WorldWideScience

Sample records for anl electric vehicle

  1. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  2. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Yingqi, Liu; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...

  3. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  4. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  5. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  6. Electric Vehicles in Imperfect Electricity Markets

    OpenAIRE

    Schill, Wolf-Peter

    2011-01-01

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power mark...

  7. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  8. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  9. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  10. Emission Impacts of Electric Vehicles

    OpenAIRE

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    Alternative vehicular fuels are proposed as a strategy to reduce urban air pollution. In this paper, we analyze the emission impacts of electric vehicles in California for two target years, 1995 and 2010. We consider a range of assumptions regarding electricity consumption of electric vehicles, emission control technologies for power plants, and the mix of primary energy sources for electricity generation. We find that, relative to continued use of gasoline-powered vehicles, the use of electr...

  11. Light and ultralight electric vehicles

    OpenAIRE

    Van den Bossche, Alex

    2010-01-01

    Today electrical vehicles are again considered seriously. However, one is not yet used to their performance. An overview is given in what one can expect from electric vehicles, ranging from electric bicycles to the electrical SUV. Special attention is given to the possibility of ultralight electric cars and the elbev concept, “Ecologic Low Budget Electric Vehicle”. Together with high efficiency power plants, a CO2 emissions of about 10gr/km could be obtained.

  12. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  13. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: what in the future

    Energy Technology Data Exchange (ETDEWEB)

    Maggetto, G.; Van Mierlo, J. [Vrije Universiteit, Brussel (Belgium)

    2000-07-01

    In urban area, due to their beneficial effect on environment, electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are an important factor for improvement of traffic and more particular for a healthier environment. Moreover, the need for alternative energy source is growing and the price competition of alternatives against oil is becoming more and more realistic. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are offering the best possibility for the use of new energy sources, because electricity can result from a transformation with high efficiency of these sources and is always used with the highest possible efficiency in systems with electric drives or components. Some basic considerations about the situation today and in a mid and long-term perspective, are presented together with the infrastructure developments.

  14. Going Green with Electric Vehicles

    Science.gov (United States)

    Deal, Walter F., III

    2010-01-01

    There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…

  15. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  16. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  17. Marketing of electric vehicles

    International Nuclear Information System (INIS)

    Substituting electric vehicles for traditional ones could reduce local pollution and greenhouse emissions from the transportation system. However, these societal benefits come at high costs to the owner of the EV in terms of price, driving range, availability, loading capacity, speed and acceleration. In addition, the usability of an EV is hampered by the lack of an infrastructure for recharging. Such a product hardly sells itself to potential customers. Besides supportive national policies, skillful marketing is needed to get it accepted and diffused throughout society. This paper outlines a two-phase strategy for the marketing of EVs based on a discussion of current and expected future characteristics of EVs and on a review of research on early adopters. (author)

  18. Hybrid and Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  19. Electric Vehicles and the Customers

    DEFF Research Database (Denmark)

    Christensen, Linda

    2011-01-01

    This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour.......This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour....

  20. Smart electric vehicle charging system

    OpenAIRE

    João C. Ferreira; Monteiro, Vítor Duarte Fernandes; João L Afonso; Silva, Alberto R.

    2011-01-01

    In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user ...

  1. 1997 hybrid electric vehicle specifications

    Energy Technology Data Exchange (ETDEWEB)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  2. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro;

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  3. Price Based Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth;

    2012-01-01

    It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid...

  4. Air-Conditioning for Electric Vehicles

    Science.gov (United States)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  5. Electric Vehicle Site Operator Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  6. Electrical steering of vehicles

    DEFF Research Database (Denmark)

    Blanke, Mogens; Thomsen, Jesper Sandberg

    2006-01-01

    solutions and still meet strict requirements to functional safety. The paper applies graph-based analysis of functional system structure to find a novel fault-tolerant architecture for an electrical steering where a dedicated AC-motor design and cheap voltage measurements ensure ability to detect all...

  7. Switched reluctance drives for electric vehicle applications

    OpenAIRE

    Andrada Gascón, Pedro; Torrent Burgués, Marcel; Blanqué Molina, Balduino; Perat Benavides, Josep Ignasi

    2003-01-01

    Electric vehicles are the only alternative for a clean, efficient and environmentally friendly urban transport system. With the increasing interest in electric drives for electric vehicle propulsion. This paper first tries to explain why the switched reluctance drive is a strong candidate for electric vehicle applications. It then gives switched reluctance drive design guidelines for battery or fuel cell operated electric vehicles. Finally, it presents the design and simulation of a switched ...

  8. Electric Vehicle : The Future Cars

    Directory of Open Access Journals (Sweden)

    Varun Goyal

    2013-06-01

    Full Text Available A lot is said and heard about global warming and its causes. But still the global situation is the same and nothing much changes. This paper intends to bring, what is considered as the potential savior of the world today, ELECTRIC VEHICLES in the lime light. Provided the EV are known for their non-emission of air pollutants and zero noise workings, EVs may be the first step towards the clean and sophisticated world. This paper aims to discuss the past, the present and the future of the vehicles which seems to be the solution of the desperate situation. This paper also provides brief simulation of electric vehicle in MATLAB environment.

  9. Fuel Savings from Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  10. Perspectives for Electric Vehicles in Denmark

    DEFF Research Database (Denmark)

    Horstmann, Jørgen; Jørgensen, Kaj

    1997-01-01

    Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective.......Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective....

  11. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    OpenAIRE

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    Concerns regarding air pollution, energy dependence, and, increasingly, climate change continue to motivate the search for new transportation solutions. Much of the focus is on light-duty vehicles, as they account for approximately 60% of transportation energy use and greenhouse gas (GHG) emissions. Battery-powered, electric-drive vehicles (EVs), such as plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), are among the most promising of the advanced vehicle and fuel...

  12. Noise emission of electric and hybrid electric vehicles : deliverable FOREVER

    OpenAIRE

    Pallas, Marie-Agnès; Kennedy, John; WALKER, Ian; Chatagnon, Roger; BERENGIER, Michel; Lelong, Joël

    2015-01-01

    The project FOREVER aims primarily to provide data and information on the potential future noise impacts of electric vehicles on national roads. Work Package 2 (WP2) of the project is intended to identify the noise emission levels from electric and hybrid-electric vehicles. This involves a review of the state-of-the-art in vehicle noise evaluation methods and how these can be applied to electric vehicles, considering the issue from the perspective of operation in controlled conditions rather ...

  13. Electric Vehicles in Imperfect Electricity Markets: A German Case Study

    OpenAIRE

    Schill, Wolf-Peter

    2010-01-01

    We analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market with a game-theoretic model. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine their effects on prices, welfare, and electricity generation for various cases with different players being in charge of vehicle operations. We find that vehicle loading increases generator profits, but decreases consumer surplu...

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. Mobility in Turkey. Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yazgan, M. [Embassy of the Kingdom of the Netherlands, Turan Gunes Bulvari, Hollanda Caddesi, No.5,06550 Yildiz-Ankara (Turkey)

    2013-01-15

    The purpose of this report is to provide information about electric vehicles (EVs) and e-mobility as an emerging market in Turkey. EVs receive attention from the Turkish government for a number of reasons: Turkey has a strong automotive industry and needs to follow the technological developments taking place regarding intelligent vehicles and intelligent transport systems, as well as electric transportation technologies. Secondly, a considerable amount of carbon emissions from motor vehicles is of great concern in relation to climate change. EVs might be an alternative which can break the dependence of Turkey on imported fuel that has a negative influence on its current account deficit (CAD). On top of these factors, the Prime Minister of Turkey has a desire to have a 'Local Brand Vehicle' before the 100th year of the establishment of the Republic in 2023 and preferably an 'EV'. EVs are included in the strategy documents and action plans of almost all ministries and public institutions. Among all ministries, the Ministry of Science, Industry and Technology (MoSI and T) takes a leading position. It holds bi-annual meetings with stakeholders to monitor and evaluate progress about the level of actualization of the identified policies on e-mobility. MoSI and T's related institution of the Scientific and Technological Research Council of Turkey (TUBITAK) co-ordinates the R and D activities and provides generous R and D incentives. EVs have been put on sale in Turkey in 2012 and are still very limited in number. Public institutions are taking the lead by converting their vehicle fleet to EVs. EVs are also more suitable for businesses/ duties with a fixed/short route; therefore it is expected that the growth of the sector will mainly come from the vehicle fleet of the public organisations and institutions, followed by the private vehicle fleet of companies, e.g. freight companies. Although there are some on-going test drives, it is not yet proven

  16. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  17. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  18. Electric vehicles in imperfect electricity markets: The case of Germany

    International Nuclear Information System (INIS)

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future. - Highlights: → We study the effect of electric vehicles on an imperfectly competitive electricity market. → We apply a game-theoretic model to the German market. → There is a market power-mitigating effect of vehicle loading on oligopolistic generating firms. → Consumers benefit from electric vehicles if excess battery capacity can be used for grid storage. → Electric vehicles are unlikely to be a source of market power in Germany in the near future.

  19. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Soares, F. J.; Almeida, P.M. Rocha Almeida; Lopes, J.A. Pecas;

    2012-01-01

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  20. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  1. Electric vehicle integration into modern power networks

    CERN Document Server

    Garcia-Valle, Rodrigo

    2012-01-01

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources.New business mo

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    OpenAIRE

    McCarthy, Ryan W.

    2009-01-01

    Achieving policy targets for reducing greenhouse gas (GHG) emissions from transportation will likely require significant adoption of battery-electric, plug-in hybrid, or hydrogen fuel cell vehicles. These vehicles use electricity either directly as fuel, or indirectly for hydrogen production or storage. As they gain share, currently disparate electricity and transportation fuels supply systems will begin to “converge.” Several studies consider impacts of electric vehicle recharging o...

  3. A comparison of electric vehicle integration projects

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Garcia-Valle, Rodrigo; Kempton, Willett

    2012-01-01

    It is widely agreed that an intelligent integration of electric vehicles can yield benefits for electric vehicle owner, power grid, and the society as a whole. Numerous electric vehicle utilization concepts have been investigated ranging from the simple e.g. delayed charging to the more advanced e.......g. utilization of electric vehicles for ancillary services. To arrive at standardized solutions, it is helpful to analyze the market integration and utilization concepts, architectures and technologies used in a set of state-of-the art electric vehicle demonstration projects. The goal of this paper...... is to highlight different approaches to electric vehicle integration in three such projects and describe the underlying technical components which should be harmonized to support interoperability and a broad set of utilization concepts. The projects investigated are the American University of Delaware's V2G...

  4. On the Sustainability of Electrical Vehicles

    OpenAIRE

    Hsu, Tai-Ran

    2013-01-01

    Many perceive electric vehicles (EVs) to be eco-environmentally sustainable because they are free of emissions of toxic and greenhouse gases to the environment. However, few have questioned the sustainability of the electric power required to drive these vehicles. This paper presents an in-depth study that indicates that massive infusion of EVs to our society in a short time span will likely create a colossal demand for additional electric power generation much beyond what the US electric pow...

  5. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012......In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...

  6. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  7. Modern Electric Traction of Skoda Plzen Vehicles Modern Electric Traction of Skoda Plzen Vehicles

    OpenAIRE

    Jiri Drabek; Jiri Danzer

    2005-01-01

    The electric traction vehicle producting plant SKODA Plzen - Transportations develops and produces electric traction drives with the top technological niveau. Electric vehicles are delivered to transport institutions in Czech Republic as well as abroad. Many Ma, and PhD. graduates of the University of Zilina take part in this successful activity.The electric traction vehicle producting plant SKODA Plzen - Transportations develops and produces electric traction drives with the top technologica...

  8. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  9. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  10. Automation of electric vehicle and development prospects

    OpenAIRE

    Wen, Wei

    2016-01-01

    This thesis introduces the basic principle of operation for electric vehicle. Through analysing its impact on environment and combining the reality and application, making a prospect concerning electric vehicles’ sales market. In introduction of operative principle for electric vehicle, firstly are all vehicles’ types illustrated. Then through examples, its necessary components and automation control system are explained. In aspect of environment, real explanations and examples are giv...

  11. Optimal Charge control of Electric Vehicles in Electricity Markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Wu, Guang;

    2011-01-01

    controlled. In this paper, an algorithm is presented for every individual vehicles to minimize the charging cost while satisfying the vehicle owner’s requirements. The algorithm is based on a given future electricity prices and uses dynamic programming. Optimization aims to find the economically optimal......Environment constraints, petroleum scarcity, high price on fuel resources and recent advancements in battery technology have led to emergence of Electric Vehicles (EVs). As increasing numbers of EVs enter the electricity market, these extra loads may cause peak load and need to be properly...... solution for each vehicle....

  12. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    OpenAIRE

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects.An analysis of the current and near term electric and plug‐i...

  13. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  14. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  15. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES)

    OpenAIRE

    S. Selivanov; V. Filenko; А. Bazhynov; E. Budianskaya

    2009-01-01

    The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  16. Electric Vehicles--A Historical Snapshot

    Science.gov (United States)

    Kraft, Thomas E.

    2012-01-01

    Most people don't realize that the history of electric vehicles (EVs) predates the Civil War. This article provides a historical snapshot of EVs to spark the interest of both teachers and students in this important transportation technology.

  17. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To suppor

  18. Electric-powered passenger vehicle program

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B.H.

    1977-06-28

    A revised program plan is presented for developing an electric vehicle incorporating a flywheel regenerative power system with design considerations and goals for safety and for vehicle body construction using lightweight fiber-reinforced composite material. Schedules are included for each of the major steps in the program. (LCL)

  19. Electric-powered passenger vehicle program

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B.H.

    1977-05-04

    The program plan is presented for developing an electric vehicle incorporating a flywheel regenerative power system with design considerations and goals for safety and for vehicle body construction using lightweight fiber-reinforced composite material. Schedules are included for each of the major steps in the program. (LCL)

  20. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  1. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  2. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  3. Control of Energy Regeneration for Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; MAO Xiao-jian; LI Li-ming; ZHUO Bn

    2008-01-01

    To extend electric vehicle (EV) running distance, the vehicle energy regeneration (ER) method and vehicle control strategy were designed based on the original vehicle braking system. The ER principle of direct current (DC) brushless motor was studied, the motor mathematical model and PI control method with torque close-loop were built. This control method was applied to pure EV and the real road tests were evaluated.The ER control does not make any significant uncomfortable influence brake feeling and can save about 10% battery energy based on 3 times economic commission for Europe (ECE) driving cycles.

  4. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  5. Think City Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  6. Medium Duty Electric Vehicle Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Robin J. D. [Smith Electric Vehicles Corporation, Kansas City, MO (United States)

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  7. Identification of potential locations of electric vehicle supply equipment

    Science.gov (United States)

    Brooker, R. Paul; Qin, Nan

    2015-12-01

    Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.

  8. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  9. Electrical Vehicles Activities Around the World

    DEFF Research Database (Denmark)

    Schauer, Gerd; Garcia-Valle, Rodrigo

    2013-01-01

    To understand the development of electric vehicles it is helpful to recognize constraints that were overcome during its history and the lessons learned from these constraints. In the earliest history of automobiles electrical cars initially dominated, but were pushed aside by cars with a combustion...... power electronics, preparations for roll-out, and there is discussion of a variety of electric vehicles manufactured by the car industry. Only recently the results in terms of performance, costs of operation and consumer acceptance were disheartening but now incentive schemes, regulatory frameworks, new...... engine. In the 1990s research and demonstrations intensified and built a good basis for actual development of electrical vehicles. Discussion of the results achieved and lessons learned from millions of kilometers of road testing is worthwhile but in addition to technological developments such as light...

  10. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  11. DC Power System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-11-01

    Full Text Available In recent years, environmental and energy problem has become one of the world's hot spot problems. Today, the road cars not only consume a lot of oil resource, but also cause serious pollution to human survival environment. Therefore, to save energy and protect environment, a green environmental friendly electric car instead of fuel car will be needed for sustainable development of the society. Electric vehicle has no pollution, low noise, high efficiency, diversification, simple structure and convenient maintaining; the development of green cleaning electric vehicle is the trend, and the inevitable choice. The power supply system of electric vehicle can be divided into three parts, the battery charging system, motor drive system and dc load power supply system. This paper mainly studies the dc load power supply system. Main function is to convert the high-voltage of the battery in the electric vehicle into low voltage output, provide the power supply for the low voltage dc load, including the car safety system, windshield wiper system, audio system. On the basis of the analysis of the parameters, this article designs the converter, sets up the principle prototype, analyzes the experimental results and finally makes conclusion. The vehicle power supply is green, environment friendly, high-efficiency, digital and intelligent.    

  12. Congestion control in charging of electric vehicles

    CERN Document Server

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  13. A Survey on Electric / Hybrid Vehicles

    OpenAIRE

    Ribeiro, Bernardo; Brito, F. P.; Martins, Jorge

    2010-01-01

    Since the late 19th century until recently several electric vehicles have been designed, manufactured and used throughout the world. Some were just prototypes, others were concept cars, others were just special purpose vehicles and lately, a considerable number of general purpose cars has been produced and commercialized. Since the mid nineties the transportation sector emissions are being increasingly regulated and the dependency on oil and its price fluctuations originated an increasing ...

  14. Proceedings of the Neighborhood Electric Vehicle Workshop

    OpenAIRE

    Lipman, Timothy

    1994-01-01

    Neighborhood electric vehicles (NEVs) are small, very efficient EVs that are designed to be used for urban trips at relatively low speeds. They provide the potential for greatly reduced air pollution, energy use, petroleum imports, greenhouse gas emissions, and roadspace. Because they are very energy efficient, they are better suited to the limitations of today's batteries than are full-sized EVs designed for highway travel. As supplements to a household's group of vehicles, NEVs could be ...

  15. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  16. Electric Vehicles Mileage Extender Kinetic Energy Storage

    Directory of Open Access Journals (Sweden)

    Jivkov Venelin

    2015-03-01

    Full Text Available The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES, as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery and secondary (KES sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  17. A cycle timer for testing electric vehicles

    Science.gov (United States)

    Soltis, R. F.

    1978-01-01

    A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.

  18. Nissan Hypermini Urban Electric Vehicle Testing

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Robert Brayer

    2006-01-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  19. Plug-in Hybrid and Battery Electric Vehicles. Market penetration scenarios of electric drive vehicles

    OpenAIRE

    Francoise Nemry; Martijn Brons

    2010-01-01

    Electric-drive vehicles (EDVs) are currently emerging in the market and are seen as a promising option towards a less carbon intensive road transport. This report presents a prospective analysis in relation with two of the current bottlenecks for the diffusion of electric vehicles. These concern batteries performance and cost, and the access to charging infrastructures. Based on projections on these factors, the analysis develops scenarios for the future market for electric cars and provides ...

  20. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  1. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  2. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  3. Urban electric vehicles: a contemporary business case

    Directory of Open Access Journals (Sweden)

    Noha SADEK

    2012-01-01

    Full Text Available In a world where energy supply security and environmental protection are major concerns, the development of green vehicles is becoming a necessity. The Electric vehicle (EV is one of the most promising technologies that will make the “green dream” come true. This paper is a contemporary business case that encourages the immediate deployment of urban EVs. It proposes a model in which we can profit from the benefits of urban EVs namely, high energy efficiency, emissions reduction, small size and noise reduction. The model mitigates the EV potential limitations such as energy source, charging infrastructure, impact on electrical power system and cost issues. It also provides ideas to overcome the barriers of the technology application in order to speed up their commercialization. This study reveals that having an environmentally friendly vehicle can soon become a reality if our collaborative efforts are properly directed.

  4. Electric Vehicles. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John E., Comp.

    This document reviews the literature in the collections of the Library of Congress on electric vehicles. Not intended as a comprehensive bibliography, this guide is designed as the title implies, to put the reader "on target." This is of greatest utility to the beginning student of the topic. (AA)

  5. A Comprehensive Overview of Hybrid Electric Vehicles

    OpenAIRE

    Tao Gao; Caiying Shen; Peng Shan

    2011-01-01

    As the environmental pollution and energy crises are getting more and more remarkable, hybrid electric vehicles (HEVs) have taken on an accelerated pace in the world. A comprehensive overview of HEVs is presented in this paper, with the emphasis on configurations, main issues, and energy management strategies. Conclusions are discussed finally.

  6. New propulsion components for electric vehicles

    Science.gov (United States)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  7. A Comprehensive Overview of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Caiying Shen

    2011-01-01

    Full Text Available As the environmental pollution and energy crises are getting more and more remarkable, hybrid electric vehicles (HEVs have taken on an accelerated pace in the world. A comprehensive overview of HEVs is presented in this paper, with the emphasis on configurations, main issues, and energy management strategies. Conclusions are discussed finally.

  8. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  9. Prospects for vitrification of mixed wastes at ANL-E

    International Nuclear Information System (INIS)

    This report summarizes a study evaluating the prospects for vitrification of some of the mixed wastes at ANL-E. This project can be justified on the following basis: Some of ANL-E's mixed waste streams will be stabilized such that they can be treated as a low-level radioactive waste. The expected volume reduction that results during vitrification will significantly reduce the overall waste volume requiring disposal. Mixed-waste disposal options currently used by ANL-E may not be permissible in the near future without treatment technologies such as vitrification

  10. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus;

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority a...... above the state of the art power converters. This is an unnecessary high consumption of electrical energy during charging, which not only affects the consumer financially, but also creates unnecessary load on the grid.......This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...

  11. Batteries for Electric Vehicles and Hybrid Electric Vehicles - State of the art - Perspectives

    OpenAIRE

    PELISSIER, Serge

    2012-01-01

    Batteries are often considered to be the main obstacle in the diffusion of Hybrid Electric and Electric Vehicles. Indeed autonomy and lifetime of the vehicle are key points that depend directly on the batteries. Many recent developments have deeply modified their characteristics. Lithium batteries are often considered as the solution for energy storage in automotive applications but actually there is a large variety in the lithium batteries family. Even if published results periodically annou...

  12. Perspectives of electric vehicles: customer suitability and renewable energy integration

    OpenAIRE

    Propfe, Bernd; Luca de Tena, Diego

    2010-01-01

    Nowadays most car makers are about to start the production of battery electric vehicles and rangeextended vehicles in series. Two crucial questions arise, one concerning the customer suitability of these vehicles, and other concerning the integration in the power system. For this purpose daily trips from an extensive survey of passenger transportation were simulated with electric vehicles (based on real world models) to analyze suitability of the electric vehicles and to identify the boundari...

  13. Design of electric vehicle propulsion system incorporating flywheel energy storage

    OpenAIRE

    Dhand, Aditya

    2015-01-01

    Battery electric vehicles are crucial for moving towards a zero emission transport system. Though battery electric vehicle technology has been rapidly improving, it is still not competitive to the conventional vehicles in terms of both cost and performance. The limited driving range and high cost are significant impediments to the popularity of battery electric vehicles. The battery is the main element which affects the range and cost of the vehicle. The battery has to meet the requirements o...

  14. Critical behaviour in charging of electric vehicles

    Science.gov (United States)

    Carvalho, Rui; Buzna, Lubos; Gibbens, Richard; Kelly, Frank

    2015-09-01

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on two real-world distribution networks. We show that the system undergoes a continuous phase transition to a congested state as a function of the rate of vehicles plugging to the network to charge. We focus on the order parameter and its fluctuations close to the phase transition, and show that the critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more equitable in proportional fairness than in max-flow.

  15. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  16. Electric passenger and goods vehicles: A review of UK activities

    International Nuclear Information System (INIS)

    The production of electric-powered vehicles has been reduced to only a few hundred, after several thousand had been produced in Great Britain during the past five years. In the framework of this article, the different components of electric-powered vehicles are being examined regarding the economical situation: such as the vehicle itself, the batteries, the motor and the vehicle control. (BWI)

  17. Realizing the electric-vehicle revolution

    Science.gov (United States)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  18. Grid Integration of Electric Vehicles in Open Electricity Markets

    DEFF Research Database (Denmark)

    Presenting the policy drivers, benefits and challenges for grid integration of electric vehicles (EVs) in the open electricity market environment, this book provides a comprehensive overview of existing electricity markets and demonstrates how EVs are integrated into these different markets...... congestion management scenario within electric distribution networks •optimal EV charging management with the fleet operator concept and smart charging management •EV battery technology, modelling and tests •the use of EVs for balancing power fluctuations from renewable energy sources, looking at power...... and power systems. Unlike other texts, this book analyses EV integration in parallel with electricity market design, showing the interaction between EVs and differing electricity markets. Future regulating power market and distribution system operator (DSO) market design is covered, with up-to-date case...

  19. Review on Electric Vehicle, Battery Charger, Charging Station and Standards

    Directory of Open Access Journals (Sweden)

    Afida Ayob

    2014-01-01

    Full Text Available Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution system is also discussed.

  20. EPRI [Electric Power Research Institute]/ANL investigations of MCCI [molten core-concrete interactions] phenomena and aerosol release

    International Nuclear Information System (INIS)

    A program of laboratory investigations has been undertaken at Argonne National Laboratory, under sponsorship of the Electric Power Research Institute, in which the interaction between molten core materials and concrete is studied, with particular emphasis on measurements of the magnitude and chemical species present in the aerosol releases. The experiment technique used in these investigations is direct electrical heating in which a high electric current is passed through the core debris to sustain the high-temperature melt condition for potentially long periods of time. In the scoping experiments completed to date, this technique has been successfully used for corium masses of 5 and 20 kg, generating an internal heating rate of 1 kw/kg and achieving melt temperatures of 2000C. Experiments have been performed both with a concrete base and also with a cooled base with the addition of H2/CO sparging gas to represent chemical processes in a stratified layer. An aerosol and gas sampling system is being used to collect aerosol samples. Test results are now becoming available including masses of aerosols, x-ray diffraction, and scanning electron microscope analyses

  1. Policy driven demand for sales of plug-in hybrid electric vehicles and battery-electric vehicles in Germany

    OpenAIRE

    Trommer, Stefan; Kihm, Alexander; Hebes, Paul; Mehlin, Markus

    2010-01-01

    While technology issues are increasingly overcoming, the economic viability of electric vehicles is remaining constrained by higher prices than for conventional vehicles. However, first automakers present their Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEV) or at least pronounce them for the near future. Hence, there is an emerging need for vehicle manufacturers, practitioners and policy to estimate the particular demand for partly and fully electrified drive tr...

  2. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  3. Electric Vehicle Careers: On the Road to Change

    Science.gov (United States)

    Hamilton, James

    2012-01-01

    Many occupations related to electric vehicles are similar to those that help to make and maintain all types of automobiles. But the industry is also adding some nontraditional jobs, and workers' skill sets must evolve to keep up. This article describes careers related to electric vehicles. The first section is about the electric vehicle industry…

  4. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  5. An SCR inverter for electric vehicles

    Science.gov (United States)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  6. Repurposing of Batteries from Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  7. Multilevel Inverters for Electric Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

    1998-10-22

    This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

  8. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  9. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  10. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  11. Recycling of Advanced Batteries for Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  12. Chinese Consumer Attitudes towards the Electric Vehicle

    OpenAIRE

    Ivan, Catalin; Penev, Alexander

    2011-01-01

    The aim of this study is to find coherence between the theory of consumers‟ attitudes and the challenge of product acceptance. The relationship between consumer attitudes and product acceptance will be explored using the example of the Electric Vehicle (EV), an innovative and much debated product, in China. This study will analyze the attitudes of the Chinese consumers toward the EV and how these attitudes might affect the acceptance of this particular product. The reason China was chosen as ...

  13. Intelligent vehicle electrical power supply system with central coordinated protection

    Science.gov (United States)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-05-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  14. Intelligent vehicle electrical power supply system with central coordinated protection

    Science.gov (United States)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  15. SERVICE ISSUES: overview of electric vehicles use in Vietnam

    OpenAIRE

    Nguyen, Xuan Truong; Nguyen, Quang Hung

    2015-01-01

    Due to the problems caused by the gasoline engine on the environment and people, the automotive industry has turned to the electrically powered vehicle. Electric Vehicles (EVs) such as electric two-wheelers and electric cars provide convenient local transportation and are becoming popular means of transport in Vietnam in recent years. Electric bicycles, electric motorbikes and electric cars appeared in Vietnam since the early 2000s and are growing very quickly. As of September 2015, Vietnam's...

  16. Electric and plug-in hybrid vehicles advanced simulation methodologies

    CERN Document Server

    Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin

    2015-01-01

    This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain

  17. ANL-E Health Physics experience with D and D

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.I.; Mosho, G.D.; Munyon, W.J.; Murdoch, B.T.; Sholeen, C.M.; Shuman, J.P.

    1996-04-01

    The Argonne National Laboratory--East (ANL-E) Health Physics Section provides direct and/or oversight support to various D&D projects at ANL-E. The health physics problems encountered have been challenging, primarily because they involved the potential for high internal exposures as well as actual high external exposures. The lessons learned are applicable to other radiological facilities. A number of D&D projects being conducted concurrently at ANL-E are described. The problems encountered are then categorized, and lessons learned and recommendations are provided. The main focus will be limited to the support and technical assistance provided by personnel from the ANL Health Physics Section during the course of the work activities.

  18. Conversion of Gasoline Vehicles to CNG Hybrid Vehicles (CNG-Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Abolfazl Halvaei Niasar

    2013-08-01

    Full Text Available The aim of this study is investigation of the feasibility and advantages of using the natural gas as an alternative to gasoline as a fuel for hybrid electric vehicles. Operating CNG vehicles are really beneficial in the Middle East region considering the fact that gasoline is offered at a heavily subsidized price and therefore, by converting a significant portion of the automobiles to run on CNG, the gasoline internal consumption could be reduced. This in turn will result in more oil being available for export which will be beneficial to the economy of country. Hybrid Vehicles mainly have a CNG engine along with an electric drive. The batteries of Hybrid Vehicles are charged by a CNG engine. The engine size is smaller and emissions may be considerably less in hybrid vehicles relative to typical vehicles since the CNG engine is employed only to recharge the electric batteries. Although CNG-Electric hybrid vehicles are less common than Diesel-Electric hybrids, but they have been tested in several U.S. cities such as Denver and Seattle. CNG-electric hybrids hold huge potential for the future in the fact that they are significantly cleaner sources of energy and are conveniently suited to serve the needs of the current economy and modes of transportation. The use of these alternative sources of fuels requires investment and significant studies need to be made to evaluate their efficiencies and reliability. This study would cover most of these aspects and also explores the use of these technologies with particular reference to Qatar and the Middle East.

  19. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  20. Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection

    Institute of Scientific and Technical Information of China (English)

    YANG Diange; KONG Weiwei; LI Bing; LIAN Xiaomin

    2016-01-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle’s battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle’s power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  1. Review on Electric Vehicle, Battery Charger, Charging Station and Standards

    OpenAIRE

    Afida Ayob; Wan Mohd Faizal Wan Mahmood; Azah Mohamed Mohd Zamri Che Wanik; MohdFadzil Mohd Siam; Saharuddin Sulaiman; Abu Hanifah Azit; Mohamed Azrin Mohamed Ali

    2014-01-01

    Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types o...

  2. Plug-in electric vehicles automated charging control

    OpenAIRE

    Dallinger, David; Kohrs, Robert; Mierau, Michael; Marwitz, Simon; Wesche, Julius

    2015-01-01

    This paper examines how plug-in electric vehicles can be managed to balance the fluctuation of renewable electricity sources. In this context, different control strategies are introduced. To investigate indirect control via electricity tariffs, an electricity market analysis is conducted of a system with a high share of generation from renewable electricity sources. The analysis uses driving data collected from battery electric and plug-in hybrid vehicles in a research project which means tha...

  3. The requirements for batteries for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1976-01-01

    The paper reassesses the role of electric vehicles in the modern transportation system and their potential impact on oil consumption. Three major factors determining the size of this impact are discussed: the market potential, the date of introduction, and the rate of consumer acceptance. The strategy of selecting the battery type for an urban car to introduce in coming years is analyzed. The results of the analysis suggest that the research and development emphasis should be placed on near- and mid-term battery technology. From the standpoint of maximizing both the cumulative impact and the benefits derived in the year 2000, however, a strategy of early introduction of near-term and mid-term cars followed by the far-term vehicles seems to produce the optimum result.

  4. Mobile electric vehicles online charging and discharging

    CERN Document Server

    Wang, Miao; Shen, Xuemin (Sherman)

    2016-01-01

    This book examines recent research on designing online charging and discharging strategies for mobile electric vehicles (EVs) in smart grid. First, the architecture and applications are provided. Then, the authors review the existing works on charging and discharging strategy design for EVs. Critical challenges and research problems are identified. Promising solutions are proposed to accommodate the issues of high EV mobility, vehicle range anxiety, and power systems overload. The authors investigate innovating charging and discharging potentials for mobile EVS based on real-time information collections (via VANETS and/or cellular networks) and offer the power system adjustable load management methods.  Several innovative charging/discharging strategy designs to address the challenging issues in smart grid, i.e., overload avoidance and range anxiety for individual EVs, are presented. This book presents an alternative and promising way to release the pressure of the power grid caused by peak-time EV charging ...

  5. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  6. The Nikola project intelligent electric vehicle integration

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Marinelli, Mattia; Olesen, Ole Jan;

    2014-01-01

    The electric vehicle (EV) has certain properties that elevate its relevance to the smart grid. If EV integration is to meet its potential in supporting an economic and secure power system and at the same time lower the operating costs for the owner, it is necessary to thoroughly and systematically...... investigate the value-adding services that an EV may provide. The Danish Nikola project defines EV services as the act of influencing the timing, rate and direction of the power and energy exchanged between the EV battery and the grid to yield benefits for user, system, and society. This paper describes...

  7. Electric vehicle business models global perspectives

    CERN Document Server

    Beeton, David

    2014-01-01

    This contributed volume collects insights from industry professionals, policy makers and researchers on new and profitable business models in the field of electric vehicles (EV) for the mass market. This book includes approaches that address the optimization of total cost of ownership. Moreover, it presents alternative models of ownership, financing and leasing. The editors present state-of-the-art insights from international experts, including real-world case studies. The volume has been edited in the framework of the International Energy Agency's Implementing Agreement for Cooperation on Hy

  8. Plug in electric vehicles in smart grids energy management

    CERN Document Server

    Rajakaruna, Sumedha; Ghosh, Arindam

    2014-01-01

    This book highlights the cutting-edge research on energy management within smart grids with significant deployment of Plug-in Electric Vehicles (PEV). These vehicles not only can be a significant electrical power consumer during Grid to Vehicle (G2V) charging mode, they can also be smartly utilized as a controlled source of electrical power when they are used in Vehicle to Grid (V2G) operating mode. Electricity Price, Time of Use Tariffs, Quality of Service, Social Welfare as well as electrical parameters of the network are all different criteria considered by the researchers when developing

  9. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    OpenAIRE

    Nielsen, L.H.; Jørgensen K., null

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberal...

  10. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed Mourad

    2011-01-01

    Full Text Available Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  11. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  12. Electric vehicle drive train with contactor protection

    Science.gov (United States)

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  13. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  14. Optimal Charging of Electric Drive Vehicles: A Dynamic Programming Approach

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Capion, Karsten Emil; Juul, Nina;

    2013-01-01

    of electric vehicles in a market environment. From the perspective of vehicle operators participating in the electricity spot market, the problem is to optimally charge and discharge the vehicles in response to spot market prices. We consider the case of a vehicle owner who is a price......With the integration of fluctuating renewable production into the electricity system, electric-drive vehicles may contribute to the resulting need for flexibility, given that the market conditions provide sufficient economic incentive. To investigate this, we consider the short-term management......, therefore, we propose an ex ante vehicle aggregation approach. We illustrate the results in a Danish case study and find that, although optimal management of the vehicles does not allow for storage and day-to-day flexibility in the electricity system, the market provides incentive for intra-day flexibility....

  15. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  16. Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis

    OpenAIRE

    Kurani, Kenneth S; Turrentine, Tom; Sperling, Daniel

    1994-01-01

    Previous studies of the potential market for battery electric vehicles (BEVs) have reached contradictory conclusions. What they share are untested or implausible assumptions about consumer response to new transportation technology. We frame the BEV purchase decision in terms of a household's entire stock of vehicles, car purchase behavior and travel behavior. Within this framework, households which own both electric vehicles and gasoline vehicles are called "hybrid households". Because nearly...

  17. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  18. Electric Vehicle Service Personnel Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  19. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  20. Strategies for Charging Electric Vehicles in the Electricity Market

    DEFF Research Database (Denmark)

    Juul, Nina; Pantuso, Giovanni; Iversen, Jan Emil Banning;

    2015-01-01

    This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting...... a model of four alternative charging strategies. We think of them as increasing in sophistication from dumb via delayed to deterministic and stochastic model-based charging. We show that 29% of the total savings from ‘dumb’ are due to delayed charging and that substantial additional gains come charging...... optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming...

  1. The state of the art of electric and hybrid vehicles

    OpenAIRE

    Chan, CC

    2002-01-01

    In a world where environment protection and energy conservation are growing concerns, the development of electric vehicles (EV) and hybrid electric vehicles (HEV) has taken on an accelerated pace. The dream of having commercially viable EVs and HEVs is becoming a reality. EVs and HEVs are gradually available in the market. This paper will provide an overview of the present status of electric and hybrid vehicles worldwide and their state of the art, with emphasis on the engineering philosophy ...

  2. Electric Vehicle Requirements for Operation in Smart Grids

    OpenAIRE

    Marra, Francesco; Sacchetti, Dario; Træholt, Chresten; Larsen, Esben

    2011-01-01

    Several European projects on smart grids are considering Electric Vehicles (EVs) as active element in future power systems. Both battery-powered vehicles and plug-in hybrid vehicles are expected to interact with the grid, sharing their energy storage capacity. Different coordination concepts for EVs are being investigated, in which vehicles can be intelligently charged or discharged feeding power back to the grid in vehicle-to-grid mode (V2G). To respond to such needs, EVs are required to sha...

  3. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  4. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol. II

    OpenAIRE

    Gris, Arturo

    1991-01-01

    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  5. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    OpenAIRE

    Gris, Arturo E.

    1991-01-01

    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  6. Multiple Attribute Decision Making Based Relay Vehicle Selection for Electric Vehicle Communication

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2015-01-01

    Full Text Available Large-scale electric vehicle integration into power grid and charging randomly will cause serious impacts on the normal operation of power grid. Therefore, it is necessary to control the charging behavior of electric vehicle, while information transmission for electric vehicle is significant. Due to the highly mobile characteristics of vehicle, transferring information to power grid directly might be inaccessible. Relay vehicle (RV can be used for supporting multi-hop connection between SV and power grid. This paper proposes a multiple attribute decision making (MADM-based RV selection algorithm, which considers multiple attribute, including data transfer rate, delay, route duration. It takes the characteristics of electric vehicle communication into account, which can provide protection for the communication services of electric vehicle charging and discharging. Numerical results demonstrate that compared to previous algorithm, the proposed algorithm offer better performance in terms of throughput, transmission delay.

  7. Batteries charging systems for electric and plug-in hybrid electric vehicles

    OpenAIRE

    Monteiro, Vítor; Gonçalves, Henrique; João C. Ferreira; Afonso, João L.

    2012-01-01

    Many countries have a large dependence on imported fossil fuels whose prices increase almost every day. Knowing that much of this consumption is for transportation systems, it becomes essential to seek for alternatives. The natural bet is the electric mobility, namely through Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles (PHEVs). However, the wide spread utilization of these vehicles has consequences on the electrical power grid, mainly in terms of load management and electric ...

  8. Strategies for Charging Electric Vehicles in the Electricity Market

    Directory of Open Access Journals (Sweden)

    Nina Juul

    2015-06-01

    Full Text Available This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting a model of four alternative charging strategies. We think of them as increasing in sophistication from dumb via delayed to deterministic and stochastic model-based charging. We show that 29% of the total savings from ‘dumb’ are due to delayed charging and that substantial additional gains come charging optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming. We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.

  9. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  10. "Can Vehicle-to-Grid Revenue Help Electric Vehicles on the Market?"

    OpenAIRE

    Parsons, George R.; Hidrue, Michael K.; Willett Kempton; Meryl P. Gardner

    2011-01-01

    Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when power prices are high. Since providing this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the first study of the potential consumer demand for V2G electric vehicles. In our choice experiment, 3029 responden...

  11. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  12. Research and development of electric vehicles for clean transportation

    Institute of Scientific and Technical Information of China (English)

    WADA Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Dept.of Human-Robotics Saitama Institute of Technology.Electric mobile systems developed in our laboratory include a converted electric automobile,electric wheelchair and personal mobile robot.These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles,i.e.,batteries and electric motors,does not deteriorate the environment.To drive motors for vehicle traveling,robotic technologies were applied.

  13. Optimal charging of electric drive vehicles in a market environment

    DEFF Research Database (Denmark)

    Kristoffersen, Trine Krogh; Capion, Karsten Emil; Meibom, Peter

    2011-01-01

    With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market...... participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear...... on prices from the Nordic market. The results show that electric vehicles provide flexibility almost exclusively through charging. Moreover, the vehicles provide flexibility within the day but only limited flexibility from day to day when driving patterns are fixed....

  14. ENPEP model enhancements at ANL

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) has been involved in energy and electricity planning analyses for almost 20 years. Their activities include the development of analytical tools and methodologies along with their application to a wide variety of national energy planning studies. The methodologies cover all aspects of energy planning. In response to a request by the US Department of Energy (USDOE) to integrate existing tools into a package that could be distributed to developing countries for their own use, the ENergy and Power Evaluation Program (ENPEP) was developed. The USDOE wanted an all purpose tool that would allow the user to do a complete energy analysis, from demand forecast through primary energy resources allocation to electricity generation system expansion plan and environmental analysis. Since its original development, the ENPEP modules have been improved and enhanced to incorporate advancements in computer hardware and software technology, as well as to correct bugs that were identified in the programs. In cooperation with other organizations (e.g. The World Bank - IBRD - and the International Atomic Energy Agency - IAEA -), the ENPEP package has been used at national, regional and inter-regional training courses, as well as in the conduct of national energy/electricity planning studies. This paper reviews the development of the ENPEP package and the proposed enhancements to the package. (author). 1 fig., 2 tabs

  15. Active seat isolation for hybrid electric vehicles

    Science.gov (United States)

    Leo, Donald J.; Malowicki, Mark; Buckley, Stephen J.; Naganathan, Ganapathy

    1999-07-01

    A feasibility study in the use of induced strain actuators for active seal isolation is described. The focus of the work is the isolation of lightweight automotive seats for hybrid-electric vehicles. The feasibility study is based on a numerical analysis of a three-degree-of-freedom vibration model of the seat. Mass and inertia properties are based on measurements from a powered seat that is found in current model year automobiles. Tradeoffs between vertical acceleration of the seat, actuator stroke requirements, and isolation frequency are determined through numerical analysis of the vibration model. Root mean square accelerations and actuator strokes are computed using power spectral densities that model broadband excitation and road excitation that is filtered by the vehicle suspension. Numerical results using the road excitation indicate that factors of two to three reduction in vertical acceleration are achieved when the active isolation frequency is reduced to approximately 1 Hz with damping factors on the order of 10 to 30 percent critical. More significant reductions are achieved in the case of broadband floor excitation. Root mean square actuator strokes for both case are int he range of 0.4 to 50 mm. Root mean square accelerations in the vertical direction are consistent with the levels found in standard comfort curves.

  16. Positive impact of electric vehicle and ngv on environment

    International Nuclear Information System (INIS)

    Electric Vehicle uses electricity from batteries as fuel and is environment friendly with zero emission. The occurrence of haze in 1997 in Malaysia and neighbouring countries has called for new studies about motor vehicle emission as it aggravates the problem. In big cities like Kuala Lumpur, Penang and Johor Bahru where it is estimated that over 300,000 vehicles enter the city everyday, smoke pollution from vehicles is identified as the major contributor to air quality. One of the solutions to air pollution problem could be the use of Electric Vehicles (EV) and Natural Gas for Vehicle (NGV). The NGV uses compressed natural gas mainly methane, is lead free and clean burning with low emission. The electric vehicles use batteries as power source. These batteries are charged off-peak hour, specifically after mid-night when the electric load curve has its least demand period. The number of electric vehicles and NGV in future years is calculated considering the penetration level. The reduction in pollution is estimated considering the number of automobiles replaced by electric vehicles and NGV. Finally, it is concluded that EV and NGV could be the ultimate solution for pollution control and could improve the environment specifically that of congested cities of Malaysia. (Author)

  17. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina;

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  18. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  19. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and the

  20. Passive safety in electric vehicles from a structural perspective

    OpenAIRE

    Asensio Galicia, Moises

    2011-01-01

    PFC del programa Erasmus EPS The demand of environmental and sustainable thinking, concerning global warming, has not surpassed the car industry, which have started to develop the electric vehicle. When developing this new type of vehicle, new issues regarding passive safety arise. The battery and related technology implemented in the electric vehicle, has to be made safe for the occupants. This report provides an in‐depth investigation of the structural behaviour in electri...

  1. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    Electric vehicles (EVs) are commonly recognized as smart grid assets in addition to their environmental benefits. However, uncoordinated charging or sole cost minimization based charging of electric vehicles may bring undesirable peak demands and voltage violations in the distribution system....... This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...... actors are considered: distribution system operator (DSO), fleet operators and EV owners. In the lower level of the hierarchy, the fleet operator centrally manages the charging schedule of electric vehicles; in the upper level of the hierarchy, the DSO uses transactive control technique to coordinate...

  2. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  3. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  4. Electric vehicle batteries reports of the PPP European green vehicles initiative

    CERN Document Server

    Briec, Emma

    2014-01-01

    This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on electric vehicle batteries. Electrification is one road towards sustainable road transportation, and battery technology is one of the key enabling technologies. However, at the same time, battery technology is one of the main obstacles for a broad commercial launch of electric vehicles. This book includes research contributions which try to bridge the gap between research and innovation in the field of battery technology for electric vehicles. The target audience primarily comprises r

  5. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino;

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  6. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  7. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  8. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  9. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    Energy Technology Data Exchange (ETDEWEB)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  10. Lithium Battery Power Delivers Electric Vehicles to Market

    Science.gov (United States)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  11. Preliminary investigation of the 317 Area, ANL-E

    International Nuclear Information System (INIS)

    The 317 Area at Argonne National Laboratory-East (ANL-E) is scheduled to undergo a Resource Conservation and Recovery Act (RCRA) Facility Investigation, Act or RFI. Prior to the formal RFI, a voluntary, preliminary characterization of the 317 Area was conducted by ANL-E. The characterization results were used to formulate the RFI work plan and provided a better focus for the formal investigation. This site presents a difficult engineering challenge. The nature of the waste disposed at this site in the past includes both liquid chemicals and radioactive waste. The 317 Area is classified as a radiologically controlled area because of operations currently performed there. Present Department of Energy policy stipulates that waste material from such an area must be considered radioactive. The possible presence of hazardous constituents in the soil and groundwater would require the investigation-derived waste generated at the site be disposed as radioactive mixed waste. Besides the nature of the waste possibly contaminating this site, the geology of the site poses an equally enigmatic situation. The ANL-E site is located in a region of recessional glacial moraine deposits

  12. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  13. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  14. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque...

  15. Optimal management of electric vehicles with a hybrid storage system

    OpenAIRE

    Vinot, Emmanuel; Trigui, Rochdi; Jeanneret, Bruno

    2010-01-01

    This paper presents a comparison between two offline optimisation methods for energy management applied to electrical vehicle with one electrical machine and fed by a hybrid storage system composed of batteries and ultra-capacitors. After a short presentation of the two methods, they are applied and compared to the case of an electric micro bus.

  16. Sustainable Electric Vehicle Management using Coordinated Machine Learning

    NARCIS (Netherlands)

    K. Valogianni (Konstantina)

    2016-01-01

    markdownabstractThe purpose of this dissertation is to investigate how intelligent algorithms can support electricity customers in their complex decisions within the electricity grid. In particular, we focus on how electric vehicle (EV) owners can be supported in their charging and discharging decis

  17. Electric Vehicle Scenario Simulator Tool for Smart Grid Operators

    OpenAIRE

    Hugo Morais; Zita Vale; João Soares; Cristina Lobo; Bruno Canizes

    2012-01-01

    This paper presents a simulator for electric vehicles in the context of smart grids and distribution networks. It aims to support network operators’ planning and operations but can be used by other entities for related studies. The paper describes the parameters supported by the current version of the Electric Vehicle Scenario Simulator (EVeSSi) tool and its current algorithm. EVeSSi enables the definition of electric vehicles scenarios on distribution networks using a built-in movement eng...

  18. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...... is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults...

  19. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  20. China’s electric vehicle subsidy scheme: Rationale and impacts

    International Nuclear Information System (INIS)

    To promote the market penetration of electric vehicles (EV), China launched the Electric Vehicle Subsidy Scheme (EVSS) in Jan 2009, followed by an update in Sep 2013, which we named phase I and phase II EVSS, respectively. In this paper, we presented the rationale of China’s two-phase EVSS and estimated their impacts on EV market penetration, with a focus on the ownership cost analysis of battery electric passenger vehicles (BEPV). Based on the ownership cost comparison of five defining BEPV models and their counterpart conventional passenger vehicle (CPV) models, we concluded that in the short term, especially before 2015, China’s EVSS is very necessary for BEPVs to be cost competitive compared with CPVs. The transition from phase I to phase II EVSS will generally reduce subsidy intensity, thus resulting in temporary rise of BEPV ownership cost. However, with the decrease of BEPV manufacturing cost, the ownership cost of BEPV is projected to decrease despite of the phase-out mechanism under phase II EVSS. In the mid term of around 2015–2020, BEPV could become less or not reliant on subsidy to maintain cost competitiveness. However, given the performance disadvantages of BEPV, especially the limited electric range, China’s current EVSS is not sufficient for the BEPV market to take off. Technology improvement associated with battery cost reduction has to play an essential role in starting up China’s BEPV market. - Highlights: • China’s phase I and phase II electric vehicle subsidy schemes were reviewed. • Major electric vehicle models in China’s vehicle market were reviewed. • The ownership costs of five defining electric passenger vehicle models were compared. • Policies to promote electric vehicle deployment in China were discussed

  1. Panorama 2011: The development of hybrid and electric vehicles

    International Nuclear Information System (INIS)

    Car manufacturers are having to deal with increasingly stringent norms and customers who are increasingly demanding with respect to fuel savings. As a result, large numbers of them are now looking into solutions that involve electrifying their vehicles. Hybrid vehicles, some of which can be recharged, and electric vehicles are the new stars of the auto trade shows. But not all manufacturers are necessarily using the same strategies. (author)

  2. Plug-In Electric Vehicle Handbook for Consumers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  3. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  4. Intelligent Electric Vehicle Integration - Domain Interfaces and Supporting Informatics

    DEFF Research Database (Denmark)

    Andersen, Peter Bach

    integration a reality, it is prudent to understand the domain in its entirety. In this thesis, this is reflected by a thorough investigation of the stakeholders most relevant to the synergistic relationship between electric vehicle and grid. The rst investigation addresses the power market. The market can...... and the functionalities needed by the control logic are demaned. The next informatics topic, communication, describes a set of protocols and standards applicable for electric vehicle integration. The study investigates the IEC 61850 standard and its ability to support smart charging. Finally it is described how......This thesis seeks to apply the field of informatics to the intelligent integration of electric vehicles into the power system. The main goal is to release the potential of electric vehicles in relation to a reliable, economically efficient power system based on renewables. To make intelligent EV...

  5. Reallocating Charging Loads of Electric Vehicles in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Jasim M. Al Essa

    2016-02-01

    Full Text Available In this paper, the charging loads of electric vehicles were controlled to avoid their impact on distribution networks. A centralized control algorithm was developed using unbalanced optimal power flow calculations with a time resolution of one minute. The charging loads were optimally reallocated using a central controller based on non-linear programming. Electric vehicles were recharged using the proposed control algorithm considering the network constraints of voltage magnitudes, voltage unbalances, and limitations of the network components (transformers and cables. Simulation results showed that network components at the medium voltage level can tolerate high uptakes of uncontrolled recharged electric vehicles. However, at the low voltage level, network components exceeded their limits with these high uptakes of uncontrolled charging loads. Using the proposed centralized control algorithm, these high uptakes of electric vehicles were accommodated in the network under study without the need of upgrading the network components.

  6. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  8. The research of controller area network on hybrid electrical vehicle

    Institute of Scientific and Technical Information of China (English)

    Wu Hongxing; Song Liwei; Kou Baoquan; Cheng Shukang

    2006-01-01

    It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.

  9. Recent results of a series electric hybrid passenger vehicle programme

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, S.; Khalif, S. [Imperial Coll. of Science, Technology and Medicine, Dept. of Mechanical Engineering, London (United Kingdom)

    1999-07-01

    Hybrid electric vehicles are increasingly finding favour for passenger transportation due to their high efficiency and environmentally friendly operation. The latter in particular has offset the higher cost associated with the more complex powertrain, with reducing costs due to the large numbers manufactured. The present contribution describes the final results of a European Commission funded development programme to produce a series electric hybrid passenger vehicle using a gas turbine prime mover. The concept vehicle uses a battery pack for energy storage and a supervisory control unit for efficient and safe vehicle use. The concept vehicle is now complete and operational using a diesel engine prime mover. The advances in the gas turbine prime mover included the design and development of a high speed motor generator to take power directly from the gas turbine engine. This dispenses the need to use a gear box to take off gas turbine engine's high speed shaft power, thereby reducing weight and size and increasing robustness and reliability. The ground breaking technology is described and test results recounted. A hybrid electric simulation program is also detailed and results recounted for the vehicle for the city of Athens. Results demonstrate the suitability of the gas turbine hybrid vehicle and benefits over the diesel engine powered vehicle. The next steps to realise the gas turbine engine as the prime mover in this vehicle are recounted. (Author)

  10. Modelling and simulation of vehicle electric power system

    Science.gov (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  11. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  12. Variable Bus Voltage Modeling for Series Hybrid Electric Vehicle Simulation

    OpenAIRE

    Merkle, Matthew Alan

    1997-01-01

    A growing dependence on foreign oil, along with a heightened concern over the environmental impact of personal transportation, had led the U. S. government to investigate and sponsor research into advanced transportation concepts. One of these future technologies is the hybrid electric vehicle (HEV), typically featuring both an internal combustion engine and an electric motor, with the goal of producing fewer emissions while obtaining superior fuel economy. While vehicles such as the Virg...

  13. Simulating Demand for Electrical Vehicles using Revealed Preference Data

    OpenAIRE

    Driscoll, Áine; Lyons, Seán; Mariuzzo, Franco; Tol, Richard S.J.

    2012-01-01

    We have modelled the market for new cars in Ireland with the aim of quantifying the values placed on a range of observable car characteristics. Mid-sized petrol cars with a manual transmission sell best. Price and perhaps fuel cost are negatively associated with sales, and acceleration and perhaps range are positively associated. Hybrid cars are popular. The values of car characteristics are then used to simulate the likely market shares of three new electrical vehicles. Electrical vehicles t...

  14. Hybrid energy sources for electric and fuel cell vehicle propulsion

    OpenAIRE

    Schofield, N; Yap, H T; Bingham, Chris

    2005-01-01

    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimi...

  15. The Electric Vehicle on its way into the Danish society

    DEFF Research Database (Denmark)

    Jensen, VCE, Steen V.; Schøn, Henriette

    1999-01-01

    This report is a guide-line for municipalities, institutions and firms how to introduce an Electric Vehicle in their fleet.Many topics concerning EV's has been tried answered in the most understandable way for many different interestgroups.......This report is a guide-line for municipalities, institutions and firms how to introduce an Electric Vehicle in their fleet.Many topics concerning EV's has been tried answered in the most understandable way for many different interestgroups....

  16. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    Science.gov (United States)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  17. Smart grids and electric vehicles: Made for each other?

    OpenAIRE

    MORGAN Trevor

    2012-01-01

    Electric vehicles (EVs) could play a central role in decarbonising road transport. But this new type of electricity load will need careful management. Although electricity needs for EVs are likely to remain small relative to overall load in most regions for many years to come, they could have a much bigger impact on peak load as motorists seek to recharge their batteries during the evening. Electricity suppliers will need to anticipate the long-term investments that will be needed to respond ...

  18. Research on the Power Management Strategy of Hybrid Electric Vehicles Based on Electric Variable Transmissions

    OpenAIRE

    Qiwei Xu; Shumei Cui; Liwei Song; Qianfan Zhang

    2014-01-01

    Electric variable transmission is a new electromechanical energy conversion device structure, which is especially suitable as the driving force distribution device for hybrid electric vehicles. This paper focuses on the power management strategy of hybrid electric vehicles based on an electric variable transmission, and a kind of hierarchical control ideology is proposed. The control strategy is composed of four control levels, namely analysis of force requirement, operation mode switching, f...

  19. Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Gowri, Krishnan

    2013-01-15

    Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6

  20. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  1. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO2-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  2. Electric vehicle test report Cutler-Hammer Corvette

    Science.gov (United States)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  3. Modular Electric Vehicle Program (MEVP). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  4. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  5. Alleviating a form of electric vehicle range anxiety through on-demand vehicle access

    Science.gov (United States)

    King, Christopher; Griggs, Wynita; Wirth, Fabian; Quinn, Karl; Shorten, Robert

    2015-04-01

    On-demand vehicle access is a method that can be used to reduce types of range anxiety problems related to planned travel for electric vehicle owners. Using ideas from elementary queueing theory, basic quality of service (QoS) metrics are defined to dimension a shared fleet to ensure high levels of vehicle access. Using mobility data from Ireland, it is argued that the potential cost of such a system is very low.

  6. Near-term electric vehicle program. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Integrated Vehicle Tests will be performed to determine the degree to which the (DOE) performance goals for the near-term electric vehicle program have been met, to provide a subjective evaluation of the regeneration brake system, to provide a general customer acceptability review. The specific tests covered in this plan are enumerated. Group 1 tests will be performed on the first available vehicle and will, in general, concentrate on performance tests to satisfy the DOE goals. Group 2 tests, to be performed on Vehicle No. 2, will provide additional test data (braking, suspension system, shake, noise level, ride and handling evaluations, and general customer acceptability review).

  7. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  8. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  9. Electric Vehicle Requirements for Operation in Smart Grids

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Træholt, Chresten;

    2011-01-01

    Several European projects on smart grids are considering Electric Vehicles (EVs) as active element in future power systems. Both battery-powered vehicles and plug-in hybrid vehicles are expected to interact with the grid, sharing their energy storage capacity. Different coordination concepts...... for EVs are being investigated, in which vehicles can be intelligently charged or discharged feeding power back to the grid in vehicle-to-grid mode (V2G). To respond to such needs, EVs are required to share their battery internal data as well as respond to external control signals. In this paper......, the requirements for the interaction of EVs with the electrical grid are presented. The defined requirements have been implemented on an EV test bed, realized by using real EV components. Charging/V2G tests on the EV test bed have shown that the presented requirements are sufficient to ensure an intelligent...

  10. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  11. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...... of the integrated power and transport system, focusing on the sensitivity of the power system configuration according to battery capacity and price of the electric drive vehicle. The value of different battery capacities is estimated, given that the batteries are used for both driving and storage. Likewise......, the prices at which the electric drive vehicles become of interest to the power system are found. Smart charge, including the opportunity to discharge (vehicle-to-grid) is used in all scenarios. Analyses show that the marginal benefits decrease the larger the battery. For very high battery prices, large...

  12. Electric Vehicle Smart Charging using Dynamic Price Signal

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Pedersen, Anders Bro; Marinelli, Mattia;

    2014-01-01

    proposed in this paper, involves a real-time control strategy for charging the EV using a dynamic price tariff, with the objective of minimizing the charging cost. Two different charging scenario are investigated, and the results are verified by experiments on a real Electric Vehicle. Finally, the costs......With yearly increases in Electric Vehicle (EV) sales, the future for electric mobility continues to brighten, and with more vehicles hitting the roads every day, the energy requirements on the grid will increase, potentially causing low-voltage distribution grid congestion. This problem can......, however, be resolved by using intelligent EV charging strategies, commonly referred to as ”Smart Charging”. The basic approach involves modifying the default vehicle charging scheme of ”immediate charging”, to a more optimal one that is derived from insight into the current state of the grid. This work...

  13. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  14. Vehicle-to-anything application (v2anything app) for electric vehicles

    OpenAIRE

    João C. Ferreira; Monteiro, Vítor Duarte Fernandes; Afonso, João L.

    2014-01-01

    This paper presents a mobile information system denominated as Vehicle-to-Anything Application (V2Anything App), and explains its conceptual aspects. This application is aimed at giving relevant information to Full Electric Vehicle (FEV) drivers, by supporting the integration of several sources of data in a mobile application, thus contributing to the deployment of the electric mobility process. The V2Anything App provides recommendations to the drivers about the FEV range autonomy, location ...

  15. Electric vehicles: Likely consequences of US and other nations` programs and policies

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Kwai-Cheung

    1994-12-30

    This report examines international electric vehicle development and commercialization programs. The study encompassed a review of current barriers to widespread electric vehicle implementation, field visits in seven nations and the United States to examine electric vehicle programs and policies, and analyses of electric vehicle effects on economics, energy, and the environment.

  16. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  17. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil-fuelled...

  18. EDISON – Study on optimal grid integration of electric vehicles

    DEFF Research Database (Denmark)

    Foosnæs, Anders Holm; Andersen, Claus Amtrup; Christensen, Linda;

    2011-01-01

    The Danish EDISON project has been launched to investigate how a large fleet of electric vehicles (EVs) can be integrated in a way that supports the electric grid while benefitting both individual car owners, and society as a whole through reductions in CO2 emissions. The consortium partners...

  19. Electric Vehicle Fleet Integration in the Danish EDISON Project

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Træholt, Chresten; Marra, Francesco;

    2010-01-01

    The Danish EDISON project has been launched to investigate how a large fleet of electric vehicles (EVs) can be integrated in a way that supports the electric grid while benefitting both the individual car owners and society as a whole through reductions in CO2 emissions. The consortium partners...

  20. Impact of Plug-In Hybrid Electric Vehicles on the Electricity System

    OpenAIRE

    Clement-Nyns, Kristien

    2010-01-01

    Plug-in hybrid electric vehicles, are rapidly gaining interest. Batteries of plug-in hybrid electric vehicles are charged by either plugging into electric outlets or by an on-board generator. For grid charging, these batteries are supplied by power from the grid at home from a standard outlet or on a corporate car park. The extra electrical load, from charging the batteries, has an impact on the electricity system in general and more specifically on the distribution grid and the electricity g...

  1. Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte;

    2015-01-01

    The prospects of Electric Vehicles (EVs) in providing clean transportation and supporting renewable electricity is widely discussed in sustainable energy forums worldwide. The battery storage of EVs could be used to address the variability and unpredictability of electricity produced from renewable......, the vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results...... of the analysis show that the charging of the EVs could ensure effective demand response in the local grids, within the existing grid capabilities and random charging patterns of EVs....

  2. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  3. Unregulated emissions from light-duty hybrid electric vehicles

    Science.gov (United States)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  4. Impact of potential electric vehicle market penetration on air quality

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, III, M. J.

    1979-01-01

    Emissions to the air due to electric vehicles will result from several processes during the production, operation, and recycling and disposal of the vehicles. Some of these processes are significantly different than those for conventional vehicles. Mining and manufacturing impacts are different and larger than those for CVs due mainly to battery production and materials preparation. Battery charging will cause the greatest air pollution during the life cycle of the vehicle. Increases in SOx emissions from electric utilities in regions where coal is the major source of electricity could be significant. The CO, HC, and NOx emissions that would be produced at ground level for CVs are eliminated with EV use, however. Other battery charging emissions take place at the battery. Toxic and potentially explosive gases are emitted during charging of current technology batteries. Particulate re-entrainment by urban vehicles will not be discussed for EVs, as this phenomenon is not yet well understood in general, and because EVs are likely to be no different than CVs in this regard, but particulate emissions from tire wear are included. Emissions from recycling of the electrical component materials are likely to be recycled. Little is known about localized emissions due to vehicle accidents with battery rupture and fires.

  5. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  6. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  7. Simulating demand for electric vehicles using revealed preference data

    International Nuclear Information System (INIS)

    We have modelled the market for new cars in Ireland with the aim of quantifying the values placed on a range of observable car characteristics. Mid-sized petrol cars with a manual transmission sell best. Price and perhaps fuel cost are negatively associated with sales, and acceleration and perhaps range are positively associated. Hybrid cars are popular. The values of car characteristics are then used to simulate the likely market shares of three new electric vehicles. Electric vehicles tend to be more expensive even after tax breaks and subsidies are applied, but we assume their market shares would benefit from an “environmental” premium similar to those of hybrid cars. The “environmental” premium and the level of subsidies would need to be raised to incredible levels to reach the government target of 10% market penetration of all-electric vehicles. -- Highlights: •Market values placed on a range of observable car characteristics are quantified. •We simulate market shares of electrical vehicles from values of car characteristics. •We assume electric vehicles will benefit from an “environmental” premium. •Large premium not enough to reach government targets for market penetration. •Very high subsidies required to reach government targets for market penetration

  8. One year monitoring of 26 electric vehicles

    NARCIS (Netherlands)

    Kieft, J. van de; Bolech, M.; Koffrie, R.; Goethem, S. van; Kievit, O.

    2012-01-01

    The Dutch government regards electric driving as a very promising option to make our future automobility more sustainable, to strenghten the Dutch energy position and to give our economy a structural boost. Therefore, it was decided to gain experience of electric driving through field tests with the

  9. Electric Vehicle Scenarios for India: Implications for mitigation and development

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Bhaskar, Kalyan

    2014-01-01

    to infrastructure and policies. While the literature on EVs has focused more on the role of electric cars, it could be electric two-wheelers which could make early headway, as is the case in China where nearly 120 million such vehicles had been sold by the end of 2012. Three scenarios (Business as Usual (BAU......The transport sector globally is overly dependent on liquid fossil fuels. Electric vehicles (EVs) are touted as a way of diversifying the fuel mix and helping to reduce dependence on fossil fuels. There could also be other co-benefits of EVs, such as improved energy security, decarbonising...... of the electricity sector, CO2 mitigation and reduction in local air pollution. The Indian government has recently launched a national electricity mobility mission to promote EVs. There is, however, much uncertainty in terms of the penetration of EVs in the transport sector, particularly those related...

  10. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben;

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  11. Activity based models for countrywide electric vehicle power demand calculation

    OpenAIRE

    Knapen, Luk; Kochan, Bruno; BELLEMANS, Tom; JANSSENS, Davy; Wets, Geert

    2011-01-01

    Smart grid design depends on the availability of realistic data. In the near future, energy demand by electric vehicles will be a substantial component of the overall demand and peaks of required power could become critical in some regions. Transportation research has been using micro-simulation based activity-based models for traffic forecasting. The resulting trip length distribution allows to estimate to what extent internal combustion engine vehicles can be substituted...

  12. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  13. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    OpenAIRE

    Zhibin Song; Weimin Li; Guoqing Xu; Kun Xu

    2011-01-01

    Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS) integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from ex...

  14. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    OpenAIRE

    Guoqing Xu; Weimin Li; Kun Xu; Zhibin Song

    2011-01-01

    Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS) integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from ex...

  15. Lithium Ion Batteries in Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad A.

    2016-05-16

    This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: long calendar life (greater than 10 years); sufficient cycle life; reliable operation under hot and cold temperatures; safe performance under extreme conditions; end-of-life recycling. To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.

  16. Pictorial characterization of worldwide electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, R S; Barber, K F

    1977-08-16

    The presentation given is intended to fulfill the several objectives of (1) documenting the pictorial review presented during ERDA's March 1, 1977, Conference on the Electric and Hybrid Vehicle Demonstration Project; (2) pictorially characterizing the present state of the electric and hybrid vehicle (EHV) art on an international scale; and (3) providing examples of the class of products expected to be available for the implementation of the early phases of Public Law 94-413. It is organized along national lines, with separate chapters for electric and hybrid vehicle programs in each of nine countries: Federal Republic of Germany, Israel, Netherlands, Sweden, the United Kingdom, France, Italy, Japan and the United States. Each chapter (except for Chapter 3) is preceded by descriptive material on the program objectives, participants and/or milestones.

  17. Plug-in hybrid electric vehicles in smart grid

    Science.gov (United States)

    Yao, Yin

    In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.

  18. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  19. One year monitoring of 26 electric vehicles

    OpenAIRE

    Kieft, J. van de; Bolech, M.; Koffrie, R.; Goethem, S. van; Kievit, O.

    2012-01-01

    The Dutch government regards electric driving as a very promising option to make our future automobility more sustainable, to strenghten the Dutch energy position and to give our economy a structural boost. Therefore, it was decided to gain experience of electric driving through field tests with the Dutch Government's Public Works Department. Rijkswaterstaat (RWS), the aim being twofold: as a highways authority RWS wants to learn more about future mobility and by 2015 RWS wants to have a quar...

  20. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  1. Crash simulation of UNS electric vehicle under frontal front impact

    Science.gov (United States)

    Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.

    2016-03-01

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  2. Integrated powertrain control for hybrid electric vehicles with electric variable transmission

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bosch, P.P.J. van den

    2009-01-01

    The electric variable transmission (EVT) offers a powersplit for hybrid electric vehicles by integrating two motor/ generator sets into one electric machine. This double rotor concept implements a continuously variable transmission between the engine and the driveline, including the possibility for

  3. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Global EV Outlook represents the collective efforts of two years of primary data gathering and analysis from the Electric Vehicles Initiative (EVI) and IEA. Key takeaways and insights include landscape analysis of electric vehicle (EV) stock/sales and charging station deployment. Existing policy initiatives are delineated and future opportunities highlighted in an ''Opportunity Matrix: Pathways to 2020''. Together EVI countries accounted for more than 90% of world EV stock at the end of 2012. Strong government support in EVI countries on both the supply and demand sides are contributing to rising market penetration. 12 out of 15 EVI countries offer financial support for vehicle purchases, and most employ a mix of financial and non-financial incentives (such as access to restricted highway lanes) to help drive adoption. The Global EV Outlook is a unique and data-rich overview of the state of electric vehicles today, and offers an understanding of the electric vehicle landscape to 2020.

  4. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  5. Component sizing optimization of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

  6. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  7. Integration of Electric Vehicles in Low Voltage Danish Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Thøgersen, Paul; Møller, Jan;

    2012-01-01

    Electric Vehicles (EVs) are considered as one of the important components of the future intelligent grids. Their role as energy storages in the electricity grid could provide local sustainable solutions to support more renewable energy. In order to estimate the extent of interaction of EVs...... in the electricity grid operation, a careful examination in the local electricity system is essential. This paper investigates the degree of EV penetration and its key influence on the low voltage distribution grids. Three detailed models of residential grids in Denmark are considered as test cases in this study...

  8. HIGH VOLTAGE SAFETY MANAGEMENT SYSTEM OF ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.

  9. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  10. Using lead-acid accumulators in hybrid electric vehicle regime

    OpenAIRE

    Hejdiš, Roman

    2010-01-01

    The master´s thesis discuss characteristics of hybrid electric vehicles and lead-acid accumulators applied in car industry. It compares classic and alternative drive in cars, descibes classification of hybrid drives and its characteristics. Further work disscus lead-acid accumulators which focuses on VRLA accumulators applied in hybrid electric cars. Practical part contains a construction description of negative electrode and experiment, which studied influence of various amount addition of c...

  11. Computer simulation of an unmanned aerial vehicle electric propulsion system

    OpenAIRE

    Yourkowski, Joel.

    1996-01-01

    There has been a substantial increase in the use of electric propulsion systems in Unmannned Aerial Vehicles (UAVs). However, this area of engineering has lacked the benefits of a dynamic model that could be used to optimize the design. configurations and flight profiles. The Naval Research Laboratory (NRL) has accurate models for the aerodynamics associated with UAVs. Therefore the proposed electric propulsion model would use the torque and RPM requirements generated by the aerodynamic model...

  12. Scheduling and location issues in transforming service fleet vehicles to electric vehicles

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Madsen, Oli B.G.; Adler, Jonathan

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels which are more sustainable. The electric vehicle is a good candidate for this transformation, especially which “refuels” by exchanging its spent....... In particular, the paper addresses the optimization and analysis of infrastructure design alternatives dealing with (1) the number of battery-exchange stations, (2) their locations, (3) the recharging capacity and inventory management of batteries at each facility, and (4) routing and scheduling of the fleet...

  13. Cascade Control Solution for Traction Motor for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zsuzsa Preitl

    2007-10-01

    Full Text Available In this paper a hybrid electric vehicle is considered, which contains both aninternal combustion engine and an electric motor (EM. Without focusing on the othercomponents of the vehicle, the EM is treated in detail, both regarding modelling aspectsand control solutions.After a brief modelling of the plant, two cascade speed control solutions are presented: firsta classical PI+PI cascade control solution is presented. The control systems related totraction electric motors (used in vehicle traction must be able to cope with differentrequests, such as variation of the reference signal, load disturbances which depend on thetransport conditions and parametric disturbances regarding changes in the total mass ofthe vehicle. For this purpose, in the design of the speed controller (external loop a specificmethodology based on extension of the symmetrical optimum method is presented. Thecontrollers are developed using the Modulus–Optimum method for the inner loop, and theExtended Symmetrical Optimum Method, corrected based on the 2p-SO-method, for theouter loop (for a more efficient disturbance rejection.In order to force the behaviour of the system regarding the reference input, a correctionterm is introduced as a non-homogenous structured PI controller solution.Simulations were performed using numerical values taken from a real applicationconsisting in a hybrid vehicle prototype, showing satisfactory behaviour.

  14. Load calculation and system evaluation for electric vehicle climate control

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  15. Design study of toroidal traction CVT for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  16. STRUCTURE DEVELOPMENT AND SIMULATION OF PLUG-IN HYBRID ELECTRIC VEHICLE

    OpenAIRE

    A. A. Marozka; Yu. N. Petrenko

    2013-01-01

    Electric-drive vehicles (EDVs) have gained attention, especially in the context of growing concerns about global warming and energy security aspects associated with road transport. The main characteristic of EDVs is that the torque is supplied to the wheels by an electric motor that is powered either solely by a battery or in combination with an internal combustion engine (ICE). This covers hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles...

  17. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  18. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  19. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  20. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  1. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  2. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  3. How should an electric vehicle sound? User and expert perception

    DEFF Research Database (Denmark)

    Petiot, Jean-François; Kristensen, Bjørn G.; Maier, Anja

    2013-01-01

    for electric vehicles were investigated in an experimental setting with a total of 40 participants, 34 novice users and six sound experts. Word association was used to elicit emotional reactions to the different sounds. Novice users employ more characterrelated terms to describe the sounds, while experts use...

  4. An Electric Vehicle Charging Management and its Impact on Losses

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Moldes, Eloy Rodríguez; Zaidi, Arsalan Hussain;

    2013-01-01

    In this paper, the statistics of passenger car usage in Denmark has been studied in order to obtain the possible future use of electric vehicles (EVs). On the basis of this analysis, a sequential charging management of EV has been developed and simulated in DIgSILENT power factory. Different cases...

  5. Motor Integrated Permanent Magnet Gear in a Battery Electrical Vehicle

    DEFF Research Database (Denmark)

    Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø;

    2015-01-01

    This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV) and the...... used as traction unit in urban traffic....

  6. Range prediction for electric vehicles; Reichweitenprognose fuer Elektromobile

    Energy Technology Data Exchange (ETDEWEB)

    Conradi, Peter [All4IP Technologies GmbH and Co.KG, Darmstadt (Germany)

    2012-06-15

    The range of electric vehicles varies strongly in dependency of a number of external factors. To be able to make an exact dynamic prediction of the remaining range during the journey, All4IP Technologies developed a special software that can access the CAN bus. The App, programmed for iOS and Android operating systems considers even the topology of the area. (orig.)

  7. Impacts of electric vehicle charging on distribution networks in Denmark

    DEFF Research Database (Denmark)

    Xu, Lizhong; Yang, Guang Ya; Xu, Zhao;

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce carbon dioxide emissions from the transport sector by drawing on renewable resources. As EVs become increasingly popular in the automotive market, the study of its impacts on the low-voltage grid has become increasingly important...

  8. Optimal charging schedule of an electric vehicle fleet

    DEFF Research Database (Denmark)

    Hu, Junjie; You, Shi; Østergaard, Jacob;

    2011-01-01

    In this paper, we propose an approach to optimize the charging schedule of an Electric Vehicle (EV) fleet both taking into account spot price and individual EV driving requirement with the goal of minimizing charging costs. A flexible and suitable mathematic model is introduced to characterize th...

  9. Renewable Energy for Electric Vehicles: Price Based Charging Coordination

    NARCIS (Netherlands)

    Richstein, J.C.; Schuller, A.; Dinther, C.; Ketter, W.; Weinhardt, C.

    2012-01-01

    In this paper we investigate the charging coordination of battery electric vehicles (BEV) with respect to the availability of intermittent renewable energy generation considering individual real world driving profiles in a deterministic simulation based analysis, mapping a part of the German power s

  10. Development and Early Adoption of Electric Vehicles: Understanding the tempest

    NARCIS (Netherlands)

    Sierzchula, W.

    2015-01-01

    Electric vehicles are one innovation that could help reduce CO2 emissions from the transportation sector and mitigate the harmful effects of climate change. However, substantial roadblocks to their adoption exist including high purchase cost, lack of charging infrastructure, and long charging time.

  11. CO2 emissions associated with electric vehicle charging: The impact of electricity generation mix, charging infrastructure availability and vehicle type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Miller, John; O’Shaughnessy, Eric; Wood, Eric; Shapiro, Evan

    2016-06-01

    The emission reduction benefits of EVs are dependent on the time and location of charging. An analysis of battery electric and plug-in hybrid vehicles under four charging scenarios and five electricity grid profiles shows that CO2 emissions are highly dependent on the percentage of fossil fuels in the grid mix. Availability of workplace charging generally results in lower emissions, while restricting charging to off-peak hours results in higher total emissions.

  12. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  13. Student Learning Projects in Electric Vehicle Engineering

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Leban, Krisztina Monika

    2012-01-01

    This paper presents the didactic problem based learning method in general use at Aalborg University as applied to Electric Mobility. Advantage is taken of this method to link student learning to current research projects. This offers advantages to the students and the researchers. The paper...... introduces the subject, presents the research of the Department of Energy Technology and describes the relevant syllabus. It continues to present a range of titles of previous research linked student project projects, and to fill in some of the detail, an example of such a student project. The paper...

  14. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  15. Battery electric vehicles - implications for the driver interface.

    Science.gov (United States)

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed. PMID:26444273

  16. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  17. Electronically commutated dc motors for electric vehicles

    Science.gov (United States)

    Maslowski, E. A.

    1981-01-01

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  18. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  19. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  20. Energy management strategies for electric and plug-in hybrid electric vehicles

    CERN Document Server

    Williamson, Sheldon S

    2013-01-01

    Covers power electronics and motor drives for energy management of electric and plug-in hybrid electric vehicles Addresses specific issues and design solutions related to photovoltaic/grid based EV battery charging infrastructures and on-board battery management systems Emphasis on power electronic converter topologies for on-board battery management

  1. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  2. Electric vehicle charge planning using Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels K.; Madsen, Henrik;

    2012-01-01

    Economic Model Predictive Control (MPC) is very well suited for controlling smart energy systems since electricity price and demand forecasts are easily integrated in the controller. Electric vehicles (EVs) are expected to play a large role in the future Smart Grid. They are expected to provide...... grid services, both for peak reduction and for ancillary services, by absorbing short term variations in the electricity production. In this paper the Economic MPC minimizes the cost of electricity consumption for a single EV. Simulations show savings of 50–60% of the electricity costs compared...... should be consumed as soon as it is produced to avoid the need for energy storage as this is expensive, limited and introduces efficiency losses. The Economic MPC for EVs described in this paper may contribute to facilitating transition to a fossil free energy system....

  3. Electric vehicle driving range extension using photovoltaic panels

    OpenAIRE

    Pinto, S.; Lu, Q.; Camocardi, P; Chatzikomis, C; Sorniotti, A; Lekakou, C.

    2016-01-01

    This paper investigates the potential benefits of photovoltaic (PV) panels on electric vehicles. In addition to the PV panels on the roof of the car, in this study a PV panel is installed below the windshield to increase energy capture when the car is parked. An electro-mechanical actuator makes the PV panel disappear under the roof when the passengers are in the vehicle. The paper presents the simulation model of the overall PV architecture, including the DC/DC converter and the energy stora...

  4. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  5. Power control apparatus and methods for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  6. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  7. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K. [Technical Univ. of Denmark (Denmark); Nielsen, L.H. [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  8. Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction

    OpenAIRE

    Canals Casals, Lluc; Martinez-Laserna, Egoitz; Amante García, Beatriz; Nieto, Nerea

    2016-01-01

    Electric vehicles are considered the most promising alternative to internal combustion engine vehicles towards a cleaner transportation sector. Having null tailpipe emissions, electric vehicles contribute to fight localized pollution, which is particularly important in overpopulated urban areas. However, the electric vehicle implies greenhouse gas emissions related to its production and to the electricity generation needed to charge its batteries. This study focuses the analysis on how the el...

  9. Reducing carbon emissions by introducing electric vehicle enhanced dedicated bus lanes

    OpenAIRE

    Doolan, Ronan; Muntean, Gabriel-Miro

    2014-01-01

    Most cities have special lanes dedicated to buses, however these lanes are rarely used at full capacity. At the same time governments around the world are encouraging people to buy electric vehicles. This paper proposes the creation of electric vehicle enhanced dedicated bus lanes (E-DBL), by allowing electric vehicles access to bus lanes, in order to improve the use of road capacity. By opening bus lanes to electric vehicles, traffic congestion could be eased, the range ...

  10. A database on electric vehicle use in Sweden. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fridstrand, Niklas [Lund Univ. (Sweden). Dept. of Industrial Electrical Engineering and Automation

    2000-05-01

    The Department of Industrial Electrical Engineering and Automation (IEA) at the Lund Institute of Technology (LTH), has taken responsibility for developing and maintaining a database on electric and hybrid road vehicles in Sweden. The Swedish Transport and Communications Research Board, (KFB) initiated the development of this database. Information is collected from three major cities in Sweden: Malmoe, Gothenburg and Stockholm, as well as smaller cities such as Skellefteaa and Haernoesand in northern Sweden. This final report summarises the experience gained during the development and maintenance of the database from February 1996 to December 1999. Our aim was to construct a well-functioning database for the evaluation of electric and hybrid road vehicles in Sweden. The database contains detailed information on several years' use of electric vehicles (EVs) in Sweden (for example, 220 million driving records). Two data acquisition systems were used, one less and one more complex with respect to the number of quantities logged. Unfortunately, data collection was not complete, due to malfunctioning of the more complex system, and due to human factors for the less complex system.

  11. Study on High Efficient Electric Vehicle Wireless Charging System

    Science.gov (United States)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  12. Is “smart charging” policy for electric vehicles worthwhile?

    International Nuclear Information System (INIS)

    Plug-in electric vehicles (PEVs) offer the potential for both reducing reliance on oil and reducing greenhouse gas emissions. However, they may also increase the demand for electricity during peak periods, thereby requiring the construction of new generating units and increasing total costs to electricity consumers. We evaluate the economic costs and benefits of policies that shift charging demand from daytime to off-peak nighttime hours, using data for two different independent system operators and considering a number of sensitivity analyses. We find that the total savings from demand-shifting run into the billions of dollars, though as a percentage of total electricity costs they are quite small. The value of smart charging policy varies significantly across electric grids. Time-of-use pricing is worthwhile under all of the cases we study, but the economic benefits of optimal charging of electric vehicles do not appear to justify investing in the smart grid infrastructure required to implement real-time pricing. - Highlights: ► Evaluates shifting charging time from peak to off-peak periods. ► Studies both MISO and PJM. ► Results depend on whether marginal fuel is coal or gas. ► Compares time-of-use pricing to real-time pricing.

  13. Driving Smart Growth: Electric Vehicle Adoption and Off-Peak Electricity Rates

    OpenAIRE

    Peter Gunther; Fred Carstensen; Marcello Graziano; Jill Coghlan

    2011-01-01

    This study examines the benefits that can emerge specifically in Connecticut during a shift from fossil-fueled to electricity-charged vehicles, with attention to their adoption's affect on electricity rates and transmission lines, and EV potential to reduce green house gases (GHGs). This study further demonstrates the value of a transiton to variable electric rates, to enable drivers to use smart-recharge mechanisms under off-peak rates, in preference to maintaining the current flat rates.

  14. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  15. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... devices and systems used to assess charges to consumers for electric vehicle fuel. There is no cost for... National Institute of Standards and Technology Work Group on Measuring Systems for Electric Vehicle Fueling... residential and business locations and those used to measure and sell electricity dispensed as a vehicle...

  16. Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)

    2009-01-01

    This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...... with closed formulae as a function of charging time. Specific manufacturer model of electric vehicles is used as study case....

  17. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  18. ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

    Institute of Scientific and Technical Information of China (English)

    Pu Jinhuan; Yin Chengliang; ZhangJianwu

    2005-01-01

    Energy management strategy (EMS) is the core of the real-time control algorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach with incorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize the engine fuel consumption and maintain the battery state of charge (SOC) in its operation range, while satisfying the vehicle performance and drivability requirements. The hybrid powertrain bench test is carried out to collect data of the engine, motor and battery pack, which are used in the EMS to control the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulink environment according to the bench test results. Simulation results are presented for behaviors of the engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid car control system and validated by vehicle field tests.

  19. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electric vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely

  20. Numerical Comparison of Optimal Charging Schemes for Electric Vehicles

    DEFF Research Database (Denmark)

    You, Shi; Hu, Junjie; Pedersen, Anders Bro;

    2012-01-01

    The optimal charging schemes for Electric vehicles (EV) generally differ from each other in the choice of charging periods and the possibility of performing vehicle-to-grid (V2G), and have different impacts on EV economics. Regarding these variations, this paper presents a numerical comparison...... of four different charging schemes, namely night charging, night charging with V2G, 24 hour charging and 24 hour charging with V2G, on the basis of real driving data and electricity price of Denmark in 2003. For all schemes, optimal charging plans with 5 minute resolution are derived through the solving...... of a mixed integer programming problem which aims to minimize the charging cost and meanwhile takes into account the users' driving needs and the practical limitations of the EV battery. In the post processing stage, the rainflow counting algorithm is implemented to assess the lifetime usage of a lithium...

  1. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik;

    2013-01-01

    with this imbalance and to reduce its high dependence on oil production. For this reason, it is interesting to analyse the extent to which transport electrification can further the renewable energy integration. This paper quantifies this issue in Inner Mongolia, where the share of wind power in the electricity supply...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power......Renewable energy is one of the possible solutions when addressing climate change. Today, large-scale renewable energy integration needs to include the experience to balance the discrepancy between electricity demand and supply. The electrification of transportation may have the potential to deal...

  2. Development of quick charging system for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Anegawa, Takafumi

    2010-09-15

    Despite low environmental impact and high energy efficiency, electric vehicles (EV) have not been widely accepted. The lack of charging infrastructure is one reason. Since lithium-ion battery has high energy density and low internal resistance that allows quick charging, the convenience of EV may be greatly improved if charging infrastructure is prepared adequately. TEPCO aims for EV spread to reduce CO2 emissions and to increase demand for electric power, and has developed quick charging system for fleet-use EV to improve the convenience of EV. And based on research results, we will propose desirable characteristics of quick charger for public use.

  3. Performance of the Lester battery charger in electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  4. Plug in electric vehicles in smart grids integration techniques

    CERN Document Server

    Rajakaruna, Sumedha; Ghosh, Arindam

    2014-01-01

    This book focuses on the state of the art in worldwide research on applying optimization approaches to intelligently control charging and discharging of batteries of Plug-in Electric Vehicles (PEVs) in smart grids. Network constraints, cost considerations, the number and penetration level of PEVs, utilization of PEVs by their owners, ancillary services, load forecasting, risk analysis, etc. are all different criteria considered by the researchers in developing mathematical based equations which represent the presence of PEVs in electric networks. Different objective functions can be defined an

  5. Advanced Driving Assistance Systems for an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Pau Muñoz-Benavent

    2012-12-01

    Full Text Available This paper describes the automation of a Neighborhood Electric Vehicle (NEV and the embedded distributed architecture for implementing an Advanced Driving Assistance System (ADAS with haptic, visual, and audio feedback in order to improve safety. For the automation, original electric signals were conditioned, and mechanisms for actuation and haptic feedback were installed. An embedded distributed architecture was chosen based on two low-cost boards and implemented under a Robotics Operating System (ROS framework. The system includes features such as collision avoidance and motion planning.

  6. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  7. Comparison of Standard and Fast Charging Methods for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2014-01-01

    Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.

  8. Robust Broadcast-Communication Control of Electric Vehicle Charging

    CERN Document Server

    Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Misha

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  9. Lightweight lead acid batteries for hybrid electric vehicle applications

    OpenAIRE

    Wallis, Lauren

    2015-01-01

    This report presents architectures, designs and chemistries for novel static soluble lead acid batteries, with the objective of producing a lightweight lead acid battery for improved specific energy. The demands for lightweight lead-acid batteries come from an expanding hybrid electric vehicle market demanding improved battery specific energy. There are several avenues for improving battery specific energy; the main two are improved active material utilisation efficiency and grid weight reduc...

  10. Performance of the Lester battery charger in electric vehicles

    Science.gov (United States)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  11. Research on Energy Management Strategy of Hybrid Electric Vehicle

    OpenAIRE

    Deng Tao; Huang Xiguang

    2015-01-01

    To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  12. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  13. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  14. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  15. Impacts and Utilization of Electric Vehicles Integration Into Power Systems

    Institute of Scientific and Technical Information of China (English)

    HUZechun; SONG Yonghua; XU Zhiwei; LUO Zhuowei; ZHAN Kaiqiao; JIA Long

    2012-01-01

    With the increasing of electric vehicles (EVs) penetration in power grids, the charging of EVs will have significant impacts on power system planning and operation. It is necessary to note that the majority of EVs are not in use in most of the time in a day. Therefore, the onboard batteries can be utilized as energy storage devices. This article reviews and discusses the current related research in the following areas.

  16. Research of Energy Regeneration Technology in Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    陈家新; 江建中; 汪信尧

    2003-01-01

    The theory of energy regeneration in electric vehicle (EV) has been introduced in most papers, but the mathematic model of EV energy regeneration system was little studied. In this paper the mathematic model of EV energy regeneration system is studied,and then the system ability under four control strategies is analyzed. In the end the system reliability is researched, and the calcula-tion model of system reliability is proposed.

  17. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    OpenAIRE

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    This paper presents experimental data and an analysis of a proton exchange membrane fuel cell system for electric vehicle applications. The dependence of the fuel cell system's performance on air stoichiometry, operating temperature, and reactant gas pressure was assessed in terms of the fuel cell's polarity and power density-efficiency graphs. All the experiments were performed by loading the fuel cell with resistive heater coils which could be controlled to provide a constant current or con...

  18. Least costly energy management for series hybrid electric vehicles

    OpenAIRE

    Formentin, Simone; Guanetti, Jacopo; Savaresi, Sergio M.

    2015-01-01

    Energy management of plug-in Hybrid Electric Vehicles (HEVs) has different challenges from non-plug-in HEVs, due to bigger batteries and grid recharging. Instead of tackling it to pursue energetic efficiency, an approach minimizing the driving cost incurred by the user - the combined costs of fuel, grid energy and battery degradation - is here proposed. A real-time approximation of the resulting optimal policy is then provided, as well as some analytic insight into its dependence on the syste...

  19. Optimal energy management strategy for battery powered electric vehicles

    International Nuclear Information System (INIS)

    Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios

  20. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  1. Socio-technical inertia: Understanding the barriers to electric vehicles

    International Nuclear Information System (INIS)

    It is widely accepted that electrification of the transport sector is one of several technological trajectories that could redress some of the environmental issues associated with the growth in travel demand including climate change and oil demand at a global scale, and air quality and noise pollution at the urban scale. Electric vehicles have been considered a promising technology at repeated intervals over the last century, but this promise has not been realised. This paper is a contribution to understanding the key tools and strategies that might enable the successful introduction of new technologies and innovations by exploring the key barriers to electric vehicles encountered in two countries (UK and Germany) where the automobile industry has been historically significant. The study evaluates stakeholders' opinions on relevant regulation, infrastructure investment, R and D incentives, and consumer incentives. The key findings of the research are that the introduction and penetration of EVs is confronted by several barriers that inhibit a larger market penetration under current conditions, which in turn casts doubt on the assumptions of strategic niche management and transitions theory. - Highlights: • Immature developing technology reason behind non-commercialisation of EVs. • EVs currently do not present a significant benefit to the electricity sector. • EVs rely on a mix of regulatory and government measures for their development. • EVs face lock-in problem of unsustainable technologies and related barriers. • Positive milieu for innovation in vehicle technology and business models are required

  2. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  3. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  4. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  5. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-March 1979. [Ca/sulfides

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This report covers the research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at subcontractors' laboratories on high-temperature batteries during the period October 1978 to March 1979. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium-aluminum alloy, and molten LiCl-KCl electrolyte. During this six-month period, cell and battery development work continued at ANL, Eagle-Picher Industries, Inc., Gould Inc., and the Energy Systems Group of Rockwell International. Fabrication of a 40-kWh battery by Eagle-Picher for testing in an electric van is nearing completion. Cost and design studies for a Mark II electric-vehicle battery, which will have somewhat higher performance and use potentially low-cost materials and fabrication methods, were conducted by all three subcontractors, and contracts are being negotiated for development of Mark II batteries. Conceptual design studies continued at Rockwell International on a 100 MWh stationary energy-storage module. The present plan is to construct a module based on these designs for testing at the BEST (Battery Energy Storage Test) Facility. Work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations on developing materials and components for cells. 38 figures, 28 tables.

  6. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  7. Effects of Federal Tax Credits for the Purchase of Electric Vehicles

    OpenAIRE

    Congressional Budget Office

    2012-01-01

    The federal government offers tax credits of up to $7,500 to buyers of new electric vehicles. Compared to conventional vehicles, electric vehicles cost more to buy, use less gasoline, and may reduce overall emissions of greenhouse gases. CBO's report assesses how the credits affect the relative cost of owning an electric vehicle, and how cost-effectively the credits reduce gasoline consumption and greenhouse gas emissions.

  8. Cost analysis of Plug-in Hybrid Electric Vehicles including Maintenance & Repair Costs and Resale Values

    OpenAIRE

    Propfe, Bernd; Redelbach, Martin; Santini, Danilo J.; Friedrich, Horst

    2012-01-01

    This paper analyses the cost competitiveness of different electrified propulsion technologies for the German auto market in 2020. Several types of hybrid electric vehicles including parallel hybrids (with and without external charging) and a serial range extended electric vehicle are compared to a conventional car with SI engine, a full battery electric vehicle and a hydrogen powered fuel cell vehicle. Special focus lies on the maintenance and repair cost and the expected resale value of alte...

  9. Development of a Electrically Inspired Low Emission Microcontroller Based Hybrid Vehicle

    OpenAIRE

    M. Habib Ullah; T. S. Gunawan; Sharif M. Raihan; Riza Muhida

    2012-01-01

    Problem statement: Recently, influx of research afford is being concentrated in automobile engineering to develop low emission hybrid electric vehicle to reduce the greenhouse gases such as hydro-carbons, carbon monoxide, carbon dioxide, produces from the vehicle. Approach: Hybrid Electric Vehicles (HEVs) powered by electric machines and an Internal Combustion Engine (ICE) are a promising mean of reducing emissions and fuel consumption without compromising vehicle functionality and driving pe...

  10. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  11. Battery Test Manual For Electric Vehicles, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  12. Potential impacts of electric vehicles on air quality in Taiwan.

    Science.gov (United States)

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions.

  13. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs. PMID:27026933

  14. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle

    OpenAIRE

    Lecocq, Amandine; Bertana, Marie; Truchot, Benjamin; Marlair, Guy

    2012-01-01

    International audience Since energy storage systems represent key new technologies in the development of electric vehicles (EV), risks pertaining to them have to be examined closely. Lithium-ion (Li-ion) batteries powering EV contain highly energetic active materials and flammable organic electrolytes, which raise safety questions, different to conventional cars. In case of EV fire, concerns remain about batteries fire behavior, about their impact on the fire growth, about their fire-induc...

  15. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao;

    2009-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce the CO2-emissions from the transport sector. At the same time, EVs have the potential to play an important role in an economic and reliable operation of an electricity system with high penetration of renewable energy. EVs...... will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... of the recently establish EDISON program are described. EDISON is a research consortium which will design a new model for the Danish Energy system with high penetration of wind power and EVs with V2G-functionality. EDISON will have access to a real-life test bed on the Danish island of Bornholm (population 40,000)....

  16. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    operation strategy for a Plug-In Electric Vehicle (PEV) in relation to the hourly electricity price in order to achieve minimum energy costs of the PEV. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may...... represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...... are also discussed in the paper. Simulation results show that the proposed optimal operation strategy is an effective measure to achieve minimum energy costs of the PEV. The optimal operation strategy of the PEV and the optimal load response may have significant effects on the distribution power system...

  17. Improving the Energy Management of a Solar Electric Vehicle

    Directory of Open Access Journals (Sweden)

    GUNESER, M. T.

    2015-11-01

    Full Text Available A solar electric vehicle (SEV is an electric vehicle (EV with onboard photovoltaic cells charging a set of batteries for extended driving range. This study aimed to improve the energy management system of a SEV, called YILDIZ, using a fuzzy logic control system (FLC. A MATLAB based simulation model of three basic components of a solar car: solar cell modules, batteries and motor drive system was performed. An original FLC was developed. For proving its applicability, the performances of the SEV were tested by simulation, in accordance with the standard test drive cycle ECE-15. The characteristics obtained with the original Proportional Integral Fuzzy Logic Control (PI-FLC were compared with those obtained with a classical Proportional Integral (PI controller. Using the designed model, we calculated the range of YILDIZ with and without PV feeding which gave us an opportunity to study and compare both SEV and EV models on real race-track situation. Then the optimum speed, at any time, which enabled the vehicle to reach a chosen destination as quickly as possible, while fully using the available energy, was calculated. Proposed solutions tested on YILDIZ. Results of simulations were compared with YILDIZ run on the Formula-G race track in Izmit, Turkey.

  18. Recycling readiness of advanced batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  19. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  20. Stibine/arsine monitoring during EV operation: summary report on preliminary tests at ANL and at LILCO

    Energy Technology Data Exchange (ETDEWEB)

    Loutfy, R.O.; Graczyk, D.G.; Varma, R.; Hayes, E.R.; Williams, F.L.; Yao, N.P.

    1981-02-01

    A series of tests was performed to monitor the evolution and dispersal of stibine and arsine from the lead-acid propulsion batteries in three different Electra-Van Model 600 vehicles operated by Argonne National Laboratory (ANL) and by the Long Island Lighting Company (LILCO). Ambient air was sampled at several locations inside the vehicles and in the garages where testing was done during charge, equalization charge, and on-the-road discharge operations. In addition, direct sampling of cell off-gases was performed with the ANL van. Interpretation of the individual test results was carried out in the context of vehicle characteristics, sampling protocol, and operating conditions. The test results demonstrated that under the test conditions only small concentrations of stibine and arsine accumulated in occupiable work areas. Measured concentrations in the vehicles and in the garages never exceeded 25% of the Threshold Limit Value-Time Weighted Average (TLV-TWA) standards. A threshold voltage for hydride production, at about 2.45 V per cell, was reflected in the results of the experiments performed during charging of the batteries. Hydride evolution rates were lower during equalization charge than during the overcharge portion of a charge cycle when the on-board charger was used in a normal operating mode. A delayed release of the metal hydrides from the battery cells was observed during on-the-road operation of the vehicles. The implications of these observations for electric vehicle (EV) operation are discussed. An engineering analysis of the generation and dispersal of the metal hydrides is presented, and equations are derived for estimating minimum ventilation requirements for the EV battery compartment and for garages housing EV operations. Recommendations are made regarding safe handling procedures for battery off-gases, procedures for conducting stibine/arsine monitoring tests and future work.

  1. Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis

    OpenAIRE

    Couillet, Romain; Medina Perlaza, Samir; Tembine, Hamidou; Debbah, Mérouane

    2012-01-01

    In this article, we investigate the competitive interaction between electrical vehicles or hybrid oil-electricity vehicles in a Cournot market consisting of electricity transactions to or from an underlying electricity distribution network. We provide a mean field game formulation for this competition, and introduce the set of fundamental differential equations ruling the behavior of the vehicles at the feedback Nash equilibrium, referred here to as the mean field equilibrium. This framework ...

  2. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  3. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    OpenAIRE

    A. Aljanad; Azah Mohamed

    2015-01-01

    This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated) and intelligent scheduling of charging are discussed in terms of thei...

  4. The efficiency of direct torque control for electric vehicle behavior improvement

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2011-01-01

    Full Text Available Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC. For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.

  5. Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-06-01

    As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

  6. Optimal scheduling of electrical vehicle charging under two types of steering signals

    NARCIS (Netherlands)

    Klauw, van der Thijs; Gerards, Marco E.T.; Smit, Gerard J.M.; Hurink, Johann L.

    2014-01-01

    The increasing penetration of electrical vehicles and plug-in hybrid electrical vehicles is causing an increasing load upon our residential distribution network. However, the charging of these vehicles is often shiftable in time to off-peak hours due to long parking times at a fixed location during

  7. System Design and Implementation of Smart Dashboard for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-01-01

    Full Text Available Recently, the development of automobile focuses on the chassis structure and motion control. However, due to the concept of smart and safe vehicle, the integrated dashboard becomes a necessary issue. The proposed system can not only represent the conventional dashboard in a digital form but also endow the system with an intelligent guidance. The statuses such as speed, battery SOC, braking, mileage, and the activation of TCS and ABS can be seen and monitored in all driving scenarios. For example, the current modern electric vehicles face the danger of self-ignition problem when the over load problem is consisted. Basically, these severe conditions can be eliminated by a guard of smart interface. Consequently, under a proper design, the presented system can assist the driver to maintain the energy efficiency, steering stability, and so on. Then the operation procedure can be simplified and hence driver can concentrate more on steering.

  8. An analytical study of electric vehicle handling dynamics

    Science.gov (United States)

    Greene, J. E.; Segal, D. J.

    1979-01-01

    Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated.

  9. Barriers to the development of fuel-cell electric vehicles

    International Nuclear Information System (INIS)

    The study is structured as follows: Fuel cells (with focus on proton exchange membrane fuel cells (PEMFC)); Fuel cell electric vehicles; Barriers to commercial use of fuel cell vehicles in the following areas: price; hydrogen production; hydrogen infrastructure; hydrogen storage; other barriers (safety; lifetime; use in extreme conditions; control system errors). The major barriers include too high price and problems with a stable and sustainable hydrogen source. Also, the following must be ensured for a wider use of FCEVs: reduction in the weight and volume of the drive unit; improved lifetime of the PEMFC system; usability within wide weather conditions; existence of an adequate infrastructure (a dense hydrogen service station network and their hydrogen supply); and implementation of related legislation including safety standards. (P.A.)

  10. Design studies of continuously variable transmissions for electric vehicles

    Science.gov (United States)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  11. High Penetration of Electrical Vehicles in Microgrids: Threats and Opportunities

    Science.gov (United States)

    Khederzadeh, Mojtaba; Khalili, Mohammad

    2014-10-01

    Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.

  12. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  13. Electric Vehicle Preparedness: Task 2, Identification of Vehicles for Installation of Data Loggers for Marine Corps Base Camp Lejeune

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.

  14. Development achievements for electric vehicles; Entwicklungsleistungen fuer Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Epple, K. [Wirtschaftsministerium Baden-Wuerttemberg, Stuttgart (Germany)

    1999-07-01

    Companies in Baden-Wurttemberg have achieved major development success in both fields: The diesel and gasoline direct injection technology as well as the lightweight car body construction has been further developed by the companies Bosch, DaimlerChrysler and Audi. Technologies with alternative fuels such as hydrogen and methanol are further developed in research institutes and industrial companies. The social frame conditions seem to support the electric vehicle because it is emission-free wherever it is used. Baden-Wurttemberg has supported model experiments for the market introduction of battery-operated electric vehicles. Despite of the advanced technology these vehicles could not establish themselves on the market. Fuel cell-operated vehicles are going to be serious competitors. The DaimlerChrysler AG has invested billions in the development of fuel cells and presented only recently the Necar 4. Fuel cell systems will also be used in other fields, e.g. decentral energy supply. (orig.) [German] Baden-wuerttembergische Unternehmen haben in beiden Bereichen grosse Entwicklungserfolge erreicht: Die Diesel- und Benzin-Direkteinspritztechnik zur Kraftstoffeinsparung wurden von den Firmen Bosch, DaimlerChrysler und Audi weiterentwickelt, ebenfalls der Karosserie-Leichtbau. Technologien mit alternativen Kraftstoffen wie Wasserstoff und Methanol sowie alternativen Antriebsformen werden in Forschungsinstituten und Industrieunternehmen weiterentwickelt. Die gesellschaftlichen Rahmenbedingungen scheinen sich pro Elektroauto wegen der Emissionsfreiheit am Einsatzort zu verschieben. Baden-Wuerttemberg hat Modellversuche zur Markteinfuehrung von batteriebetriebenen Elektrofahrzeugen unterstuetzt. Trotz fortgeschrittener Technik konnten sich diese Fahrzeuge noch nicht auf dem Markt etablieren. Brennstoffzellen-betriebene Fahrzeuge werden ernstzunehmende Konkurrenten zu ihnen sein. Die DaimlerChrysler-AG hat Milliardenbetraege in die Entwicklung der Brennstoffzellen investiert

  15. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  16. Selected Topics on Decision Making for Electric Vehicles

    Science.gov (United States)

    Sweda, Timothy Matthew

    Electric vehicles (EVs) are an attractive alternative to conventional gasoline-powered vehicles due to their lower emissions, fuel costs, and maintenance costs. Range anxiety, or the fear of running out of charge prior to reaching one's destination, remains a significant concern, however. In this dissertation, we address the issue of range anxiety by developing a set of decision support tools for both charging infrastructure providers and EV drivers. In Chapter 1, we present an agent-based information system for identifying patterns in residential EV ownership and driving activities to enable strategic deployment of new charging infrastructure. Driver agents consider their own driving activities within the simulated environment, in addition to the presence of charging stations and the vehicle ownership of others in their social networks, when purchasing a new vehicle. The Chicagoland area is used as a case study to demonstrate the model, and several deployment scenarios are analyzed. In Chapter 2, we address the problem of finding an optimal recharging policy for an EV along a given path. The path consists of a sequence of nodes, each representing a charging station, and the driver must decide where to stop and how much to recharge at each stop. We present efficient algorithms for finding an optimal policy in general instances with deterministic travel costs and homogeneous charging stations, and also for two specialized cases. In addition, we develop two heuristic procedures that we characterize analytically and explore empirically. We further analyze and test our solution methods on model variations that include stochastic travel costs and nonhomogeneous charging stations. In Chapter 3, we study the problem of finding an optimal routing and recharging policy for an electric vehicle in a grid network. Each node in the network represents a charging station and has an associated probability of being available at any point in time or occupied by another vehicle. We

  17. Life cycle assessment for coordination development of nuclear power and electric vehicle

    International Nuclear Information System (INIS)

    Energy, environment and climate change have become focus political topics. In this paper, the life cycle assessment for cooperation development of nuclear power and electric vehicle were analyzed from the view of energy efficiency and pollutant emissions. The assessment results show that the pathway of nuclear power coupled with electric vehicle is better than coal electric power coupled with electric vehicle and normal gasoline coupled with internal combustion engine powered vehicle in terms of the environmental and energy characteristics. To charge the electric vehicle, instead of water power station, can safeguard the stable operation of nuclear power station. The results could provide consulted for coordination development of nuclear power, electric vehicle and brain power electric net. (authors)

  18. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  19. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  20. Driving Pattern Analysis for Electric Vehicle (EV) Grid Integration Study

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Nielsen, Arne Hejde; Østergaard, Jacob;

    2010-01-01

    In order to facilitate the integration of electric vehicles (EVs) into the Danish power system, the driving data in Denmark were analyzed to extract the information of driving distances and driving time periods which were used to represent the driving requirements and the EV unavailability...... from the driving time periods to show how many cars are available for charging and discharging in each time period. The obtained EV availability data are in one hour time periods and one quarter time periods for different study purposes. The EV availability data of one hour time period are to be used...

  1. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte;

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  2. High performance nickel-cadmium cells for electric vehicles

    Science.gov (United States)

    Cornu, Jean-Pierre

    A new concept of a cadmium electrode associated with a lighter nickel structure, a multi-cell module technology, allows the proposal of a very promisig alternative power source for electric vehicle (EV) batteries, the usable specific energy being 31% of the theoretical value. Every characteristic of this Ni-Cd module (i.e., specific energy and power, energy and power density, energy efficiency, life and reliability) gives the best performing EV battery, to date. Thus, with the efficient support of two major French car manufacturers and the French government, SAFT will launch, during Spring '95, the first pilot line of EV Ni-Cd module manufacturing.

  3. Electric Vehicle IM Controller Based on Voltage-Fed Inverter

    Institute of Scientific and Technical Information of China (English)

    宋建国; 张承宁; 袁学; 谭建

    2004-01-01

    A novel electric vehicle (EV) induction motor (IM) controller based on voltage-fed inverter is presented. It is shown that the proposed adaptive control algorithm effectively both simplifies the structure and expands the capacity of controller. The relationship between stator's voltage and that of current under rotor's flux-oriented-coordinates is first introduced, and then the structure of vector control is analyzed, in which voltage compensation is inducted as the core feedback procedure. Experiments prove that, together with a facility for realization, a smooth transition, a prompt torque response and small concussion are gained. Extensive research conducted by varying parameters that result in practical ripple is proposed in conclusion.

  4. Improvement the DTC system for electric vehicles induction motors

    Directory of Open Access Journals (Sweden)

    Arif Ali

    2010-01-01

    Full Text Available A three-phase squirrel-cage induction motor is used as a propulsion system of an electric vehicle (EV. Two different control methods have been designed. The first is based on the conventional DTC Scheme adapted for three level inverter. The second is based on the application of fuzzy logic controller to the DTC scheme. The motor is controlled at different operating conditions using a FLC based DTC technique. In the simulation the novel proposed technique reduces the torque and current ripples. The EV dynamics are taken into account.

  5. Voltage Support from Electric Vehicles in Distribution Grid

    DEFF Research Database (Denmark)

    Huang, Shaojun; Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte;

    2013-01-01

    The paper evaluates the voltage support functions from electric vehicles (EVs) on a typical Danish distribution grid with high EV penetration. In addition to the popular voltage control modes, such as voltage droop charging (low voltage level leads to low charging power) and reactive power support......, the combination of these two methods is also examined for controlled EV charging. Simulation results show that the combination of the two individual supporting methods has the best performance in terms of voltage regulation as well as improving EV penetration level at weak distribution grids....

  6. Plug in electric vehicles in smart grids charging strategies

    CERN Document Server

    Rajakaruna, Sumedha; Ghosh, Arindam

    2014-01-01

    This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control

  7. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  8. Electric and hybrid vehicles environmental control subsystem study

    Science.gov (United States)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  9. Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob;

    2011-01-01

    An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...... congestions in local distribution systems from the day-ahead planning perspective. Locational marginal pricing method was used to determine the dynamic distribution system tariff based on predicted day-ahead spot prices and predicted charging behaviors. Distribution grids of the Bornholm power system were...

  10. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  11. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2015-08-01

    Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.

  12. Integration between electric vehicle charging and micro-cogeneration system

    International Nuclear Information System (INIS)

    Highlights: • The interaction between an MCHP system and EV charging is investigated. • A parametric analysis with respect to daily driving distance of the EV is performed. • Dynamic simulations are carried out considering two different climates. • Two EV charging strategies are analyzed to maximize the self-consumed electricity. • The impact of EVs on electric grid and economic feasibility of MCHP can be improved. - Abstract: In the near future the diffusion of plug-in electric vehicles (EVs) could play an important role in the reduction of emissions and oil dependency associated with the transport sector. However this technology could have a big impact on the electric network because EVs require a considerable amount of electricity. In order to meet the growing load due to the diffusion of EVs, the construction of new infrastructures will be required. The introduction of micro-cogeneration systems could represent a key factor in the reduction of the negative effects on the electric network related to EVs charging. The EVs are often driven during the day and recharged during the night; so the overnight charge of the EVs allows to reduce the amount of electricity exported to the grid. In this way the economic benefits associated with the introduction of micro-cogenerator system (Micro Combined Heat and Power, MCHP), that depend on the economic value of the “produced” electricity, can be improved. At the same time the impact of EVs charge on the electric network can be reduced when electricity is provided by MCHP. In this paper the interaction between an MCHP system, the EV charging and a typical semidetached house is investigated by means of dynamic simulations. The analysis is carried out in two different locations (Torino and Napoli) in order to evaluate the effects of climatic conditions on the system performance. A parametric analysis with respect to the daily driving distance of the EV is carried out in order to highlight the effect of this

  13. Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2013-01-01

    Full Text Available A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.

  14. Electric vehicle integration in a real-time market

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro; Østergaard, Jacob; Poulsen, Bjarne;

    This project is rooted in the EDISON project, which dealt with Electrical Vehicle (EV) integration into the existing power grid, as well as with the infrastructure needed to facilitate the ever increasing penetration of fluctuating renewable energy resources like e.g. wind turbines. In the EDISON...... the distributed energy resources registered with it, in order to make them appear as a single producer in the eyes of the market. Although the concept of a VPP is used within the EcoGrid EU project, the idea of more individual control is introduced through a new proposed real-time electricity market, where...... project, the EV is introduced as an energy buffer used to store excess energy produced at off-peak hours, while at the same time potentially benefiting the consumer by offering cheaper charging. This role as a buffer, predominantly used for delayed charging, also known as “smart charging”, can also...

  15. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  16. Modeling Electric Vehicle Benefits Connected to Smart Grids

    International Nuclear Information System (INIS)

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  17. Detection System Design of Electric Vehicle Wiring Harness

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Xin; LI Xiao-Peng

    2015-01-01

    This paper introduces a method of harness testing system for electric vehicle wiring harness wiring .The system has implemented some commonly used electric wiring harness state detection using the way of the upper machine and lower machine communicate with each other, Such as normal, open circuit, short circuit, fault, etc. And then the lower machine send the wiring harness status to the upper machine, and then the upper machine parses the line state, and at the same time shows the test results, And then stores the test results in the database. After all, we can call at any time to check the date and the results of detection. It changes the traditional manual test mode of operation and Implements the detection process of automation and intellectualization.

  18. Designing for sustainability - mobility systems based on electrical vehicles

    DEFF Research Database (Denmark)

    Søndergård, Bent; Hansen, Ole Erik

    in interaction with public authorities and transportation companies), configuring the electric car sharing system as an element in an alternative mobility service system, and designing the technical and organizational system The concluding discussion falls into two parts: an assessment of the design process......-design, concerned with design as meta-level processes of regime transformation and the constructive configuration of design spaces. The case study examines an attempt to integrate electric vehicles in the Danish mobility systems. It maps the framework conditions and contemporary (competing) strategies....../projects, but focuses on a specific car-sharing project (‘Cleardrive’), with the objective to examine the early and constitutive stages of the design-process. It is conducted as an intensive study tracing elements of interpretation, interaction and intervention, which have been part of the project formation process...

  19. Modeling Electric Vehicle Benefits Connected to Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; M& #233; gel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  20. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management

    DEFF Research Database (Denmark)

    Li, Ruoyang; Wu, Qiuwei; Oren, Shmuel S.

    2013-01-01

    This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal...... prices (DLMPs) by solving the social welfare optimization of the Electric distribution system which considers EV aggregators as Price takers in the local DSO market and demand price elasticity. Nonlinear optimization has been used to solve the social welfare optimization problem in order to obtain...... the DLMPs. The efficacy of the proposed approach was demonstrated by using the bus 4 distribution system of the Roy Billinton Test System (RBTS) and Danish driving data. The case study results show that the integrated DLMP methodology can successfully alleviate the congestion caused by EV loads. It is also...

  1. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  2. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  3. Slipstream Cooperative Adaptive Cruise Control - A Conceptual ITS Application for Electric Vehicles

    OpenAIRE

    Kloiber, Bernhard; Strang, Thomas; de Ponte Müller, Fabian

    2012-01-01

    The Electric Vehicle is seen to be one of the most important enablers for a more environmentally friendly mobility of people. Unfortunately, state of the art electric vehicles suffer from a series of problems, with facing a very limited traveling distance compared to gasoline vehicles being one of the most relevant ones. In this paper we present an approach how to reduce the energy consumption while traveling over longer distances by using the slipstream effect behind a vehicle ahead. We show...

  4. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  5. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

    OpenAIRE

    Angel Alejandro Juan; Carlos Alberto Mendez; Javier Faulin; Jesica de Armas; Scott Erwin Grasman

    2016-01-01

    Current logistics and transportation (L&T) systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using “green” technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations fo...

  6. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    Science.gov (United States)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  7. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary

  8. Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles

    OpenAIRE

    Henglu Tang; Xiaokun Sun; Fengchun Sun; Hongwen He; Ximing Wang

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) have a larger battery and can replace a certain amount of conventional fossil fuels with grid electricity, which differs from the traditional hybrid electric vehicles (HEVs). The application of the onboard electrical energy significantly influences the energy utilization efficiency and thus impacts the fuel economy. In this paper, the basic PHEV operation modes are defined as pure electric driving (PED), hybrid driving charge depleting (HDCD) and hybri...

  9. Effect of driving cycles on energy efficiency of electric vehicles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on several typical domestic and foreign driving cycles, the energy usage efficiency of the EVs-XL 2000 type electric vehicle (EV) is analyzed. The energy usage efficiency of EVs and the evaluation index of electromotor efficiency are studied. The concepts of "interval usage percentage of energy efficiency" and "exertion degree of energy efficiency" of electromotor are presented. The effects of driving cycles on the distribution of the running status of electromotor and the efficiency are investi-gated. The efficiency of electromotor and the trend of average driving force at different driving cycles are discussed. The exertion degree of energy efficiency and the total power train efficiency of the EVs-XL 2000 type electric vehicle at typical driving cycles are analyzed and calculated. The result indicates that the driving cycle engenders a big influence on the exertion degree of electromotor energy efficiency at different driving cycles. Dissimilar driving cycles result in different efficiency distributions of electromotor, the control system as well as the average driving force and driving range are variable.

  10. Unprecedented alliance in preparation for electric vehicle battery recycling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.G. [Toxco Inc., Anaheim, CA (United States)

    2000-07-01

    As electric and hybrid vehicles gain a larger part of the automobile market, it is expected that large volumes of electric and hybrid vehicles lead, nickel, and lithium batteries will be required. To meet the demand, the largest recycler of lithium batteries in the world, Toxco Inc. formed an alliance with Kinsbursky Brothers Inc. (KBI). KBI is considered to be one of the most reputable and largest non-lithium battery management companies in the United States. The objective of the alliance is to offer a one-stop battery recycling service with direct recycling facilities, a single point for battery management and recycling. The elimination of the middle-man in the recycling process and the elimination of the redundant logistics are expected to yield cost savings, both for the companies and the customers. This recycling service is offered for all common and other battery types. A major benefit of the recycling program is found in the reduction of volumes of hazardous and/or reactive waste in incineration facilities or landfills. tabs., figs.

  11. Hidden benefits of electric vehicles for addressing climate change.

    Science.gov (United States)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-01-01

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO2 emissions by 10,686 tonnes. PMID:25790439

  12. Effect of driving cycles on energy efficiency of electric vehicles

    Institute of Scientific and Technical Information of China (English)

    JI FenZhu; XU LiCong; WU ZhiXin

    2009-01-01

    Based on several typical domestic and foreign driving cycles, the energy usage efficiency of the EVs-XL 2000 type electric vehicle (EV) is analyzed.The energy usage efficiency of EVs and the evaluation index of electromotor efficiency are studied.The concepts of "interval usage percentage of energy efficiency" and "exertion degree of energy efficiency" of electromotor are presented.The effects of driving cycles on the distribution of the running status of electromotor and the efficiency are investi-gated.The efficiency of electromotor and the trend of average driving force at different driving cycles are discussed.The exertion degree of energy efficiency and the total power train efficiency of the EVs-XL 2000 type electric vehicle at typical driving cycles are analyzed and calculated.The result in-dicates that the driving cycle engenders a big influence on the exertion degree of electromotor energy efficiency at different driving cycles.Dissimilar driving cycles result in different efficiency distributions of electromotor, the control system as well as the average driving force and driving range are variable.

  13. Factors Influencing the Behavioural Intention towards Full Electric Vehicles: An Empirical Study in Macau

    Directory of Open Access Journals (Sweden)

    Ivan K. W. Lai

    2015-09-01

    Full Text Available This study examines the factors that influence individual intentions towards the adoption of full electric vehicles. A sample including 308 respondents was collected on the streets of Macau. The collected data were analysed by confirmatory factor analysis and structural equation modelling. The results demonstrate that environmental concerns and the perception of environmental policy are antecedent factors of the perception of full electric vehicles, which influences the behavioural intention to purchase full electric vehicles. This study also finds that the perception of economic benefit is one of the key factors influencing the adoption of full electric vehicles. Vehicle operators seek economic benefits from future long-term fuel savings, high energy efficiency, and cheap electricity. Thus, a government striving to promote low-carbon transportation needs to scale up its efforts to enhance citizens’ environmental concerns and to establish proper environmental policy as well as to provide long-term financial and strategic support for electric vehicles.

  14. ANL-W 779 pond seepage test

    International Nuclear Information System (INIS)

    The ANL-W 779 sanitary wastewater treatment ponds are located on the Idaho National Engineering Laboratory (INEL), north of the Argonne National Laboratory -- West (ANL-W) site A seepage test was performed for two Argonne National Laboratory -- West (ANL-W) sanitary wastewater treatment ponds, Facility 779. Seepage rates were measured to determine if the ponds are a wastewater land application facility. The common industry standard for wastewater land application facilities is a field-measured seepage rate of one quarter inch per day or greater

  15. Electric and hybrid vehicle program; Site Operator Program

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  16. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  17. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Sousa, Tiago;

    2016-01-01

    level, the extra loads created by the increasing number of electric vehicles may have adverse impacts on grid. These factors bring new challenges to the power system operators. To coordinate the interests and solve the conflicts, electric vehicle fleet operators are proposed both by academics...... and industries. This paper presents a review and classification of methods for smart charging (including power to vehicle and vehicle-to-grid) of electric vehicles for fleet operators. The study firstly presents service relationships between fleet operators and other four actors in smart grids; then, modeling...

  18. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    OpenAIRE

    Eva González-Romera; Enrique Romero-Cadaval; Javier Gallardo-Lozano; María Isabel Milanés-Montero

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-gri...

  19. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    OpenAIRE

    Turrentine, Thomas; Kurani, Kenneth S

    2001-01-01

    We report the results of a survey of the potential demand for electric vehicles (EVs) among a subset of California households. We limit our analysis to one group of potential hybrid households. These households own two or more light duty vehicles and buy new vehicles of the body styles we expect will be offered as electric vehicles. These characteristics identify households who may be able to incorporate at least one limited range vehicle into their household vehicle holdings with no, or mini...

  20. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  1. The Fair Distribution of Power to Electric Vehicles: An Alternative to Pricing

    OpenAIRE

    Zhou, Yingjie; Maxemchuk, Nicholas; Qian, Xiangying; Wang, Chen

    2014-01-01

    As the popularity of electric vehicles increases, the demand for more power can increase more rapidly than our ability to install additional generating capacity. In the long term we expect that the supply and demand will become balanced. However, in the interim the rate at which electric vehicles can be deployed will depend on our ability to charge these vehicles without inconveniencing their owners. In this paper, we investigate using fairness mechanisms to distribute power to electric vehic...

  2. An extended car-following model with consideration of the electric vehicle's driving range

    Science.gov (United States)

    Tang, Tie-Qiao; Chen, Liang; Yang, Shi-Chun; Shang, Hua-Yan

    2015-07-01

    In this paper, we propose a car-following model to explore the influences of the electric vehicle's driving range on the driving behavior under four traffic situations. The numerical results illustrate that the electric vehicle's behavior of exchanging battery at the charge station can destroy the stability of traffic flow and produce some prominent jams, and that the influences are related to the electric vehicle's driving range, i.e., the shorter the driving range is, the greater the effects are.

  3. Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica

    OpenAIRE

    Wallén, Johanna

    2004-01-01

    Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they contribute to a decreasing fuel consumption and air pollution and still maintain the performance of a conventional car. Different topologies are described in this thesis and especially the series and parallel hybrid electric vehicle and Toyota Prius have been studied. This thesis also depicts modelling of a reference car and a series hybrid ...

  4. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    OpenAIRE

    Hiermann, Gerhard; Puchinger, Jakob; Ropke, Stefan; Hartl, Richard F.

    2016-01-01

    International audience Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventio...

  5. Experimental Investigation of the Energy Efficiency of an Electric Vehicle in Different Driving Conditions

    OpenAIRE

    DE GENNARO MICHELE; PAFFUMI Elena; MARTINI Giorgio; MANFREDI URBANO; Scholz, Harald; LACHER Hannes; KUEHNELT Helmut; SIMIC Dragan

    2013-01-01

    Energy efficiency of electric vehicles (EVs) and the representativeness of different driving cycles are important aspects to address EVs real-world driving conditions performance. This paper presents the results of an explorative test campaign to investigate the impact of different driving cycles on the energy consumption of an electric vehicle available on the market. The vehicle is a battery electric city-car which has been tested over the New European Driving Cycle (NEDC), the current vers...

  6. A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles

    OpenAIRE

    Sandulescu, Paul; KESTELYN, Xavier; SEMAIL, Eric; BRUYERE, Antoine; Bouchez, Boris; Sousa, Luis

    2010-01-01

    For Electric Vehicles (EV), the charger is one of the main technical and economical weaknesses. This paper focuses on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger without need of additional components. This cheap solution can outfit either electric or plug-in hybrid automotive vehicles, without needing additional mass and volume dedicated to the charger. Moreover, it allows a high charging power, for short duration charge cycles. H...

  7. What are the environmental benefits of electric vehicles? A life cycle based comparison of electric vehicles with biofuels, hydrogen and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jungmeier, Gerfried; Canella, Lorenza; Beermann, Martin; Pucker, Johanna; Koenighofer, Kurt [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz (Austria)

    2013-06-01

    The Renewable Energy Directive aims reaching a share of 10% of renewable fuels in Europe in 2020. These renewable fuels are transportation biofuels, renewable electricity and renewable hydrogen. In most European countries transportation biofuels are already on the transportation fuel market in significant shares, e.g. in Austria 7% by blending bioethanol to gasoline and biodiesel to diesel. Electric vehicles can significantly contribute towards creating a sustainable, intelligent mobility and intelligent transportation systems. They can open new business opportunities for the transportation engineering sector and electricity companies. But the broad market introduction of electric vehicles is only justified due to a significant improvement of the environmental impact compared to conventional vehicles. This means that in addition to highly efficient electric vehicles and renewable electricity, the overall environmental impact in the life cycle - from building the vehicles and the battery to recycling at the end of its useful life - has to be limited to an absolute minimum. There is international consensus that the environmental effects of electric vehicles (and all other fuel options) can only be analysed on the basis of life cycle assessment (LCA) including the production, operation and the end of life treatment of the vehicles. The LCA results for different environmental effects e.g. greenhouse gas emissions, primary energy consumption, eutrophication will be presented in comparison to other fuels e.g. transportation biofuels, gasoline, natural gas and the key factors to maximize the environmental benefits will be presented. The presented results are mainly based on a national research projects. These results are currently compared and discussed with international research activities within the International Energy Agency (lEA) in the Implementing Agreement on Hybrid and Electric Vehicles (IA-HEV) in Task 19 ''Life Cycle Assessment of Electric Vehicles

  8. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    OpenAIRE

    Lena Ahmadi; Ali Elkamel; Sabah A. Abdul-Wahab; Michael Pan; Eric Croiset; Peter L. Douglas; Evgueniy Entchev

    2015-01-01

    One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs) is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered ...

  9. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  10. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study

    NARCIS (Netherlands)

    van der Kam, Mart; van Sark, Wilfried

    2015-01-01

    We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the mode

  11. The influence of financial incentives and other socio-economic factors on electric vehicle adoption

    International Nuclear Information System (INIS)

    Electric vehicles represent an innovation with the potential to lower greenhouse gas emissions and help mitigate the causes of climate change. However, externalities including the appropriability of knowledge and pollution abatement result in societal/economic benefits that are not incorporated in electric vehicle prices. In order to address resulting market failures, governments have employed a number of policies. We seek to determine the relationship of one such policy instrument (consumer financial incentives) to electric vehicle adoption. Based on existing literature, we identified several additional socio-economic factors that are expected to be influential in determining electric vehicle adoption rates. Using multiple linear regression analysis, we examined the relationship between those variables and 30 national electric vehicle market shares for the year 2012. The model found financial incentives, charging infrastructure, and local presence of production facilities to be significant and positively correlated to a country's electric vehicle market share. Results suggest that of those factors, charging infrastructure was most strongly related to electric vehicle adoption. However, descriptive analysis suggests that neither financial incentives nor charging infrastructure ensure high electric vehicle adoption rates. - Highlights: • This research analyzes electric vehicle adoption of 30 countries in 2012. • Financial incentives and charging infrastructure were statistically significant factors. • Country-specific factors help to explain diversity in national adoption rates. • Socio-demographic variables e.g., income and education level were not significant

  12. Energy management of electric and hybrid vehicles dependent on powertrain configuration

    Science.gov (United States)

    Varga, Bogdan

    2012-06-01

    Electric and hybrid vehicles are going to become the most reliable source of transport for future years. The CO2 and NOx targets in Euro 6 normative puts the producers of vehicles in a dilemma, whether to adapt the internal combustion engines further, or to develop hybrid or electric power trains that are going to reach the pollution limit of the future norms or to go below that. Before acting a well-developed strategy in determining the optimum power flow has to be developed by producers; CRUISE software is a tool with the unique and special characteristics to determine the optimum in this highly important area. Whether electric vehicle, electric vehicle with range extender or a hybrid with CVT or planetary gearbox, the complexity of the mathematical modules remains the same, giving the developer the possibility to create complex functions and distinctive characteristics for each component of the vehicle. With such a powerful tool it becomes extremely easy to evaluate the energy flow in all directions, from electric machine to the battery, from electric machine to the power generator, and from the electric machine to the internal combustion engine. Applying to the (Electric Vehicle, Electric Vehicle with Range Extender, Hybrid vehicle with CVT, Hybrid vehicle with planetary gear set) the ECE-15 in a virtual environment (urban driving cycle) the simulation results show a different usage, rate of storage and efficiency concerning the energy, this being dependent of the power train configuration in most part.

  13. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...

  14. Multi-agent based modeling for electric vehicle integration in a distribution network operation

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Lind, Morten;

    2016-01-01

    are in the middle level of the hierarchy and their roles are to manage the charge process of the electric vehicles; iv) Electric vehicle agents are placed at the bottom layer of the hierarchy and they represent electric vehicle owners with different users’ profiles. To demonstrate the coordination behavior...... operator (DSO) technical agent and ii) DSO market agents that both belong to the top layer of the hierarchy and their roles are to manage the distribution network by avoiding grid congestions and using congestion prices to coordinate the energy scheduled; iii) Electric vehicle virtual power plant agents...

  15. Optimal decentralized valley-filling charging strategy for electric vehicles

    International Nuclear Information System (INIS)

    Highlights: • An implementable charging strategy is developed for electric vehicles connected to a grid. • A two-dimensional pricing scheme is proposed to coordinate charging behaviors. • The strategy effectively works in decentralized way but achieves the systematic valley filling. • The strategy allows device-level charging autonomy, and does not require a bidirectional communication/control network. • The strategy can self-correct when confronted with adverse factors. - Abstract: Uncoordinated charging load of electric vehicles (EVs) increases the peak load of the power grid, thereby increasing the cost of electricity generation. The valley-filling charging scenario offers a cheaper alternative. This study proposes a novel decentralized valley-filling charging strategy, in which a day-ahead pricing scheme is designed by solving a minimum-cost optimization problem. The pricing scheme can be broadcasted to EV owners, and the individual charging behaviors can be indirectly coordinated. EV owners respond to the pricing scheme by autonomously optimizing their individual charge patterns. This device-level response induces a valley-filling effect in the grid at the system level. The proposed strategy offers three advantages: coordination (by the valley-filling effect), practicality (no requirement for a bidirectional communication/control network between the grid and EV owners), and autonomy (user control of EV charge patterns). The proposed strategy is validated in simulations of typical scenarios in Beijing, China. According to the results, the strategy (1) effectively achieves the valley-filling charging effect at 28% less generation cost than the uncoordinated charging strategy, (2) is robust to several potential affecters of the valley-filling effect, such as (system-level) inaccurate parameter estimation and (device-level) response capability and willingness (which cause less than 2% deviation in the minimal generation cost), and (3) is compatible with

  16. Development of lithium air novel materials for electrical vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aucher, Christophe; Knipping, E.; Amantia, D.; Almarza, A.; Faccini, M.; Gutierrez-Tauste, D.; Saez, J.A.; Aubouy, L. [Leitat Technological Center, Terrassa (Spain)

    2012-07-01

    Fluctuation of oil prices and effects of global warming have forced the scientific-technical community to look for the alternative energy storage and conversion systems, such as the smart grid. The maximum energy density of current lithium-ion batteries (LIB) is limited because of the intercalation chemistry of each electrode. Then actual LIBs are not fully satisfactory for the practical application of electric vehicles (EV). Therefore metal-air batteries have attracted much attention as a possible alternative, especially for the replacing of the diesel or gasoline, because of their energy density is extremely high compared to that of other rechargeable batteries and theoretically close to the energy density of the fossil energy. This technology leads to a very light dispositive where the limited intercalation chemistry is avoided. Li-air batteries are suitable for the development of the new generation of EVs. It is estimated that a well optimized Li-air battery can yield a specific energy of up to 3000 Wh/Kg, over a factor of 15 greater than the state of the art lithium ion batteries. Electrical cars today typically can travel only about 150 km on current LIB technology. The development of the lithium air batteries stands chance of being light enough to travel 800 km on a single charge and cheap enough to be practical for a typical family car. This problem is creating a significant barrier to electric vehicle adoption. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges which must be overcome as the cyclability or the wide gap between the practical (362 Wh/kg) and the theoretical (11 kWh/g) values of the specific energy.

  17. Harmonic Impact of Plug-In Hybrid Electric Vehicle on Electric Distribution System

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2016-01-01

    Full Text Available This paper presents the harmonic effects of plug-in hybrid electric vehicles (PHEV on the IEEE 37-bus distribution system at different PHEV penetration levels considering a practical daily residential load shape. The PHEV is modeled as a current harmonic source by using the Open-Source Distribution System Simulator (OpenDSS and DSSimpc software. Time series harmonic simulation was conducted to investigate the harmonic impact of PHEV on the system by using harmonic data obtained from a real electric vehicle. Harmonic effects on the system voltage profile and circuit power losses are also investigated by using OpenDSS and MATLAB software. Current/voltage total harmonic distortion (THD produced from the large scale of PHEV is investigated. Test results show that the voltage and current THDs are increased up to 9.5% and 50%, respectively, due to high PHEV penetrations and these THD values are significantly larger than the limits prescribed by the IEEE standards.

  18. Electrometallurgical treatment demonstration at ANL-West

    International Nuclear Information System (INIS)

    Electrometallurgical treatment (EMT) was developed by Argonne National Laboratory (ANL) to ready sodium-bonded spent nuclear fuel for geological disposal. A demonstration of this technology was successfully completed in August 1999. EMT was used to condition irradiated EBR-II driver and blanket fuel at ANL-West. The results of this demonstration, including the production of radioactive high-level waste forms, are presented

  19. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    Science.gov (United States)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  20. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  1. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  2. Effects of Integrating Electric Vehicles and Stationary Batteries in a Smart Urban Electricity Network

    OpenAIRE

    Kaschub, Thomas; Jochem, Patrick; Fichtner, Wolf

    2015-01-01

    The aim of the European Union to drastically reduce greenhouse gas emissions in the following decades has a great influence on the transport and the energy sector. Electric vehicles and renewable energy sources are seen as outstanding possibilities on this way. An interrelation of these technologies seems to be a promising option. In our contribution we address some challenges, which come along with this interrelation. From a system perspective, more flexibility is needed. One option is to ex...

  3. Modeling, analysis and coordination of electric vehicles integrating into the electric power grid

    OpenAIRE

    Wu, Diyun; 伍迪芸

    2014-01-01

    In recent years, since the concept of smart grid rises and the existing power grids are continuously modernized, more and more electric vehicles (EVs) are integrated into the power grid. In the power grid, EVs are expected to provide various energy services, such as spinning reserves, regulation services, optimization services, stability improvement, reactive compensation and grid security. This thesis is to model, analyze and implement these energy services of EVs.   Firstly, a multilayer...

  4. Electric vehicles, primary energy sources and CO2 emissions: Romanian case study

    International Nuclear Information System (INIS)

    Starting on the 24th of April, 2011, the Romanian government offered to subsidize all potential buyers of electric vehicles, both private and corporate, offering 25% off of the retail price up to 5000 euros with no pollution tax. The Romanian government encourages all governmental institutions to consider buying electric vehicles when deciding to change their existing vehicles stock. This decision is strictly related to the Romanian government's approval of a long-term Energy Strategy, building on the National Energy Strategy for the Medium Term. The government's strategy emphasizes increasing energy efficiency and boosting renewable energy use. The first electric vehicles distributed in the Romanian market are the Citroen-C-Zero, the Mitsubishi i-MiEV, the Renault Kangoo Z.E. and the Renault Fluence Z.E. The energy consumption of these vehicles was analyzed, considering the CO2 generation characteristics of a Romanian electric power plant. -- Highlights: ► Tax and governmental support for electrical vehicles in Romania. ► Evaluate the CO2 pollution of the electrical vehicles in Romania's case. ► Comprehensive understanding of the influence of primary energy source over the pollution of an electrical vehicle. ► Approach to decrees the pollution of the electrical vehicles.

  5. Impact of different utilization scenarios of electric vehicles on the German grid in 2030

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N.; Oezdemir, E.D. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany)

    2011-02-15

    Electric vehicles are commonly seen as one of the alternatives to reduce the oil dependency and the greenhouse gas emissions in the transport sector. The aim of this paper is to evaluate the impact of different electric vehicle charging strategies on the national grid including the storage utilization of electric vehicles (V2G-vehicle to grid). Furthermore, an economic analysis of electric vehicle utilization is performed and the results are compared with the conventional diesel vehicle. To accomplish this aim the availability of passenger cars in Germany to be plugged into the grid showed to be high at any time over the day (>89%), which is advantageous for the V2G concept. The impact of the different electric vehicle charging strategies is investigated by employing three scenarios. The first scenario (unmanaged charging) shows that 1 mil. electric vehicles only impacts slightly on the daily peak electricity demand. In the second scenario (Grid stabilizing storage use) a maximum reductions of grid fluctuations of 16% can be achieved with the use of 1 mil. electric vehicles as storage. The last scenario (profit maximization by power trading) the maximum daily revenues from V2G activities are calculated to be 0.68 EUR{sub 2009}. (author)

  6. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  7. The General Configuration of CEV1 Electric Vehicle's Electrical System and the Design of Its Control Sequence

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The general configuration of CEV1 electric vehicle's electrical system and the design scheme of its control sequence are presented, which are modularized by using VMU as master control unit, PMU as power management unit, BMU as battery management unit. It is a rather advanced and practical general design scheme of electric vehicle, because the division of its module function is definite, which is advantage for research, manufacture and maintenance.

  8. Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments

    International Nuclear Information System (INIS)

    While electric vehicles (EV) can perform better than conventional vehicles from an environmental standpoint, consumers perceive them to be more expensive due to their higher capital cost. Recent studies calculated the total cost of ownership (TCO) to evaluate the complete cost for the consumer, focusing on individual vehicle classes, powertrain technologies, or use cases. To provide a comprehensive overview, we built a probabilistic simulation model broad enough to capture most of a national market. Our findings indicate that the comparative cost efficiency of EV increases with the consumer's driving distance and is higher for small than for large vehicles. However, our sensitivity analysis shows that the exact TCO is subject to the development of vehicle and operating costs and thus uncertain. Although the TCO of electric vehicles may become close to or even lower than that of conventional vehicles by 2025, our findings add evidence to past studies showing that the TCO does not reflect how consumers make their purchase decision today. Based on these findings, we discuss policy measures that educate consumers about the TCO of different vehicle types based on their individual preferences. In addition, measures improving the charging infrastructure and further decreasing battery cost are discussed. - Highlights: • Calculates the total cost of ownership across competing vehicle technologies. • Uses Monte Carlo simulation to analyse distributions and probabilities of outcomes. • Contains a comprehensive assessment across the main vehicle classes and use cases. • Indicates that cost efficiency of technology depends on vehicle class and use case. • Derives specific policy measures to facilitate electric vehicle diffusion

  9. Always on the starting line: ELCAT 200 - the new-generation electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, K.; Leisio, C. [ed.

    1997-11-01

    The Elcat 200 electric van can always be left charging. With most other electric van models, the situation is different. They run the risk of overcharging, which prevents continual `refuelling` of their batteries and thus considerably reduces the performance of the vehicles. The Elcat electric vehicle project has so far manufactured over 160 electric vans. Of these, the Elcat Cityvan accounts for 130, and the state-of-the-art Elcat 200 just over 30. The greatest single Elcat user is Finland Post, with 50 electric vehicles. Fifty Elcats have been sold abroad, most of them to Sweden

  10. The ZEBRA electric vehicle battery: power and energy improvements

    Science.gov (United States)

    Galloway, Roy C.; Haslam, Steven

    Vehicle trials with the first sodium/nickel chloride ZEBRA batteries indicated that the pulse power capability of the battery needed to be improved towards the end of the discharge. A research programme led to several design changes to improve the cell which, in combination, have improved the power of the battery to greater than 150 W kg -1 at 80% depth of discharge. Bench and vehicle tests have established the stability of the high power battery over several years of cycling. The gravimetric energy density of the first generation of cells was less than 100 Wh kg -1. Optimisation of the design has led to a cell with a specific energy of 120 Wh kg -1 or 86 Wh kg -1 for a 30 kWh battery. Recently, the cell chemistry has been altered to improve the useful capacity. The cell is assembled in the over-discharged state and during the first charge the following reactions occur: at 1.6 V: Al+4NaCl=NaAlCl 4+3Na; at 2.35 V: Fe+2NaCl=FeCl 2+2Na; at 2.58 V: Ni+2NaCl=NiCl 2+2 Na. The first reaction serves to prime the negative sodium electrode but occurs at too low a voltage to be of use in providing useful capacity. By minimising the aluminium content more NaCl is released for the main reactions to improve the capacity of the cell. This, and further composition optimisation, have resulted in cells with specific energies in excess of 140 Wh kg -1, which equates to battery energies>100 Wh kg -1. The present production battery, as installed in a Mercedes Benz A class electric vehicle, gives a driving range of 205 km (128 miles) in city and hill climbing. The cells with improved capacity will extend the practical driving range to beyond 240 km (150 miles).

  11. Fuzzy Adaptive PI Controller for DTFC in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Medjdoub khessam

    2014-12-01

    Full Text Available This paper presents a technique to control the electric vehicle (EV speed and torque at any curve. Our propulsion model consist of two permanent magnet synchronous (PMSM motors. The fuzzy adaptive PI controller is used to adjust the different static error constants, as per the speed error. The suggested based on the direct torque fuzzy control (DTFC. A Mamdani type fuzzy direct torque controller is first developed and then rules are modified using stator current membership functions. The computations are ensured by the electronic differential, this driving process permit to steer each driving wheels at any curve separately.Modeling and simulation are carried out using the Matlab/Simulink tool to investigate the performance of the proposed system.

  12. Advanced on-board electric vehicle charger. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-31

    The design and development of an on-board charger power module for use in electric vehicles is described. The module operates at 20KHz in a series resonant, half bridge configuration. Circuit design trade-offs, module performance, and solutions to the problems of acoustic noise, maintaining high power factor, circuit protection and operating reliability are discussed. The power module operates from a single phase, 240 V, 50/60 Hz utility line. Average power factor is 0.90; efficiency at maximum power output is 86%. The module is rated to charge a bank consisting of 20 Exide EV-106 batteries (60 cells) to an end voltage of 2.42 V/cell. Physically, the module weighs less than 17 Kg. Projected manufacturing cost at the thousand unit level is $394.00 (1978 dollars).

  13. Fuel optimal control of parallel hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Jinhuan PU; Chenliang YIN; Jianwu ZHANG

    2008-01-01

    A mathematical model for fuel optimal control and its corresponding dynamic programming (DP) recurs-ive equation were established for an existing parallel hybrid electric vehicle (HEV). Two augmented cost func-tions for gear shifting and engine stop-starting were designed to limit their frequency. To overcome the prob-lem of numerical DP dimensionality, an algorithm to restrict the exploring region was proposed. The algorithm significantly reduced the computational complexity. The system model was converted into real-time simulation code by using MATLAB/RTW to improve computation efficiency. Comparison between the results of a chassis dynamometer test, simulation, and DP proves that the proposed method can compute the performance limita-tion of the HEV within an acceptable time period and can be used to evaluate and optimize the control strategy.

  14. Electromagnetic interference in electrical systems of motor vehicles

    Science.gov (United States)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  15. Electric and hybrid electric vehicles. Report of the International Evaluation Committee. June 96

    Energy Technology Data Exchange (ETDEWEB)

    Kahlen, H. [Univ. Kaiserslautern (Germany); Maggetto, G. [Vrije Univ., Brussel (Belgium); Scrosati, B. [Univ. di Roma (Italy); Srinivasan, S. [Texas A and M Univ., College Station (United States)

    1996-11-01

    As requested by NUTEK our task was to evaluate the results and progress achieved in the electric and hybrid electric vehicles programme. This is a multidisciplinary research programme involving 12 projects at four universities and is planned to be extended over two three-year periods, i.e. 1993-1996 and 1997-1999 at a level of 8 MSKR (about USD 1,2M) per year. The programme has been launched to stimulate the development of electric vehicle technology in Sweden and is supporting projects to optimize the material processes, improve battery and engine components and promote of their production by the Swedish industry. In addition, the programme is directed to: 1. improve the knowledge and experience in the field at the academic level; 2. to support long time research on the subject and, 3. promote collaboration nationally and internationally. Our first comment is that the latter aspect appears to be satisfactorily accomplished. Most of the groups we have visited demonstrate an acquired experience in the field and presented their results with competence and enthusiasm. In many cases, we found valid interactions on ongoing projects in Swedish universities and established collaborations with high rank international groups. The programme has provided the material and the motivation for high-quality thesis work and, consequently, the formation of a class of well prepared and professionally competent students. Since electric vehicle technology is fast developing and is expected to have important fall-outs not only in the car industry but also in battery and electric engine manufacturing, the training of competent scientists and engineers in the field is of paramount relevance for Sweden where these types of industries are active and spread out. Therefore, we believe that as far as educational promotion is concerned, the funds distribution was worthwhile in all the projects which we evaluated

  16. Dynamic scheduling of electric vehicle charging under limited power and phase balance constraints

    OpenAIRE

    Hernández Arauzo, Alejandro; Puente Peinador, Jorge; González, Miguel A.; Varela Arias, José Ramiro; Sedano Franco, Javier

    2013-01-01

    We confront the problem of scheduling the charge of electric vehicles, under limited electric power contract, with the objective of maximizing the users’ satisfaction. The problem is motivated by a real life situation where a set of users demand electric charge while their vehicles are parked. Each space has a charging point which is connected to one of the lines of a three-phase electric feeder. We first define the problem as a Dynamic Constraint Satisfaction Problem (DCSP) with Optimization...

  17. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  18. 77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles

    Science.gov (United States)

    2012-12-07

    ... Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION... Protection (``CBP'') has issued a final determination concerning the country of origin of Vantage Vehicle... the United States is the country of origin of the Vantage Vehicle EVX1000 and EVR1000 models...

  19. New logistical issues in using electric vehicle fleets with battery exchange infrastructure

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Adler, Jonathan; Madsen, Oli B.G.

    2014-01-01

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels that are more sustainable. The electric vehicle (EV) is a good candidate for this transformation, especially which "refuels" by exchanging its spent b...

  20. Optimal charging of an electric vehicle using a Markov decision process

    International Nuclear Information System (INIS)

    Highlights: • This paper proposes an algorithm to optimally charge an electric vehicle considering the usage of the vehicle. • The charging policy depends on the use of the vehicle, the risk aversion of the end-user, and the electricity price. • The model is versatile and can easily be adapted to any specific vehicle, thus providing a customized charging policy. - Abstract: The combination of electric vehicles and renewable energy is taking shape as a potential driver for a future free of fossil fuels. However, the efficient management of the electric vehicle fleet is not exempt from challenges. It calls for the involvement of all actors directly or indirectly related to the energy and transportation sectors, ranging from governments, automakers and transmission system operators, to the ultimate beneficiary of the change: the end-user. An electric vehicle is primarily to be used to satisfy driving needs, and accordingly charging policies must be designed primarily for this purpose. The charging models presented in the technical literature, however, overlook the stochastic nature of driving patterns. Here we introduce an efficient stochastic dynamic programming model to optimally charge an electric vehicle while accounting for the uncertainty inherent to its use. With this aim in mind, driving patterns are described by an inhomogeneous Markov model that is fitted using data collected from the utilization of an electric vehicle. We show that the randomness intrinsic to driving needs has a substantial impact on the charging strategy to be implemented

  1. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ...\\ 73 FR 31187; May 30, 2008. \\6\\ The presentations are in document 0012 and the transcript is in... vehicles \\18\\ (HVs). The covered types of vehicles include light vehicles (passenger cars, vans, sport... generated by the vehicle's power train or any other vehicle component, there is nothing in the PSEA to...

  2. Analysis of an electric vehicle fleet in commuter traffic; Analyse einer elektromobilen Fahrzeugflotte im Pendlerverkehr

    Energy Technology Data Exchange (ETDEWEB)

    Helmschrott, Thomas; Goedde, Markus [RWTH Aachen Univ. (Germany)

    2012-07-01

    This paper describes the logging of vehicle-, battery- and vehicle use data of electric vehicles and their analysis and evaluation. The vehicles were purely battery-powered small cars and some small vans that were used in commuter traffic. It has been focused on technical parameters such as energy consumption as a function of various factors (speed, urban-/rural driving area, etc.) and the battery charge curve, but also variables which reflect the user behaviour. The precise knowledge of the battery charging curve and also user behaviour are supposed to allow more precise simulations of the time- and location-dependent network loads in studies about grid integration of electric vehicles. (orig.)

  3. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan;

    2016-01-01

    detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...

  4. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  5. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  6. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  7. An adaptive large neighborhood search heuristic for the Electric Vehicle Scheduling Problem

    DEFF Research Database (Denmark)

    Wen, M.; Linde, Esben; Røpke, Stefan;

    2016-01-01

    This paper addresses the Electric Vehicle Scheduling Problem (E-VSP), in which a set of timetabled bus trips, each starting from and ending at specific locations and at specific times, should be carried out by a set of electric buses or vehicles based at a number of depots with limited driving...... ranges. The electric vehicles are allowed to be recharged fully or partially at any of the given recharging stations. The objective is to firstly minimize the number of vehicles needed to cover all the timetabled trips, and secondly to minimize the total traveling distance, which is equivalent...

  8. The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid

    OpenAIRE

    Clement-Nyns, Kristien; Haesen, Edwin; Driesen, Johan

    2010-01-01

    Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular. The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park. These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations. Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay. Thi...

  9. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  10. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo;

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  11. Towards E(lectric)-urban freight: First promising steps in the electric vehicle revolution

    NARCIS (Netherlands)

    Duin, J.H.R. van; Tavasszy, L.A.; Quak, H.J.

    2013-01-01

    Innovative logistics service providers are currently looking for possibilities to introduce electric vehicles for goods distribution. As electrical vehicles still suffer from a limited operation range, the logistical process faces important challenges. In this research we advise on the composition o

  12. Market-based coordinated charging of electric vehicles on the low-voltage distribution grid

    NARCIS (Netherlands)

    M. Ghijsen; R D'hulst

    2011-01-01

    This paper presents a market based coordination mechanism for charging electric vehicles. In market based coordination, a virtual market is used to match supply and demand of a commodity. The goal is to limit the impact of the electric vehicles on the low voltage distribution grid. First it is shown

  13. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    OpenAIRE

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    We report the results of a survey of the potential demand for electric vehicles (EVs) among a subset of California households. We limit our analysis to one group of potential hybrid households. These households own two or more light duty vehicles and buy new vehicles of the body styles we expect will be offered as electric vehicles. These characteristics identify households who may be able to incorporate at least one limited range vehicle into thei...

  14. An economic analysis of used electric vehicle batteries integrated into commercial building microgrids

    OpenAIRE

    Beer, Sebastian; Gómez, Tomás; Dallinger, David; Momber, Ilan; Marnay, Chris

    2011-01-01

    Current policies in the U.S. and other countries are trying to stimulate electric transportation deployment. Consequently, plug-in electric vehicle (PEV) adoption will presumably spread among vehicle users. With the increased diffusion of PEVs, lithium-ion batteries will also enter the market on a broad scale. However, their costs are still high and ways are needed to optimally deploy vehicle batteries in order to account for the higher initial outlay. This study analyzed the possibility of e...

  15. Modeling and simulation of a series hybrid electric vehicle propulsion system

    OpenAIRE

    Muñoz Aguilar, Raúl Santiago

    2010-01-01

    Two problems related with hybrid electric vehicles have been analyzed in this dissertation. The first one consists in proposing a propulsion system scheme for the vehicle and the second one consist in modeling it. In order to set a propulsion system scheme, the standard configurations for the hybrid electric vehicles are presented as well as some variations of the series topologies. Then, a novel configuration which is composed by a synchronous machine and an induction machi...

  16. Economic Scheduling of Residential Plug-In (Hybrid) Electric Vehicle (PHEV) Charging

    OpenAIRE

    Maigha; Mariesa L. Crow

    2014-01-01

    In the past decade, plug-in (hybrid) electric vehicles (PHEVs) have been widely proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed to reduce the stress on the electric power grid by shaping the load curve. Time of use (TOU) rates have been recommended to incentivize PHEV owners to shift their charging patterns. Many utilities are not currently equipped to provide real-ti...

  17. Prediction and optimization methods for electric vehicle charging schedules in the EDISON project

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Andersen, Peter Bach; Pedersen, Anders Bro;

    2012-01-01

    Smart charging, where the charging of an electric vehicle battery is delayed or advanced in time based on energy costs, grid capacity or renewable contents, has a great potential for increasing the value of the electric vehicle to the owner, the grid and society as a whole. The Danish EDISON...... project has been launched to investigate various areas relevant to electric vehicle integration. As part of EDISON an electric vehicle aggregator has been developed to demonstrate smart charging of electric vehicles. The emphasis of this paper is the mathematical methods on which the EDISON aggregator...... is based. This includes an analysis of the problem of EV driving prediction and charging optimization, a description of the mathematical models implemented and an evaluation of the accuracy of such models. Finally, additional optimization considerations as well as possible future extensions...

  18. The System of Fast Charging Station for Electric Vehicles with Minimal Impact on the Electrical Grid

    Directory of Open Access Journals (Sweden)

    Petr Chlebis

    2016-01-01

    Full Text Available The searching and utilization of new energy sources and technologies is a current trend. The effort to increase the share of electricity production from renewable energy sources is characteristic for economically developed countries. The use of accumulation of electrical energy with a large number of decentralized storage units is most preferred, as well as the focus on the production of energy at the point of its consumption. Modern cogeneration units are a good example. This paper describes the accumulation of electrical energy for equalizing the power balance of electric charging stations with high instantaneous power. The possibility of re-utilization of electrical energy from the charged vehicle in the case of lack of electricity in the power grid is solved at the same time. This paper also deals with the selection of appropriate concept of accumulation system and its cooperation with both renewable and distribution networks. Details of the main power components including the results obtained from the system implementation are also described in this paper.

  19. The new car market for electric vehicles and the potential for fuel substitution

    International Nuclear Information System (INIS)

    Electric vehicles are expected to significantly reduce road transport emissions, given an increasingly renewable power generation. While technological issues are more and more being overcome, the economic viability and thus possible adoption is still constrained, mainly by higher prices than for conventional vehicles. In our work we analyze possible market developments for electric vehicles with an application to Germany. We develop a drivetrain choice model with economical, technical and social constraints on the current vehicle registrations and inventory. It estimates the demand for electric vehicles until 2030 for private and commercially registered cars as well as light commercial vehicles. The results show a replacement potential of almost one third of the total German annual mileage for these vehicles. The result has a high granularity to allow for detailed emission calculation along different spatial areas as well as vehicle and engine types. Besides a baseline forecast, our method allows for calculating different scenarios regarding policy actions or the future development of important parameters such as energy prices. The results provide insights for policy measures as well as for transport and environmental modeling. - Highlights: • We model the potential German market for electric vehicles using total cost of ownership. • The results show a substitution potential of one third of the total German annual mileage. • Plug-in hybrid drivetrains outperform battery electric ones due to their cost advantages. • Suburbia around large cities is the largest market for EVs. • The first main vehicle categories for EVs are large and medium-sized company cars

  20. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  1. Operation Modes of Battery Chargers for Electric Vehicles in the Future Smart Grids

    OpenAIRE

    Monteiro, Vítor; Ferreira, João,; Afonso, João

    2014-01-01

    This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen...

  2. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  3. Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis

    International Nuclear Information System (INIS)

    This paper compares the economic and environmental benefits of electric and hybrid electric vehicles with that of conventional vehicles. Without tax credits, only the hybrids without plug-in incur lifetime total costs equivalent to a conventional vehicle whereas the consumer affordability for all other vehicles is less encouraging and depends on changes in gasoline prices. With the provision of federal tax incentives, the lifetime total cost for all electric vehicle types that are driven for 120,000 miles over 12 years was found to be generally affordable with no more than 5% higher in lifetime total cost than a conventional vehicle, except the hybrid electric plug-in equipped with a 35-mile electric driving range. Results of sensitivity analysis reveal that a greater lifetime driven mileage would promote further overall cost savings even at a greenhouse gas abatement cost as low as $42 per ton. Our study has demonstrated the importance of an energy policy that includes tax credits to address the inadequacy of cost differentials and consumer affordability. The environmental benefits provided by the electric and hybrid electric vehicles should satisfy consumers' interest in protecting the environment, reducing the dependence on imported fossil fuels, and switching from traditional to alternative fuel vehicles. - Highlights: • Electric/hybrid vehicles exhibit at least 27% lower in lifetime energy cost. • Electric/hybrid cars with tax credits are <5% higher in lifetime ownership cost, except PHEV35. • Hybrid electric vehicles provide more than 28% reduction in GHG tailpipe emission, as compared with a CV. • Upstream energy production elevates the lifetime emission cost at high gas prices. • The lifetime total cost with tax credits are affordably <5% higher than CVs, except PHEV35

  4. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Zhao

    2014-01-01

    Full Text Available Vehicle velocity and roll angle are important information for active safety control systems of four-wheel independent drive electric vehicle. In order to obtain robustness estimation of vehicle velocity and roll angle, a novel method is proposed based on vehicle dynamics and the measurement information provided by the sensors equipped in modern cars. The method is robust with respect to different road and friction conditions. Firstly, the dynamic characteristics of four-wheel independent drive electric vehicle are analyzed, and a four-degree-of-freedom nonlinear dynamic model of vehicle and a tire longitudinal dynamic equation are established. The relationship between the longitudinal and lateral friction forces is derived based on Dugoff tire model. The unknown input reconstruction technique of sliding mode observer is used to achieve longitudinal tire friction force estimation. A simple observer is designed for the estimation of the roll angle of the vehicle. And then using the relationship, the estimated longitudinal friction forces and roll angle, a sliding mode observer for vehicle velocity estimation is provided, which does not need to know the tire-road friction coefficient and road angles. Finally, the proposed method is evaluated experimentally under a variety of maneuvers and road conditions.

  5. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    Science.gov (United States)

    Reynolds, C.; Kandlikar, M.

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km.

  6. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    International Nuclear Information System (INIS)

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km

  7. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    International Nuclear Information System (INIS)

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36-263 Euro /vehicle/year in the analysed scenarios). Most of the benefits of smart EVs come from smart timing of charging although benefits are also accrued from provision of reserves and lower power plant portfolio cost. The benefits of smart EVs are 227 Euro /vehicle/year. This amount has to cover all expenses related to enabling smart EVs and need to be divided between different actors. Additional benefits could come from the avoidance of grid related costs of immediate charging, but these were not part of the analysis. -- Research highlights: → The costs of 'smart' and 'dumb' electric vehicles were estimated. → The power system benefits of smart electric vehicles were 227 Euro /vehicle/year. → Two models were used: a generation planning model and a unit commitment model. → Impact of electric vehicles in the long-term power plant portfolio are important. → A model for electric vehicles was made for the stochastic unit commitment model.

  8. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  9. Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-01

    The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractor teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.

  10. Department of Energy electric and hybrid vehicle site operator program at Pacific Gas and Electric Company. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Pacific Gas & Electric Company continues to expand an EV program that addresses the following: vehicle development and demonstration; vehicle technology assessment; infrastructure evaluation; participation in EV organizations; and meetings and events. This report highlights PG & E`s activities in each of these areas.

  11. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric

  12. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    Energy Technology Data Exchange (ETDEWEB)

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective

  13. A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-08-01

    Full Text Available With the popularization of electric vehicles (EVs, the out-of-order charging behaviors of large numbers of EVs will bring new challenges to the safe and economic operation of power systems. This paper studies an optimal charging strategy for EVs. For that a typical urban zone is divided into four regions, a regional time-of-use (RTOU electricity price model is proposed to guide EVs when and where to charge considering spatial and temporal characteristics. In light of the elastic coefficient, the user response to the RTOU electricity price is analyzed, and also a bilayer optimization charging strategy including regional-layer and node-layer models is suggested to schedule the EVs. On the one hand, the regional layer model is designed to coordinate the EVs located in different time and space. On the other hand, the node layer model is built to schedule the EVs to charge in certain nodes. According to the simulations of an IEEE 33-bus distribution network, the performance of the proposed optimal charging strategy is verified. The results demonstrate that the proposed bilayer optimization strategy can effectively decrease the charging cost of users, mitigate the peak-valley load difference and the network loss. Besides, the RTOU electricity price shows better performance than the time-of-use (TOU electricity price.

  14. Towards a collective knowledge for a smart electric vehicle charging strategy

    OpenAIRE

    João C. Ferreira; João L Afonso

    2011-01-01

    In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience (spread in a social network). In order to allow information exchange and to help user mobility, it was also created a mobile applicatio...

  15. Analysis of Lithium-Ion Battery Data Collected  On-Board Electric Vehicles

    OpenAIRE

    Peng, Lin

    2013-01-01

    In order to replace diesel energy in the transportation sector as well as to reduce the emission of green house gases (GHGs) and avoid air pollution for a sustainable future, electrification of vehicles is one of the most popular topics today. Plug-in hybrid electric vehicle (PHEV) technology is a promising technology for electrification of automobiles. It uses both internal combustion engine and electric motor for propulsion. The battery pack that propels the electric machine can be recharge...

  16. Future Operational Impacts of Electric Vehicles on European Roads FOREVER - Final technical summary report

    OpenAIRE

    MORGAN, Phil; MUIRHEAD, Matthew; Gasparoni, Sara; CONTER, Marco; Pallas, Marie-Agnès; BERENGIER, Michel; Kennedy, John; WALKER, Ian

    2015-01-01

    The FOREVER (Future OpeRational impacts of Electric Vehicles on national European Roads) project was commissioned, as part of the CEDR Transnational Road Research Programme Call 2012 on Noise, to provide information to NRAs with respect to this issue. The project was developed with three key objectives: - To identify the noise emission levels from electric and hybrid vehicles. This has been achieved through practical measurements of noise from electric and hybrid cars, vans and trucks. The in...

  17. Rare-earth-free propulsion motors for electric vehicles: a technology review

    OpenAIRE

    Riba Ruiz, Jordi-Roger; López Torres, Carlos; Romeral Martínez, José Luis; García Espinosa, Antonio

    2016-01-01

    Several factors including fossil fuels scarcity, prices volatility, greenhouse gas emissions or current pollution levels in metropolitan areas are forcing the development of greener transportation systems based on more efficient electric and hybrid vehicles. Most of the current hybrid electric vehicles use electric motors containing powerful rare-earth permanent magnets. However, both private companies and estates are aware of possible future shortages, price uncertainty and geographical conc...

  18. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    Science.gov (United States)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  19. Performance Analysis of Induction Motor of Electric Vehicle Using Vector control

    Institute of Scientific and Technical Information of China (English)

    Liu ping

    2012-01-01

    According to the principle of Vector controlused in an asyn- chronous motor,a simulation model of the asynchronous motor in elec-tric vehicle and Vectorcontrolsystem was established with Matlab/Simu-link software. Simulation analysis of the asynchronous motor driving an electric vehicle was performedunder the classic mode of EV , and the simulation results show the modeland control scheme has better stable and dynamic performance,whichcanbe a good candidate for electric ve- hicle propulsion system

  20. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    Science.gov (United States)

    Chapman, P.

    1982-01-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  1. Impact of electric vehicles on power quality in a smart grid context

    OpenAIRE

    Monteiro, Vítor Duarte Fernandes; Gonçalves, Henrique; Afonso, João L.

    2011-01-01

    The large dependency of the imported fossil fuels and the soaring oil prices, makes essential the look for alternatives to the traditional people transportation system. The natural bet is the electric mobility, namely Electric Vehicles (EV), and Plug-in Hybrid Electric Vehicles (PHEV). This way, in this paper is analyzed the potential impacts of the battery charging systems on the grid power quality, in a Smart Grid context. It is considered the current consumed, accordin...

  2. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using ...

  3. Multi-Objective Optimization of the sizing of a Hybrid Electrical Vehicle

    OpenAIRE

    Reinbold, Vincent; Gerbaud, Laurent; Vinot, Emmanuel

    2014-01-01

    Hybrid electrical vehicles involve two sources of energy, usually gasoline and electricity. The energy management determines the power sharing between the internal combustion engine (ICE) and the electrical machine (EM). It is highly dependent on the driving cycle (i.e. the use of the vehicle). In this context, the optimal sizing of the EM is determined by: the driving cycle, the power-train characteristics (i.e. ratios and physical limitations e.g. maximum torque available) and the energy ma...

  4. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  5. Near-term electric-vehicle program. Phase II. Mid-term review summary report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-27

    The general objective of the Near-Term Electric Vehicle Program is to confirm that, in fact, the complete spectrum of requirements placed on the automobile (e.g., safety, producibility, utility, etc.) can still be satisfied if electric power train concepts are incorporated in lieu of contemporary power train concepts, and that the resultant set of vehicle characteristics are mutually compatible, technologically achievable, and economically achievable. The focus of the approach to meeting this general objective involves the design, development, and fabrication of complete electric vehicles incorporating, where necessary, extensive technological advancements. A mid-term summary is presented of Phase II which is a continuation of the preliminary design study conducted in Phase I of the program. Information is included on vehicle performance and performance simulation models; battery subsystems; control equipment; power systems; vehicle design and components for suspension, steering, and braking; scale model testing; structural analysis; and vehicle dynamics analysis. (LCL)

  6. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  7. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  8. Regional distribution and layout evolution of technological innovation in the new energy electric vehicles industry of China

    OpenAIRE

    Bao-Jun Tang; Xi Zheng; Ke Wang

    2013-01-01

    Based on the initial stage situation of new energy electric vehicles (electric vehicles) industry in China, this paper uses patents retrieval and literatures polymerization methods to analyze the technological innovation status quo and the regional distribution features in the electric vehicles industry at home and abroad. Then, the data envelopment analysis (DEA) method is applied to quantifiably evaluate technological innovation efficiency of the 17 major producing areas of electric vehicle...

  9. Dynamic wireless charging of electric vehicles on the move with Mobile Energy Disseminators

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2015-06-01

    Full Text Available Dynamic wireless charging of electric vehicles (EVs is becoming a preferred method since it enables power exchange between the vehicle and the grid while the vehicle is moving. In this article, we present mobile energy disseminators (MED, a new concept, that can facilitate EVs to extend their range in a typical urban scenario. Our proposed method exploits Inter-Vehicle (IVC communications in order to eco-route electric vehicles taking advantage of the existence of MEDs. Combining modern communications between vehicles and state of the art technologies on energy transfer, vehicles can extend their travel time without the need for large batteries or extremely costly infrastructure. Furthermore, by applying intelligent decision mechanisms we can further improve the performance of the method.

  10. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2010-04-01

    Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.

  11. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  12. A perspective on electric vehicles: cost-benefit analysis and potential demand

    International Nuclear Information System (INIS)

    This report proposes some quantitative elements to assess the large scale diffusion of electric vehicles and analyse the potential demand for such vehicles. The first part proposes a cost-benefit analysis of the development of electric vehicles based on estimated costs and expected benefits by 2020. It addresses the following issues: framework and hypothesis, total cost of ownership, costs related to the deployment of a network of recharging infrastructures, assessment of external costs, and comparative cost-benefit analysis of electric vehicles. In the second part, the authors aim at identifying a potential demand for electric vehicles from the 2008 French national transport displacement survey (ENTD 2008) which provides recent data on the mobility of the French population

  13. Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development

    Science.gov (United States)

    Song, Wang-Cheol

    Recently the smart grid has been a hot issue in the research area. The Electric Vehicle (EV) is the most important component in the Smart Grid, having a role of the battery component with high capacity. We have thought how to introduce the EV in the housing development, and for proper operation of the smart grid systems in the housing area the authentication system is essential for the individual houses. We propose an authentication system to discriminate an individual houses, so that the account management component can appropriately operate the electrical charging and billing in the housing estate. The proposed system has an architecture to integrate the charging system outside a house and the monitoring system inside a house.

  14. The economics of fast charging infrastructure for electric vehicles

    International Nuclear Information System (INIS)

    By 2011 little is known about the economic rationale of public fast chargers for electric vehicles (EV). This paper aims at providing an insight into the business case of this technology in a case study for Germany. The estimated Return on Investment (ROI) of a public fast charging station constitutes the main contribution. Potential users and organization structures are investigated as well as different tariff types. According to the estimations, the current market outlook seems too uncertain for triggering a large-scale roll-out of fast charging infrastructure. Approximations suggest that investment is hardly profitable at low EV adoption rates, unless investment cost can be severely lowered. Besides competition with alternative charging solutions, the general EV adoption rate is detected as being a main risk factor for investment in public charging infrastructure. Highlights: ► Private investment into public fast charging infrastructure appears to be driven by other than pure project prospects at current EV penetration rates. ► High cost markups are needed to refinance investment, unless grid tariffs are exempted or constant high demand is assured. ► Investment into public fast charging remains risky and incentives can be contained by the spreading of alternative home-charging devices and alternative propulsion technologies.

  15. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  16. Analysis of electric vehicle interconnection with commercial building microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  17. Impact of Battery Ageing on an Electric Vehicle Powertrain Optimisation

    Directory of Open Access Journals (Sweden)

    Daniel J. Auger

    2014-12-01

    Full Text Available An electric vehicle’s battery is its most expensive component, and it cannot be charged and discharged indefinitely. This affects a consumer vehicle’s end-user value. Ageing is tolerated as an unwanted operational side-effect; manufacturers have little control over it. Recent publications have considered trade-offs between efficiency and ageing in plug-in hybrids (PHEVs but there is no equivalent literature for pure EVs. For PHEVs, battery ageing has been modelled by translating current demands into chemical degradation. Given such models it is possible to produce similar trade-offs for EVs. We consider the effects of varying battery size and introducing a parallel supercapacitor pack. (Supercapacitors can smooth current demands, but their weight and electronics reduce economy. We extend existing EV optimisation techniques to include battery ageing, illustrated with vehicle case studies. We comment on the applicability to similar EV problems and identify where additional research is needed to improve on our assumptions.

  18. A Boosting Multi Flyback Converter for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    J. Sangeetha

    2015-08-01

    Full Text Available The Flyback converter belongs to the primary switched converter family, which means there is isolation between input and output. Flyback converters have low number of components compared to other Switched Mode Power Supplies (SMPSs, they also have the advantage that several isolated output voltages can be regulated by one control circuit. This study proposes an efficient and cost effective Multi Flyback topology, an isolated DC-DC converter suitable for electric vehicle applications especially driven with induction motor. The converter topology forms a power interface between the battery and the motor and also capable of boosting the voltage from low voltage battery side to high voltage DC link. A Multi Flyback Converter topology implemented by paralleling three individual flyback converters at the battery input side and DC link output side. The topology will share the current across each individual converter and the individual power will be added up at the output side. The scheme incorporates a transformer winding technique which can reduce the leakage inductance of the coupled inductor to a satisfactory limit.

  19. A sustainability assessment of electric vehicles as a personal mobility system

    International Nuclear Information System (INIS)

    Highlights: ► Ownership cost and CO2 emissions for electric and internal combustion engine vehicles. ► Well-to-Wheel energy assessment in electric vehicles. ► Main factors that contribute to overall energy consumption. ► Real world experiments to characterize electric vehicles energy consumption. - Abstract: This paper presents a study of the economic and environmental balances for Electric Vehicles (EVs) versus Internal Combustion Engine Vehicle (ICEV). The analyses were based on the Well-to-Wheel (WTW) methodology, a specific type of Life Cycle Assessment (LCA). WTW balances were carried out taking into account different scenarios for the primary energy supply and different vehicle technologies. The primary energy supply includes non-renewable sources (fossil fuels and nuclear) and Renewable Energy Source (RES). Vehicle technologies include Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV). The generation scenarios considered in the study include the present European Union (EU) average mix and a planned increasing contribution from RESs. For the BEV, several real world driving cycle scenarios were investigated, using a custom built data acquisition system, in order to characterize the main factors that contribute to the overall energy consumption, associated cost and emissions. In terms of environmental impact, for the average EU electricity mix, BEVs have less than a half of the emissions than an ICEV. However, the ownership costs during its life cycle (about 10 y) are similar to an equivalent ICEV, despite the lower operational costs for BEVs. The likely battery price reduction, leading to a lower investment cost, will gradually tip the balance in favour of EVs.

  20. Ford/DOE sodium-sulfur battery electric vehicle development: Phase I-A final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Phase I-A NaS battery powered electric vehicle study program produced encouraging results insofar as showing that a feasible NaS battery design can be developed for installation in an existing production vehicle, such as the Ford Fiesta. The study has shown that this NaS Battery powered Fiesta (modified to be a 2-passenger vehicle), can have adequate performance and range potential such that its use as a test bed could adequately evaluate the potential of the NaS battery as a power source for further electric vehicles.