemical transport code HYTEC has confirmed and quantified the mechanisms put in evidence in the experiments. Cells diffusion experiments where the two solids were separated by an inert diffusion barrier allow to valid reactive transport modelling. Such experiments are more representative of the glass package which will be separated from the COx by corrosion products. They show that glass alteration rate is reduced when solids are not close. (author) [fr

  7. Rare earth-ruthenium-magnesium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Kersting, Marcel; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    Eight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm{sub 9.2}Ru{sub 6}Mg{sub 17.8} (a=939.6(2), c=1779(1) pm), Gd{sub 11}Ru{sub 6}Mg{sub 16} (a=951.9(2), c=1756.8(8) pm), and Tb{sub 10.5}Ru{sub 6}Mg{sub 16.5} (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd{sub 9.34}Ru{sub 6}Mg{sub 17.66} type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y{sub 2}RuMg{sub 2} (a=344.0(1), c=2019(1) pm) and Tb{sub 2}RuMg{sub 2} (a=341.43(6), c=2054.2(7) pm) adopt the Er{sub 2}RuMg{sub 2} structure and Tm{sub 3}Ru{sub 2}Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc{sub 3}Ru{sub 2}Mg. Tm{sub 3}Ru{sub 2}Mg{sub 2} (a=337.35(9), c=2671(1) pm) and Lu{sub 3}Ru{sub 2}Mg{sub 2} (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti{sub 3}Cu{sub 4} type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu{sub 3}Ru{sub 2}Mg{sub 2} is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y{sub 2}RuMg{sub 2} and Lu{sub 3}Ru{sub 2}Mg{sub 2} samples revealed Pauli paramagnetism of the conduction electrons.

  8. Magnesium sulphate for fetal neuroprotection

    DEFF Research Database (Denmark)

    Bickford, Celeste D; Magee, Laura A; Mitton, Craig

    2013-01-01

    BACKGROUND: The aim of this study was to assess the cost-effectiveness of administering magnesium sulphate to patients in whom preterm birth at ... sensitivity analyses were used to compare the administration of magnesium sulphate with the alternative of no treatment. Two separate cost perspectives were utilized in this series of analyses: a health system and a societal perspective. In addition, two separate measures of effectiveness were utilized: cases...... of cerebral palsy (CP) averted and quality-adjusted life years (QALYs). RESULTS: From a health system and a societal perspective, respectively, a savings of $2,242 and $112,602 is obtained for each QALY gained and a savings of $30,942 and $1,554,198 is obtained for each case of CP averted when magnesium...

  9. Quantum annealing for combinatorial clustering

    Science.gov (United States)

    Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph

    2018-02-01

    Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.

  10. Loviisa Unit One: Annealing - healing

    Energy Technology Data Exchange (ETDEWEB)

    Kohopaeae, J.; Virsu, R. [ed.; Henriksson, A. [ed.

    1997-11-01

    Unit 1 of the Loviisa nuclear powerplant was annealed in connection with the refuelling outage in the summer of 1996. This type of heat treatment restored the toughness properties of the pressure vessel weld, which had been embrittled be neutron radiation, so that it is almost equivalent to a new weld. The treatment itself was an ordinary metallurgical procedure that took only a few days. But the material studies that preceded it began over fifteen years ago and have put IVO at the forefront of world-wide expertise in the area of radiation embrittlement

  11. Microstructural and technological optimisation of magnesium alloys

    OpenAIRE

    Facchinelli, Nicola

    2013-01-01

    Magnesium is one of the most abundance element in nature, and it's characterised by a lower density than aluminium. These characteristics confer great potential to magnesium alloys, which are so used for specialised applications, like for military purposes and in the aerospace industry. While some magnesium alloys, including the AM60B alloy, are historically associated to high pressure die casting, for such applications the magnesium alloy components are usually produced by the gravity castin...

  12. Solid-state rechargeable magnesium battery

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  13. Simulated annealing with constant thermodynamic speed

    International Nuclear Information System (INIS)

    Salamon, P.; Ruppeiner, G.; Liao, L.; Pedersen, J.

    1987-01-01

    Arguments are presented to the effect that the optimal annealing schedule for simulated annealing proceeds with constant thermodynamic speed, i.e., with dT/dt = -(v T)/(ε-√C), where T is the temperature, ε- is the relaxation time, C ist the heat capacity, t is the time, and v is the thermodynamic speed. Experimental results consistent with this conjecture are presented from simulated annealing on graph partitioning problems. (orig.)

  14. Keystream Generator Based On Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Ayad A. Abdulsalam

    2011-01-01

    Full Text Available Advances in the design of keystream generator using heuristic techniques are reported. A simulated annealing algorithm for generating random keystream with large complexity is presented. Simulated annealing technique is adapted to locate these requirements. The definitions for some cryptographic properties are generalized, providing a measure suitable for use as an objective function in a simulated annealing algorithm, seeking randomness that satisfy both correlation immunity and the large linear complexity. Results are presented demonstrating the effectiveness of the method.

  15. Highly silicic compositions on the Moon.

    Science.gov (United States)

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.

  16. Carbon Monoxide Silicate Reduction System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  17. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  18. Carbon Monoxide Silicate Reduction System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  19. Siliceous microfossil extraction from altered Monterey rocks

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  20. 21 CFR 582.5431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  1. 21 CFR 582.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  2. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  3. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  4. 21 CFR 582.5434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  5. 76 FR 69284 - Pure Magnesium From China

    Science.gov (United States)

    2011-11-08

    ... COMMISSION Pure Magnesium From China Determination On the basis of the record \\1\\ developed in the subject... order on pure magnesium from China would be likely to lead to continuation or recurrence of material... USITC Publication 4274 (October 2011), entitled Pure Magnesium from China: Investigation No. 731-TA-696...

  6. Magnetic properties of sheet silicates

    International Nuclear Information System (INIS)

    Ballet, O.; Coey, J.M.D.

    1982-01-01

    Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)

  7. Magnesium Diboride Current Leads

    Science.gov (United States)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  8. Method of chemical analysis of silicate rocks (1962)

    International Nuclear Information System (INIS)

    Pouget, R.

    1962-01-01

    A rapid method of analysis for the physical and chemical determination of the major constituents of silicate rocks is described. Water losses at 100 deg. C and losses of volatile elements at 1000 deg. C are estimated after staying in oven for these temperatures, or by mean of a thermo-balance. The determination of silica is made by a double insolubilization with hydrochloric acid on attack solution with sodium carbonate; total iron and aluminium, both with calcium and magnesium, after ammoniacal precipitation of Fe and Al, are determined on the filtration product of silica by titrimetry-photometry of their complexes with EDTA. The alkalis Na and K by flame spectrophotometry, Mn by colorimetry of the permanganate, and Ti by mean of his complex with H 2 O 2 , are determined on fluosulfuric attack solution. Phosphorus is determined by his complex with 'molybdenum blue' on a fluoro-nitro-boric attack solution; iron is estimated by potentiometry, with the help of bichromate on hydrofluoric solution. (author) [fr

  9. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com [NANO-ElecTronic Centre, Faculty of Electrical engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre, Institue of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com [NANO-ElecTronic Centre, Faculty of Electrical engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z., E-mail: Zurai142@salam.uitm.edu.my [NANO-SciTech Centre, Institue of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnO thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.

  10. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    International Nuclear Information System (INIS)

    Mohamed, R.; Mamat, M. H.; Rusop, M.; Ismail, A. S.; Khusaimi, Z.

    2016-01-01

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnO thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.

  11. Intrinsic luminescence of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, V.I.; Grabovskis, V.Y.; Tolstoi, M.N.; Vitol, I.K.

    1986-09-01

    This study obtains additional information on L centers and their role in electron excitation and intrinsic luminescence of a whole series. (Li, Na, K, Rb, and Cs) of alkali silicate glasses. The authors compare the features of the interaction with radiation of specimens of glass and crystal of a similar chemical composition, since silicates of alkali metals can be obtained in both the glassy and crystalline states.

  12. Semantic search via concept annealing

    Science.gov (United States)

    Dunkelberger, Kirk A.

    2007-04-01

    Annealing, in metallurgy and materials science, is a heat treatment wherein the microstructure of a material is altered, causing changes in its properties such as strength and hardness. We define concept annealing as a lexical, syntactic, and semantic expansion capability (the removal of defects and the internal stresses that cause term- and phrase-based search failure) coupled with a directed contraction capability (semantically-related terms, queries, and concepts nucleate and grow to replace those originally deformed by internal stresses). These two capabilities are tied together in a control loop mediated by the information retrieval precision and recall metrics coupled with intuition provided by the operator. The specific representations developed have been targeted at facilitating highly efficient and effective semantic indexing and searching. This new generation of Find capability enables additional processing (i.e. all-source tracking, relationship extraction, and total system resource management) at rates, precisions, and accuracies previously considered infeasible. In a recent experiment, an order magnitude reduction in time to actionable intelligence and nearly three orderss magnitude reduction in false alarm rate was achieved.

  13. Magnesium Trimethoxyphenylporphyrin Chain Controls Energy ...

    Indian Academy of Sciences (India)

    chemsci

    The green pigment chlorophyll present in green leaves initiates the photosynthesis. Chlorophyll is a porphyrin- type tetrapyrrolic macrocyclic molecule with a reduced double bond in one of the pyrrole rings. The metal present in chlorophyll is magnesium; however, some zinc containing bacteriochlorophylls are also known.

  14. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  15. GPU accelerated population annealing algorithm

    Science.gov (United States)

    Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.

    2017-11-01

    Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for simulations of other spin models, including disordered systems. Our code includes implementations of some advanced algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures. Program Files doi:http://dx.doi.org/10.17632/sgzt4b7b3m.1 Licensing provisions: Creative Commons Attribution license (CC BY 4.0) Programming language: C, CUDA External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer Nature of problem: The program calculates the internal energy, specific heat, several magnetization moments, entropy and free energy of the 2D Ising model on square lattices of edge length L with periodic boundary conditions as a function of inverse temperature β. Solution method: The code uses population annealing, a hybrid method combining Markov chain updates with population control. The code is implemented for NVIDIA GPUs using the CUDA language and employs advanced techniques such as multi-spin coding, adaptive temperature

  16. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  17. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  18. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  19. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  20. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  1. [Magnesium sulphate for the management of preeclampsia].

    Science.gov (United States)

    Rozenberg, P

    2006-01-01

    In case of eclampsia, and especially in case of preeclampsia, no consensus exist in order to treat or to prevent convulsions by routine use of magnesium sulphate, at least in France. However, a large, multicentre, randomised trial compared the efficacy of magnesium sulphate with diazepam or phenytoin in eclamptic women. In this trial, magnesium sulphate was associated with a significantly lower rate of recurrent seizures and lower rate of maternal death than that observed with other anticonvulsants. The primary objective of magnesium sulphate prophylaxis in women with preeclampsia is to prevent or reduce the rate of eclampsia and complications associated with eclampsia. There are 3 large randomised controlled trials comparing the use of magnesium sulphate to prevent convulsions in patients with severe preeclampsia: the first one was vs phenytoin, the second vs placebo, and the third vs nimodipine. Patients receiving magnesium sulphate presented a significant lower risk of eclampsia than that observed with other comparison groups, probably by decreasing the cerebral perfusion pressure, thus avoiding a cerebral barotrauma. However, several arguments balance a wide use of magnesium sulphate: the prevalence of eclampsia in the Western world is very low, the use of magnesium sulphate does not affect the neonatal morbidity and mortality, and it is associated with a high rate of side effects, sometimes severe, such as respiratory depression. Thus, the benefit to risk ratio has to guide the use of magnesium sulphate and is directly correlated to the prevalence of eclampsia according to the risk of considered group. 1) The rate of seizures in women with mild preeclampsia not receiving magnesium sulphate is very low. Magnesium sulphate may potentially be associated with a higher number of adverse maternal effects. Therefore, the benefit to risk ratio does not support routine use of magnesium sulphate prophylaxis in this group. 2) On the other hand, the higher rate of

  2. Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization

    Directory of Open Access Journals (Sweden)

    Nina eZeyen

    2015-10-01

    Full Text Available Microbialites are organo-sedimentary rocks found in abundance throughout the geological record back to ~3.5 Ga. Interpretations of the biological and environmental conditions under which they formed rely on comparisons with modern microbialites. Therefore, a better characterization of diverse modern microbialites is crucial to improve such interpretations. Here, we studied modern microbialites from three Mexican alkaline crater lakes: Quechulac, La Preciosa and Atexcac. The geochemical analyses of water solutions showed that they were supersaturated to varying extents with several mineral phases, including aragonite, calcite, hydromagnesite, as well as hydrated Mg-silicates. Consistently, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that microbialites are composed of a diversity of mineral phases including aragonite and sometimes calcite, hydromagnesite, and more interestingly, a poorly-crystalline hydrated silicate phase. Coupling of scanning electron microscopy with energy dispersive X-ray spectrometry microanalyses on polished sections showed that this latter phase is abundant, authigenic, magnesium-rich and sometimes associated with iron and manganese. This mineral phase is similar to kerolite, a hydrated poorly crystalline talc-like phase (Mg3Si4O10(OH2·nH2O. Diverse microfossils were permineralized by this silicate phase. Some of them were imaged in 3D by FIB-tomography showing that their morphologically was exquisitely preserved down to the few nm-scale. The structural and chemical features of these fossils were further studied using a combination of transmission electron microscopy and scanning transmission X-ray microscopy at the carbon and magnesium K-edges and iron L2,3-edges. These results showed that organic carbon is pervasively associated with kerolite. Overall, it is suggested that the poorly-crystalline hydrated magnesium-rich silicate forms in many alkaline lakes and has a strong potential

  3. Ionization-stimulated annealing effects on displacement damage in magnesium oxide

    International Nuclear Information System (INIS)

    Krefft, G.B.

    1976-01-01

    The effects of ion bombardment into MgO were investigated by measuring resulting volume changes with a cantilever beam technique and by monitoring the F band absorption induced in the UV region of the spectrum. Single crystals of MgO were bombarded along (100) with 500 keV argon which resulted in an expansion of the implanted near-surface layer due to the ion-induced lattice damage. Under subsequent 100 keV proton irradiation, however, a large fraction of this expansion is relieved since the material compacts. This seems to indicate that defects with different charge states are produced in MgO by heavy ion bombardment and that electronic processes account for the volume changes observed during subsequent irradiation with the primarily ionizing radiation from the 100 keV H + implantation. Identical behavior was found earlier for the highly ionic Al 2 O 3 while no such effect was observed in the predominantly covalent SiO 2 . The present results thus corroborate the existence of defects with different charge states in ionic materials. This behavior of MgO and Al 2 O 3 is of considerable interest since both materials are candidates for first-wall application in CTR environments

  4. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, Tadeáš, E-mail: gavendat@vscht.cz [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Gedeon, Ondrej [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Jurek, Karel [Institute of Physics, Academy of the Czech Republic, Na Slovance 2, CZ-182 21 Prague (Czech Republic)

    2017-04-15

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K{sub 2}O·85SiO{sub 2} – denoted as K15 and 15Li{sub 2}O·85SiO{sub 2} – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m{sup 2}. Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T{sub g} of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  5. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    International Nuclear Information System (INIS)

    Gavenda, Tadeáš; Gedeon, Ondrej; Jurek, Karel

    2017-01-01

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K 2 O·85SiO 2 – denoted as K15 and 15Li 2 O·85SiO 2 – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m 2 . Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T g of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  6. Computational and experimental studies of iron-bearing carbonates and silicate glasses at lower mantle pressures

    Science.gov (United States)

    Solomatova, N. V.; Jackson, J. M.; Asimow, P. D.; Sturhahn, W.; Rossman, G. R.; Roskosz, M.

    2017-12-01

    Decomposition of carbonates may be responsible for creating silicate melts within the lower mantle by lowering the melting temperature of surrounding rock. Identifying and characterizing the stability of carbonates is therefore a necessary step towards understanding the transport of carbon in Earth's interior. Dolomite is one of the major mineral forms in which carbon is subducted into the Earth's mantle. Although iron-free dolomite is expected to break down upon compression, high-pressure polymorphs of iron-bearing dolomite may resist decomposition. Using a genetic algorithm that predicts crystal structures, we found a monoclinic phase with space group C2/c that has a lower energy than all previously reported dolomite structures at pressures above 15 GPa, where the substitution of iron for magnesium stabilizes monoclinic dolomite at certain pressures of the lower mantle. Thus, an iron-bearing dolomite polymorph may be an important carbon carrier in regions of Earth's lower mantle. The depth at which carbonates will decompose is dependent on the age, temperature and density of subducting slabs. Decarbonation reactions may lower the melting temperature of surrounding rocks to produce silicate melts. In regions of the mantle where silicate melts may exist, it is important to understand the physical properties and dynamic behavior of the melts because they affect the chemical and thermal evolution of its interior. Composition, degree of polymerization, and iron's spin state affect such properties. The behavior of iron in silicate melts is poorly understood but, in some cases, may be approximated by iron-bearing glasses. We measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to 120 GPa and 100 GPa, respectively, in a neon pressure medium using time-domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings, reflecting

  7. Precision Laser Annealing of Focal Plane Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeRose, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Starbuck, Andrew Lea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verley, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, Mark W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  8. Cylinder packing by simulated annealing

    Directory of Open Access Journals (Sweden)

    M. Helena Correia

    2000-12-01

    Full Text Available This paper is motivated by the problem of loading identical items of circular base (tubes, rolls, ... into a rectangular base (the pallet. For practical reasons, all the loaded items are considered to have the same height. The resolution of this problem consists in determining the positioning pattern of the circular bases of the items on the rectangular pallet, while maximizing the number of items. This pattern will be repeated for each layer stacked on the pallet. Two algorithms based on the meta-heuristic Simulated Annealing have been developed and implemented. The tuning of these algorithms parameters implied running intensive tests in order to improve its efficiency. The algorithms developed were easily extended to the case of non-identical circles.Este artigo aborda o problema de posicionamento de objetos de base circular (tubos, rolos, ... sobre uma base retangular de maiores dimensões. Por razões práticas, considera-se que todos os objetos a carregar apresentam a mesma altura. A resolução do problema consiste na determinação do padrão de posicionamento das bases circulares dos referidos objetos sobre a base de forma retangular, tendo como objetivo a maximização do número de objetos estritamente posicionados no interior dessa base. Este padrão de posicionamento será repetido em cada uma das camadas a carregar sobre a base retangular. Apresentam-se dois algoritmos para a resolução do problema. Estes algoritmos baseiam-se numa meta-heurística, Simulated Annealling, cuja afinação de parâmetros requereu a execução de testes intensivos com o objetivo de atingir um elevado grau de eficiência no seu desempenho. As características dos algoritmos implementados permitiram que a sua extensão à consideração de círculos com raios diferentes fosse facilmente conseguida.

  9. Photoluminescent layered Y/Er silicates

    International Nuclear Information System (INIS)

    Kostova, Mariya H.; Ananias, Duarte; Carlos, Luis D.; Rocha, Joao

    2008-01-01

    The synthesis of new layered rare-earth silicates K 3 [Y 1-a Er a Si 3 O 8 (OH) 2 ] (AV-22 materials) has been reported. The photoluminescence properties of Y/Er-AV-22 and the material resulting from its thermal degradation, K 3 [Y 1-a Er a Si 3 O 9 ] (Y/Er-AV-23), have been studied and compared. Both materials have a similar chemical makeup and structures sharing analogous building blocks, hence providing a unique opportunity for rationalising the evolution of the photoluminescence properties of lanthanide silicates across dimensionality

  10. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  11. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  12. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  13. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    OpenAIRE

    Junji Takaya

    2015-01-01

    Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA) groups than that of appropriate for gestational age (AGA) groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greate...

  14. Magnesium status and the effect of magnesium supplementation in feline hypertrophic cardiomyopathy.

    OpenAIRE

    Freeman, L M; Brown, D J; Smith, F W; Rush, J E

    1997-01-01

    Magnesium deficiency has been associated with the development of cardiovascular disease in several species. Cats may be predisposed to alterations in magnesium status because of recent changes in the composition of commercial feline diets. The purposes of this study were 1) to examine the dietary history of cats with hypertrophic cardiomyopathy (HCM), 2) to study magnesium status of cats with HCM compared to normal cats, and 3) to determine the effects of magnesium supplementation in cats wit...

  15. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  16. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  17. The Importance of Magnesium in Clinical Healthcare

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2017-01-01

    Full Text Available The scientific literature provides extensive evidence of widespread magnesium deficiency and the potential need for magnesium repletion in diverse medical conditions. Magnesium is an essential element required as a cofactor for over 300 enzymatic reactions and is thus necessary for the biochemical functioning of numerous metabolic pathways. Inadequate magnesium status may impair biochemical processes dependent on sufficiency of this element. Emerging evidence confirms that nearly two-thirds of the population in the western world is not achieving the recommended daily allowance for magnesium, a deficiency problem contributing to various health conditions. This review assesses available medical and scientific literature on health issues related to magnesium. A traditional integrated review format was utilized for this study. Level I evidence supports the use of magnesium in the prevention and treatment of many common health conditions including migraine headache, metabolic syndrome, diabetes, hyperlipidemia, asthma, premenstrual syndrome, preeclampsia, and various cardiac arrhythmias. Magnesium may also be considered for prevention of renal calculi and cataract formation, as an adjunct or treatment for depression, and as a therapeutic intervention for many other health-related disorders. In clinical practice, optimizing magnesium status through diet and supplementation appears to be a safe, useful, and well-documented therapy for several medical conditions.

  18. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  19. Enthalpy relaxation and annealing effect in polystyrene.

    Science.gov (United States)

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  20. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  1. Global warming: Temperature estimation in annealers

    Directory of Open Access Journals (Sweden)

    Jack Raymond

    2016-11-01

    Full Text Available Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches. Quantum annealing is one promising candidate. The failure of annealing dynamics to equilibrate on practical time scales is a well understood limitation, but does not always prevent a heuristically useful distribution from being generated. In this paper we evaluate several methods for determining a useful operational temperature range for annealers. We show that, even where distributions deviate from the Boltzmann distribution due to ergodicity breaking, these estimates can be useful. We introduce the concepts of local and global temperatures that are captured by different estimation methods. We argue that for practical application it often makes sense to analyze annealers that are subject to post-processing in order to isolate the macroscopic distribution deviations that are a practical barrier to their application.

  2. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  3. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking... agent in food in an amount not in excess of that reasonably required to produce its intended effect. (b... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and...

  4. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  5. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...

  6. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  7. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Eu2+. Keywords. Biomaterials; silicates; akermanite; combustion synthesis; photoluminescence. 1. Introduction. It is essential to develop biocompatible, bioactive, biore- sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress and loads, and that invoke positive cellular and ...

  8. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  9. Irradiation embrittlement and optimisation of annealing

    International Nuclear Information System (INIS)

    1993-01-01

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects

  10. Thermoset polymer-layered silicic acid nanocomposites

    Science.gov (United States)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  11. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  12. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  13. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  14. Boosting quantum annealer performance via sample persistence

    Science.gov (United States)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  15. Nanocrystalline magnetic materials obtained by flash annealing

    Directory of Open Access Journals (Sweden)

    Murakami R.K.

    1999-01-01

    Full Text Available The aim of the present work was to produce enhanced-remanence nanocrystalline magnetic material by crystallizing amorphous or partially amorphous Pr4.5Fe77B18.5 alloys by the flash annealing process, also known as the dc-Joule heating process, and to determine the optimal conditions for obtaining good magnetic coupling between the magnetic phases present in this material. Ribbons of Pr4.5Fe77B18.5 were produced by melt spinning and then annealed for 10-30 s at temperatures 500 - 640 °C by passing current through the sample to develop the enhanced-remanence nanocrystalline magnetic material. These materials were studied by X-ray diffraction, differential thermal analysis and magnetic measurements. Coercivity increases of up to 15% were systematically observed in relation to furnace-annealed material. Two different samples were carefully examined: (i a sample annealed at 600 °C which showed the highest coercive field Hc and remanence ratio Mr/Ms and (ii a sample annealed at 520 °C which showed phase separation in the second quadrant demagnetization curve. Our results are in agreement with other studies which show that flash annealing improves the magnetic properties of some amorphous ferromagnetic ribbons.

  16. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  17. Magnesium deficiency and increased inflammation: current perspectives.

    Science.gov (United States)

    Nielsen, Forrest H

    2018-01-01

    Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca 2+ , which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress). When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in recommended amounts, magnesium should be considered an element of significant nutritional concern

  18. Hetero- and Homoleptic Magnesium Triazenides

    Directory of Open Access Journals (Sweden)

    Denis Vinduš

    2017-05-01

    Full Text Available Using monoanionic triazenide ligands derived from biphenyl and m-terphenyl substituted triazenes Dmp(TphN3H (1a, (Me4Ter2N3H (1b or Dmp(MphN3H (1c (Dmp = 2,6-Mes2C6H3 with Mes = 2,4,6-Me3C6H2; Me4Ter = 2,6-(3,5-Me2C6H32C6H3; Mph = 2-MesC6H4; Tph = 2-TripC6H4 with Trip = 2,4,6-i-Pr3C6H2, several magnesium triazenides were synthesized. Heteroleptic complexes [Mg(N3Ar2I(OEt2] (Ar2 = Dmp/Tph (2a, (Me4Ter2 (2b were obtained from metalation of the corresponding triazenes with di-n-butylmagnesium followed by reaction with iodine in diethyl ether as the solvent in high yields. Replacing diethyl ether by n-heptane afforded trinuclear compounds [Mg3(N3Ar22I4] (3a, 3b in low yields in which a central MgI2 fragment is coordinated by two iodomagnesium triazenide moieties. Two unsolvated homoleptic magnesium compounds [Mg(N3Ar22] (4b, 4c were obtained from di-n-butylmagnesium and triazenes 1b or 1c in a 1:2 ratio. Depending on the nature of the substituents, the magnesium center either shows the expected tetrahedral or a rather unusual square planar coordination.

  19. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    Science.gov (United States)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes

  20. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  1. Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures

    Science.gov (United States)

    Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.

  2. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  3. Fluid Bed Dehydration of Magnesium Chloride

    Science.gov (United States)

    Adham, K.; Lee, C.; O'Keefe, K.

    Molten salt electrolysis of MgCl2 is commonly used for the production of magnesium metal. However, the electrolysis feed must be completely dry with minimum oxygen content. Therefore, complete dehydration of the MgCl2 brine or the hydrated prill is a required process, which is very challenging because of the ease of thermal degradation due to hydrolysis of magnesium chloride.

  4. Magnesium - distribution and basic metabolism | Olhaberry | South ...

    African Journals Online (AJOL)

    Magnesium is extensively distributed in soil, water and plants. It is essential for ehzymatic reactions requiring adenosine triphosphate, and the recommended dietary allowance in man is 5 - 10 mg/kg/d. About 50% of magnesium in man is stored in bone, where it is regulated by parathyroid hormone'and 1,25(OH)2-D3.

  5. A Shortened versus Standard Matched Postpartum Magnesium ...

    African Journals Online (AJOL)

    Magnesium sulphate is currently the most ideal drug for the treatment of eclampsia but its use in Nigeria is still limited due its cost and clinicians inexperience with the drug. The purpose of this study was to determine whether a shortened postpartum course of magnesium sulphate is as effective as the standard Pritchard ...

  6. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum)

  7. Magnesium Hydride for Load Levelling Energy Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.

    Some of the magnesium properties essential to the applicability of the reaction Mg+H2⇆MgH2 as a hydrogen storage system have been investigated. Three magnesium powders with particle size smaller than 50 μm average diameter were cycled, over 31, 71 and 151 cycles respectively, at 675K (400°C...

  8. Comparison of Serum Calcium and Magnesium Between ...

    African Journals Online (AJOL)

    Background: Evidence suggests the involvement of calcium and magnesium metabolism in the pathophysiology of preeclampsia. However, findings from studies are heterogenous and inconsistent. Aim: The study aimed to compare the total serum calcium and magnesium levels in preeclamptic women with that of ...

  9. Hydrogen in magnesium palladium thin layer structures

    NARCIS (Netherlands)

    Kruijtzer, G.L.

    2008-01-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high

  10. Magnesium supplementation in children with attention deficit ...

    African Journals Online (AJOL)

    Background: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with associated mineral deficiency. Aim: To assess magnesium level in ADHD children and compare it to the normal levels in children. Then, to detect the effect of magnesium supplementation as an add on therapy, ...

  11. Magnesium diffusion in several aluminum alloys

    Science.gov (United States)

    Holub, K. J.; Matienzo, L. J.

    Various surface quality defects or stains are sometimes observed on rolled aluminum. Two such defects, "white lacy" stain and "dirty" metal, appear to be caused by the formation of locally thicker films of hydrated aluminum and magnesium oxides, respectively. This paper examines the formation of these oxides, particularly MgO, on three aluminum alloys with varying bulk magnesium concentrations, namely 5052, 3004 and 3003, containing 2.64, 0.96 and 0.03% magnesium, respectively. Samples were prepared and heat treated in flowing air as a function of temperature and time. The surfaces were examined by Auger electron spectroscopy to determine the relative ratio of the magnesium and aluminum present on the oxide surfaces. Auger depth profiling was used to characterize the composition of the oxides. Surface morphologies, as observed by ultra-high resolution scanning electron microscopy, also were compared. Alloys containing higher bulk magnesium contents, i.e., 5052 and 3004, showed more magnesium diffusion and magnesium oxide formation on the sample surface. At high temperatures, the surface of 5052 tends to be almost totally MgO. Only limited magnesium diffusion and MgO formation was observed on the 3003 alloy.

  12. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  13. Post deposition annealing of epitaxial Ce(1-x)Pr(x)O(2-δ) films grown on Si(111).

    Science.gov (United States)

    Wilkens, H; Spiess, W; Zoellner, M H; Niu, G; Schroeder, T; Wollschläger, J

    2015-04-21

    In this work the structural and morphological changes of Ce1-xPrxO2-δ (x = 0.20, 0.35 and 0.75) films grown on Si(111) due to post deposition annealing are investigated by low energy electron diffraction combined with a spot profile analysis. The surface of the oxide films exhibit mosaics with large terraces separated by monoatomic steps. It is shown that the Ce/Pr ratio and post deposition annealing temperature can be used to tune the mosaic spread, terrace size and step height of the grains. The morphological changes are accompanied by a phase transition from a fluorite type lattice to a bixbyite structure. Furthermore, at high PDA temperatures a silicate formation via a polycrystalline intermediate state is observed.

  14. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  15. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  16. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine, E-mail: janine.fischer@hzg.de [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  17. Modifications in silver-doped silicate glasses induced by ns laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzza, E., E-mail: cattaruz@unive.it [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Mardegan, M. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Trave, E. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Battaglin, G. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Calvelli, P. [Physical Chemistry Department, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Enrichi, F. [Associazione CIVEN and Nanofab S.c.a.r.l., via delle Industrie 5, I-30175 Venezia-Marghera (Italy); Gonella, F. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy)

    2011-04-01

    Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.

  18. ESR Spectra of Some Silicate Minerals: A Search For New Dosimetric Materials

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Abdel-Razek, Y.A.; Rasheed, G. M.; Hassan, G.M.; Eissa, H.M.; Morsy, M.

    2008-01-01

    Two silicate minerals talc (Mg 3 Si 4 O 1 0 (OH) 2 ) and zircon (ZrSiO 4 ) having different crystal lattice structures were subjected to ESR dosimetric studies. Zircon shows anisotropic ESR signals at g xx =2.0168, g yy =2.0076 and g zz =2.0033, which have been identified as a hole center associated with Y 3+ substituted at Zr 4+ sites. Other characteristic signals have been observed and identified. The ESR signal at g=2.0033 showed positive response to γ-irradiation at 110 Gy and is suitable to be used for dosimetry and dating of natural zircons. Talc a magnesium sheeted silicate exhibits ESR derivative spectrum characterized the presence of Fe 3+ at g=4.28 and the HF-sixtet Mn 2+ signals due to possible substitution of Fe 3+ and Mn 2+ in the Mg 2+ octahedral sites, respectively. The enhancement of the Mn 2+ sixtet by γ-irradiation increases the area occupied by the signals which makes it difficult to use for dosimetric applications

  19. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  20. Magnesium alloy and graphite wastes encapsulated in cementitious materials - Experimental approach

    International Nuclear Information System (INIS)

    Chartier, D.; Sanchez-Canet, J.; Muzeau, B.; Monguillon, C.; Stefan, L.

    2015-01-01

    Magnesium alloys (Mg-0.8%Zr and Mg-1.2%Mn) and graphite from spent nuclear fuel, that have been used in the former French gas cooled reactors, have been stored together in AREVA La Hague plant. The recovery and packaging of these wastes is currently studied and several solutions are under consideration. One of the developed solutions would be to mix these wastes in a grout composed of industrially available cement, e.g. OPC (Ordinary Portland Cement), OPC blended with blast furnace slag or aluminous cement. Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of magnesium hydroxide (Mg(OH) 2 , Brucite) resulting in a slow process of corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, it is important to select a cement matrix capable of lowering the corrosion kinetics of magnesium alloys. This is especially true when magnesium alloys are conditioned together with graphite wastes. Indeed, galvanic coupling phenomena may increase early age corrosion of the mixed waste, as magnesium and graphite will be found in electrical contact in the same electrolyte. Many types of common cements have been tested. All of them have shown strong hydrogen production when magnesium alloys and graphite are conditioned together into such cement pastes. Corrosion patterns, observed and analyzed by SEM/EDS, at the metal-binder interfaces, reveal important corrosion products layers as well as bubbles and cracks in the binder. Attempts to reduce corrosion by lowering water to cement ratio have been performed. W/C ratios as low as 0.2 have been tested but galvanic corrosion is not significantly reduced at early age when compared to a common ratio of 0.4. Best results were obtained by the use of laboratory synthesized tricalcium silicate (C 3 S) with an ordinary W/C ratio of 0.4 and also with white Portland clinker ground without additives such as gypsum and grinding agent. (authors)

  1. Electrophysical properties of microalloyed alumo-silicate ceramics as active dielectric

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2013-01-01

    Full Text Available In this paper, electrophysical properties of porous alumo-silicate ceramics, modified by alloying with magnesium and microalloying with aluminum, were investigated. Complex multiphase system, as active microalloyed ceramics, has specific behavior under influence of external electrical field, which involves changes of dielectric losses and impedance, depending on frequency and temperature. Dielectric properties were measured in the frequency range 20 Hz - 1 MHz. Values for permittivity (εr ranged between 140 - 430. Order of magnitude for electrical resistivity was about 106 Ωm, for impedance 104 - 108 Ω, and loss tangent had values about and greater than 0.05. Current flow through active dielectric takes place through dielectric barrier and throughout conduction bands of thin aluminum and magnesium metal films. Permittivity has nonlinear distribution and complex functional dependences because of significant nonhomogeneity of active microalloyed ceramics. Lower values of electrical resistivity are the result of complex electron and ion transfer of charge through solid phase and pores, with decreased potential barriers height, due to the influence of additives, ingredients and defects. [Projekat Ministarstva nauke Republike Srbije, br. III 45012 i br. ON 172057

  2. Bioavailability of magnesium from different pharmaceutical formulations.

    Science.gov (United States)

    Siener, Roswitha; Jahnen, Andrea; Hesse, Albrecht

    2011-04-01

    Magnesium is suggested to reduce intestinal oxalate absorption and to act as an inhibitor of calcium oxalate crystallization in the urine. However, previous studies have shown only minimal increase in urinary magnesium excretion following oral magnesium supplementation, possibly due to its low bioavailability. This study was performed to examine the bioavailability of magnesium from two different pharmaceutical formulations of magnesium oxide (MgO). Thirteen healthy male volunteers (22-31 years) were recruited from university students and staff, and all completed the study. During the baseline phase, subjects collected two 24-h urines while on their usual diet. Throughout the control and test phases, the subjects consumed a standardized diet calculated according to the recommendations. During the test phases, subjects received two magnesium preparations in a cross-over procedure. With each preparation, MgO-capsules and MgO-effervescent tablets, 450 mg magnesium was supplemented. On the control day and the two test days, fractional urine collection was performed and six corresponding blood samples were taken. In the follow-up phase, subjects continued to take the respective preparation while on their usual diet and collected 24-h urines weekly. With standardized conditions, urinary magnesium excretion increased by 40% after ingestion of the effervescent tablets, and by only 20% after intake of the capsules. The results indicate better bioavailability of magnesium from the effervescent tablets than from the capsules. This may be attributed to the fact that the tablets have to be dissolved in water before ingestion so that magnesium becomes ionized, which is an important precondition for absorption.

  3. Magnesium sulfate therapy in preeclampsia and eclampsia.

    Science.gov (United States)

    Witlin, A G; Sibai, B M

    1998-11-01

    To review the available evidence regarding efficacy, benefits, and risks of magnesium sulfate seizure prophylaxis in women with preeclampsia or eclampsia. The English-language literature in MEDLINE was searched from 1966 through February 1998 using the terms "magnesium sulfate," "seizure," "preeclampsia," "eclampsia," and "hypertension in pregnancy." Reviews of bibliographies of retrieved articles and consultation with experts in the field provided additional references. All relevant English-language clinical research articles retrieved were reviewed. Randomized controlled trials, retrospective reviews, and observational studies specifically addressing efficacy, benefits, or side effects of magnesium sulfate therapy in preeclampsia or eclampsia were chosen. Nineteen randomized controlled trials, five retrospective studies, and eight observational reports were reviewed. The criteria used for inclusion were as follows: randomized controlled trials evaluating use of magnesium sulfate in eclampsia, preeclampsia, and hypertensive disorders of pregnancy; nonrandomized studies of historical interest; "classic" observational studies; and recent retrospective studies evaluating efficacy of magnesium sulfate therapy, using relative risk and 95% confidence intervals where applicable. Magnesium sulfate therapy has been associated with increased length of labor, increased cesarean delivery rate, increased postpartum bleeding, increased respiratory depression, decreased neuromuscular transmission, and maternal death from overdose. A summary of randomized, controlled trials in women with eclampsia reveals recurrent seizures in 216 (23.1%) of 935 women treated with phenytoin or diazepam, compared with recurrent seizures in only 88 (9.4%) of 932 magnesium-treated women. Randomized controlled trials in women with severe preeclampsia collectively revealed seizures in 22 (2.8%) of 793 women treated with antihypertensive agents, compared with seizures in only seven of 815 (0

  4. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    Science.gov (United States)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  5. Silicon isotope fractionation by marine siliceous sponges

    Science.gov (United States)

    Hendry, K. R.; Maldonado, M.

    2016-02-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water. However, existing calibrations do exhibit a degree of scatter in the relationship, and there are many open questions surrounding the mechanism behind isotopic fractionation during biosilicification. Here, we present a new study of silicon isotopes in siliceous sponges, covering a range of ancestral lineages, marine environments and geographical locations, and the impact of cleaning methods of silicon isotope compositions. We show that the cleaning method has minimal impact on silicon isotope composition of sponge spicules. Our results highlight the importance of environmental and biological factors on silicon isotope fractionation, and we discuss the implications of these results on the use of palaeoceanographic applications of sponge spicules.

  6. Cooling rate calculations for silicate glasses.

    Science.gov (United States)

    Birnie, D. P., III; Dyar, M. D.

    1986-03-01

    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  7. Tailored Nanocomposites of Polypropylene with Layered Silicates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

    2009-01-01

    The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

  8. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  9. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  10. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  11. Neutron diffraction studies of silicate glasses

    International Nuclear Information System (INIS)

    Urnes, S.; Herstad, O.

    1978-01-01

    The different ratios between the scattering amplitudes of X-rays and neutrons for various atomic constituents of glasses have been utilized to study the atomic ordering in silicate glasses. A comparison of corresponding atomic radial distribution curves obtained from neutron diffraction and electron radial distribution curves obtained with X-rays is made. The interatomic distances derived from the two methods are discussed. (Auth.)

  12. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    and these are supported by several experimental studies (Annen et al., 2006). A silicic calc-alkalic magma can form by differentiation from a more mafic parent magma and by crustal anatexis. Several evidences show the origin of some rhyolitic and andesitic magma... to be related due to similar tectonic settings. Fractional crystallisation: This process produces a series of residual liquids of variable compositions as compared to their parental magmas and is best explained by the Bowen’s reaction principle (Bowen, 1922...

  13. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  14. Distinction between magnesium diboride and tetraboride by kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Kim, Du-Na; Caron, Arnaud; Park, Hai Woong

    2016-01-01

    We analyze mixtures of magnesium diboride and tetraboride synthesized with magnesium powders of different shapes. To distinguish between magnesium diboride and tetraboride we use the contrast of kelvin probe force microscopy. The microstructural morphology strongly depends on the shape of the magnesium powders used in the reaction between magnesium and magnesium tetraboride to form magnesium diboride. With spherical magnesium powder an equiaxed microstructure of magnesium diboride is formed with residual magnesium tetraboride at the grain boundaries. With plate-like magnesium powders elongated magnesium diboride grains are formed. In this case, residual magnesium tetraboride is found to agglomerate.

  15. Magnesium supplement in pregnancy-induced hypertension: effects on maternal and neonatal magnesium and calcium homeostasis

    DEFF Research Database (Denmark)

    Rudnicki, M; Frølich, A; Fischer-Rasmussen, W

    1991-01-01

    The objective of this study was to evaluate the effect of low dose magnesium supplement upon maternal and fetal serum levels of mineral status in pregnancies complicated with hypertension (PIH). Twenty-five patients with PIH agreed to participate and were randomly allocated, in a double-blind man......The objective of this study was to evaluate the effect of low dose magnesium supplement upon maternal and fetal serum levels of mineral status in pregnancies complicated with hypertension (PIH). Twenty-five patients with PIH agreed to participate and were randomly allocated, in a double......-blind manner, either to intravenous magnesium for 2 days followed by oral magnesium (n = 12) until delivery or placebo (n = 13). In women supplemented with magnesium the level of magnesium increased from 0.74 to 1.02 mmol/l during the first 24 h of inclusion and simultaneously we observed an increased urinary...... loss of magnesium. Serum level and the urinary excretion of magnesium returned to pretreatment level at delivery. Maternal magnesium supplement increased the concentrations of magnesium in umbilical cord and neonatal blood 1 day after delivery. Serum ionized calcium did not change during the study...

  16. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  17. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  18. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  19. Deterministic quantum annealing expectation-maximization algorithm

    Science.gov (United States)

    Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki

    2017-11-01

    Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.

  20. Traffic Flow Optimization Using a Quantum Annealer

    Directory of Open Access Journals (Sweden)

    Florian Neukart

    2017-12-01

    Full Text Available Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity of current-generation D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow problem.

  1. OBTAINING OF THE MG2+ FORM OF THE ZEOLITE 4A WITH ION EXCHANGE OF MAGNESIUM SALTS

    Directory of Open Access Journals (Sweden)

    Blagica Cekova

    2016-01-01

    Full Text Available Zeolites are sodium alumino silicates which in in their composition contain zeolite water. They have a three-dimensional structure. Spatial structure defined by a strictly defined geometry of pores and cavities. For ionic еchange is used magnesium salt (MgCl2*6H2O whose aqueous solutions were with the following concentrations (MgCl2*6H2O = 2,5; 3.5; 4,5 mol / dm3 , and other parameters of the ion exchange: time t = 20, 30, 40 and temperature of 298 and 330 K. Ionian capacity is calculated as mmgMgO / 1g zeolite.

  2. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  3. Radioactive {sup 210}Po in magnesium supplements

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, Dagmara Ida [Gdansk Univ. (Poland). Environmental Chemistry and Radiochemistry Chair

    2016-08-01

    The aim of this pioneer study was to determine polonium {sup 210}Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring {sup 210}Po activity concentrations in magnesium supplements, find the correlations between {sup 210}Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest {sup 210}Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g{sup -1} (sample Mg17). The highest annual radiation dose from {sup 210}Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year{sup -1} respectively.

  4. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  5. Silicate glasses obtained from fine silica powder modified with galvanic waste addition

    International Nuclear Information System (INIS)

    Silva, A.C.; Castanho, S.R.H. Mello

    2004-01-01

    This work presents a study of waste incorporation in silicate glass process based on the formulations of soda-lime glass compositions using two different industrial solid residues. Glass silicates were produced from the residue of silica powders retained in the filter sleeves of sanitary ceramic factories. An other waste also used as the starting material was the solid galvanic residue from metallurgical processes. Besides part of the silica contents was replaced by boron oxide to improve melting of the glasses and the behavior of both the formulations was analyzed. The temperatures for the fusion were selected based on the equilibria diagrams and the flux characteristics of the melting as a function of the glass compositions. Temperatures up to 1500 o C and annealing treatments were used. The composition and the structure of the glass specimens were studied using X-ray fluorescence and X-ray diffraction methods. The resistances of the glasses at environmental conditions by hydrolysis, acid and alkaline attack experiments were analyzed. Glasses with up to 40wt% of added galvanic solid waste and 28wt% of fine silica powder with a good chemical resistance were obtained

  6. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)

    2016-12-01

    The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.

  7. Urinary and plasma magnesium and risk of ischemic heart disease

    NARCIS (Netherlands)

    Joosten, Michel M.; Gansevoort, Ron T.; Mukamal, Kenneth J.; van der Harst, Pim; Geleijnse, Johanna M.; Feskens, Edith J. M.; Navis, Gerjan; Bakker, Stephan J. L.

    Background: Previous studies on dietary magnesium and risk of ischemic heart disease (IHD) have yielded inconsistent results, in part because of a lack of direct measures of actual magnesium uptake. Urinary excretion of magnesium, an indicator of dietary magnesium uptake, might provide more

  8. Urinary and plasma magnesium and risk of ischemic heart disease

    NARCIS (Netherlands)

    Joosten, M.M.; Gansevoort, R.T.; Mukamal, K.J.; Harst, van der P.; Geleijnse, J.M.; Feskens, E.J.M.; Navis, G.; Bakker, S.J.L.

    2013-01-01

    BACKGROUND: Previous studies on dietary magnesium and risk of ischemic heart disease (IHD) have yielded inconsistent results, in part because of a lack of direct measures of actual magnesium uptake. Urinary excretion of magnesium, an indicator of dietary magnesium uptake, might provide more

  9. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  10. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  11. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  12. Hardening by annealing: insights from different alloys

    International Nuclear Information System (INIS)

    Renk, O; Pippan, R; Hohenwarter, A; Schuh, B; Li, J H

    2015-01-01

    In contrast to the general notion about the annealing behavior of coarse grained materials, hardening phenomena in nanocrystalline materials can occur. Although the phenomena have already been recognized several years ago, the mechanisms behind are still controversially discussed. For example, the influence of solutes segregated to grain boundaries on the strengthening mechanism is unclear. We present a combination of atom probe tomography and mechanical data to reveal the role of segregations to the strengthening. The results show that despite large modifications of the boundary chemistry the mechanical behavior remains widely unaffected. Additionally, it will be shown that hardening upon annealing can only occur below a material-specific grain size threshold value. (paper)

  13. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  14. Magnesium supplement in pregnancy-induced hypertension. A clinicopathological study

    DEFF Research Database (Denmark)

    Rudnicki, M; Junge, Jette; Frølich, A

    1990-01-01

    as a double-blind randomized controlled study in which 11 women were allocated to magnesium and 7 to placebo treatment. The treatment comprised a 48-hour intravenous magnesium/placebo infusion followed by daily oral magnesium/placebo intake until one day after delivery. Magnesium supplement increased birth....... There was no significant difference when the magnesium group, the placebo group and the control group were compared separately. The present study suggests that magnesium supplement has a beneficial effect on fetal growth in pregnancy-induced hypertension. With regard to the light and electron microscopic changes we were...... unable to demonstrate any significant difference between the magnesium, placebo and control groups....

  15. Magnesium in North America: A Changing Landscape

    Science.gov (United States)

    Slade, Susan

    The changing landscape of North American manufacturing in the context of global competition is impacting the market of all raw materials, including magnesium. Current automotive fuel economy legislation and pending legislation on the emissions of greenhouse gases are impacting magnesium's largest consuming industries, such as aluminum, automotive components, steel and transition metals. These industries are all considering innovative ways to efficiently incorporate the needed raw materials into their processes. The North American magnesium market differs from other regions based on maturity, supply streams, changing manufacturing capabilities and trade cases, combined with the transformation of North American manufacturing.

  16. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  17. On the hydrogenation mechanism in magnesium I

    DEFF Research Database (Denmark)

    Pedersen, A.S.; Kjøller, John; Larsen, Bent

    1985-01-01

    The first time hydriding of spherical magnesium particles covered by a thin oxide layer and sieve-fractionated into narrow size distributions within the range 40–90 μm was followed by microgravimetry. The size distributions of the fractions were determined by semiautomatic image analysis. The hyd......The first time hydriding of spherical magnesium particles covered by a thin oxide layer and sieve-fractionated into narrow size distributions within the range 40–90 μm was followed by microgravimetry. The size distributions of the fractions were determined by semiautomatic image analysis...... generalizing results from the hydriding of magnesium powders....

  18. Effect of rolling temperature of the magnesium alloy AZ31B formability; Efeito da temperatura de laminacao na deformabilidade da liga de magnesio AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Catorceno, L.L.C.; Zimmermann, A.J.O.; Padilha, A.F., E-mail: litzy.catorceno@poli.usp.b [Universidade de Sao Paulo (DEMM/EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The magnesium alloy AZ31B presents an interesting set of properties, which makes it potential candidate for applications in automotive and aeronautics. The main limitation of magnesium alloys is the low capacity of plastic forming at room temperature. The main motivation of this project is to understand and control the microstructure and crystallographic texture of magnesium alloys, to improve their formability. The effect of rolling temperature on the formability of the alloy was studied in this stage of the project. The alloy in the form of annealed and recrystallized sheets (2 mm thick) was deformed by rolling at four different temperatures: 25, 100, 200 and 250 deg C. The microstructural characterization was achieved using several complementary techniques of microstructural analysis, such as optical microscopy, scanning electron microscopy, X-ray analysis by energy dispersive, X-ray diffraction and microhardness. Results about the effect of rolling temperature on the alloy formability were presented and discussed. (author)

  19. A multidisciplinary study on magnesium

    Directory of Open Access Journals (Sweden)

    Radić-Perić Jelena

    2012-01-01

    Full Text Available During plasma electrolytic oxidation of a magnesium alloy (96% Mg, 3% Al, 1% Zn we obtained a luminescence spectrum in the wave number range between 19 950 and 20 400 cm-1. The broad peak with clearly pronounced structure was assigned to the v’-v” = 0 sequence of the B 1Σ+ → X 1Σ+ electronic transition of MgO. Quantum-mechanical perturbative approach was applied to extract the form of the potential energy curves for the electronic states involved in the observed spectrum, from the positions of spectral bands. These potential curves, combined with the results of quantum-chemical calculations of the electric transition moment, were employed in subsequent variational calculations to obtain the Franck-Condon factors and transition moments for the vibrational transitions observed. Comparing the results of these calculations with the measured intensity distribution within the spectrum we derived relative population of the upper electronic state vibration levels. This enabled us to estimate the plasma temperature. Additionally, the temperature was determined by analysis of the recorded A 2Σ+ (v’ = 0 - X 2П (v” = 0 emission spectrum of OH. The composition of plasma containing magnesium, oxygen, and hydrogen under assumption of local thermal equilibrium was calculated in the temperature range up to 12 000 K and for pressures of 105, 106, 107, and 108 Pa, in order to explain the appearance of the observed spectral features and to contribute to elucidation of processes taking place during the electrolytic oxidation of Mg. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  20. Electrical Characterization of Postmetal Annealed Ultrathin TiN Gate Electrodes in Si MOS Capacitors

    Directory of Open Access Journals (Sweden)

    Z. N. Khan

    2016-01-01

    Full Text Available Focusing on sub-10 nm Silicon CMOS device fabrication technology, we have incorporated ultrathin TiN metal gate electrode in Hafnium Silicate (HfSiO based metal-oxide capacitors (MOSCAP with carefully chosen Atomic Layer Deposition (ALD process parameters. Gate element of the device has undergone a detailed postmetal annealed sequence ranging from 100°C to 1000°C. The applicability of ultrathin TiN on gate electrodes is established through current density versus voltage (J-V, resistance versus temperature (R-T, and permittivity versus temperature analysis. A higher process window starting from 600°C was intentionally chosen to understand the energy efficient behavior expected from ultrathin gate metallization and its unique physical state with shrinking thickness. The device characteristics in form of effective electronic mobility as a function of inverse charge density were also found better than those conventional gate stacks used for EOT scaling.

  1. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    OpenAIRE

    Cruz,Maria Fernanda; Rodrigues,Fabrício Ávila; Diniz,Ana Paula Cardoso; Moreira,Maurilio Alves; Barros,Everaldo Gonçalves

    2013-01-01

    The control of Asian Soybean Rust (ASR), caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS) and soil amendment with calcium silicate (CS) on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection ...

  2. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  3. Modular annealing apparatus for in situ reactor vessel annealing and related method of assembly

    International Nuclear Information System (INIS)

    Bau, F.I.; Mavretish, R.S.

    1992-01-01

    This patent describes a method for annealing a nuclear reactor vessel in a containment building. It comprises pre-fabricating a plurality of heater segments at a location outside the containment building; transporting the plurality of heater segments to the containment building; removing the core and internals and storing same; installing temporary shielding for the stored internals; introducing each of the plurality of heater segments through an equipment hatch in the containment building; assembling the plurality of heater segments to form an annealing apparatus; and annealing the reactor vessel

  4. The reference range of serum, plasma and erythrocyte magnesium

    Directory of Open Access Journals (Sweden)

    Suzanna Immanuel

    2006-12-01

    Full Text Available The interest in the clinical importance of serum magnesium level has just recently begun with the analysis and findings of abnormal magnesium level in cardiovascular, metabolic and neuromuscular disorder. Although the serum level does not reflect the body magnesium level, but currently, only serum magnesium determination is widely used. Erythrocyte magnesium is considered more sensitive than serum magnesium as it reflects intracellular magnesium status. According to NCCLS (National Committee for Clinical Laboratory Standards every laboratory is recommended to have its own reference range for the tests it performs, including magnesium determination. The reference range obtained is appropriate for the population and affected by the method and technique. This study aimed to find the reference range of serum and plasma magnesium and also intracellular magnesium i.e. erythrocyte magnesium by direct method, and compare the results of serum and plasma magnesium. Blood was taken from 114-blood donor from Unit Transfusi Darah Daerah (UTDD Budhyarto Palang Merah Indonesia (PMI DKI Jakarta, consisted of 57 male and 57 female, aged 17 – 65 years, clinically healthy according to PMI donor criteria. Blood was taken from blood set, collected into 4 ml vacuum tube without anticoagulant for serum magnesium determination and 3 ml vacuum tube with lithium heparin for determination of erythrocyte and plasma magnesium Determination of magnesium level was performed with clinical chemistry auto analyzer Hitachi 912 by Xylidil Blue method colorimetrically. This study showed no significant difference between serum and heparinized plasma extra cellular magnesium. The reference range for serum or plasma magnesium was 1.30 – 2.00 mEq/L and for erythrocyte magnesium was 4.46 - 7.10 mEq/L. (Med J Indones 2006; 15:229-35Keywords: Reference range, extracellular magnesium, intracellular magnesium

  5. Regulation of magnesium balance: lessons learned from human genetic disease

    OpenAIRE

    de Baaij, Jeroen H. F.; Hoenderop, Joost G. J.; Bindels, Ren? J. M.

    2012-01-01

    Magnesium (Mg2+) is the fourth most abundant cation in the body. Thus, magnesium homeostasis needs to be tightly regulated, and this is facilitated by intestinal absorption and renal excretion. Magnesium absorption is dependent on two concomitant pathways found in both in the intestine and the kidneys: passive paracellular transport via claudins facilitates bulk magnesium absorption, whereas active transcellular pathways mediate the fine-tuning of magnesium absorption. The identification of g...

  6. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  7. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  8. Influence of Intercritical Annealing Temperature on Mechanical ...

    African Journals Online (AJOL)

    The fracture surfaces of the impact test samples were examined using the scanning electron microscope (SEM). Micros structural evolution of the samples was also examined with an optical microscope. The results showed that all the evaluated mechanical properties were improved by intercritical annealing, with the ...

  9. Finite-time thermodynamics and simulated annealing

    International Nuclear Information System (INIS)

    Andresen, B.

    1989-01-01

    When the general, global optimization technique simulated annealing was introduced by Kirkpatrick et al. (1983), this mathematical algorithm was based on an analogy to the statistical mechanical behavior of real physical systems like spin glasses, hence the name. In the intervening span of years the method has proven exceptionally useful for a great variety of extremely complicated problems, notably NP-problems like the travelling salesman, DNA sequencing, and graph partitioning. Only a few highly optimized heuristic algorithms (e.g. Lin, Kernighan 1973) have outperformed simulated annealing on their respective problems (Johnson et al. 1989). Simulated annealing in its current form relies only on the static quantity 'energy' to describe the system, whereas questions of rate, as in the temperature path (annealing schedule, see below), are left to intuition. We extent the connection to physical systems and take over further components from thermodynamics like ensemble, heat capacity, and relaxation time. Finally we refer to finite-time thermodynamics (Andresen, Salomon, Berry 1984) for a dynamical estimate of the optimal temperature path. (orig.)

  10. influence of intercritical annealing temperature on mechanical

    African Journals Online (AJOL)

    User

    Keywords: intercritical annealing, dual phase steel, mechanical properties, microstructure. 1. INTRODUCTION. Steel, is world's most “advanced” material. It is the most widely used engineering material, essentially due to the fact that it can be manufactured at very competitive cost in large quantities to very precise.

  11. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  12. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  13. Radiometric Testing of Magnesium Diboride Array (MDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop a 2-Dimensional Far Infra-Red Magnesium Diboride Array (2D FIR MDA) to use in NASA's future planetary exploration instruments. The array...

  14. Magnesium-titanium alloys for biomedical applications

    Science.gov (United States)

    Hoffmann, Ilona

    Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium. Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy powders made by ball-milling into bulk material without destroying the alloy structure. This is an important finding as this metastable Mg-Ti alloy can only be heated up to max. 200C° for a limited time without reaching the stable state of separated magnesium and titanium. The superior corrosion behavior of Mg 80-Ti20 alloy in a simulated physiological environment was shown through hydrogen evolution tests, where the corrosion rate was drastically reduced compared to pure magnesium and electrochemical measurements revealed an increased potential and resistance compared to pure magnesium. Cytotoxicity tests on murine pre-osteoblastic cells in vitro confirmed that supernatants made from Mg-Ti alloy were no more cytotoxic than supernatants prepared with pure magnesium. Mg and Mg-Ti alloys can also be used to make novel polymer-metal composites, e.g., with poly(lactic-co-glycolic acid) (PLGA) to avoid the polymer's detrimental pH drop during degradation and alter its degradation pattern. Thus, Mg-Ti alloys can be fabricated and consolidated while achieving improved corrosion resistance and maintaining cytocompatibility. This work opens up the possibility of using Mg-Ti alloys for fracture fixation implants and other biomedical applications. KEYWORDS: Magnesium, titanium, corrosion

  15. Can magnesium sulfate therapy impact lactogenesis?

    Science.gov (United States)

    Haldeman, W

    1993-12-01

    This case report describes a patient who ingested magnesium sulfate (MgSO4) for approximately four days as a treatment for pregnancy-induced hypertension. Stage II lactogenesis was delayed until the tenth postpartum day at which point the patient's breasts became fully engorged. No explanation for this delay was found, other than the possibility that magnesium sulfate treatment impeded lactogenesis. Implications for professionals who care for lactating women are discussed.

  16. Properties isotropy of magnesium alloy strip workpieces

    OpenAIRE

    Р. Кавалла; В. Ю. Бажин

    2016-01-01

    The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling...

  17. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  18. Preparation of reactive beta-dicalcium silicate

    Science.gov (United States)

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  19. Pozzolanic activity of various siliceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, S.K. [Central Building Research Institute, Roorkee (India)

    2006-09-15

    The accelerated pozzolanic activity of various siliceous materials, like silica fume, fly ash (as received and fine ground), quartz, precipitated silica, metakaolin and rice husk ash (RHA; various fineness and carbon content), has been determined. The compressive strength of accelerated tests has been compared with cubes cured in water at 7 and 28 days. Maximum activity has been observed in case of RHA ({lt}45 g), followed by quartz and silica fume. The 10% replacement of cement by sand has shown accelerated pozzolanic index of 92% compared with 85% required in ASTM for silica fume as mineral admixture.

  20. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them...... the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  1. NMR study of hydrated calcium silicates

    International Nuclear Information System (INIS)

    Klur, I.

    1996-01-01

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.)

  2. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  3. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Alan A [The Ohio State Univ., Columbus, OH (United States); Zhao, Ji-Cheng [The Ohio State Univ., Columbus, OH (United States); Riggi, Adrienne [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Joost, William [US Dept. of Energy, Washington, DC (United States)

    2017-10-02

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide large amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.

  4. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  5. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  6. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  7. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  8. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  9. SPM nanolithography of hydroxy-silicates

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Hounsome, C M; Antognozzi, M

    2012-01-01

    Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium–aluminum hydroxide–silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium–aluminum hydroxide–silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s −1 . We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface. (paper)

  10. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  11. Leaf Senescence by Magnesium Deficiency

    Directory of Open Access Journals (Sweden)

    Keitaro Tanoi

    2015-12-01

    Full Text Available Magnesium ions (Mg2+ are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency.

  12. ESR dosimetry with magnesium sulphate

    International Nuclear Information System (INIS)

    Morton, J.R.; Ahlers, F.J.; Schneider, C.C.J.

    1993-01-01

    The aim of the investigation is to enhance the ESR dosemeter sensitivity in the therapy dose range below 10 Gy, where the ESR spectrum of the α-alanine radical becomes increasingly difficult to evaluate for dosimetry. Anhydrous magnesium sulphate, MgSO 4 , appears to be an excellent candidate from the spectrometric point of view. On irradiation with 60 Co γ rays, the stable radical SO 3 - is produced whose ESR signal amplitude increases linearly with dose up to about 10 5 Gy. Ignoring the abundant isotopes 17 O (0.04%) and 33 S (0.74%), the spectrum of SO 3 - is a single line at g = 2.0036 of width 0.5 mT which is stable at temperatures up to at least 120 o C. Using the conventional peak-to-peak method of dosimeter readout, the MgSO 4 dosemeter is somewhat more sensitive than the traditional alanine dosemeter of the same mass. Its main advantage over the alanine dosemeter is, however, the ease of computer enhancement and the possibility of integration which the single-line spectrum offers. (author)

  13. Carbon Mineralization Using Phosphate and Silicate Ions

    Science.gov (United States)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  14. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  15. Study of the effect of Mg (II addition and the annealing conditions on the structure of mesoporous aluminum oxide using Plackett-Burman design

    Directory of Open Access Journals (Sweden)

    Novaković Tatjana B.

    2015-01-01

    Full Text Available A statistical design was used to investigate the effect of various processing conditions on the structure of sol-gel derived Mg(II doped alumina. Six processing variables were selected based on the Plackett-Burman design: concentration of magnesium nitrate, time and temperature of alcohol evaporation, temperature and time of annealing and heating rate were changed at two levels. For every set of conditions, samples with different specific surface area and degree of crystallinity were obtained. Analysis of the results showed that annealing temperature , heating rate and concentration of magnesium nitrate were the main factors affecting average crystallite size of the predominant phase of alumina. In the case of the specific surface area, two of selected six variables had pronounced effect; however the temperature of annealing was more effective than others. The present results show that the proposed model that uses crystallite size as a response variables is preferable to further research. [Projekat Ministarstva nauke Republike Srbije, br. 172015 i br. 172001

  16. Computational Bottlenecks of Quantum Adiabatic Annealing

    Science.gov (United States)

    Knysh, Sergey

    2015-03-01

    Quantum annealing in a transverse field with rate dΓ / dt inversely proportional to the system size N suppresses non-adiabatic transitions for fully connected spin glass such as the Sherrington-Kirpatrick (SK) model at the quantum critical point. This alone is not sufficient to ensure that the problem is solvable in polynomial time. I conjecture the appearance of small gaps associated with macroscopic tunneling events deep in the spin glass phase. This effect is demonstrated rigorously for the annealing of a toy model that shares a set of crtical exponents with SK model: Hopfield network with two Gaussian patterns. It presents with 0 . 15 lnN additional bottlenecks with gaps that scale as a stretched exponential exp[-c (NΓ) 3 / 4]. Further, I extend the analysis to the ρ-landscapes model (random energy model with correlations) which more faithfully represents real spin glasses.

  17. Dynamical Frustration in ANNNI Model and Annealing

    Science.gov (United States)

    Sen, Parongama; Das, Pratap K.

    Simulated annealing is usually applied to systems with frustration, like spin glasses and optimisation problems, where the energy landscape is complex with many spurious minima. There are certain other systems, however, which have very simple energy landscape picture and ground states, but still the system fails to reach its ground state during a energy-lowering dynamical process. This situation corresponds to "dynamical frustration ". We have specifically considered the case of the axial next nearest neighbour (ANNNI) chain, where such a situation is encountered. In Sect. II, we elaborate the notion of dynamic frustration with examples and in Sect. III, the dynamics in ANNNI model is discussed in detail. The results of application of the classical and quantum annealing are discussed in Sects. IV and V. Summary and some concluding comments are given in the last section.

  18. [Adsorption characteristic and form distribution of silicate in lakes sediments].

    Science.gov (United States)

    Lü, Chang-Wei; Cui, Meng; Gao, Ji-Mei; Zhang, Xi-Yan; Wan, Li-Li; He, Jiang; Meng, Ting-Ting; Bai, Fan; Yang, Xu

    2012-01-01

    Taking surface sediments from the Wuliangsuhai Lake and Daihai Lake as adsorbent, the isothermal adsorption experiments of silicate on sediments were carried out and the adsorption behavior was explained by Langmuir, Freundlich and Temkin crossover-type equations, then the form distribution characters of silicate were studied after adsorption in this work. The results showed that the adsorption behavior of silicate on the two lakes sediments can be linear fitting in the lower concentration dose (Temkin crossover-type equations can be used to explain the adsorption behavior of silicate on the two lakes sediments, and the native adsorption silicate (NAS) and equilibrium silicate concentration (ESC(0)) calculated by the three equations could be used to explain the sink and source effects of the sediments from the two lakes; the silicate form distribution in the sediments after adsorption indicated that silicate adsorbed on particles were mainly added on the form of IEF-Si, CF-Si, IMOF-Si and OSF-Si, and the IMOF-Si and OSF-Si had important potential bioavailability.

  19. Petrology and Geochemistry of Calc-Silicate Schists and Calc ...

    African Journals Online (AJOL)

    Chemically the calc-silicate schists are characterized by relatively high CaO, MgO, Cr, Ni, Sr, La, Ce and Nd contents compared with the mica schist regionally associated with the marble as well as the Post-Archean Australian Shale (PAAS). Relative to the ultramafic schist the calc-silicate schists are characterized by higher ...

  20. Simulated annealing algorithm for optimal capital growth

    Science.gov (United States)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  1. Optimization Via Open System Quantum Annealing

    Science.gov (United States)

    2016-01-07

    be solved by a quantum evolution from a strong transverse field to a spin glass Hamiltonian (also known as quantum annealing or QA). We have...reduced to Quadratic Unconstrained Binary Optimization (QUBO), which can be solved by a quantum evolution from a strong transverse field to a spin...Excellence grant for Education , Research and Engineering: The number of undergraduates funded by your agreement who graduated during this period and

  2. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  3. Effect of acute hyperinsulinemia on magnesium homeostasis in humans.

    Science.gov (United States)

    Xu, Li Hao Richie; Maalouf, Naim M

    2017-02-01

    Insulin may influence magnesium homeostasis through multiple mechanisms. Acutely, it stimulates the shift of magnesium from plasma into red blood cells and platelets, and in vitro, it stimulates the activity of the TRPM6 channel, a key regulator of renal magnesium reabsorption. We investigated the impact of hyperinsulinemia on magnesium handling in participants with a wide range of insulin sensitivity. Forty-seven participants were recruited, including 34 nondiabetic controls and 13 with type 2 diabetes mellitus. After stabilization under fixed metabolic diet, participants underwent hyperinsulinemic-euglycemic clamp. Serum and urine samples were collected before and during hyperinsulinemia. Change in serum magnesium, urinary magnesium to creatinine (Mg 2 + :Cr) ratio, fractional excretion of urinary magnesium (FEMg 2 + ), and estimated transcellular shift of magnesium were compared before and during hyperinsulinemia. Hyperinsulinemia led to a small but statistically significant decrease in serum magnesium, and to a shift of magnesium into the intracellular compartment. Hyperinsulinemia did not significantly alter urinary magnesium to creatinine ratio or fractional excretion of urinary magnesium in the overall population, although a small but statistically significant decline in these parameters occurred in participants with diabetes. There was no significant correlation between change in fractional excretion of urinary magnesium and body mass index or insulin sensitivity measured as glucose disposal rate. In human participants, acute hyperinsulinemia stimulates the shift of magnesium into cells with minimal alteration in renal magnesium reabsorption, except in diabetic patients who experienced a small decline in fractional excretion of urinary magnesium. The magnitude of magnesium shift into the intracellular compartment in response to insulin does not correlate with that of insulin-stimulated glucose entry into cells. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The initial oxidation of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, M.

    2004-07-01

    Pure Magnesium samples have been oxidised in an UHV chamber under controlled conditions. Pressure range was 10{sup -10} Torr to 10{sup -7} Torr, temperature range was 273 K to 435 K. The samples have then been investigated with XPS, Ellipsometry and HERDA. Additionally, furnace oxidations at 750 Torr and 673 K have been carried out and investigated with XPS. From the XPS measurements data concerning layer thickness, composition, oxidation state and binding state have been gained. The ellipsometrie measurements yielded additional data concerning layer thickness as well as the size of the band gap of the developing oxide. With the HERDA measurements, the oxygen content within the oxide layer has been determined yielding additional information about composition and layer thickness. The layer thickness as a function of time have then been modelled with a kinetic growth model of Fromhold and Cook. For the refinement of the XPS data concerning layer thickness and composition, the pronounced plasmon excitations that occur in magnesium have been determined with two different procedures which have been developed in the methodical part of this work. The layer thickness and composition values have thus been corrected. Results: Two oxidation stages could be identified: a strong increase for the first few Langmuirs (1L = 1s x 10{sup -6} Torr), followed by a saturation'' region which was about 1.2 nm to 1.5 nm in magnitude. XPS and ellipsometry results have thereby been in very good agreement. The composition of the developing oxide showed a clear deviation from stoichiometric MgO, mainly caused by an oxygen deficiency; this deficiency has also been confirmed with the HERDA measurements. The Mg/O ratio as a function of layer thickness showed a continous decay starting from very high values for the thinnest layers (>{proportional_to}2.5) down to a saturation value of about 1.4, even for larger layer thicknesses gained with the furnace oxidations. The determination of

  5. Post traumatic tetanus and role magnesium sulphate

    International Nuclear Information System (INIS)

    Sikendr, R.I.; Samad, B.U.; Memon, M.I.

    2009-01-01

    Tetanus is a life threatening disease. Reported mortality for tetanus is 15-39%. Conventional treatment includes heavy sedation and artificial ventilation. Complications resulting from long term heavy sedation and artificial ventilation contribute to 60% of the total mortality caused by tetanus. In this study magnesium sulphate was used to reduce the need for sedation and artificial ventilation. Objectives of this prospective study were to determine the role of magnesium sulphate in post traumatic tetanus. The study was carried out in surgical Intensive Care at Pakistan Institute of Medical Sciences (PIMS), Islamabad from Jan 2004 to Dec 2007. Forty-four patients presented during this period and 33 patients were included in the study. All patients had tracheostomy done within 48 hours. Every patient was started Magnesium Sulphate therapy for control of spasms after sending baseline investigations. Patients were given ventilatory support when needed. All data was entered in well structured proforma. SPSS-10 was used to analyse data. Thirty-three patients were included in the study and all patients were given magnesium sulphate. Out of these, 45.5% cases were grade 4 tetanus, 73.6% and 63.3% cases did not require artificial ventilation and additional sedation respectively, 51.1% patients remained free of complications of tetanus. Overall mortality was 30.3%. Use of Magnesium Sulphate is safe and reduces the need for sedation and artificial ventilation in high grade tetanus thus contributing to survival benefit in adult post-traumatic tetanus cases. (author)

  6. Stress-corrosion mechanisms in silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ciccotti, Matteo, E-mail: matteo.ciccotti@univ-montp2.f [Laboratoire des Colloides, Verres et Nanomateriaux, UMR 5587, CNRS, Universite Montpellier 2, Montpellier (France)

    2009-11-07

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  7. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    2015-12-01

    Full Text Available Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA groups than that of appropriate for gestational age (AGA groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greater among children whose mothers were malnourished during pregnancy, and who consequently had a low birth weight. In a number of animal models, poor nutrition during pregnancy leads to offspring that exhibit pathophysiological changes similar to human diseases. The offspring of pregnant rats fed a magensium restricted diet have developed hypermethylation in the hepatic 11β-hydroxysteroid dehydrogenase-2 promoter. These findings indicate that maternal magnesium deficiencies during pregnancy influence regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. Magnesium deficiency during pregnancy may be responsible for not only maternal and fetal nutritional problems, but also lifelong consequences that affect the offspring throughout their life. Epidemiological, clinical, and basic research on the effects of magnesium deficiency now indicates underlying mechanisms, especially epigenetic processes.

  8. Magnesium sulfate in aneurysmal subarachnoid hemorrhage: a randomized controlled trial

    NARCIS (Netherlands)

    van den Bergh, Walter M.; Algra, A.; van Kooten, F.; Dirven, C. M. F.; van Gijn, J.; Vermeulen, M.; Rinkel, G. J. E.

    2005-01-01

    BACKGROUND AND PURPOSE: Magnesium reverses cerebral vasospasm and reduces infarct volume after experimental subarachnoid hemorrhage (SAH) in rats. We aimed to assess whether magnesium reduces the frequency of delayed cerebral ischemia (DCI) in patients with aneurysmal SAH. METHODS: Patients were

  9. Magnesium for treating sickle cell disease.

    Science.gov (United States)

    Than, Nan Nitra; Soe, Htoo Htoo Kyaw; Palaniappan, Senthil K; Abas, Adinegara Bl; De Franceschi, Lucia

    2017-04-14

    Sickle cell disease is an autosomal recessive inherited haemoglobinopathy which causes painful vaso-occlusive crises due to sickle red blood cell dehydration. Vaso-occlusive crises are common painful events responsible for a variety of clinical complications; overall mortality is increased and life expectancy decreased compared to the general population. Experimental studies suggest that intravenous magnesium has proven to be well-tolerated in individuals hospitalised for the immediate relief of acute (sudden onset) painful crisis and has the potential to decrease the length of hospital stay. Some in vitro studies and open studies of long-term oral magnesium showed promising effect on pain relief but failed to show its efficacy. The studies show that oral magnesium therapy may prevent sickle red blood cell dehydration and prevent recurrent painful episodes. There is a need to access evidence for the impact of oral and intravenous magnesium effect on frequency of pain, length of hospital stay and quality of life. To evaluate the effects of short-term intravenous magnesium on the length of hospital stay and quality of life in children and adults with sickle cell disease. To determine the effects of long-term oral magnesium therapy on the frequency of painful crises and the quality of life in children and adults with sickle cell disease. We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 01 December 2016.Date of last search of other resources (clinical trials registries): 29 March 2017. We searched for published and unpublished randomized controlled studies of oral or intravenous magnesium compared to placebo or no magnesium. Authors independently assessed the study quality and extracted the data using standard Cochrane methodologies. We

  10. Formulation optimization of aprepitant microemulsion-loaded silicated corn fiber gum particles for enhanced bioavailability.

    Science.gov (United States)

    Kamboj, Sunil; Rana, Vikas

    2016-08-01

    The present investigation was aimed at development of silicate corn fiber gum (SCFG) particles as superior solid carrier for the preparation of Aprepitant (APT)-loaded self-emulsifying powder (SEP) system. 2(4) D-optimal mixture design with three level process variables was employed to develop SCFG particles, utilizing flow descriptors and hydrophobicity descriptors as response variables. The results indicated that blending of CFG (51.4% w/w) and magnesium silicate (MS) (48.6% w/w) using freeze-drying technique was found to have highest desirability (0.904). The developed SEP showed highest oil desorbing capacity, low self-emulsification time and highest drug content. It was observed that SCFG-SEP (F2 formulation) showed lowest PDI (0.2445 ± 0.03) as well as smallest particle size (127 ± 5.8 nm). The droplets were uniform and maintain their integrity after reconstitution (TEM analysis). Furthermore, APT-loaded SEP showed enhanced in vitro dissolution (4 folds) and ex vivo performance (7-fold enhanced Papp) as compared to pure APT. Furthermore, in vivo pharmacokinetic study showed that significant enhancement (p > 0.05) in Cmax was evident with APT-loaded F2 (SCFG-SEP) (1.93-fold) and F4 (Aerosil 200-SEP) (1.58-fold). The data also suggested increase in absorption rate when APT incorporated into SCFG-SEP. Thus, findings pointed toward enhanced bioavailability of APT when loaded into SCFG particles. Overall, the developed SCFG particles could be considered as a better alternative to already available solid carrier(s).

  11. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  12. Mechanistic Study of Magnesium Carbonate Semibatch Reactive Crystallization with Magnesium Hydroxide and CO2

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    This work investigates semibatch precipitation of magnesium carbonate at ambient temperature and pressure using Mg(OH)(2) and CO2 as starting materials. A thermal analysis method was developed that reflects the dissolution rate of Mg(OH)(2) and the formation of magnesium carbonate. The method...... the liquid and solid phases. A stirring rate of 650 rpm was found to be the optimum speed as the flow rate of CO2 was 1 L/min. Precipitation rate increased with gas flow rate, which indicates that mass transfer of CO2 plays a critical role in this precipitation case. Magnesium carbonate trihydrate...

  13. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  14. RF-sputter-deposited magnesium oxide films as high-quality adjustable tunnel barriers

    International Nuclear Information System (INIS)

    Villegier, J.C.; Radparvar, M.; Yu, L.S.; Faris, S.M.

    1989-01-01

    High quality RF-sputtered MgO films are used as tunnel barriers to fabricate small area, niobium nitride Josephson tunnel junctions. A magnesium oxide barrier deposited as a single layer, or as a multilayer film, results in devices with similar characteristics. Annealing trilayers at temperatures in excess of 250 0 C for several hours decrease junction current density and improve device quality presumably by increasing barrier heights through reducing resonant tunneling states. A self-aligned process utilizing only two mask levels is used to produce junctions as small as 0.5 μm/sup 2/ with excellent critical current uniformity. These junctions exhibit energy gaps of 5.1 mV and low subgap currents at current densities in excess of 1000 A/cm/sup 2/ which make them suitable for a variety of applications such as SIS mixers and logic circuits

  15. Serum Magnesium Levels in Non-Pregnant, Pregnant And Pre ...

    African Journals Online (AJOL)

    The objective of this study was to compare the serum magnesium levels in normal pregnancy and pregnancy complicated by pre-eclampsia since magnesium has been implicated in the pathogenesis of vascular dysfunction. We measured serum magnesium levels in patients with pre-eclampsia (n=36), patients with normal ...

  16. Is serum magnesium estimate necessary in patients with Eclampsia ...

    African Journals Online (AJOL)

    The therapeutic index of magnesium is said to be low, hence, there are fears of toxicity when used as anticonvulsant in eclamptic patients. The objective of this study was to determine the serum levels of magnesium in eclamptic patients treated with magnesium sulphate and relate the levels with clinical indicators. It was a ...

  17. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    Science.gov (United States)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  18. 75 FR 48360 - Magnesium From China and Russia

    Science.gov (United States)

    2010-08-10

    ... COMMISSION Magnesium From China and Russia AGENCY: United States International Trade Commission. ACTION: Scheduling of full five-year reviews concerning the antidumping duty orders on alloy magnesium from China and pure and alloy magnesium from Russia. SUMMARY: The Commission hereby gives notice of the scheduling of...

  19. 75 FR 35086 - Magnesium From China and Russia

    Science.gov (United States)

    2010-06-21

    ... COMMISSION Magnesium From China and Russia AGENCY: United States International Trade Commission. ACTION... orders on magnesium from China and Russia. SUMMARY: The Commission hereby gives notice that it will...)) to determine whether revocation of the antidumping duty orders on magnesium from China and Russia...

  20. 77 FR 59979 - Pure Magnesium (Granular) From China

    Science.gov (United States)

    2012-10-01

    ... COMMISSION Pure Magnesium (Granular) From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on pure magnesium (granular) from China would be likely to lead to continuation or...), entitled Pure Magnesium (Granular) from China: Investigation No.731-TA- 895 (Second Review). Issued...

  1. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion

    Science.gov (United States)

    Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian

    2018-04-01

    Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.

  2. Higher dietary magnesium intake and higher magnesium status are associated with lower prevalence of coronary heart disease in patients with type 2 diabetes

    NARCIS (Netherlands)

    Gant, C.M.; Soedamah-Muthu, S.S.; Binnenmars, S.H.; Bakker, S.J.L.; Navis, G.; Laverman, G.D.

    2018-01-01

    In type 2 diabetes mellitus (T2D), the handling of magnesium is disturbed. Magnesium deficiency may be associated with a higher risk of coronary heart disease (CHD). We investigated the associations between (1) dietary magnesium intake; (2) 24 h urinary magnesium excretion; and (3) plasma magnesium

  3. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  4. Stable emulsions in extraction systems containing zirconium and silicic acid

    International Nuclear Information System (INIS)

    Sinegribova, O.A.; Chizhevskaya, S.V.; Kotenko, A.A.

    1989-01-01

    The effect of zirconium nitrate compound nature and silicic acid on the rate of emulsions stratification in extraction systems depending on the components concentration, solution acidity, its past history, is studied. It is stated that stable multinuclear zirconium compounds have an influence on formation of stable emulsions in systems containing silicic acid. On the basis of results of chemical analysis and properties of interphase precipitates, being part of stable emulsion, suppositions on mechanism of interaction of zirconium nitrate compounds with silicic acid β-form are made

  5. Cyclic activity at silicic volcanoes: A response to dynamic permeability variations

    Science.gov (United States)

    Lamur, Anthony; Lavallée, Yan; Kendrick, Jackie; Eggertsson, Gudjon; Ashworth, James; Wall, Richard

    2017-04-01

    the structural relaxation time of the melt and that that full healing can be achieved within only a few hours of contact (timescale decreasing with decreasing viscosities) at magmatic temperatures. These results are important for understanding the permeability decrease associated with annealing. We postulate that rapid permeability evolution due to fracturing or fracture healing may be the cause of observed cyclicity at silicic volcanoes, whereby "instantaneous" increases in permeability occur through the development of macro-fractures drives explosions. We propose that the timescale for this cyclicity is governed by the competition between stress build up through gas accumulation under a relatively impervious plug until failure and fracture healing through annealing or, as shown in other studies, mineral precipitation and sintering of particulate material in fractures.

  6. Interference Alignment Using Variational Mean Field Annealing

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Guillaud, Maxime; Fleury, Bernard Henri

    2014-01-01

    We study the problem of interference alignment in the multiple-input multiple- output interference channel. Aiming at minimizing the interference leakage power relative to the receiver noise level, we use the deterministic annealing approach to solve the optimization problem. In the corresponding...... for interference alignment. We also show that the iterative leakage minimization algorithm by Gomadam et al. and the alternating minimization algorithm by Peters and Heath, Jr. are instances of our method. Finally, we assess the performance of the proposed algorithm through computer simulations....

  7. Simulated annealing for tensor network states

    International Nuclear Information System (INIS)

    Iblisdir, S

    2014-01-01

    Markov chains for probability distributions related to matrix product states and one-dimensional Hamiltonians are introduced. With appropriate ‘inverse temperature’ schedules, these chains can be combined into a simulated annealing scheme for ground states of such Hamiltonians. Numerical experiments suggest that a linear, i.e., fast, schedule is possible in non-trivial cases. A natural extension of these chains to two-dimensional settings is next presented and tested. The obtained results compare well with Euclidean evolution. The proposed Markov chains are easy to implement and are inherently sign problem free (even for fermionic degrees of freedom). (paper)

  8. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  9. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  10. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    Science.gov (United States)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    Science.gov (United States)

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries

    Science.gov (United States)

    Roedern, Elsa; Kühnel, Ruben-Simon; Remhof, Arndt; Battaglia, Corsin

    2017-04-01

    Solid-state magnesium ion conductors with exceptionally high ionic conductivity at low temperatures, 5 × 10-8 Scm-1 at 30 °C and 6 × 10-5 Scm-1 at 70 °C, are prepared by mechanochemical reaction of magnesium borohydride and ethylenediamine. The coordination complexes are crystalline, support cycling in a potential window of 1.2 V, and allow magnesium plating/stripping. While the electrochemical stability, limited by the ethylenediamine ligand, must be improved to reach competitive energy densities, our results demonstrate that partially chelated Mg2+ complexes represent a promising platform for the development of an all-solid-state magnesium battery.

  13. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Energy Technology Data Exchange (ETDEWEB)

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  14. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    International Nuclear Information System (INIS)

    Javier-Ccallata, Henry; Filho, Luiz Tomaz; Sartorelli, Maria L.; Watanabe, Shigueo

    2013-01-01

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe 2+ and Fe 3+ . •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe 3+ . -- Abstract: Natural silicate mineral of pumpellyite, Ca 2 MgAl 2 (SiO 4 )(Si 2 O 7 )(OH) 2 ·(H 2 O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe 2+ and Fe 3+ . The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe 2+ → e − + Fe 3+ . On the other hand, EPR measurements reveal six lines of Mn 2+ , and satellites due to hyperfine interaction, superimposed on the signal of Fe 3+ around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe 3+ hides all Mn 2+ lines. The strong growth of this signal indicates that the transitions are due to Fe 3+ dipole–dipole interactions

  15. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers

    Science.gov (United States)

    Reszka, Przemysław; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof

    2016-01-01

    Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated. PMID:28097154

  16. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers.

    Science.gov (United States)

    Reszka, Przemysław; Nowicka, Alicja; Lipski, Mariusz; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof

    2016-01-01

    Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated.

  17. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers

    Directory of Open Access Journals (Sweden)

    Przemysław Reszka

    2016-01-01

    Full Text Available Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers’ instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated.

  18. Magnesium status and parenteral magnesium sulphate therapy in acute aluminum phosphide intoxication.

    Science.gov (United States)

    Chugh, S N; Kamar, P; Sharma, A; Chugh, K; Mittal, A; Arora, B

    1994-12-01

    The results of an open randomized study on magnesium status and parenteral magnesium sulphate therapy in acute aluminium phosphide intoxication are presented. The study was conducted on 105 patients divided into two group (I & II). Patients of Group I did not receive parenteral magnesium and acted as blank. Magnesium levels were monitored every 6 h for 24 h. Patients of group II received magnesium sulphate therapy. It was administered as 1.0 g (8.1 mEq or 4.05 mmol) magnesium sulphate dissolved in 100 ml of 5 per cent dextrose intravenously as a bolus dose followed by 1.0 g every hour for three successive hours, then 1.0 g every 6 h as a maintenance dose for the next 24 h as intravenous infusion in 5 per cent dextrose. The total dose of magnesium sulphate infused was 30.0 mmol over a period of 24 h (initial dose), then 16.0 mmol (4.0 g) daily till final outcome or a maximum of five days. All the vital parameters were monitored. All the patients were followed till final outcome. The resuscitation methods used were the same in both groups. At the end of the study, mortality rates were calculated in both groups. Hypomagnesaemia was observed as the constant finding in patients of Group I. It was transient and reversed itself without MgSO4. The mortality rate was 52 per cent. On the other hand, magnesium levels rose immediately after parenteral MgSO4 administration in patients of group II and they remained persistently above normal during the observed period.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Implantation annealing in GaAs by incoherent light

    International Nuclear Information System (INIS)

    Davies, D.E.; Ryan, T.G.; Soda, K.J.; Comer, J.J.

    1983-01-01

    Implanted GaAs has been successfully activated through concentrating the output of quartz halogen lamps to anneal in times of the order of 1 sec. The resulting layers are not restricted by the reduced mobilities and thermal instabilities of laser annealed GaAs. Better activation can be obtained than with furnace annealing but this generally requires maximum temperatures >= 1050degC. (author)

  20. R-HPDC of magnesium alloys

    CSIR Research Space (South Africa)

    Curle, UA

    2013-01-01

    Full Text Available different magnesium alloys (AM50A, AM60B, AZ91D) in a first attempt. All as-cast microstructures are characterised more by rosette shaped globules of the primary-(Mg) phase together with Mg(sub17)Al(sub12) as evidence of nonequilibrium cooling rates. Surface...

  1. Magnesium Oxide Induced Metabolic Alkalosis in Cattle

    Science.gov (United States)

    Ogilvie, T.H.; Butler, D.G.; Gartley, C.J.; Dohoo, I.R.

    1983-01-01

    A study was designed to compare the metabolic alkalosis produced in cattle from the use of an antacid (magnesium oxide) and a saline cathartic (magnesium sulphate). Six, mature, normal cattle were treated orally with a magnesium oxide (MgO) product and one week later given a comparable cathartic dose of magnesium sulphate (MgSO4). The mean percent dry matter content of the cattle feces changed significantly (Pmetabolic alkalosis as determined by base excess values. The base excess values remained elevated for 24 hours in the MgO treated group compared to only 12 hours after MgSO4 administration. Following MgO administration, mean hydrogen ion concentration (pH), bicarbonate ion concentration ([HCO3-]) and base excess were 7.44, 33.3 mmol/L and +8.0 respectively compared to 7.38, 27 mmol/L and +3.0 after MgSO4. Since the oral use of MgO in normal cattle causes a greater and more prolonged metabolic alkalosis compared to MgSO4, MgO is contraindicated as a cathartic in normal cattle or in cattle with abomasal abnormalities characterized by pyloric obstruction and metabolic alkalosis. PMID:6883181

  2. Cathodoluminescence study of vickers indentations in magnesium ...

    African Journals Online (AJOL)

    Vickers diamond pyramid indentations made in single crystal of magnesium oxide (MgO) were examined in an environmental scanning electron microscope interfaced with an AVS-2000 spectrophotometer for luminescence. Three distinct zones around the indentations were identified to exhibit cathodoluminescence, which ...

  3. Intravenous and intramuscular magnesium sulphate regimens in ...

    African Journals Online (AJOL)

    1993-09-03

    Sep 3, 1993 ... parenterally, usually according to one of two popular regimens: the intramuscular (IM) regimen introduced by. Pritchard' and a continuous intravenous (IV) infusion described by Zuspan! Sibai et a/.3 have reported that lower serum magnesium values are achieved with Zuspan's regimen (maintenance dose ...

  4. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  5. Electrochemical investigations related to solid state magnesium ...

    Indian Academy of Sciences (India)

    Administrator

    Investigations leading to the understanding and development of solid state magnesium batteries are considered important, as Mg is free from hazards and is also highly stable and abundant. A gel polymer electrolyte (GPE) of about 100 mm thickness is investigated for electrochemical reversibility of the Mg/Mg2+ couple and ...

  6. Short Communication - Blood Magnesium levels in migraineurs ...

    African Journals Online (AJOL)

    Introduction: Some probable mechanisms have been described to the relationship between magnesium (Mg) level and migraine headache attacks. In the study reported here, we sought to determine the total Mg serum status of patients with migraine within and between the headache attacks and compare it with ...

  7. Regulation of magnesium reabsorption in DCT.

    NARCIS (Netherlands)

    Xi, Q.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2009-01-01

    The distal convoluted tubule (DCT) is the shortest segment of the nephron and consists of an early (DCT1) and late part (DCT2). Here, several transport proteins, like the thiazide-sensitive NaCl cotransporter (NCC) and the epithelial magnesium (Mg(2+)) channel (TRPM6), are exclusively expressed.

  8. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the

  9. Design Considerations for Developing Biodegradable Magnesium Implants

    Science.gov (United States)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  10. High grade magnesium from waste bittern

    International Nuclear Information System (INIS)

    El-Yamani, I.S.; Farah, M.Y.; Isaac, S.L.

    1979-01-01

    The production of high grade magnesia for nuclear purposes from sea water by use of both aqueous and gaseous ammonia has been described. The effect of precipitating conditions on the settling rate and magnesium recovery, was thoroughly examined. Ammonia gas approach was recommended and justified

  11. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  12. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  13. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2017-02-01

    Full Text Available This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA into tricalcium silicate (C3S paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H. Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C3S-HVFA system and presented results consistent with previous literature.

  14. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  16. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  17. Benefits of Intercritical Annealing in Quenching and Partitioning Steel

    Science.gov (United States)

    Wang, X.; Liu, L.; Liu, R. D.; Huang, M. X.

    2018-03-01

    Compared to the quenching and partitioning (Q&P) steel produced by full austenization annealing, the Q&P steel produced by the intercritical annealing shows a similar ultimate tensile stress but a larger tensile ductility. This property is attributable to the higher volume fraction and the better mechanical stability of the retained austenite after the intercritical annealing. Moreover, intercritical annealing produces more ferrite and fewer martensite phases in the microstructure, making an additional contribution to a higher work hardening rate and therefore a better tensile ductility.

  18. Magnetic field annealing for improved creep resistance

    Science.gov (United States)

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  19. Superplasticity of Annealed H13 Steel

    Directory of Open Access Journals (Sweden)

    Zhenxin Duan

    2017-07-01

    Full Text Available H13 steel is a widely used hot work die material. A new type of hot working method is imperative to develop complex and precise dies. In this paper, the heat treatment of H13 steel (AISI was carried out by annealing, the final structure is a point or spherical pearlite, and the grain size is about 30–40 μm. The tensile properties of the annealed microstructure were investigated at 650, 750, and 850 °C with the strain rates of 1 × 10−3 s−1, 5 × 10−4 s−1, and 1 × 10−4 s−1. The tensile fracture and microstructure were analyzed by SEM and HREM. The results show that the tensile samples reach superplasticity at the strain rate of 1 × 10−4 s−1 in the temperature range of 750–850 °C. When the temperature is 850 °C, the maximum elongation rate reaches 112.5%. This demonstrates the possibility of making superplastic forming molds. During the tensile process, the refined M23C6 and other high hardness carbides which are dispersed uniformly in the matrix, effectively inhibits grain growth and hinders dislocation movement, leading to the improvement of plasticity.

  20. Mean Field Analysis of Quantum Annealing Correction.

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-03

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  1. Superplasticity of Annealed H13 Steel.

    Science.gov (United States)

    Duan, Zhenxin; Pei, Wen; Gong, Xuebo; Chen, Hua

    2017-07-28

    H13 steel is a widely used hot work die material. A new type of hot working method is imperative to develop complex and precise dies. In this paper, the heat treatment of H13 steel (AISI) was carried out by annealing, the final structure is a point or spherical pearlite, and the grain size is about 30-40 μm. The tensile properties of the annealed microstructure were investigated at 650, 750, and 850 °C with the strain rates of 1 × 10 -3 s -1 , 5 × 10 -4 s -1 , and 1 × 10 -4 s -1 . The tensile fracture and microstructure were analyzed by SEM and HREM. The results show that the tensile samples reach superplasticity at the strain rate of 1 × 10 -4 s -1 in the temperature range of 750-850 °C. When the temperature is 850 °C, the maximum elongation rate reaches 112.5%. This demonstrates the possibility of making superplastic forming molds. During the tensile process, the refined M 23 C₆ and other high hardness carbides which are dispersed uniformly in the matrix, effectively inhibits grain growth and hinders dislocation movement, leading to the improvement of plasticity.

  2. A coherent quantum annealer with Rydberg atoms

    Science.gov (United States)

    Glaetzle, A. W.; van Bijnen, R. M. W.; Zoller, P.; Lechner, W.

    2017-06-01

    There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.

  3. MEDICAL STAFF SCHEDULING USING SIMULATED ANNEALING

    Directory of Open Access Journals (Sweden)

    Ladislav Rosocha

    2015-07-01

    Full Text Available Purpose: The efficiency of medical staff is a fundamental feature of healthcare facilities quality. Therefore the better implementation of their preferences into the scheduling problem might not only rise the work-life balance of doctors and nurses, but also may result into better patient care. This paper focuses on optimization of medical staff preferences considering the scheduling problem.Methodology/Approach: We propose a medical staff scheduling algorithm based on simulated annealing, a well-known method from statistical thermodynamics. We define hard constraints, which are linked to legal and working regulations, and minimize the violations of soft constraints, which are related to the quality of work, psychic, and work-life balance of staff.Findings: On a sample of 60 physicians and nurses from gynecology department we generated monthly schedules and optimized their preferences in terms of soft constraints. Our results indicate that the final value of objective function optimized by proposed algorithm is more than 18-times better in violations of soft constraints than initially generated random schedule that satisfied hard constraints.Research Limitation/implication: Even though the global optimality of final outcome is not guaranteed, desirable solutionwas obtained in reasonable time. Originality/Value of paper: We show that designed algorithm is able to successfully generate schedules regarding hard and soft constraints. Moreover, presented method is significantly faster than standard schedule generation and is able to effectively reschedule due to the local neighborhood search characteristics of simulated annealing.

  4. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  5. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    Skeletal remains of siliceous algae form biogenic fine grained highly porous pelagic siliceous ooze sediments that were found above the reservoir of the Ormen Lange gas field which is located in the southern part of the Norwegian Sea (Figure 1a). The Palaeocene sandstone of the “Egga” Formation...... structure is complex and the solids are mechanically fragile and hydrous. Normal petrophysical methods used in formation evaluation might not be suitable for interpreting siliceous ooze. For example, density and neutron logging tools are calibrated to give correct porosity readings in a limestone formation......, but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...

  6. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  7. Assessment of the magnesium primary production technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  8. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  9. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  11. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  12. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  13. Defects produced by the work hardening of magnesium and cadmium at low temperatures

    International Nuclear Information System (INIS)

    Simon, Jean-Paul; Delaplace, Jean

    1971-07-01

    Simultaneous measurements of the mechanical properties and the electrical resistivity of cadmium and magnesium samples which have been work hardened at 77 deg. K enabled the defects produced and the recovery occurring during an annealing process, to be studied. The electrical resistivity measured at 77 deg. K increased linearly with the deformation for the degrees of work hardening considered (less than 7 per cent for Cd and less than 4 per cent for Mg). Three main stages occurred in the recovery of Cd: stage A between 77 deg. K and 180 deg. K due to annealing of point defects, stage B between 180 deg. K and 240 deg. K due to the rearrangement of the dislocations and stage C above 240 deg. K due to recrystallization. Measurements of electrical resistance were made when the sample was under stress and when the stress was removed. The resistivity of both Cd and Mg changed during the removal of the load. This phenomenon is ascribed to the shortening of the dislocation segments which are bowed under stress and straighten when the stress is removed. The orders of magnitude of the dislocation density and the loop lengths obtained from this model, are reasonable [fr

  14. Urinary and plasma magnesium and risk of ischemic heart disease.

    Science.gov (United States)

    Joosten, Michel M; Gansevoort, Ron T; Mukamal, Kenneth J; van der Harst, Pim; Geleijnse, Johanna M; Feskens, Edith J M; Navis, Gerjan; Bakker, Stephan J L

    2013-06-01

    Previous studies on dietary magnesium and risk of ischemic heart disease (IHD) have yielded inconsistent results, in part because of a lack of direct measures of actual magnesium uptake. Urinary excretion of magnesium, an indicator of dietary magnesium uptake, might provide more consistent results. The objective was to investigate whether urinary magnesium excretion and plasma magnesium are associated with IHD risk. We examined 7664 adult participants free of known cardiovascular disease in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study-a prospective population-based cohort study. Urinary magnesium excretion was measured in 2 baseline 24-h urine collections. Mean ± SD urinary magnesium excretion was 4.24 ± 1.65 mmol/24 h for men and 3.54 ± 1.40 mmol/24 h for women. During a median follow-up of 10.5 y (IQR: 9.9-10.8 y), 462 fatal and nonfatal IHD events occurred. After multivariable adjustment, urinary magnesium excretion had a nonlinear relation with IHD risk (P-curvature = 0.01). The lowest sex-specific quintile (men: magnesium excretion. A similar increase in risk of the lowest quintile was observed for mortality related to IHD (HR: 1.70; 95% CI: 1.10, 2.61). No associations were observed between circulating magnesium and risk of IHD. Low urinary magnesium excretion was independently associated with a higher risk of IHD incidence. An increased dietary intake of magnesium, particularly in those with the lowest urinary magnesium, could reduce the risk of IHD.

  15. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    Science.gov (United States)

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  16. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  17. Silicates in orthopedics and bone tissue engineering materials.

    Science.gov (United States)

    Zhou, Xianfeng; Zhang, Nianli; Mankoci, Steven; Sahai, Nita

    2017-07-01

    Following the success of silicate-based glasses as bioactive materials, silicates are believed to play important roles in promoting bone formation and have therefore been considered to provide a hydroxyapatite (HAP) surface layer capable of binding to bone as well as potentially being a pro-osteoinductive factor. Natural silicate minerals and silicate-substituted HAPs are also being actively investigated as orthopaedic bone and dental biomaterials for application in tissue engineering. However, the mechanisms for the proposed roles of silicate in these materials have not been fully understood and are controversial. Here, we review the potential roles of silicate for bone tissue engineering applications and recent breakthroughs in identifying the cellular-level molecular mechanisms for the osteoinductivity of silica. The goal of this article is to inspire new ideas for the rational design of third-generation cell-and gene-affecting biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2090-2102, 2017. © 2017 Wiley Periodicals, Inc.

  18. Silicate Removal in Aluminum Hydroxide Co-Precipitation Process

    Directory of Open Access Journals (Sweden)

    Chiharu Tokoro

    2014-02-01

    Full Text Available The removal mechanisms of silicate using an aluminum hydroxide co-precipitation process was investigated and compared with an adsorption process, in order to establish an effective and validated method for silicate removal from wastewater. Adsorption isotherms, XRD and FT-IR analyses showed that silicate uptake occurred by adsorption to boehmite for initial Si/Al molar ratios smaller than two, but by precipitation of poorly crystalline kaolinite for the ratios larger than two, in both co-precipitation and adsorption processes. Silicate was removed by two steps: (i an initial rapid uptake in a few seconds; and (ii a slow uptake over several hours in both processes. The uptake rate in the first step was higher in the co-precipitation process than in adsorption process, presumably due to increased silicate adsorption to boehmite and rapid precipitation of kaolinite. These results suggest that silicate removal using aluminum salts could be effectively achieved if the pH adjustment and aluminum concentration are strictly controlled.

  19. Crystal structures and infrared spectra of two Fe-bearing hydrous magnesium silicates synthesized at high temperature and pressure

    Science.gov (United States)

    Yang, H.; Prewitt, C. T.; Liu, Z.

    2002-01-01

    The synthesis and characterization of Fe-bearing phase E and phase E' demonstrate that the phase E-type structures can be rather compliant and complex, and that as we further explore the temperature-pressure-composition space, other types of structures that are similar to or related to the structure of phase E may be discovered.

  20. [Diagnostics of magnesium deficiency and measurements of magnesium concentrations in biosubstrates in norm and in various pathologies].

    Science.gov (United States)

    Gromova, O A; Kalacheva, A G; Torshin, I Iu; Grishina, T R; Semenov, V A

    2014-01-01

    In accordance with the evidence from large-scale studies magnesium deficiency has a significant negative impact on the cardiovascular system, carbohydrate and fat metabolism. Diagnosis of magnesium deficiency should be based on clinical symptoms of magnesium deficit and confirmed by additional diagnostic methods--ECG myography, bone densitometry, and quantitative determination of magnesium in various biosubstrates (whole blood, red blood cells, plasma, serum, saliva, urine, nails, hair). It is also desirable to estimate dietary intake of magnesium according to food frequency questionnaires verified by measurements of magnesium in blood. Analysis of magnesium content in blood and other biosubstrates allows to establish those perturbations of compartmentalization of magnesium in tissues that are typical for a particular pathology. It is important to emphasize that one should not confuse values of magnesium levels measured in serum and in plasma as it leads to serious errors in the diagnosis of magnesium deficiency and results in underdiagnosis of magnesium deficiency (code E61.2 of ICD-10).

  1. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  2. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  3. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  4. Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes.

    Science.gov (United States)

    Sales, Cristiane Hermes; Pedrosa, Lucia Fátima Campos; Lima, Josivan Gomes; Lemos, Telma Maria Araújo Moura; Colli, Célia

    2011-06-01

    This study was undertaken to assess magnesium intake and magnesium status in patients with type 2 diabetes, and to identify the parameters that best predict alterations in fasting glucose and plasma magnesium. A cross-sectional study was carried out in patients with type 2 diabetes (n = 51; 53.6 ± 10.5 y) selected within the inclusion factors, at the University Hospital Onofre Lopes. Magnesium intake was assessed by three 24-h recalls. Urine, plasma and erythrocytes magnesium, fasting and 2-h postprandial glucose, HbA1, microalbuminuria, proteinuria, and serum and urine creatinine were measured. Mean magnesium intake (9.37 ± 1.76 mmol/d), urine magnesium (2.80 ± 1.51 mmol/d), plasma magnesium (0.71 ± 0.08 mmol/L) and erythrocyte magnesium (1.92 ± 0.23 mmol/L) levels were low. Seventy-seven percent of participants presented one or more magnesium status parameters below the cut-off points of 3.00 mmol/L for urine, 0.75 mmol/L for plasma and 1.65 mmol/L for erythrocytes. Subjects presented poor blood glucose control with fasting glucose of 8.1 ± 3.7 mmol/L, 2-h postprandial glucose of 11.1 ± 5.1 mmol/L, and HbA1 of 11.4 ± 3.0%. The parameters that influenced fasting glucose were urine, plasma and dietary magnesium, while plasma magnesium was influenced by creatinine clearance. Magnesium status was influenced by kidney depuration and was altered in patients with type 2 diabetes, and magnesium showed to play an important role in blood glucose control. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Investigation of annealing-treatment on structural and optical ...

    Indian Academy of Sciences (India)

    Administrator

    This conforms to the results already reported by Moustaghfir et al (2003). A higher annealing tempera- ture enhances the formation of larger and more closely packed crystals. The increase of the refractive index with increasing annealing temperature can be partly attributed to improvement in film quality with the reduction in.

  6. Effect of annealing temperature on the structural–microstructural and ...

    Indian Academy of Sciences (India)

    In order to get good quality reproducible films of Tl : HTSC system, we have studied the different annealing conditions to finally achieve the optimized annealing condition. In the present investigation, Tl–Ca–Ba–Cu–O superconducting films have been prepared on YSZ (100) and MgO (100) single crystal substrates via ...

  7. Effect of isochronal annealing on phase transformation studies of ...

    Indian Academy of Sciences (India)

    Abstract. The effect of isochronal annealing on the phase transformation in iron oxide nanoparticles is reported in this work. Iron oxide nanoparticles were successfully synthesized using an ash supported technique followed by annealing for 2 h at various temperatures between 300 and 700◦C. It was observed using X-ray ...

  8. Effect of annealing treatment on optical properties and ...

    Indian Academy of Sciences (India)

    2018-03-28

    Mar 28, 2018 ... C. UV–visible spectrophotometer showed that the annealing treatment of the first WO3 layer enhanced the transparency of films in the visible region. The innovations of the present study have been based on the annealing of the films and finding an optimum thickness for the Ag film at 12–14 nm.

  9. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  10. Simulated annealing approach for solving economic load dispatch ...

    African Journals Online (AJOL)

    user

    Abstract. This paper presents Simulated Annealing (SA) algorithm for optimization inspired by the process of annealing in ... Various classical optimization techniques were used to solve the ELD problem, for example: lambda iteration approach, ...... Research of fuzzy self-adaptive immune algorithm and its application.

  11. Effect of isochronal annealing on phase transformation studies of ...

    Indian Academy of Sciences (India)

    The effect of isochronal annealing on the phase transformation in iron oxide nanoparticles is reported in this work. Iron oxide nanoparticles were successfully synthesized using an ash supported technique followed by annealing for 2 h at various temperatures between 300 and 700° C. It was observed using X-ray diffraction ...

  12. Effect of annealing process of iron powder on magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    The amplitude permeability and magnetic loss of the cores reached the maximum and minimum values, respectively. The magnetic loss of the cores was separated into hysteresis loss and eddy current loss by Stoppels Method which were decreased by the annealing process. Keywords. Reduced iron powders; annealing ...

  13. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing (SA), Computer Laboratory Scheduling, Statistical Thermodynamics, Energy Function, and Heuristic etc. Global Jnl of ...

  14. Response of neutron-irradiated RPV steels to thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  15. Improvements in or relating to laser annealed electronic devices

    International Nuclear Information System (INIS)

    Barraclough, K.G.; Cullis, A.G.; Webber, H.C.

    1981-01-01

    A method of producing laser annealed electronic devices is described. The technique involves irradiating semiconductor material such as silicon or germanium to produce a neutron transmuted semiconductor material and laser annealing a selected region or regions in a slice of the transmuted material to a sub-micron depth. (U.K.)

  16. Effect of annealing on magnetic properties and silicide formation at ...

    Indian Academy of Sciences (India)

    coercivity decreases and remanence increases. The values of remanence of pristine Co/Si and annealed at 300°C are. 0⋅80 and 0⋅98, respectively. 3.3 AFM measurement. Morphological changes of silicide surface during high temperature annealing have been investigated by AFM in terms of the RMS surface roughness.

  17. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C......It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  18. Angular filter refractometry analysis using simulated annealing.

    Science.gov (United States)

    Angland, P; Haberberger, D; Ivancic, S T; Froula, D H

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  19. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  20. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  1. Annealing effects on cathodoluminescence of zircon

    Science.gov (United States)

    Tsuchiya, Y.; Nishido, H.; Noumi, Y.

    2011-12-01

    U-Pb zircon dating (e. g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) imaging allows us to recognize internal zones and domains with different chemical compositions and structural disorder at high spatial resolution. The CL of zircon is attributed by various types of emission centers, which are extrinsic ones such as REE impurities and intrinsic ones such as structural defects. Metamictization resulted from radiation damage to the lattice by alpha particles from the decay of U and Th mostly causes an effect on the CL features of zircon as a defect center. However, slightly radiation-damaged zircon, which is almost nondetectable by XRD, has not been characterized using CL method. In this study, annealing effects on CL of zircon has been investigated to clarify a recovery process of the damaged lattice at low radiation dose. A single crystal of zircon from Malawi was selected for CL measurements. It contains HfO2: 2.30 w.t %, U: 241 ppm and Th: 177 ppm. Two plate samples perpendicular to c and a axes were prepared for annealing experiments during 12 hours from room temperature to 1400 degree C. Color CL images were captured using a cold-cathode microscope (Luminoscope: Nuclide ELM-3R). CL spectral measurements were conducted using an SEM (JEOL: JSM-5410) combined with a grating monochromator (Oxford: Mono CL2) to measure CL spectra ranging from 300 to 800 nm in 1 nm steps with a temperature controlled stage. The dispersed CL was collected by a photoncounting method using a photomultiplier tube (Hamamatsu: R2228) and converted to digital data. All CL spectra were corrected for the total instrumental response. Spectral analysis reveals an anisotropy of the CL emission bands related to intrinsic defect center in blue region, radiation-induced defect center from 500 to 700 nm, and trivalent Dy impurity center at 480 and 580 nm, but their relative intensities are almost constant. CL on the

  2. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  3. High dietary magnesium intake decreases hyperoxaluria in patients with nephrolithiasis.

    Science.gov (United States)

    Eisner, Brian H; Sheth, Sonali; Dretler, Stephen P; Herrick, Benjamin; Pais, Vernon M

    2012-10-01

    To examine the relationship between urine magnesium and hyperoxaluria in a cohort of patients with recurrent stone formation. A total of 311 patients with nephrolithaisis were evaluated. The patients were divided into quintiles of urine magnesium excretion, an accepted surrogate of dietary magnesium intake. Multivariate analysis was used to examine the relationship between magnesium and hyperoxaluria. The mean patient age was 50.0 ± 14.9 years, the body mass index was 28.0 ± 5.9 kg/m(2), and 130 were women and 181 were men. The mean urine magnesium excretion was 100.8 ± 42.0 mg/d (range 17.8-224.8). On multivariate analysis, an increasing quintile of urine magnesium was associated with decreasing hyperoxaluria (β = -0.37, 95% confidence interval -0.6 to -0.14, P magnesium as the referent, only the greatest quintile demonstrated a statistically significant decrease in hyperoxaluria (β = -1.7, 95% confidence interval -2.7 to -0.7, P magnesium intake was associated with decreasing hyperoxaluria in this population of patients with stone formation. Our findings showed that high magnesium intake might be required to observe clinically significant effects from magnesium. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Magnesium excretion and hypomagnesemia in pediatric renal transplant recipients.

    Science.gov (United States)

    Uslu Gökceoğlu, Arife; Comak, Elif; Dogan, Cagla Serpil; Koyun, Mustafa; Akbas, Halide; Akman, Sema

    2014-08-01

    We investigated magnesium excretion and rate of hypomagnesemia in pediatric renal transplant recipients. The medical records of 114 pediatric renal transplant recipients were retrospectively evaluated. After exclusion of 23 patients, 91 patients were included in the study. We recorded serum magnesium levels at the time of measurement of urine magnesium wasting. Mean serum magnesium levels were 1.73 ± 0.22 mg/dL and 38 of the patients (41%) had hypomagnesemia. There was a negative correlation between serum magnesium levels and estimated glomerular filtration rate and serum tacrolimus trough level (r=-0.215, p=0.040 and r=-0.409, p=0.000, respectively). Also, there was a statistically significant positive correlation between serum magnesium levels and transplantation duration (r=0.249, p=0.017). Mean fractional magnesium excretion was 5.9 ± 3.7% and 59 patients (65%) had high magnesium excretion. There was a significant negative correlation between fractional magnesium excretion and estimated glomerular filtration rate (r=-0.432, p=0.001). There was a significant positive correlation between fractional magnesium excretion and serum creatinine (r=0.379 p=0.003). Patients with higher tacrolimus trough blood levels, lower glomerular filtration rate and at early posttransplant period had risk of hypomagnesemia.

  5. Effect of Magnesium Supplementation on Physical Activity of Overweight or

    Directory of Open Access Journals (Sweden)

    Behnood Abbasi

    2013-03-01

    Full Text Available Background: Strategies for weight reduction often promote lifestyle changes like encouraging participation in physical activity. Also there is some evidence suggesting an association between insomnia and physical activity level and probable beneficial effect of magnesium supplementation on insomnia. The objective of this study was to determine the effect of magnesium supplementation on physical activity level in insomniac elderly subjects.Materials and Methods: A double blind randomized clinical trial was conducted in 46 overweight or obese subjects, randomly allocated into the magnesium or the placebo group and received 500 mg magnesium or placebo daily for 8 weeks. Questionnaires of insomnia severity index (ISI, physical activity and sleep-log were completed and serum magnesium measured at baseline and after the intervention period. Anthropometric confounding factors, daily intake of magnesium, calcium, potassium, caffeine, calorie form carbohydrates, fat, protein and total calorie intake, were obtained using 24-hrs recall for 3-days. Statistical analyses were performed using SPSS-19 software.Results: No significant differences were observed in assessed variables between the two groups at the baseline. According to our research magnesium supplementation significantly increased sleep indices and physical activity level, also resulted in significantly decrease of total calorie intake in magnesium group. Although serum magnesium concentration and weight did not show any differences.Conclusion: In the present study magnesium supplementation resulted in improvement of sleep indices and physical activity level in elderly subjects. Although according to our short term intervention no significant beneficial effect was observed on subject`s weight.

  6. Struvite precipitation from urine with electrochemical magnesium dosage.

    Science.gov (United States)

    Hug, Alexandra; Udert, Kai M

    2013-01-01

    When magnesium is added to source-separated urine, struvite (MgNH(4)PO(4)·6H(2)O) precipitates and phosphorus can be recovered. Up to now, magnesium salts have been used as the main source of magnesium. Struvite precipitation with these salts works well but is challenging in decentralized reactors, where high automation of the dosage and small reactor sizes are required. In this study, we investigated a novel approach for magnesium dosage: magnesium was electrochemically dissolved from a sacrificial magnesium electrode. We demonstrated that this process is technically simple and economically feasible and thus interesting for decentralized reactors. Linear voltammetry and batch experiments at different anode potentials revealed that the anode potential must be higher than -0.9 V vs. NHE (normal hydrogen electrode) to overcome the strong passivation of the anode. An anode potential of -0.6 V vs. NHE seemed to be suitable for active magnesium dissolution. For 13 subsequent cycles at this potential, we achieved an average phosphate removal rate of 3.7 mg P cm(-2) h(-1), a current density of 5.5 mA cm(-2) and a current efficiency of 118%. Some magnesium carbonate (nesquehonite) accumulated on the anode surface; as a consequence, the current density decreased slightly, but the current efficiency was not affected. The energy consumption for these experiments was 1.7 W h g P(-1). A cost comparison showed that sacrificial magnesium electrodes are competitive with easily soluble magnesium salts such as MgCl(2) and MgSO(4), but are more expensive than dosing with MgO. Energy costs for the electrochemical process were insignificant. Dosing magnesium electrochemically could thus be a worthwhile alternative to dosing magnesium salts. Due to the simple reactor and handling of magnesium, this may well be a particularly interesting approach for decentralized urine treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Efficiency of quantum vs. classical annealing in nonconvex learning problems.

    Science.gov (United States)

    Baldassi, Carlo; Zecchina, Riccardo

    2018-02-13

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. Copyright © 2018 the Author(s). Published by PNAS.

  8. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study.

    Science.gov (United States)

    Kass, Lindsy; Rosanoff, Andrea; Tanner, Amy; Sullivan, Keith; McAuley, William; Plesset, Michael

    2017-01-01

    Oral magnesium supplementation is commonly used to support a low magnesium diet. This investigation set out to determine whether magnesium in a cream could be absorbed transdermally in humans to improve magnesium status. In this single blind, parallel designed pilot study, n = 25 participants (aged 34.3+/-14.8y, height 171.5+/-11cm, weight 75.9 +/-14 Kg) were randomly assigned to either a 56mg/day magnesium cream or placebo cream group for two weeks. Magnesium serum and 24hour urinary excretion were measured at baseline and at 14 days intervention. Food diaries were recorded for 8 days during this period. Mg test and placebo groups' serum and urinary Mg did not differ at baseline. After the Mg2+ cream intervention there was a clinically relevant increase in serum magnesium (0.82 to 0.89 mmol/l,p = 0.29) that was not seen in the placebo group (0.77 to 0.79 mmol/L), but was only statistically significant (p = 0.02)) in a subgroup of non-athletes. Magnesium urinary excretion increased from baseline slightly in the Mg2+ group but with no statistical significance (p = 0.48). The Mg2+ group showed an 8.54% increase in serum Mg2+ and a 9.1% increase in urinary Mg2+ while these figures for the placebo group were smaller, i.e. +2.6% for serum Mg2+ and -32% for urinary Mg2+. In the placebo group, both serum and urine concentrations showed no statistically significant change after the application of the placebo cream. No previous studies have looked at transdermal absorbency of Mg2+ in human subjects. In this pilot study, transdermal delivery of 56 mg Mg/day (a low dose compared with commercial transdermal Mg2+ products available) showed a larger percentage rise in both serum and urinary markers from pre to post intervention compared with subjects using the placebo cream, but statistical significance was achieved only for serum Mg2+ in a subgroup of non-athletes. Future studies should look at higher dosage of magnesium cream for longer durations. ISRCTN registry ID No. ISRTN

  9. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study.

    Directory of Open Access Journals (Sweden)

    Lindsy Kass

    Full Text Available Oral magnesium supplementation is commonly used to support a low magnesium diet. This investigation set out to determine whether magnesium in a cream could be absorbed transdermally in humans to improve magnesium status.In this single blind, parallel designed pilot study, n = 25 participants (aged 34.3+/-14.8y, height 171.5+/-11cm, weight 75.9 +/-14 Kg were randomly assigned to either a 56mg/day magnesium cream or placebo cream group for two weeks. Magnesium serum and 24hour urinary excretion were measured at baseline and at 14 days intervention. Food diaries were recorded for 8 days during this period. Mg test and placebo groups' serum and urinary Mg did not differ at baseline. After the Mg2+ cream intervention there was a clinically relevant increase in serum magnesium (0.82 to 0.89 mmol/l,p = 0.29 that was not seen in the placebo group (0.77 to 0.79 mmol/L, but was only statistically significant (p = 0.02 in a subgroup of non-athletes. Magnesium urinary excretion increased from baseline slightly in the Mg2+ group but with no statistical significance (p = 0.48. The Mg2+ group showed an 8.54% increase in serum Mg2+ and a 9.1% increase in urinary Mg2+ while these figures for the placebo group were smaller, i.e. +2.6% for serum Mg2+ and -32% for urinary Mg2+. In the placebo group, both serum and urine concentrations showed no statistically significant change after the application of the placebo cream.No previous studies have looked at transdermal absorbency of Mg2+ in human subjects. In this pilot study, transdermal delivery of 56 mg Mg/day (a low dose compared with commercial transdermal Mg2+ products available showed a larger percentage rise in both serum and urinary markers from pre to post intervention compared with subjects using the placebo cream, but statistical significance was achieved only for serum Mg2+ in a subgroup of non-athletes. Future studies should look at higher dosage of magnesium cream for longer durations.ISRCTN registry ID

  10. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  11. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  12. Enhancements in Magnesium Die Casting Impact Properties

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5

  13. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  14. MAGNESIUM, DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Dragana Nikic

    2006-01-01

    Full Text Available Many different countries suggest and justify an integrated laboratory and epidemiological research program with an aim to reject or accept the magnesium – CVD (cardiovascular disease hypothesis. The studies shown in this paper that have investigated the relationship between water hardness, especially magnesium and CVD indicate that, even though there has been an ongoing research for nearly half a century (1957-2004, it has not been completed yet. Different study designs (obductional, clinical, ecological, case-control and cohort restrict an adequate comparison of their results as well as the deduction of results applicable on each territorial level.The majority of researchers around the world, using populational and individual studies, have found an inverse (protective association between mortality and morbidity from CVD and the increase in water hardness, especially the increase in the concentration of magnesium. The most frequent benefit of the water with an optimal mineral composition is the reduction of mortality from ischemic heart disease.It was suggested that Mg from water is a supplementary source of Mg of high biological value, because magnesium from water is absorbed around 30% better than Mg in a diet. The vast majority of studies consider lower concentrations of Mg in the water, in the range of 10% of the total daily intake of Mg.Future research efforts must give better answers to low Mg concentrations in the drinking water, before any concrete recommendations are given to the public. Moreover, the researchers must also determine which chemical form of Mg is most easily absorbed and has the greatest impact.Additional research is necessary in order to further investigate the interrelation between different water and food components as well as individual risk factors in the pathogenesis of CVD.

  15. Anisotropy of creep resistance in extruded magnesium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel; Dobeš, Ferdinand; Peréz, P.; Garcés, G.; Adeva, P.

    2009-01-01

    Roč. 61, č. 12 (2009), s. 1109-1112 ISSN 1359-6462 R&D Projects: GA ČR GA106/06/1354 Grant - others:Ministry of Science and Education of Spain(ES) MAT2006-11731CO2-01 Institutional research plan: CEZ:AV0Z20410507 Keywords : Magnesium * Creep * Texture * Extrusion Subject RIV: JG - Metallurgy Impact factor: 2.949, year: 2009

  16. Sea water magnesium fuel cell power supply

    Science.gov (United States)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.

    2015-08-01

    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  17. The Effect of Alloying with Magnesium on the Annealing Behavior of Aluminum Alloys Studied by Positron Lifetime Technique

    Science.gov (United States)

    Abdel-Hamed, M. O.

    The migration enthalpy Hivm for point defects and dislocations is estimated by using positron lifetime technique; point defects and dislocations are produced as a result of plastic deformation at room temperature (RT) for the decomposition sequence, namely 5005, 5052 and 5083, of commercial Al-Mg systems. The results show that Hivm for the three systems increases as the Mg content is increased to u1=0.34±0.09 eV, u2=0.39±0.12 eV, and u3=0.42±0.08 eV for the point defect state, and u1=1.12±0.08 eV and u2=1.37±0.13 eV for the dislocation state to 5005 and 5052, respectively. All the data are analyzed in terms of the two state trapping model.

  18. Justification for intravenous magnesium therapy in acute myocardial infarction

    DEFF Research Database (Denmark)

    Rasmussen, H S

    1988-01-01

    Recent studies have shown that patients with acute myocardial infarction (AMI) are magnesium-deficient and develop an additional transient decrease in serum magnesium concentrations (S-Mg c) during the acute phase of the infarct. Animal experiments, as well as studies on humans, have indicated...... that the acute decrease in S-Mg c as well as a more chronic magnesium (Mg) deficiency state are harmful to the myocardium in the setting of acute ischaemia. This knowledge has led during the last couple of years to the performance of four double-blind placebo controlled studies in which the effect of i.......v. magnesium therapy on mortality and incidence of arrhythmias in patients with AMI has been evaluated. Magnesium treatment more than halved the acute mortality and incidence of arrhythmias requiring treatment in three of the four intervention studies. The mechanisms behind the beneficial effect of magnesium...

  19. [Magnesium level in human organism during 105-day isolation].

    Science.gov (United States)

    Piruzian, L A; Protasova, O V; Maksimova, I A; Morukov, B V; Protasov, S V; Ushakov, I B

    2012-01-01

    Total and ionized magnesium in blood serum and in daily urine were determined before (baseline values) and on days 30, 60 and 105 of the experiment with 105-d isolation and confinement (Mars-105)/ Magnesium in hair was investigated before (baseline values) and on day-105 of the experiment. The investigations were performed using atomic emission spectrometry with inductively coupled argon plasma. Changes in magnesium were most significant over the initial 30 days in the experiment. Reduction of serum magnesium was accounted for by the fall in the ionized fraction. In organism magnesium is controlled by the ion-regulatory function of the kidney and varies with individuals. Levels of ionized magnesium in blood serum and excreted with daily urine can serve as indicators of stress resistivity .

  20. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained