WorldWideScience

Sample records for ankle torque steadiness

  1. Ankle torque steadiness is related to muscle activation variability and coactivation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin Høyer; Sløk, Rikke;

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...

  2. Ankle torque steadiness is related to muscle activation variability and co-activation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin; Sløk, Rikke;

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...

  3. Assessment of torque-steadiness reliability at the ankle level in healthy young subjects: implications for cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin Høyer; Sonne-Holm, Stig;

    2008-01-01

    It was the primary objective of this study to investigate whether quantifying fluctuations in dorsi and plantarflexor torque during submaximal isometric contractions is a reliable measurement in young healthy subjects. A secondary objective was to investigate the reliability of the associated mus...

  4. Ankle and hip postural strategies defined by joint torques

    Science.gov (United States)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  5. An examination of ankle, knee, and hip torque production in individuals with chronic ankle instability.

    Science.gov (United States)

    Gribble, Phillip A; Robinson, Richard H

    2009-03-01

    There is some debate in the literature as to whether strength deficits exist at the ankle in individuals with chronic ankle instability (CAI). Additionally, there is evidence to suggest that knee and hip performance is altered in those with CAI. Therefore, the purpose of this study was to determine whether CAI is associated with deficits in ankle, knee, and hip torque. Fifteen subjects with unilateral CAI and fifteen subjects with healthy ankles participated. Subjects reported to the laboratory for one session during which the torque production of ankle plantar flexion/dorsiflexion, knee flexion/extension, and hip flexion/extension were measured with an isokinetic device. Subjects performed 5 maximum-effort repetitions of a concentric/concentric protocol at 60 degrees .s for both extremities. Average peak torque (APT) values were calculated. The subjects with CAI demonstrated significantly less APT production for knee flexion (F1,28 = 5.40; p = 0.03) and extension (F1,28 = 5.34; p = 0.03). Subjects with CAI exhibited significantly less APT for ankle plantar flexion in the injured limb compared with their noninjured limb (F1,28 = 6.51; p = 0.02). No significant difference in ankle dorsiflexion or hip flexion/extension APT production existed between the 2 groups. Individuals with CAI, in addition to deficits in ankle plantar flexion torque, had deficits in knee flexor and extensor torque, suggesting that distal joint instability may lead to knee joint neuromuscular adaptations. There were no similar deficits at the hip. Future research should determine what implications this has for prevention and rehabilitation of lower-extremity injury. Clinicians may need to consider including rehabilitation efforts to address these deficits when rehabilitating patients with CAI.

  6. Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension.

    Science.gov (United States)

    Andrade, R J; Lacourpaille, L; Freitas, S R; McNair, P J; Nordez, A

    2016-01-01

    Ankle joint range of motion (ROM) is notably influenced by the position of the hip joint. However, this result remains unexplained. Thus, the aim of this study was to test if the ankle passive torque and gastrocnemius muscle tension are affected by the hip and the head positions. The torque and the muscle shear elastic modulus (measured by elastography to estimate muscle tension) were collected in nine participants during passive ankle dorsiflexions performed in four conditions (by combining hip flexion at 90 or 150°, and head flexed or neutral). Ankle maximum dorsiflexion angle significantly decreased by flexing the hip from 150 to 90° (P  0.05). Maximal passive torque and shear elastic modulus were higher with the hip flexed at 90° (P  0.05) were found for both torque and shear elastic modulus at a given common ankle angle among conditions. Shifts in maximal ankle angle due to hip angle manipulation are not related neither to changes in passive torque nor tension of the gastrocnemius. Further studies should be addressed to better understand the functional role of peripheral nerves and fasciae in the ankle ROM limits.

  7. The Eccentric Torque Production Capacity of the Ankle, Knee, and Hip Muscle Groups in Patients with Unilateral Chronic Ankle Instability

    Science.gov (United States)

    Negahban, Hossein; Moradi-Bousari, Aida; Naghibi, Saeed; Sarrafzadeh, Javad; Shaterzadeh-Yazdi, Mohammad-Jafar; Goharpey, Shahin; Etemadi, Malihe; Mazaheri, Masood; Feizi, Awat

    2013-01-01

    Purpose The aim of this study was to investigate eccentric torque production capacity of the ankle, knee and hip muscle groups in patients with unilateral chronic ankle instability (CAI) as compared to healthy matched controls. Methods In this case-control study, 40 participants (20 with CAI and 20 controls) were recruited based on convenient non-probability sampling. The average peak torque to body weight (APT/BW) ratio of reciprocal eccentric contraction of ankle dorsi flexor/plantar flexor, ankle evertor/invertor, knee flexor/extensor, hip flexor/extensor and hip abductor/adductor was determined using an isokinetic dynamometer. All subjects participated in two separate sessions with a rest interval of 48 to 72 hours. In each testing session, the torque production capacity of the ankle, knee, and hip muscle groups of only one lower limb was measured. At first, 3 repetitions of maximal eccentric-eccentric contraction were performed for the reciprocal muscles of a joint in a given movement direction. Then, the same procedure of practice and testing trials was repeated for the next randomly-ordered muscle group or joint of the same limb. Results There was no significant interaction of group (CAI and healthy controls) by limb (injured and non-injured) for any muscle groups. Main effect of limb was not significant. Main effect of group was only significant for eccentric torque production capacity of ankle dorsi flexor and hip flexor muscle groups. The APT/BW ratio of these muscles was significantly lower in the CAI group than the healthy controls (P<0.05). Conclusion CAI is associated with eccentric strength deficit of ankle dorsi flexor and hip flexor muscles as indicated by reduction in torque production capacity of these muscles compared to healthy controls. This strength deficit appeared to exist in both the injured and non-injured limbs of the patients. PMID:23802057

  8. Approximate entropy based on attempted steady isometric contractions with the ankle dorsal- and plantarflexors: Reliability and optimal sampling frequency

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Bandholm, Thomas; Jensen, Bente Rona

    2009-01-01

    The aim of this study was to (1) examine the test-retest reliability of approximate entropy (ApEn) calculated for torque time-series from attempted steady isometric contractions performed at two different days, and (2) examine the significance of the sampling frequency for the ApEn values. Eighteen...... healthy young subjects (13+/-3 years, mean+/-1 S.D.) performed attempted steady isometric submaximal contractions with the ankle dorsal- and plantarflexors at two different days. Relative (ICC(3.1)) and absolute (standard error of measurement [S.E.M.], and S.E.M.%) test-retest reliability was assessed...

  9. Knee and ankle joint torque-angle relationships of multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Olvermann, Matthias; Richtberg, Jan; Seiberl, Wolfgang; Schwirtz, Ansgar

    2011-07-28

    The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.

  10. Effects of imagery motor training on torque production of ankle plantar flexor muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Toering, ST; Bessem, B; van der Laan, O; Diercks, RL

    2003-01-01

    The aim of this study was to investigate in control subjects the effect of imagery training on the torque of plantar-flexor muscles of the ankle. Twenty-nine subjects were allocated to one of three groups that performed either imagery training, low-intensity strength training, or no training (only m

  11. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    Science.gov (United States)

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes.

  12. Control of torque direction by spinal pathways at the cat ankle joint.

    Science.gov (United States)

    Nichols, T R; Lawrence, J H; Bonasera, S J

    1993-01-01

    To study the biomechanics of the calcaneal tendon's complex insertion onto the calcaneus, we measured torque-time trajectories exerted by the triceps surae and tibialis anterior muscles in eight unanesthetized decerebrate cats using a multi-axis force-moment sensor placed at the ankle joint. The ankle was constrained to an angle of 110 degrees plantarflexion. Muscles were activated using crossed-extension (XER), flexion (FWR), and caudal cutaneous sural nerve (SNR) reflexes. Torque contributions of other muscles activated by these reflexes were eliminated by denervation or tenotomy. In two animals, miniature pressure transducers were implanted among tendon fibers from the lateral gastrocnemius (LG) muscle that insert straight into the calcaneus or among tendon fibers from the medial gastrocnemius (MG) that cross over and insert on the lateral aspect of calcaneus. Reflexively evoked torques had the following directions: FWR, dorsiflexion and adduction; SNR, plantarflexion and abduction; and XER, plantarflexion and modest abduction or adduction. The proportion of abduction torque to plantarflexion torque was always greater for SNR than XER; this difference was about 50% of the magnitude of abduction torque generated by tetanic stimulation of the peronei. During SNR, pressures were higher in regions of the calcaneal tendon originating from MG than regions originating from LG. Similarly, pressures within the MG portion of the calcaneal tendon were higher during SNR than during XER, although these two reflexes produced matched ankle plantarflexion forces. Selective tenotomies and electromyographic recordings further demonstrated that MG generated most of the torque in response to SNR, while soleus, LG, and MG all generated torques in response to XER.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A multiple degree of freedom lower extremity isometric device to simultaneously quantify hip, knee, and ankle torques

    NARCIS (Netherlands)

    Sánchez, N.; Acosta, A.M.; Stienen, A.H.A.; Dewald, J.P.A.

    2015-01-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee, or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee, and

  14. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee, and Ankle Torques.

    Science.gov (United States)

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H A; Dewald, Julius P A

    2015-09-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee, or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee, and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee, and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation, and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee, and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions.

  15. Enhanced physiological tremor deteriorates plantar flexor torque steadiness after bed rest

    NARCIS (Netherlands)

    Mulder, E.R.; Horstman, A.M.; Gerrits, K.; Massa, M.; Kleine, B.U.; Haan, A. de; Belavy, D.L.; Felsenberg, D.; Zwarts, M.J.; Stegeman, D.F.

    2011-01-01

    This study evaluated the effectiveness of resistance training to preserve submaximal plantar flexor (PF) torque steadiness following 60 days of bed rest (BR). Twenty-two healthy male subjects underwent either BR only (CTR, n=8), or BR plus resistance training (RT, n=14). The magnitude of torque fluc

  16. Tremor irregularity, torque steadiness and rate of force development in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    We investigated lower-extremity isometric tremor Approximate Entropy (irregularity), torque steadiness and rate of force development (RFD) and their associations to muscle activation strategy during isometric knee extensions in patients with Parkinson's disease (PD). Thirteen male patients...... with idiopathic PD and 15 neurologically healthy matched controls performed isometric maximal contractions (extension/flexion) as well as steady submaximal and powerful isometric knee extensions. The patients with PD showed decreased isometric tremor irregularity. Torque steadiness was reduced in PD...... that both knee isometric tremor Approximate Entropy and torque steadiness clearly differentiate between patients with PD and healthy controls. Furthermore, severely compromised RFD was found in patients with PD and was associated with decreased agonist muscle activation....

  17. Measurement of torque during passive and active ankle movements in patients with muscle hypertonia. A methodological study.

    Science.gov (United States)

    Broberg, C; Grimby, G

    1983-01-01

    Torque curves were recorded during passive and active ankle joint movements at three preset angular velocities (30, 60 and 120 degrees/s) with the subject in the supine position and 45 degrees hip and knee angles. Recordings were performed in normal subjects (n = 11), patients with clinical spasticity (n = 10) and patients with Parkinson's disease (n = 7). The torque curves recorded during passive dorsiflexion followed by plantar flexion showed a counterclockwise hysteresis loop with minimal area in the normal subjects and a large area in patients, especially at the highest velocity. The torque increase during dorsiflexion was proportional to the angular velocity in the patients with spasticity but not in the patients with Parkinson's disease. In the patients with spasticity, a good correlation was found between clinical assessment of hypertonia and measurements of torque during passive movements but not torque values during maximal voluntary dorsiflexion. A model for data reduction and estimation of instant slope values on different parts of the torque-angle curve is suggested. The use of ankle torque recordings for evaluation of treatment effects is exemplified.

  18. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elías, Ricardo Gabriel

    2017-03-09

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  19. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  20. The capacity to restore steady gait after a step modification is reduced in people with poststroke foot drop using an ankle-foot orthosis

    NARCIS (Netherlands)

    Swigchem, R. van; Roerdink, M.; Weerdesteyn, V.G.M.; Geurts, A.C.H.; Daffertshofer, A.

    2014-01-01

    BACKGROUND: A reduced capacity to modify gait to the environment may contribute to the risk of falls in people with poststroke foot drop using an ankle-foot orthosis. OBJECTIVE: This study aimed to quantify their capacity to restore steady gait after a step modification. DESIGN: This was a cross-sec

  1. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  2. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.

    Science.gov (United States)

    de Oliveira, Liliam Fernandes; Menegaldo, Luciano Luporini

    2010-10-19

    EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (F(om)). This paper proposes an approach to find F(om) by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. F(om) obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained F(om) was used, as compared to F(om) from the literature.

  3. Crank inertial load has little effect on steady-state pedaling coordination.

    Science.gov (United States)

    Fregly, B J; Zajac, F E; Dairaghi, C A

    1996-12-01

    Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady

  4. Dynamic Torque Calibration Unit

    Science.gov (United States)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  5. Ankle pain

    Science.gov (United States)

    ... which cushions joints) Infection in the ankle joint Osteoarthritis , gout , rheumatoid arthritis , Reiter syndrome , and other types ... Ma, MD, assistant professor, chief, sports medicine and shoulder service, UCSF Department of Orthopaedic Surgery, San Francisco, ...

  6. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    Science.gov (United States)

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  7. Are joint torque models limited by an assumption of monoarticularity?

    Science.gov (United States)

    Lewis, Martin G C; King, Mark A; Yeadon, Maurice R; Conceição, Filipe

    2012-11-01

    This study determines whether maximal voluntary ankle plantar flexor torque could be more accurately represented using a torque generator that is a function of both knee and ankle kinematics. Isovelocity and isometric ankle plantar flexor torques were measured on a single participant for knee joint angles of 111° to 169° (approximately full extension) using a Contrex MJ dynamometer. Maximal voluntary torque was represented by a 19-parameter two-joint function of ankle and knee joint angles and angular velocities with the parameters determined by minimizing a weighted root mean square difference between measured torques and the two-joint function. The weighted root mean square difference between the two-joint function and the measured torques was 10 N-m or 3% of maximum torque. The two-joint function was a more accurate representation of maximal voluntary ankle plantar flexor torques than an existing single-joint function where differences of 19% of maximum torque were found. It is concluded that when the knee is flexed by more than 40°, a two-joint representation is necessary.

  8. The relationships between muscle force steadiness and visual steadiness in young and old adults.

    Science.gov (United States)

    Krupenevich, Rebecca L; Murray, Nick; Rider, Patrick M; Domire, Zachary J; DeVita, Paul

    2015-01-01

    Since vision is used in studies of muscle force control, reduced muscle force control might be related to reduced visual ability. We investigated relationships between steadiness in eye movements and quadriceps muscle torque (a surrogate for force) during isometric contractions of constant and varying torques. Nineteen young adults with an average age of 20.7 years and 18 old adults with an average age of 71.6 years performed three vision tasks, three vision and torque tasks at 40% maximal voluntary contraction (MVC), and three vision and torque tasks at 54 nm. Age groups had identical torque steadiness (CV) in 40%-MVC and 54-nm conditions (p > .05). Old had similar vertical (p > .05) but decreased horizontal visual steadiness (SD) (p .05). We were unable to identify a substantial relationship between muscle torque steadiness and eye movement, as a component of visual steadiness, and conclude that reduced visual steadiness does not contribute to reduced muscle torque steadiness.

  9. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    Science.gov (United States)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  10. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.

  11. Characteristics of peak muscle torques of the knee and ankle joints of excellent men’s freestyle wrestlers in China%我国优秀男子自由式摔跤运动员膝、踝关节肌力矩峰值的特征

    Institute of Scientific and Technical Information of China (English)

    张丽艳; 李光欣

    2013-01-01

    The authors tested and analyzed muscle torques of the lower limb knee and ankle joints of national men’s free-style wrestlers who prepared for the London Olympic Games by using ISOMed-2000 isokinetic test system, and revealed the following findings:1) from the perspective of torque, with the increase of test speed, there was a significant difference (P<0.05) in the characteristics of muscle power of the knee and ankle joints between key and non key wrestlers, and the torque angles of flexor and extensor muscles presented different characteristics respectively, which means quick power is particularly important to low limbs;2) from the perspective of peak torque ratio, in low speed motion, both key and non key wrestlers of team China had such a problem as that the ratio of flexion torque to extension torque was unbalanced, i.e. there was a sign of irrational development of flexor and extensor muscle groups in terms of maximum power (<50%);with the increase of test speed, although the ratio of flexion toque to extension torque tended to rational (in the range of 50%-80%), it was low generally;3) there was a sign of unbalance as well in the comparison of designation identical muscle groups at both sides of knee joints, especially, there was a big difference between extensor muscles at both sides;4) there was a similar sign in the characteristics of muscle power of knee joints (refer to the text for details), but flexor muscle power is significantly weaker than extensor muscle power. The said findings indicated that men’s freestyle wrestlers should practice more for the balance of power of flexor and extensor muscle groups at the left and right sides, and in terms of ankle joint, give priority to flexor muscle power training.%  运用ISOMed-2000等速测试系统对备战伦敦奥运会的国家男子自由式摔跤运动员下肢膝关节、踝关节肌力矩进行测试与分析。结果发现:1)从力矩角度来看,随着测试

  12. Ankle Sprain Treatment

    Science.gov (United States)

    ... Emergencies > Sports Injuries > Ankle Sprain Treatment Health Issues Listen Español Text Size Email Print Share Ankle Sprain Treatment Page Content Article Body Acute ankle and foot injuries are common in athletes and other active young people. Sprains account for the greatest number ...

  13. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.

    Science.gov (United States)

    Mooney, Luke M; Lai, Cara H; Rouse, Elliott J

    2014-01-01

    By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.

  14. Modified Blair ankle fusion for ankle arthritis

    Institute of Scientific and Technical Information of China (English)

    Wang Shuangli; Huang Zhang; Xiong Gaoxin; Chen Guang; Yin Zhongxiang; Jiang Hua

    2014-01-01

    Objective:To investigate the clinical outcome of modified Blair ankle fusion for ankle arthritis.Methods:Between November 2009 and June 2012,28 patients with ankle arthritis were treated,among whom 11 had obvious foot varus deformity,and 17 were almost normal in appearance.There were 13 males and 15 females with an average age of 49.4 years (range,23-67 years).The main symptoms included swelling,pain,and a limited range of motion of the ankles.The ankle joints functions were assessed by American Orthopedic Foot and Ankle Society (AOFAS) ankle and hindfoot score and visual analog scale (VAS) preoperatively and at 1 year follow-up.Results:Twenty-eight patients were followed up for 19.8 months on average (range,1-2 years).Superficial wound infection occurred in 3 cases,and was cured after debridement; the other incisions healed by first intention without complications.All ankles were fused at 1 year follow-up after operation.The symptom was relieved completely in all patients at last follow-up without complication of implant failure,or nonunion.The postoperative AOFAS ankle and hindfoot score was 83.13±3.76,showing significant difference when compared with the preoperative score (45.38±3.21,P<0.01).VAS was significantly decreased from 8.01±0.63 to 2.31±1.05 at 1 year follow-up (P<0.05).Conclusion:Modified Blair ankle fusion has the advantages of high feasiblity,less cost and rigid fixation.It shows high reliability in pain relief and may obtain a good clinical effectiveness.

  15. Total ankle arthroplasty in end-stage ankle arthritis

    OpenAIRE

    Demetracopoulos, Constantine A.; Halloran, James P.; Maloof, Paul; Samuel B Adams; Parekh, Selene G.

    2013-01-01

    Recent advancements in ankle prosthesis design, combined with improved surgical techniques for correction of coronal plane deformity and ligamentous balancing, have led to a resurgence of interest in total ankle arthroplasty for the treatment of end-stage ankle arthritis. Although ankle arthrodesis has long been considered the gold standard treatment for ankle arthritis, recent studies have shown that patients who undergo total ankle replacement have equivalent pain relief and improved functi...

  16. Large amplitude oscillation of magnetization in spin-torque oscillator stabilized by field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tomohiro, E-mail: tomohiro-taniguchi@aist.go.jp; Kubota, Hitoshi; Imamura, Hiroshi [National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba 305-8568 (Japan); Tsunegi, Sumito [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Ave. A. Fresnel, Palaiseau (France)

    2015-05-07

    Oscillation frequency of spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized pinned layer is theoretically investigated by taking into account the field-like torque. It is shown that the field-like torque plays an important role in finding the balance between the energy supplied by the spin torque and the dissipation due to the damping, which results in a steady precession. The validity of the developed theory is confirmed by performing numerical simulations based on the Landau-Lifshitz-Gilbert equation.

  17. Summary of Human Ankle Mechanical Impedance During Walking

    Science.gov (United States)

    Rouse, Elliott J.; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane. PMID:27766187

  18. Understanding acute ankle ligamentous sprain injury in sports

    Directory of Open Access Journals (Sweden)

    Fong Daniel TP

    2009-07-01

    Full Text Available Abstract This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms. Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms. The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative

  19. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  20. Recycling energy to restore impaired ankle function during human walking.

    Directory of Open Access Journals (Sweden)

    Steven H Collins

    Full Text Available BACKGROUND: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is necessary for steady gait, in which mechanical energy is constant on average, external dissipation is negligible, and no net work is performed over a stride. However, dissipation and replacement by muscles might not be necessary if energy were instead captured and reused by an assistive device. METHODOLOGY/PRINCIPAL FINDINGS: We developed a microprocessor-controlled artificial foot that captures some of the energy that is normally dissipated by the leg and "recycles" it as positive ankle work. In tests on subjects walking with an artificially-impaired ankle, a conventional prosthesis reduced ankle push-off work and increased net metabolic energy expenditure by 23% compared to normal walking. Energy recycling restored ankle push-off to normal and reduced the net metabolic energy penalty to 14%. CONCLUSIONS/SIGNIFICANCE: These results suggest that reduced ankle push-off contributes to the increased metabolic energy expenditure accompanying ankle impairments, and demonstrate that energy recycling can be used to reduce such cost.

  1. Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael J; Crone, Clarissa

    2010-01-01

    -controlled robotic device applied stretches to the ankle plantar flexor muscles at different velocities (8-200deg/s; amplitude 6 degrees ). The reflex threshold was determined by soleus EMG. Torque and EMG data were normalized to the maximal torque and EMG evoked by supramaximal stimulation of the tibial nerve...

  2. Modified Evans peroneus brevis lateral ankle stabilization for balancing varus ankle contracture during total ankle replacement.

    Science.gov (United States)

    Roukis, Thomas S

    2013-01-01

    Lateral ankle instability is frequently encountered when performing total ankle replacement and remains a challenge. In the present techniques report, I have described a modification of the Evans peroneus brevis tendon lateral ankle stabilization harvested through limited incisions using simple topographic anatomic landmarks. The harvested peroneus brevis is then transferred either to the anterior distal tibia concomitantly with total ankle replacement or through the tibia when performed after total ankle replacement and secured with plate and screw fixation. This modified Evans peroneus brevis tendon is useful in providing lateral ankle stability during or after primary and revision total ankle replacement.

  3. Transient Effects on Dynamic Torque for Butterfly Valves

    OpenAIRE

    Price, Trevor N.

    2013-01-01

    Butterfly valves are versatile components widely used in hydraulic systems as shutoff and throttling valves. Butterfly valve components must be able to withstand the forces and torques that are generated with use. Dynamic torque data are usually obtained in a test lab for a variety of steady state flow conditions; however the dynamic torque under transient (unsteady flow) conditions may be significantly different than that found in the laboratory. If a valve is closed too fast, especially in ...

  4. Ankle ligament injuries

    Directory of Open Access Journals (Sweden)

    Per A.F.H. Renström

    1998-06-01

    Full Text Available Acute ankle ligament sprains are common injuries. The majority of these occur during athletic participation in the 15 to 35 year age range. Despite the frequency of the injury, diagnostic and treatment protocols have varied greatly. Lateral ligament complex injuries are by far the most common of the ankle sprains. Lateral ligament injuries typically occur during plantar flexion and inversion, which is the position of maximum stress on the anterotalofibular liagment (ATFL. For this reason, the ATFL is the most commonly torn ligament during an inversion injury. In more severe inversion injuries the calcaneofibular (CFL, posterotalofibular (PTFL and subtalar ligament can also be injured. Most acute lateral ankle ligament injuries recover quickly with nonoperative management. The treatment program, called "functional treatment," includes application of the RICE principle (rest, ice, compression, and elevation immediately after the injury, a short period of immobilization and protection with an elastic or inelastic tape or bandage, and early motion exercises followed by early weight bearing and neuromuscular ankle training. Proprioceptive training with a tilt board is commenced as soon as possible, usually after 3 to 4 weeks. The purpose is to improve the balance and neuromuscular control of the ankle. Sequelae after ankle ligament injuries are very common. As much as 10% to 30% of patients with a lateral ligament injury may have chronic symptoms. Symptoms usually include persistent synovitis or tendinitis, ankle stiffness, swelling, and pain, muscle weakness, and frequent giving-way. A well designed physical therapy program with peroneal strengthening and proprioceptive training, along with bracing and/or taping can alleviate instability problems in most patients. For cases of chronic instability that are refractory to bracing and external support, surgical treatment can be explored. If the chronic instability is associated with subtalar instability

  5. What Is a Foot and Ankle Surgeon?

    Science.gov (United States)

    ... Foot & Ankle Surgeon? A A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle ... of conditions that affect people of every age. What education has a foot and ankle surgeon received? ...

  6. Novel torque ripple minimization algorithm for direct torque control of induction motor drive

    Institute of Scientific and Technical Information of China (English)

    LONG Bo; GUO Gui-fang; HAO Xiao-hong; LI Xiao-ning

    2009-01-01

    To elucidate the principles of notable torque and flux ripple during the steady state of the conventional direct torque control (DTC) of induction machines, the factors of influence torque variation are examined. A new torque ripple minimization algorithm is proposed. The novel method eradicated the torque ripple by imposing the required stator voltage vector in each control cycle. The M and T axial components of the stator voltage are accomplished by measuring the stator flux error and the expected incremental value of the torque at every sampling time. The maximum angle rotation allowed is obtained. Experimental results showed that the proposed method combined with the space vector pulse width modulation(SVPWM) could be implemented in most existing digital drive controllers, offering high performance in both steady and transient states of the induction drives at full speed range. The result of the present work imphes that torque fluctuation could be eliminated by imposing proper stator voltage, and the proposed scheme could not only maintain constant switching frequency for the inverter, but also solve the heating problem and current harmonics in traditional induction motor drives.

  7. Stresses in the ankle joint and total ankle replacement design.

    Science.gov (United States)

    Kakkar, Rahul; Siddique, M S

    2011-06-01

    The ankle is a highly congruent joint with a surface area of 11-13 cm(2). Total ankle replacements have been attempted since the early 1970s and design has continually evolved as the early designs were a failure. This was because the stresses involved and the mutiaxial motion of the ankle has not been understood until recently. It has been shown that the talus slides as well as rolls during the ankle arc of motion from plantarflexion to dorsiflexion. Furthermore, the articular surfaces and the calcaneofibular and tibiocalcaneal ligaments have been shown to form a four bar linkage dictating ankle motion. A new design ankle replacement has been suggested recently which allows multiaxial motion at the ankle while maintaining congruency throughout the arc of motion. The early results of this ankle replacement have been encouraging without any reported failures due to mechanical loosening.

  8. Analysis of torque-current characteristic of brushless DC motor driven by three-phase H-bridge

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque-current characteristic of the motor as well and discusses the design of a current-measure circuit for torque controlling.

  9. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking.

    Science.gov (United States)

    Koehler-McNicholas, Sara R; Nickel, Eric A; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H

    2017-01-01

    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.

  10. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking

    Science.gov (United States)

    Nickel, Eric A.; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H.

    2017-01-01

    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users. PMID:28278172

  11. Transferability between Isolated Joint Torques and a Maximum Polyarticular Task: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Costes Antony

    2016-04-01

    Full Text Available The aims of this study were to determine if isolated maximum joint torques and joint torques during a maximum polyarticular task (i.e. cycling at maximum power are correlated despite joint angle and velocity discrepancies, and to assess if an isolated joint-specific torque production capability at slow angular velocity is related to cycling power. Nine cyclists completed two different evaluations of their lower limb maximum joint torques. Maximum Isolated Torques were assessed on isolated joint movements using an isokinetic ergometer and Maximum Pedalling Torques were calculated at the ankle, knee and hip for flexion and extension by inverse dynamics during cycling at maximum power. A correlation analysis was made between Maximum Isolated Torques and respective Maximum Pedalling Torques [3 joints x (flexion + extension], showing no significant relationship. Only one significant relationship was found between cycling maximum power and knee extension Maximum Isolated Torque (r=0.68, p<0.05. Lack of correlations between isolated joint torques measured at slow angular velocity and the same joint torques involved in a polyarticular task shows that transfers between both are not direct due to differences in joint angular velocities and in mono-articular versus poly articular joint torque production capabilities. However, this study confirms that maximum power in cycling is correlated with slow angular velocity mono-articular maximum knee extension torque.

  12. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that ...

  13. FIBULAR MOTOR NERVE CONDUCTION STUDIES AND ANKLE SENSORIMOTOR CAPACITIES*

    Science.gov (United States)

    Richardson, James K.; Allet, Lara; Kim, Hogene; Ashton-Miller, James A.

    2012-01-01

    Introduction Nerve conduction studies provide information regarding the status of the peripheral nerve, but relationships with sensorimotor capacities that influence mobility have not been defined. Methods A secondary analysis was conducted of data from 41 older subjects (20 women, age 69.1 ± 8.3 years), 25 with diabetic neuropathy of varying severity, and 16 without diabetes or neuropathy. Measurements included routine fibular motor nerve conduction studies and laboratory-based determination of ankle inversion/eversion proprioceptive thresholds and ankle inversion/eversion motor function. Results Independent of age, fibular amplitude correlated robustly with ankle inversion/eversion proprioceptive thresholds (R2 = .591, p < .001), moderately with ankle inversion and eversion rates of torque generation (R2 = .216; p = .004 and R2 = .200; p = .006, respectively), and more strongly when fibular motor amplitude was normalized for body mass index (R2 = .350; p < .001 and R2 = .275; p = .001). Discussion Fibular motor amplitude was strongly associated with ankle sensorimotor capacities that influence lateral balance and recovery from perturbations during gait. The results suggest that nerve conduction study measures have potential for an expanded clinical role in evaluating mobility function in the population studied. PMID:23225524

  14. Footballer's ankle: a case report

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Footballer' s ankle is anterior bony spur or anterior impingement symptom of the ankle with anterior ankle pain, limited and painful dorsiflexion. The cause is commonly seen in athletes and dancers, and is probably due to repetitive minor trauma. The condition was firstly described by Morris;1 McMurray2 reported good results from excision of the spurs, naming it footballer's ankle. Opening resection of osteophytes of the anterior tibial and superior talar is an effective treatment for anterior impingement of the ankle.

  15. In vivo kinematics and articular surface congruency of total ankle arthroplasty during gait.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tanaka, Yasuhito; Banks, Scott; Kosugi, Shinichi; Sasho, Takahisa; Takahashi, Kazuhisa; Takakura, Yoshinori

    2012-08-09

    Relatively high rates of loosening and implant failure have been reported after total ankle arthroplasty. Abnormal kinematics and incongruency of the articular surface may cause increased contact pressure and rotational torque applied to the implant, leading to loosening and implant failure. We measured in vivo kinematics of two-component total ankle arthroplasty (TNK ankle), and assessed congruency of the articular surface during the stance phase of gait. Eighteen ankles of 15 patients with a mean age of 75±6 years (mean±standard deviation) and follow-up of 44±38 months were enrolled. Lateral fluoroscopic images were taken during the stance phase of gait. 3D-2D model-image registration was performed using the fluoroscopic image and the implant models, and three-dimensional kinematics of the implant and incongruency of the articular surface were determined. The mean ranges of motion were 11.1±4.6°, 0.8±0.4°, and 2.6±1.5° for dorsi-/plantarflexion, inversion/eversion, and internal/external rotation, respectively. At least one type of incongruency of the articular surface occurred in eight of 18 ankles, including anterior hinging in one ankle, medial or lateral lift off in four ankles, and excessive axial rotation in five ankles. Among the four ankles in which lift off occurred during gait, only one ankle showed lift off in the static weightbearing radiograph. Our observations will provide useful data against which kinematics of other implant designs, such as three-component total ankle arthroplasty, can be compared. Our results also showed that evaluation of lift off in the standard weightbearing radiograph may not predict its occurrence during gait.

  16. van der Waals torque

    Science.gov (United States)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  17. Powered ankle-foot prosthesis for the improvement of amputee ambulation.

    Science.gov (United States)

    Au, Samuel K; Herr, Hugh; Weber, Jeff; Martinez-Villalpando, Ernesto C

    2007-01-01

    This paper presents the mechanical design, control scheme, and clinical evaluation of a novel, motorized ankle-foot prosthesis, called MIT Powered Ankle-Foot Prosthesis. Unlike a conventional passive-elastic ankle-foot prosthesis, this prosthesis can provide active mechanical power during the stance period of walking. The basic architecture of the prosthesis is a unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. With this architecture, the anklefoot prosthesis matches the size and weight of the human ankle, and is also capable of delivering high mechanical power and torque observed in normal human walking. We also propose a biomimetic control scheme that allows the prosthesis to mimic the normal human ankle behavior during walking. To evaluate the performance of the prosthesis, we measured the rate of oxygen consumption of three unilateral transtibial amputees walking at self-selected speeds to estimate the metabolic walking economy. We find that the powered prosthesis improves amputee metabolic economy from 7% to 20% compared to the conventional passive-elastic prostheses (Flex-Foot Ceterus and Freedom Innovations Sierra), even though the powered system is twofold heavier than the conventional devices. This result highlights the benefit of performing net positive work at the ankle joint to amputee ambulation and also suggests a new direction for further advancement of an ankle-foot prosthesis.

  18. Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle.

    Science.gov (United States)

    Rasmussen, O; Tovborg-Jensen, I

    1982-02-01

    A method for graphic recording of rotatory movements in osteoligamentous ankle preparations is described. By this method it is possible to record characteristic mobility patterns in two planes at the same time. The ankle is affected by a known torque, so that the individual mobility patterns are reproducible with unchanged condition of the ligaments. Six amputated legs were investigated in the sagittal and horizontal planes and another six in the sagittal and frontal planes. Mobility patterns were recorded with intact ligaments and after successive cutting of the lateral collateral ligaments of the ankle in the anteroposterior direction. In the sagittal plane increased dorsiflexion was observed after total cutting of the lateral ligaments, while plantar flexion remained unchanged. In the horizontal plane the internal rotation of the talus increased in step with increasing injury to the ligament, particularly when the ankle was plantar flexed. When all collateral ligaments had been cut, an increase in external rotation occurred, especially in dorsiflexion. In the frontal plane the talar tilt increased gradually with increasing injury to the ligaments. Talar tilt was at a maximum in the neutral position of the ankle or in plantar flexion. After total severing of the collateral ligaments, however, talar tilt was most marked in dorsiflexion of the ankle.

  19. A Novel Direct Torque Control for Induction Machine Drive System with Low Torque And Flux Ripples using XSG

    Directory of Open Access Journals (Sweden)

    Souha Boukadida

    2014-12-01

    Full Text Available The conventional Direct Torque Control (DTC is known to produce a quick and robust response in AC drives. However, during steady state, stator flux and electromagnetic torque which results in incorrect speed estimations and acoustical noise. A modified Direct Torque Control (DTC by using Space Vector Modulation (DTC-SVM for induction machine is proposed in this paper. Using this control strategy, the ripples introduced in torque and flux are reduced. This paper presents a novel approach to design and implementation of a high perfromane torque control (DTC-SVM of induction machine using Field Programmable gate array (FPGA.The performance of the proposed control scheme is evaluated through digital simulation using Matlab\\Simulink and Xilinx System Generator. The simulation results are used to verify the effectiveness of the proposed control strategy.

  20. Torque-wrench extension

    Science.gov (United States)

    Peterson, D. H.

    1981-01-01

    Torque-wrench extension makes it easy to install and remove fasteners that are beyond reach of typical wrenches or are located in narrow spaces that prevent full travel of wrench handle. At same time, tool reads applied torque accurately. Wrench drive system, for torques up to 125 inch-pounds, uses 2 standard drive-socket extensions in aluminum frame. Extensions are connected to bevel gear that turns another bevel gear. Gears produce 1:1 turn ratio through 90 degree translation of axis of rotation. Output bevel has short extension that is used to attach 1/4-inch drive socket.

  1. Design and validation of a platform robot for determination of ankle impedance during ambulation.

    Science.gov (United States)

    Rouse, Elliott J; Hargrove, Levi J; Peshkin, Michael A; Kuiken, Todd A

    2011-01-01

    In order to provide natural, biomimetic control to recently developed powered ankle prostheses, we must characterize the impedance of the ankle during ambulation tasks. To this end, a platform robot was developed that can apply an angular perturbation to the ankle during ambulation and simultaneously acquire ground reaction force data. In this study, we detail the design of the platform robot and characterize the impedance of the ankle during quiet standing. Subjects were perturbed by a 3° dorsiflexive ramp perturbation with a length of 150 ms. The impedance was defined parametrically, using a second order model to map joint angle to the torque response. The torque was determined using the inverted pendulum assumption, and impedance was identified by the least squares best estimate, yielding an average damping coefficient of 0.03 ± 0.01 Nms/° and an average stiffness coefficient of 3.1 ± 1.2 Nm/°. The estimates obtained by the proposed platform robot compare favorably to those published in the literature. Future work will investigate the impedance of the ankle during ambulation for powered prosthesis controller development.

  2. Control of a powered ankle-foot prosthesis based on a neuromuscular model.

    Science.gov (United States)

    Eilenberg, Michael F; Geyer, Hartmut; Herr, Hugh

    2010-04-01

    Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present an adaptive muscle-reflex controller, based on simulation studies, that utilizes an ankle plantar flexor comprising a Hill-type muscle with a positive force feedback reflex. The model's parameters were fitted to match the human ankle's torque-angle profile as obtained from level-ground walking measurements of a weight and height-matched intact subject walking at 1 m/s. Using this single parameter set, clinical trials were conducted with a transtibial amputee walking on level ground, ramp ascent, and ramp descent conditions. During these trials, an adaptation of prosthetic ankle work was observed in response to ground slope variation, in a manner comparable to intact subjects, without the difficulties of explicit terrain sensing. Specifically, the energy provided by the prosthesis was directly correlated to the ground slope angle. This study highlights the importance of neuromuscular controllers for enhancing the adaptiveness of powered prosthetic devices across varied terrain surfaces.

  3. PEAK AND END RANGE ECCENTRIC EVERTOR/CONCENTRIC INVERTOR MUSCLE STRENGTH RATIOS IN CHRONICALLY UNSTABLE ANKLES: COMPARISON WITH HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Mahmut Komurcu

    2003-09-01

    Full Text Available The aim of this study was to evaluate the alterations in eccentric evertor/concentric invertor strength ratio and their importance in the chronically unstable ankle. Eight patients with chronic ankle instability (CAI and nine healthy individuals participated in this study. Isokinetic concentric and eccentric invertor and evertor muscle strength measurement was carried out at an angular velocity of 120°·sec-1 by measuring maximal force moments (torque during isokinetic ankle inversion and eversion movements. Functionally, evertor/invertor muscle strength ratios (E/I strength ratio were calculated separately based on peak moment and angle-specific moments obtained at 0°, 5°, 10°, 15°, 20° ankle joint angles. Peak and angle-specific eccentric evertor strength values at 0°, 5°, 10°, 15°, 20° were significantly lower in the chronic ankle instability (CAI group. In spite of this, no differences were obtained for peak and angle-specific concentric invertor torque values. Eccentric evertor/concentric invertor strength (Eecc/Icon ratios were also significantly lower in the CAI group, but only at 15° and 20°. Eccentric evertor muscle torque and end range (15°-20° Eecc/Icon strength ratio for the chronically unstable ankle were significantly different from those for the healthy ankle. For this reason, measurements of end range eccentric/concentric strength ratios are more valuable in monitoring chronic ankle injuries and rehabilitation should include not only concentric muscle strengthening but also eccentric muscle strengthening, particularly for the evertor muscles

  4. Reverse Evans peroneus brevis medial ankle stabilization for balancing valgus ankle contracture during total ankle replacement.

    Science.gov (United States)

    Roukis, Thomas S; Prissel, Mark A

    2014-01-01

    Medial ankle instability secondary to deltoid ligament insufficiency is frequently encountered when performing total ankle replacement and remains a challenge. In the present techniques report, we describe a "reverse" Evans peroneus brevis tendon nonanatomic deltoid ligament reconstruction for medial ankle stabilization harvested through limited incisions using simple topographic anatomic landmarks. The harvested peroneus brevis tendon is brought through a drill hole in the talus from laterally to medially, aiming for the junction of the talar neck and body plantar to the midline. The tendon is the brought superiorly and obliquely to the anterior medial aspect of the distal tibia where it is secured under a plate and screw construct. This modified Evans peroneus brevis tendon nonanatomic deltoid ligament reconstruction is useful in providing medial ankle stability during or after primary and revision total ankle replacement.

  5. Total ankle replacement or ankle fusion in painful advanced hemophilic arthropathy of the ankle.

    Science.gov (United States)

    Rodriguez-Merchan, E Carlos

    2015-12-01

    In advanced painful hemophilic arthropathy of the ankle, the last resort is surgical treatment (ankle arthrodesis [AA] or total ankle replacement [TAR]). There is a controversy in the literature on which of the two procedures is more appropriate. A review of the literature was performed to clarify such a controversy. The first search engine was MedLine (keywords: total ankle replacement, ankle arthrodesis). Seventy articles were found in MedLine. Of these, only 16 were selected and reviewed because they were strictly focused on the topic of this article. The second search engine was the Cochrane Library, where only nine systematic reviews were found on the role of TAR and AA in non-hemophilia patients. TAR and AA provide pain relief and patient satisfaction in hemophilia patients in the short term. The available non-hemophilia literature is insufficient to conclude which treatment is superior. My current view is that AA may be preferable in most hemophilia patients.

  6. Improved Torque Control Performance in Direct Torque Control using Optimal Switching Vectors

    Directory of Open Access Journals (Sweden)

    Muhd Zharif Rifqi Zuber Ahmadi

    2015-02-01

    Full Text Available This paper presents the significant improvement of Direct Torque Control (DTC of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI. The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.

  7. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    Science.gov (United States)

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  8. Displaceable Gear Torque Controlled Driver

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  9. Treatment of Unstable Ankle Fractures

    Directory of Open Access Journals (Sweden)

    Yaniel Truffín Rodríguez

    2015-11-01

    Full Text Available Patients with unstable ankle fractures frequently attend the emergency rooms. It is estimated that there are 122 ankle fractures per 100 000 people a year. Surgical treatment of those that are unstable is inevitable since they can not be corrected in a conservative way. Several surgical procedures for repair of such lesions have been described and all of them constitute important tools for the orthopedic surgeon. Therefore, we conducted a literature review to discuss the current management of unstable ankle fractures based on the analysis of the published literature and the experiences in the Dr. Gustavo Aldereguía Lima University General Hospital of Cienfuegos.

  10. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    Science.gov (United States)

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  11. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: a pilot study.

    Science.gov (United States)

    An, Chang-Man; Won, Jong-Im

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of ankle joint mobilization with movement on knee strength, ankle range of motion, and gait velocity, compared with weight-bearing exercise in stroke patients. [Subjects and Methods] Thirty subjects with chronic stroke were divided into three groups: MWM (n = 12), WBE (n = 8), and control (n = 10). All groups attended physical therapy sessions 3 times a week for 5 weeks. Subjects in the MWM group performed mobilization with movement exercises, whilst participants in the WBE group performed weight-bearing exercises. Knee peak torque, ankle range of motion, and spatiotemporal gait parameters were evaluated before and after the interventions. [Results] Knee extensor peak torque increased significantly in both MWM and WBE groups. However, only the MWM group showed significant improvement in passive and active ankle range of motion and gait velocity, among the three groups. [Conclusion] Ankle joint mobilization with movement intervention is more effective than simple weight-bearing intervention in improving gait speed in stroke patients with limited ankle motion.

  12. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    Science.gov (United States)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  13. High Performance Direct Torque Control of Induction Motor Drives Using Space Vector Modulation

    Directory of Open Access Journals (Sweden)

    S. Allirani

    2010-11-01

    Full Text Available This paper presents a simple approach to design and implement Direct Torque Control technique for voltage source inverter fed induction motor drives. The direct torque control is one of the excellent strategies available for torque control of induction machine. It is considered as an alternative to field oriented control technique. The Direct Torque Control scheme is characterized by the absence of PI regulators, co-ordinate transformations, current regulators and pulse width modulated signal generators. Direct Torque Control allows a good torque control in steady state and transient operating conditions. The direct torque control technique based on space vector modulation and switching table has been developed and presented in this paper.

  14. Ironless armature torque motor

    Science.gov (United States)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  15. Effects of ankle balance taping with kinesiology tape for a patient with chronic ankle instability

    Science.gov (United States)

    Kim, Byeong-Jo; Lee, Jung-Hoon; Kim, Chang-Tae; Lee, Sun-Min

    2015-01-01

    [Purpose] To report the effects of ankle balance taping for a patient with chronic ankle instability (CAI). [Subject] A 33-year-old man with a 10 year history of chronic ankle stability. [Methods] ABT with kinesiology tape was performed for 2 months (average, 16 h/day) around the right ankle. [Results] At the end of two months, no ankle instability was noted when ascending and descending the stairs, jumping, turning, operating the pedals while driving, and lifting heavy objects. [Conclusion] The repeated use of kinesiology tape in ankle balance taping may be an effective treatment for recovering the ankle stability of patients with chronic ankle instability. PMID:26311206

  16. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  17. Total ankle replacement. Design evolution and results.

    Science.gov (United States)

    van den Heuvel, Alexander; Van Bouwel, Saskia; Dereymaeker, Greta

    2010-04-01

    The ankle joint has unique anatomical, biomechanical and cartilaginous structural characteristics that allow the joint to withstand the very high mechanical stresses and strains over years. Any minor changes to any of these features predispose the joint to osteoarthritis. Total ankle replacement (TAR) is evolving as an alternative to ankle arthrodesis for the treatment of end-stage ankle osteoarthritis. Initial implant designs from the early 1970s had unacceptably high failure and complication rates. As a result many orthopaedic surgeons have restricted the use of TAR in favour of ankle arthrodesis. Long term follow-up studies following ankle arthrodesis show risks of developing adjacent joint osteoarthritis. Therefore research towards a successful ankle replacement continues. Newer designs and longer-term outcome studies have renewed the interest in ankle joint replacement. We present an overview of the evolution, results and current concepts of total ankle replacement.

  18. Obesity is not associated with increased knee joint torque and power during level walking.

    Science.gov (United States)

    DeVita, Paul; Hortobágyi, Tibor

    2003-09-01

    While it is widely speculated that obesity causes increased loads on the knee leading to joint degeneration, this concept is untested. The purpose of the study was to identify the effects of obesity on lower extremity joint kinetics and energetics during walking. Twenty-one obese adults were tested at self-selected (1.29m/s) and standard speeds (1.50m/s) and 18 lean adults were tested at the standard speed. Motion analysis and force platform data were combined to calculate joint torques and powers during the stance phase of walking. Obese participants were more erect with 12% less knee flexion and 11% more ankle plantarflexion in self-selected compared to standard speeds (both pKnee and ankle torques were 17% and 11% higher (pknee work and positive ankle work were 68% and 11% higher (ppowers were statistically identical at the hip and knee but were 88% and 61% higher (both pknee torque and power at their self-selected walking speed and equal knee torque and power while walking at the same speed as lean individuals. We propose that the ability to reorganize neuromuscular function during gait may enable some obese individuals to maintain skeletal health of the knee joint and this ability may also be a more accurate risk indicator for knee osteoarthritis than body weight.

  19. Ankle Brachial Index

    Energy Technology Data Exchange (ETDEWEB)

    Wikstroem, J.; Hansen, T.; Johansson, L.; Lind, L.; Ahlstroem, H. (Dept. of Radiology and Dept. of Medical Sciences, Uppsala Univ. Hospital, Uppsala (SE))

    2008-03-15

    Background: Whole-body magnetic resonance angiography (WBMRA) permits noninvasive vascular assessment, which can be utilized in epidemiological studies. Purpose: To assess the relation between a low ankle brachial index (ABI) and high-grade stenoses in the pelvic and leg arteries in the elderly. Material and Methods: WBMRA was performed in a population sample of 306 subjects aged 70 years. The arteries below the aortic bifurcation were graded after the most severe stenosis according to one of three grades: 0-49% stenosis, 50-99% stenosis, or occlusion. ABI was calculated for each side. Results: There were assessable WBMRA and ABI examinations in 268 (right side), 265 (left side), and 258 cases (both sides). At least one >=50% stenosis was found in 19% (right side), 23% (left side), and 28% (on at least one side) of the cases. The corresponding prevalences for ABI <0.9 were 4.5%, 4.2%, and 6.6%. An ABI cut-off value of 0.9 resulted in a sensitivity, specificity, and positive and negative predictive value of 20%, 99%, 83%, and 84% on the right side, and 15%, 99%, 82%, and 80% on the left side, respectively, for the presence of a >= 50% stenosis in the pelvic or leg arteries. Conclusion: An ABI <0.9 underestimates the prevalence of peripheral arterial occlusive disease in the general elderly population

  20. Experimental Evaluation of Torque Performance of Low Pass Filter and Extended Kalman Filter with Measured Torque for Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Ibrahim Mohd Alsofyani

    2015-02-01

    Full Text Available In this paper, two kinds of observers are proposed to investigate torque estimation. The first one is based on a voltage model represented with a low-pass filter (LPF; which is normally used as a replacement for a pure integrator to avoid integration drift problem due to dc offset or measurement error. The second estimator used is an extended Kalman filter (EKF as a current model, which puts into account all noise problems. Both estimation algorithms are investigated during the steady and transient states, tested under light load, and then compared with the measured mechanical torque. In all conditions, the torque estimation error for EKF has remained within a narrow error band and yielded minimum torque ripples, which motivate the use of the EKF estimation algorithm in high performance control drives of IMs for achieving high dynamic performance.

  1. Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.

    2007-01-01

    During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.

  2. Research on a direct torque control for an electrically excited synchronous motor drive with low ripple in flux and torque

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yangzhong; HU Yuwen; HUANG Wenxin; ZHONG Tianyun

    2007-01-01

    The electrically excited synchronous motor (ESM)has typically small synchronous inductance values and quite low transient values because of the damper windings mounted on the rotor.Therefore,the torque and stator flux linkage ripples are high in the direct torque control(DTC)drive of the ESM with a torque and flux linkage hysteresis controller (basic DTC).A DTC scheme with space vector modulation(SVM)for the ESM was investigated in this paper.It is based on the compensation of the stator flux linkage vector error using the space vector modulation in order to decrease the torque and flux linkage ripples and produce fixed switching frequency under the principle that the torque is controlled by the torque angle in the ESM.Compared with the basic DTC,the results of the simulation and experiment show that the torque and flux linkage rippies are reduced,the maximum current value is decreased during the startup,and the current distortion is much smaller in the steady-state under the SVM-DTC.The field-weakening control is incorporated with the SVM-DTC successfully.

  3. Motor readiness and joint torque production in lower limbs of older women fallers and non-fallers.

    Science.gov (United States)

    Crozara, Luciano Fernandes; Morcelli, Mary Hellen; Marques, Nise Ribeiro; Hallal, Camilla Zamfolini; Spinoso, Deborah Hebling; de Almeida Neto, Antônio Francisco; Cardozo, Adalgiso Coscrato; Gonçalves, Mauro

    2013-10-01

    This study aimed to evaluate the motor response time and ability to develop joint torque at the knee and ankle in older women with and without a history of falls, in addition to investigating the effect of aging on these capacities. We assessed 18 young females, 21 older female fallers and 22 older female non-fallers. The peak torque, rate of torque development, rate of electromyography (EMG) rise, reaction time, premotor time and motor time were obtained through a dynamometric assessment and simultaneous electromyography. Surface EMGs of the rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), gastrocnemius lateralis (GL) and tibialis anterior (TA) muscles were recorded. Knee extension and flexion peak torques were lower in older fallers than in non-fallers. Knee extension and flexion and ankle plantarflexion and dorsiflexion peak torques were lower in both older groups than in the younger group. The rate of EMG rise of the BF and the motor time of the TA were lower and higher, respectively, in older fallers than in the younger adults. The time to reach peak torque in knee extension/flexion and ankle plantarflexion/dorsiflexion and the motor times of the RF, VL, BF and GL were higher in both older groups than in the younger groups. The motor time of the TA during ankle dorsiflexion and the knee extension peak torque were the major predictors of falls in older women, accounting for approximately 28% of the number of falls. Thus, these results further reveal the biomechanical parameters that affect the risk of falls and provide initial findings to support the prescription of exercises in fall prevention programs.

  4. Joint stiffness of the ankle and the knee in running.

    Science.gov (United States)

    Günther, Michael; Blickhan, Reinhard

    2002-11-01

    The spring-mass model is a valid fundament to understand global dynamics of fast legged locomotion under gravity. The underlying concept of elasticity, implying leg stiffness as a crucial parameter, is also found on lower motor control levels, i.e. in muscle-reflex and muscle-tendon systems. Therefore, it seems reasonable that global leg stiffness emerges from local elasticity established by appropriate joint torques. A recently published model of an elastically operating, segmented leg predicts that proper adjustment of joint elasticities to the leg geometry and initial conditions of ground contact provides internal leg stability. Another recent study suggests that in turn the leg segmentation and the initial conditions may be a consequence of metabolic and bone stress constraints. In this study, the theoretical predictions were verified experimentally with respect to initial conditions and elastic joint characteristics in human running. Kinematics and kinetics were measured and the joint torques were estimated by inverse dynamics. Stiffnesses and elastic nonlinearities describing the resulting joint characteristics were extracted from parameter fits. Our results clearly support the theoretical predictions: the knee joint is always stiffer and more extended than the ankle joint. Moreover, the knee torque characteristic on the average shows the higher nonlinearity. According to literature, the leg geometry is a consequence of metabolic and material stress limitations. Adapted to this given geometry, the initial joint angle conditions in fast locomotion are a compromise between metabolic and control effort minimisation. Based on this adaptation, an appropriate joint stiffness ratio between ankle and knee passively safeguards the internal leg stability. The identified joint nonlinearities contribute to the linearisation of the leg spring.

  5. Ankle fusion stability: a biomechanical comparison of external versus internal fixation.

    Science.gov (United States)

    Hoover, Justin R; Santrock, Robert D; James, William C

    2011-04-11

    This biomechanical study compares bimalleolar external fixation to conventional crossed-screw construct in terms of stability and compression for ankle arthrodesis. The goals of the study were to determine which construct is more stable with bending and torsional forces, and to determine which construct achieves more compression.Fourth-generation bone composite tibia and talocalcaneal models were made to 50th percentile anatomic specifications. Fourteen ankle fusion constructs were created with bimalleolar external fixators and 14 with crossed-screw constructs. Ultimate bend, torque, and compression testing were completed on the external fixator and crossed-screw constructs using a multidirectional Materials Testing Machine (MTS Systems Corp, Eden Prairie, Minnesota). Ultimate bend testing revealed a statistically significant difference (P=.0022) with the mean peak load to failure for the external fixator constructs of 973.2 N compared to 612.5 N for the crossed-screw constructs. Ultimate torque testing revealed the mean peak torque to failure for the external fixator construct was 80.2 Nm and 28.1 Nm for the crossed-screw construct, also a statistically significant difference (P=.0001). The compression testing yielded no statistically significant difference (P=.9268) between the average failure force of the external fixator construct (81.6 kg) and the crossed-screw construct (81.2 kg).With increased stiffness in both bending and torsion and comparable compressive strengths, bimalleolar external fixation is an excellent option for tibiotalar ankle arthrodesis.

  6. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    Science.gov (United States)

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  7. Torque-Splitting Gear Drive

    Science.gov (United States)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  8. Posterior Ankle Structure Injury During Total Ankle Replacement.

    Science.gov (United States)

    Reb, Christopher W; McAlister, Jeffrey E; Hyer, Christopher F; Berlet, Gregory C

    2016-01-01

    Total ankle replacement studies have focused on reporting complications that are directly observed clinically or radiographically, including wound problems, technical errors, implant loosening, subsidence, infection, bone fractures, and heterotopic ossification. However, patients can still experience unresolved pain even when these problems have been ruled out. We initiated a study to more clearly define the relative risk of injury to the anatomic structures in the posterior ankle during total ankle replacement using a third-generation implant system. Ten fresh-frozen adult cadaveric below-the-knee specimens were positioned in the intraoperative positioning frame of an approved total ankle replacement system and adjusted to achieve proper foot alignment using fluoroscopic imaging. The relationship between the tibial cutting guide pins and the posterior neurovascular and tendon structures was measured using digital calipers. High rates of posterior structural injury were found. Nearly all proximal-medial pins encountered a posteromedial neurovascular structure, most commonly the tibial nerve. The distal-medial pins mainly encountered posteromedial tendinous structures, in particular, the flexor digitorum longus tendon. The proximal lateral pins were highly likely to encounter the Achilles tendon and the sural nerve. Our results support our hypothesis that the tibial neurovascular structures are at the greatest risk when preparing for and completing the bony resection, particularly with the medial and proximal cuts. Posterior ankle soft tissue structure injuries can occur during implantation but currently with unknown frequency and undetermined significance. Further study of posterior structural injuries could result in a more informed approach to post-total ankle replacement complications and management.

  9. Model predictive torque control with an extended prediction horizon for electrical drive systems

    Science.gov (United States)

    Wang, Fengxiang; Zhang, Zhenbin; Kennel, Ralph; Rodríguez, José

    2015-07-01

    This paper presents a model predictive torque control method for electrical drive systems. A two-step prediction horizon is achieved by considering the reduction of the torque ripples. The electromagnetic torque and the stator flux error between predicted values and the references, and an over-current protection are considered in the cost function design. The best voltage vector is selected by minimising the value of the cost function, which aims to achieve a low torque ripple in two intervals. The study is carried out experimentally. The results show that the proposed method achieves good performance in both steady and transient states.

  10. Contractile and elastic ankle joint muscular properties in young and older adults.

    Directory of Open Access Journals (Sweden)

    Christopher J Hasson

    Full Text Available The purpose of this study was to investigate age-related differences in contractile and elastic properties of both dorsi- (DF and plantarflexor (PF muscles controlling the ankle joint in young and older adults. Experimental data were collected while twelve young and twelve older male and female participants performed maximal effort isometric and isovelocity contractions on a dynamometer. Equations were fit to the data to give torque-angle (Tθ and torque-angular velocity (Tω relations. Muscle series-elasticity was measured during ramped dynamometer contractions using ultrasonography to measure aponeurosis extension as a function of torque; second order polynomials were used to characterize the torque-extension (TΔL relation. The results showed no age differences in DF maximal torque and none for female PF; however, older males had smaller maximal PF torques compared to young males. In both muscle groups and genders, older adults had decreased concentric force capabilities. Both DF and PF TΔL relations were more nonlinear in the older adults. Older PF, but not DF muscles, were stiffer compared to young. A simple antagonism model suggested age-related differences in Tθ and Tω relations would be magnified if antagonistic torque contributions were included. This assessment of static, dynamic, and elastic joint properties affords a comprehensive view of age-related modifications in muscle function. Although many clinical studies use maximal isometric strength as a marker of functional ability, the results demonstrate that there are also significant age-related modifications in ankle muscle dynamic and elastic properties.

  11. American Orthopaedic Foot and Ankle Society

    Science.gov (United States)

    ... education site of the American Orthopaedic Foot & Ankle Society. Patients Visit the official patient education site of the American Orthopaedic Foot & Ankle Society. Patients Visit the official patient education site of ...

  12. Acute Ankle Sprains in Primary Care

    NARCIS (Netherlands)

    R.M. van Rijn (Rogier)

    2010-01-01

    textabstractOf all injuries of the musculoskeletal system, 25% are acute lateral ankle sprains.1 In the USA and the UK there are about 23,000 and 5000 ankle sprains, respectively, each day. In the Netherlands approximately 600,000 people sustain an ankle injury each year, of those 120,000 occur duri

  13. The Incidence of Ankle Sprains in Orienteering.

    Science.gov (United States)

    Ekstrand, Jan; And Others

    1990-01-01

    Investigates relationship between ankle sprains and participation time in competitive orienteering. Examined 15,474 competitors in races in the Swedish O-ringen 5-day event in 1987. Injuries requiring medical attention were analyzed, showing 137 (23.9 percent) ankle sprains. Injury incidence was 8.4/10,000 hours. Incidence of ankle sprains was…

  14. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    orthosis design provided knee torques smaller than the ankle torques due to the trade-off in torque and range of motion that occurs with artificial pneumatic muscles. Future KAFO designs could incorporate cams, gears, or different actuators to transmit greater torque to the knee.

  15. Walking cycle control for an active ankle prosthesis with one degree of freedom monitored from a personal computer.

    Science.gov (United States)

    Cordero Andrés, Guzhñay; Arévalo Luis, Calle; Abad Julio, Zambrano

    2015-08-01

    This paper proposes a fuzzy control algorithm for human walking cycle of an active ankle prosthesis for people who have suffered amputation of the lower limb, the system has one degree of freedom in the sagittal plane. Also, a biomechanical analysis of foot and ankle is shown to define the phases of plantar support and swinging. The used actuator is an intelligent servomotor, Dynamixel MX-106T which has torque, current and position feedback, among others, allowing real-time telemetry of the prototype implemented in a microcontroller system.

  16. Adaptations to long-term strength training of ankle joint muscles in old age.

    Science.gov (United States)

    Simoneau, Emilie; Martin, Alain; Van Hoecke, Jacques

    2007-07-01

    The aim of this study was to enquire whether older adults, who continue plantar-flexion (PF) strength training for an additional 6-month period, would achieve further improvements in neuromuscular performance, in the ankle PFs, and in the antagonist dorsi-flexors (DFs). Twenty-three healthy older volunteers (mean age 77.4 +/- 3.7 years) took part in this investigation and 12 of them followed a 1-year strength-training program. Both neural and muscular factors were examined during isometric maximal voluntary contraction (MVC) torques in ankle PF and DF pre-training, post 6 and post 12 months. The main finding was that 6 months of additional strength training of the PFs, beyond 6 months, allowed further improvements in neuromuscular performance at the ankle joint in older adults. Indeed, during the first 6 months of progressive resistance training, there was an increase in the PF MVC torque of 11.1 +/- 19.9 N m, and then of 11.1 +/- 17.9 N m in the last 6-month period. However, it was only after 1 year that there was an improvement in the evoked contraction at rest in PF (+ 8%). The strength training of the agonist PF muscles appeared to have an impact on the maximal resultant torque in DF. However, it appeared that this gain was first due to modifications occurring in the trained PFs muscles, then, it seemed that the motor drive of the DFs per se was altered. In conclusion, long-term strength training of the PFs resulted in continued improvements in neuromuscular performance at the ankle joint in older adults, beyond the initial 6 months.

  17. Comparative study on isokinetic capacity of knee and ankle joints by functional injury.

    Science.gov (United States)

    Jeon, Kyoungkyu; Seo, Byoung-Do; Lee, Sang-Ho

    2016-01-01

    [Purpose] To collect basic data for exercise programs designed to enhance functional knee and ankle joint stability based on isokinetic measurement and muscle strength evaluations in normal and impaired functional states. [Subjects and Methods] Twenty-four subjects were randomly assigned to the athlete group and the control group (n = 12 each). Data were collected of isokinetic knee extensor and flexor strength at 60°/sec, 180°/sec, and 240°/sec and ankle plantar and dorsiflexor strength at 30°/sec and 120°/sec. [Results] Significant intergroup differences were observed in peak torque of the right extensors at 60°/sec, 180°/sec, and 240°/sec and the right flexors at 240°/sec. Significant differences were observed in peak torque/body weight in the right extensors at 60°/sec, 180°/sec, and 240°/sec and in the right flexors at 180°/sec and 240°/sec. Significant peak torque differences were noted in the left ankle joint dorsiflexor at 30°/sec and 120°/sec, right plantar flexor at 120°/sec, left plantar flexor at 30°/sec, left dorsiflexor at 30°/sec and 120°/sec, and right dorsiflexor at 120°/sec. [Conclusion] Isokinetic evaluation stimulates muscle contraction at motion-dependent speeds and may contribute to the development of intervention programs to improve knee and ankle joint function and correct lower-extremity instability.

  18. The Scandinavian Total Ankle Replacement and the ideal biomechanical requirements of ankle replacements.

    Science.gov (United States)

    Robati, Shibby; Salih, Alan; Ghosh, Koushik; Vinayakam, Parthiban

    2016-03-01

    The complex anatomy of the articular bone surfaces, ligaments, tendon attachments and muscles makes the ankle joint difficult to replicate in prosthetic replacements. Ever since the early 1970s, which saw the dawn of the first total ankle replacements, there have been numerous other attempts at replicating the joint, often with poor clinical outcomes. The anatomy of the ankle is discussed, followed by evidence of the normal ankle biomechanics and the ideal requirements of an ankle replacement. We focus on the Scandinavian Total Ankle Replacement and evaluate whether these requirements have been met.

  19. Single-interface Casimir torque

    Science.gov (United States)

    Morgado, Tiago A.; Silveirinha, Mário G.

    2016-10-01

    A different type of Casimir-type interaction is theoretically predicted: a single-interface torque at a junction of an anisotropic material and a vacuum or another material system. The torque acts to reorient the polarizable microscopic units of the involved materials near the interface, and thus to change the internal structure of the materials. The single-interface torque depends on the zero-point energy of the interface localized and extended modes. Our theory demonstrates that the single-interface torque is essential to understand the Casimir physics of material systems with anisotropic elements and may influence the orientation of the director of nematic liquid crystals.

  20. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  1. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-01

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking.

  2. Measurement device for ankle joint kinematic and dynamic characterisation.

    Science.gov (United States)

    Giacomozzi, C; Cesinaro, S; Basile, F; De Angelis, G; Giansanti, D; Maccioni, G; Masci, E; Panella, A; Paolizzi, M; Torre, M; Valentini, P; Macellari, V

    2003-07-01

    The paper describes a measurement device for obtaining the kinematic characterisation and isometric loading of ankle joints under different working conditions. Non-invasive, in vivo experiments can be conducted with this experimental apparatus, the potential of which could be usefully exploited in basic biomedical research, prosthesis design, clinical applications, sports medicine and rehabilitation. The device determines the 3D movement of the foot with respect to the shank and evaluates the torques and moments around the three articular axes in relation to any desired angular position of the ankle complex. When integrated with superficial electromyographic techniques and electrical stimulation, it allows the assessment of the functionality of the lower leg in both mechanical and myo-electrical terms. The paper reports the main mechanical and electronic features of the device (high linearity; maximum moment ranges +/- 300 Nm for flexion-extension, +/- 35 Nm for both pronation-supination and internal-external rotation; angular ranges: +/- 100 degrees of dorsi-plantar flexion, +/- 50 degrees of internal-external rotation and prono-supination; linear ranges: +/- 25 mm along each axis). Results from a healthy volunteer, under voluntary or stimulated conditions, helped in testing its operatability, reliability, robustness, repeatability and effectiveness. Preliminary simplified protocols have been also applied to 20 healthy volunteers, and the main results were 80.8 +/- 11.9 degrees of internalexternal rotation, 46.2 +/- 9.1 degrees of prono-supination and 74.6 +/- 13.1 degrees of flexion-extension. Torques and moments were normalised with respect to a body mass index of 30. The maximum plantar flexion moment (57.5 + 21.3 Nm) was measured with the foot at 150 of dorsal flexion; the maximum dorsal flexion moment (50.2 + 20.3 Nm) was measured with the foot at 150 of plantar flexion.

  3. Hydrocolonotherapy ankle joints after injuries

    Directory of Open Access Journals (Sweden)

    Volodymyr Muchin

    2016-02-01

    Full Text Available Purpose: to improve efficiency of gydrokinesitherapy by means of specially designed devices and monolasts for patients after ankle joint injuries. Material & Methods: there are pedagogical methods, clinical and radiological methods, anthropometric measurements and goniometry were used. Results: the author's technique of hydrokinesitherapy with application hydrokinesimechanotherapy device in the program of physical rehabilitation which provides optimum conditions for the recovery process was developed. Conclusions: the specially designed hydrokinesomechanotherapeutic device and monolasts are allow strictly controlled movement in all planes of the ankle joint, which contributes to the acceleration of the recovery; the conducted anthropometric and goniometric studies were indicate more rapid elimination of edema, increase movement amplitude, carries opposition to the development of contractures and muscle atrophy.

  4. Annular lipoatrophy of the ankles.

    Science.gov (United States)

    Dimson, Otobia G; Esterly, Nancy B

    2006-02-01

    Lipoatrophic panniculitis likely represents a group of disorders characterized by an inflammatory panniculitis followed by lipoatrophy. It occurs locally in a variety of settings and has been reported in the literature under various terms, including annular atrophic connective tissue panniculitis of the ankles, annular and semicircular lipoatrophy, abdominal lipoatrophy, and connective tissue panniculitis. Herein, a case of annular lipoatrophy of the ankles is described in a 6-year-old girl with autoimmune thyroid disease. Histologically, a mixed lobular panniculitis with lipophages was present. This pattern resembles that seen in lipoatrophic panniculitis. After a single, acute episode of an inflammatory process with subsequent lipoatrophy, her skin lesions have stabilized for 2 years requiring no treatment.

  5. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介; Tsukamoto, Yusuke

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  6. Hydrocolonotherapy ankle joints after injuries

    OpenAIRE

    Volodymyr Muchin; Oleksandr Zviriaka

    2016-01-01

    Muchin V., Zviriaka O. Purpose: to improve efficiency of gydrokinesitherapy by means of specially designed devices and monolasts for patients after ankle joint injuries. Material & Methods: there are pedagogical methods, clinical and radiological methods, anthropometric measurements and goniometry were used. Results: the author's technique of hydrokinesitherapy with application hydrokinesimechanotherapy device in the program of physical rehabilitation which provides optimum conditions for...

  7. Time-varying identification of ankle dynamic joint stiffness during movement with constant muscle activation.

    Science.gov (United States)

    Guarin, Diego L; Kearney, Robert E

    2015-01-01

    Dynamic joint stiffness defines the torque generated at the joint in response to position perturbations. Dynamic stiffness is modulated by the angular position and the muscle activation level, making it difficult to estimate during large movements and/or time-varying muscle contractions. This paper presents a new methodology for estimating dynamic joint stiffness during movement and muscle activation. For this, we formulate a novel, nonlinear, dynamic joint stiffness model and present a new algorithm to estimate its parameters. The algorithm assumes that the variability in the model parameters is a function of the mean joint position. Using this methodology we estimated the dynamic joint stiffness at the ankle throughout ramp and hold displacements during a constant muscle contraction. The estimated model accurately predicted the intrinsic and reflex torques produced at the ankle as a response to small position perturbations during large displacement with muscle activation. Preliminary results show that during muscle contraction, ankle intrinsic stiffness estimated during movement is significantly lower than that estimated during quasi-stationary experiments.

  8. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    Science.gov (United States)

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P Upper trunk positioning had an effect on the knee submaximal torque (P cervical and thoracic spines were flexed (P angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension.

  9. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Guo

    2015-05-01

    Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  10. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  11. Total Ankle Arthroplasty: A Brief Review

    Directory of Open Access Journals (Sweden)

    Roger A. Mann

    2012-12-01

    Full Text Available Ankle fusion has long been the standard of treatment for end-stage ankle arthritis, and a successful arthroplasty has been a long sought alternative. It is a motion sparing procedure and may greatly reduce the potential for adjacent level degeneration as seen with arthrodesis. The typical candidate for arthroplasty is a healthy low demand patient, although the indications are widening as the success of the procedure has increased. Nevertheless, it is not fail-safe, technical expertise and experience are necessary to achieve a successful result. We have been treating ankle arthritis with the Scandinavian Total Ankle Replacement (STAR ankle replacement prosthesis for over ten years. We believe that arthroplasty will surpass arthrodesis as the standard of care for severe ankle arthritis.

  12. A Comparison of Total and Intrinsic Muscle Stiffness Among Flexors and Extensors of the Ankle, Knee and Elbow

    Science.gov (United States)

    Lemoine, Sandra M.

    1997-01-01

    This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.

  13. Maisonneuve-hyperplantarflexion variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Tran, Wesley H; Lorich, Dean G

    2014-11-01

    Maisonneuve fractures are rare ankle injuries, accounting for up to 7% of all ankle fractures. They consist of a proximal third fibula fracture, syndesmotic disruption, and medial ankle injury (either a deltoid ligament disruption or a medial malleolus fracture), and are often successfully managed with nonoperative treatment of the proximal fibula fracture and open reduction and internal fixation (ORIF) of the medial ankle injury and syndesmotic disruption. The hyperplantarflexion variant ankle fracture comprises approximately 7% of all ankle fractures and features dual posterior tibial lip fractures featuring a posterolateral fragment and a posteromedial fragment. Good functional results have been reported in the literature after ORIF of both the posterolateral and posteromedial fragments of this variant fracture that is not described by the Lauge-Hansen classification. In this report, the authors present the unique case of an isolated ankle fracture demonstrating characteristics of both a Maisonneuve fracture and a hyperplantarflexion variant ankle fracture. They also highlight the diagnostic imaging characteristics, including magnetic resonance imaging (MRI) and preoperative radiograph findings, surgical treatment, and postoperative clinical outcome for this patient with a Maisonneuve-hyperplantarflexion variant ankle fracture. To the authors' knowledge, this unique fracture pattern has not been reported previously in the literature. The authors conclude that although good results were seen postoperatively in this case, the importance of ORIF of both the posteromedial and posterolateral fragments of variant fractures cannot be overstated. They also found MRI to be a particularly helpful adjunct in formulating the correct diagnosis and treatment plan.

  14. Fusion following failed total ankle replacement.

    Science.gov (United States)

    Wünschel, Markus; Leichtle, Ulf G; Leichtle, Carmen I; Walter, Christian; Mittag, Falk; Arlt, Eva; Suckel, Andreas

    2013-04-01

    Although mid- to long-term results after total ankle replacement have improved because of available second- and third-generation devices, failure of total ankle replacement is still more common compared with total hip replacement and total knee replacement. The portfolio of available total ankle replacement revision component options is small. Furthermore, the bone stock of the tibiotalar region is scarce making it difficult and in some situations impossible to perform revision total ankle replacement. In these cases tibiotalar and tibiotalocalcaneal fusions are valuable options. This article describes which surgical procedures should be performed depending on the initial situation and gives detailed advice on surgical technique, postoperative care, and clinical results.

  15. Total Ankle Arthroplasty: An Imaging Overview.

    Science.gov (United States)

    Kim, Da-Rae; Choi, Yun Sun; Potter, Hollis G; Li, Angela E; Chun, Ka-Young; Jung, Yoon Young; Kim, Jin-Su; Young, Ki-Won

    2016-01-01

    With advances in implant technology, total ankle arthroplasty (TAA) has become an increasingly popular alternative to arthrodesis for the management of end-stage ankle arthritis. However, reports in the literature do not focus on the imaging features of TAA. Through a literature review, we demonstrate basic design features of the current ankle arthroplasty system, and the normal and abnormal postoperative imaging features associated with such devices. Pre- and postoperative evaluations of ankle arthroplasty mainly include radiography; in addition, computed tomography and magnetic resonance imaging provide further characterization of imaging abnormalities. Familiarization with multimodal imaging features of frequent procedural complications at various postoperative intervals is important in radiological practice.

  16. Total ankle arthroplasty: An imaging overview

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Rae; Choi, Yun Sun; Chun, Ka Young; Jung, Yoon Young; Kim, Jin Su; Young, Ki Won [Eulji Hospital, Eulji University, Seoul (Korea, Republic of); Potter, Hollis G.; Li, Angela E. [Dept. of Radiology and Imaging, Hospital for Special Surgery, New York (United States)

    2016-06-15

    With advances in implant technology, total ankle arthroplasty (TAA) has become an increasingly popular alternative to arthrodesis for the management of end-stage ankle arthritis. However, reports in the literature do not focus on the imaging features of TAA. Through a literature review, we demonstrate basic design features of the current ankle arthroplasty system, and the normal and abnormal postoperative imaging features associated with such devices. Pre- and postoperative evaluations of ankle arthroplasty mainly include radiography; in addition, computed tomography and magnetic resonance imaging provide further characterization of imaging abnormalities. Familiarization with multimodal imaging features of frequent procedural complications at various postoperative intervals is important in radiological practice.

  17. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  18. Alignment of interstellar grains by mechanical torques: suprathermally rotating Gaussian random spheres

    CERN Document Server

    Das, Indrajit

    2016-01-01

    Collisions of gas particles with a drifting grain give rise to a mechanical torque on the grain. Recent work by Lazarian & Hoang showed that mechanical torques might play a significant role in aligning helical grains along the interstellar magnetic field direction, even in the case of subsonic drift. We compute the mechanical torques on 13 different irregular grains and examine their resulting rotational dynamics, assuming steady rotation about the principal axis of greatest moment of inertia. We find that the alignment efficiency in the subsonic drift regime depends sensitively on the grain shape, with more efficient alignment for shapes with a substantial mechanical torque even in the case of no drift. The alignment is typically more efficient for supersonic drift. A more rigorous analysis of the dynamics is required to definitively appraise the role of mechanical torques in grain alignment.

  19. The hip strength:ankle proprioceptive threshold ratio predicts falls and injury in diabetic neuropathy

    Science.gov (United States)

    Richardson, James K.; DeMott, Trina; Allet, Lara; Kim; Ashton-Miller, James A.

    2014-01-01

    Introduction We determined lower limb neuromuscular capacities associated with falls and fall-related injuries in older people with declining peripheral nerve function. Methods Thirty-two subjects (67.4 ± 13.4 years; 19 with type 2 diabetes), representing a spectrum of peripheral neurologic function, were evaluated with frontal plane proprioceptive thresholds at the ankle, frontal plane motor function at the ankle and hip, and prospective follow-up for 1 year. Results Falls and fall-related injuries were reported by 20 (62.5%) and 14 (43.8%) subjects, respectively. The ratio of hip adductor rate of torque development to ankle proprioceptive threshold (HipSTR/AnkPRO) predicted falls (pseudo-R2 = .726) and injury (pseudo-R2 = .382). No other variable maintained significance in the presence of HipSTR/AnkPRO. Discussion Fall and injury risk in the population studied is related inversely to HipSTR/AnkPRO. Increasing rapidly available hip strength in patients with neuropathic ankle sensory impairment may decrease risk of falls and related injuries. PMID:24282041

  20. On circulating power of steady state tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-03-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  1. Haemophilic arthropathy of the ankle treated by total ankle replacement: a case series.

    Science.gov (United States)

    Barg, A; Elsner, A; Hefti, D; Hintermann, B

    2010-07-01

    The standard treatment for end-stage osteoarthritis of the ankle joint in haemophilic patients has been fusion of the ankle joint. Total ankle replacement is still controversial as a treatment option. The objective of this prospective study was to evaluate the mid-term outcome in patients treated with total ankle replacement using an unconstrained three-component ankle implant. Ten haemophilic ankles in eight patients (mean age: 43.2 years, range 26.7-57.5) treated with total ankle replacement were followed up for a minimum of 2.7 years (mean: 5.6, range 2.7-7.6). The outcome was measured with clinical and radiological evaluations. There were no intra- or peri-operative complications. The AOFAS-hindfoot-score increased from 38 (range 8-57) preoperatively to 81 (range 69-95) postoperatively. All patients were satisfied with the results. Four patients became pain free; in the whole patient cohort pain level decreased from 7.1 (range 4-9) preoperatively to 0.8 (range 0-3) postoperatively. All categories of SF-36 score showed significant improvements in quality of life. In one patient, open ankle arthrolysis was performed because of painful arthrofibrosis. For patients with haemophilic osteoarthritis of the ankle joint, total ankle replacement is a valuable alternative treatment to ankle fusion.

  2. Current concepts review: ankle fractures.

    Science.gov (United States)

    Arastu, M H; Demcoe, R; Buckley, R E

    2012-01-01

    Ankle fractures are common injuries that require meticulous technique in order to optimise outcome. The Lauge-Hansen and Danis-Weber classifications in addition to careful evaluation of the injury mechanism can help guide treatment but surgeons must be aware that there are injury patterns that will not always fit the afore mentioned patterns. The principles of atraumatic soft tissue handling, rigid internal fixation and early range of motion exercises are critical for successfully treating these injuries. There are still areas of treatment uncertainty and future directed research is needed in order to address some of these questions.

  3. Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies

    Directory of Open Access Journals (Sweden)

    E.V.C Sekhara Rao

    2012-01-01

    Full Text Available This paper discusses about permanent magnet hybrid stepper motor magnetic circuit using finite element model for different geometric designs like uniform air-gap, non uniform air-gap, for different air-gap lengths, different tooth pitches and extra teeth on stator using PDE toolbox of Matlab at different current densities. Implementing these results in equivalent circuit model (permeance model, motor performance is analyzed for an existing motor for steady state conditions. These results suggest modifications for better performance of the PMH stepper motor like reduction of cogging torque and improvement in steady state torque with minimum THD.

  4. Osteochondral defects in the ankle: why painful?

    NARCIS (Netherlands)

    van Dijk, C.N.; Reilingh, M.L.; Zengerink, M.; van Bergen, C.J.A.

    2010-01-01

    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone pl

  5. Radiological aspects of sprained ankle syndrome

    NARCIS (Netherlands)

    Sijbrandij, E.S.

    2002-01-01

    This thesis addresses several problems related to sprained ankle syndrome. The purpose of this thesis is to evaluate the imaging features of sprained ankles, found on new radiological modalities, and to assess the additional diagnostic understanding and treatment planning of helical CT as well as M

  6. Assessment of acute foot and ankle sprains.

    Science.gov (United States)

    Lynam, Louise

    2006-07-01

    Acute ankle and foot trauma is a regular emergency presentation and prompt strategic assessment skills are required to enable nurses to categorise and prioritise these injuries appropriately. This article provides background information on the anatomy and physiology of the lower limb to help nurses to identify various grades of ankle sprain as well as injuries that are limb threatening

  7. Planet migration and magnetic torques

    Science.gov (United States)

    Strugarek, A.; Brun, A. S.; Matt, S. P.; Reville, V.

    2016-10-01

    The possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.

  8. Zero torque gear head wrench

    Science.gov (United States)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  9. Total ankle replacement - surgical treatment and rehabilitation.

    Science.gov (United States)

    Prusinowska, Agnieszka; Krogulec, Zbigniew; Turski, Piotr; Przepiórski, Emil; Małdyk, Paweł; Księżopolska-Orłowska, Krystyna

    2015-01-01

    Functions of the ankle joint are closely connected with the gait and ability to maintain an upright position. Degenerative lesions of the joint directly contribute to postural disorders and greatly restrict propulsion of the foot, thus leading to abnormal gait. Development of total ankle replacement is connected with the use of the method as an efficient treatment of joint injuries and continuation of achievements in hip and knee surgery. The total ankle replacement technique was introduced as an alternative to arthrodesis, i.e. surgical fixation, which made it possible to preserve joint mobility and to improve gait. Total ankle replacement is indicated in post-traumatic degenerative joint disease and joint destruction secondary to rheumatoid arthritis. In this paper, total ankle replacement and various types of currently used endoprostheses are discussed. The authors also describe principles of early postoperative rehabilitation as well as rehabilitation in the outpatient setting.

  10. Chinese Massage Therapy for Ankle Injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming-xia; LI Nian-qun; HUANG Guo-qi

    2003-01-01

    Purpose: To explore the therapeutic methods and effects in the treatment of acute and chronic injuries of the ankle joint by Chinese massage therapy in combination with external application of Chinese herbal drugs and functional exercises. Methods: Totally, 36 cases of the patients with acute soft tissue injury, chronic soft tissue injury and post-fracture sequelae of the ankle joint were treated by Chinese massage therapy, external application or external wash of Chinese herbal drugs, and exercises of dorsal flexion and extension of the ankle joint, to observe the restoration of the ankle functions.Results: In 36 cases of the patients, the results showed remarkable effect in 18 cases, effect in 16 cases, failure in 2 cases and the effective rate in 94.4%. Conclusion: The combined use of Chinese massage therapy, external application of Chinese herbal drugs and functional exercises can produce precise effect in the treatment of soft tissue injury of the ankle joint.

  11. 14 CFR 27.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  12. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    Science.gov (United States)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  13. A study on correlation of proprioception and strength between left and right ankles of elder people%老年人两侧踝关节本体感觉及其与肌力的相关性研究

    Institute of Scientific and Technical Information of China (English)

    王雪强; 俞卓伟; 刘静; 郑洁皎; 曾德铭; 陈千红

    2011-01-01

    Objective: To compare the difference of proprioception and peak torque between left and right ankles of elder people,and analyse its' correlation.Method:Proprioception ankle joints of fifty-three healthy elder people(23 male and 30 female; average age 66.2 ± 5.1 year) were measured for two tests on Biodex system 3 dynamometer. The absolute error ankle in passive replication test was used to assess ankle proprioceptive function. The ankle flexor muscle, extensor muscle isokinetic concentric peak torque were measured on Biodex system 3 dynamometer at the speed of 30°/s. The main measurement indexes were concentric peak torque and relative peak torque of ankle flexor muscle and extensor muscles. Result:The absolute error angles of passive replication test on left ankels were less than that on right ankles(P= 0.011). Concentric peak torques of flexor muscle and extensor muscle of left ankles were less ankles than that of right ankle(P0.05). Conclusion: Proprioception of left ankle is better than that of right ankle, but concentric peak torque and relative peak torque of flexor muscle and extensor muscle of left ankle is less than that of right ankle. There was no significant correlation between the proprioception and muscle strength in the elderly.%目的:对比老年人左右两侧踝关节本体感觉的差异和左右两侧峰力矩之间的差异,分析踝关节本体感觉与其肌力的相关性。方法:在Biodex System 3等速系统上用被动复位测试法测试53名正常老年人(其中男23名、女30名;平均年龄66.2±5.1岁)的踝关节本体感觉,本研究以被动复位绝对误差角度作为个体本体感觉能力优劣的代表。同时采用Biodex Svstem 3等速系统对踝关节屈肌、伸肌肌群在30°/s的角速度下进行向心测试,主要观察指标为各肌群的峰力矩与相对峰力矩。结果:①左侧踝关节复位的绝对误差角度小于有侧踝关节(P=0.011);②左侧踝关节屈肌、伸肌的峰力

  14. Revision of the aseptic and septic total ankle replacement.

    Science.gov (United States)

    Espinosa, Norman; Wirth, Stephan Hermann

    2013-04-01

    Total ankle replacement has become a popular treatment of symptomatic end-stage ankle osteoarthritis. Contemporary total ankle replacement systems provide more anatomic and biomechanically sound function. However, longevity is still limited and long-term results of modern total ankle replacement designs are not available. In the case of failure, conversion into arthrodesis has remained the treatment of choice but at the cost of hindfoot function and potential degeneration of the adjacent joints. Thus, revision total ankle replacement by exchange of the prosthetic components represents an attractive solution. This article focuses on revision total ankle replacement and conversion to ankle arthrodesis.

  15. Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial

    Directory of Open Access Journals (Sweden)

    Joan Leung

    2014-12-01

    Full Text Available Question: Is a combination of standing, electrical stimulation and splinting more effective than standing alone for the management of ankle contractures after severe brain injury? Design: A multi-centre randomised trial with concealed allocation, assessor blinding and intention-to-treat analysis. Participants: Thirty-six adults with severe traumatic brain injury and ankle plantarflexion contractures. Intervention: All participants underwent a 6-week program. The experimental group received tilt table standing, electrical stimulation and ankle splinting. The control group received tilt table standing alone. Outcome measures: The primary outcome was passive ankle dorsiflexion with a 12 Nm torque. Secondary outcomes included: passive dorsiflexion with lower torques (3, 5, 7 and 9 Nm; spasticity; the walking item of the Functional Independence Measure; walking speed; global perceived effect of treatment; and perceived treatment credibility. Outcome measures were taken at baseline (Week 0, end of intervention (Week 6, and follow-up (Week 10. Results: The mean between-group differences (95% CI for passive ankle dorsiflexion at Week 6 and Week 10 were –3 degrees (–8 to 2 and –1 degrees (–6 to 4, respectively, in favour of the control group. There was a small mean reduction of 1 point in spasticity at Week 6 (95% CI 0.1 to 1.8 in favour of the experimental group, but this effect disappeared at Week 10. There were no differences for other secondary outcome measures except the physiotherapists’ perceived treatment credibility. Conclusion: Tilt table standing with electrical stimulation and splinting is not better than tilt table standing alone for the management of ankle contractures after severe brain injury. Trial registration: ACTRN12608000637347. [Leung J, Harvey LA, Moseley AM, Whiteside B, Simpson M, Stroud K (2014 Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion

  16. [Biomechanics of the ankle joint].

    Science.gov (United States)

    Zwipp, H

    1989-03-01

    According to Fick, the tree-dimensional patterns of foot motion are best characterized as jawlike movement. Anatomically and biomechanically, this process represents conjoined, synchronous motion within the three mobile segments of the hindfoot: the ankle joint, the posterior subtalar joint, and the anterior subtalar joint. Foot kinematics can be described more completely if the anterior subtalar joint is defined not only as the talocalcaneal navicular joint, but as including the calcaneocuboid joint, thus representing the transverse joint of the tarsus, i.e., the Chopart joint. The axes of these three joints can be defined precisely. In some parts they represent a screwlike motion, clockwise or counter-clockwise, around the central ligamentous structures (fibulotibial ligament, talocalcaneal interosseous ligament, bifurcate ligament). The individual anatomy and structure of these ligaments provide variations in the degree and direction of foot motion. A precise knowledge of foot kinematics is important in surgical ligament and joint reconstruction and in selective foot arthrodeses.

  17. Biomechanics of the ankle joint and clinical outcomes of total ankle replacement.

    Science.gov (United States)

    Michael, Junitha M; Golshani, Ashkahn; Gargac, Shawn; Goswami, Tarun

    2008-10-01

    Until the 1970s ankle arthrodesis was considered to be the "gold-standard" to treat arthritis. But the low fusion rate of ankle arthrodeses along with the inability to achieve normal range of motion led to the growing interest in the development of total ankle replacements. Though the short-term outcomes were good, their long-term outcomes were not as promising. To date, most models do not exactly mimic the anatomical functionality of a natural ankle joint. Therefore, research is being conducted worldwide to either enhance the existing models or develop new models while understanding the intricacies of the joint more precisely. This paper reviews the anatomical and biomechanical aspects of the ankle joint. Also, the evolution and comparison of clinical outcomes of various total ankle replacements are presented.

  18. Conversion of ankle autofusion to total ankle replacement using the Salto XT revision prosthesis.

    Science.gov (United States)

    Williamson, Emilie R C; Demetracopoulos, Constantine A; Ellis, Scott J

    2016-09-01

    Few reports in the literature have described the conversion of a surgically fused ankle to a total ankle replacement. The takedown of an autofusion and conversion to a prosthesis has not been described. We report the case of a patient with severe rheumatoid arthritis with an ankle autofusion fixed in equinus and severe talonavicular arthritis that was converted to ankle replacement using the Salto XT revision system. We describe the reasons why the decision was made to perform total ankle arthroplasty while concomitantly fusing the talonavicular joint, and discuss the rationale of the various surgical treatment options considered. We describe the clinical and radiographic outcomes achieved in this case. At 12 months post-operatively the patient reported significant reduction of pain, increased FAOS scores and had increased ankle range of motion.

  19. Foot and ankle injuries in theatrical dancers.

    Science.gov (United States)

    Hardaker, W T; Margello, S; Goldner, J L

    1985-10-01

    The theatrical dancer is a unique combination of athlete and artist. The physical demands of dance class, rehearsal, and performance can lead to injury, particularly to the foot and ankle. Ankle sprains are the most common acute injury. Chronic injuries predominate and relate primarily to the repeated impact loading of the foot and ankle on the dance floor. Contributing factors include anatomic variation, improper technique, and fatigue. Early and aggressive conservative management is usually successful and surgery is rarely indicated. Orthotics play a limited but potentially useful role in treatment. Following treatment, a structured rehabilitation program is fundamental to the successful return to dance.

  20. FATIGUE DEVICE FOR TESTING ANKLE JOINT ENDOPROSTHESES

    Directory of Open Access Journals (Sweden)

    Cristian TOADER-PASTI

    2012-05-01

    Full Text Available The paper proposes a model of a fatigue device for testing dedicated to ankle prostheses. The concept of the testing device relies on two aspects: almost any type of ankle prosthesis can be tested on it and it has to work on INSTRON axial-torsion testing machine. Starting from these requirements, a 3D functional assembly that reproduces the real movement of the ankle joint during gait cycle has been designed. The device is based on a cam-follower mechanism.

  1. Transfibular ankle arthrodesis: A novel method for ankle fusion - A short term retrospective study

    Directory of Open Access Journals (Sweden)

    S Muthukumar Balaji

    2017-01-01

    Full Text Available Background: Ankle arthrodesis has long been the traditional operative treatment for posttraumatic arthritis, rheumatoid arthritis, infection, neuromuscular conditions, and salvage of failed ankle arthroplasty. It remains the treatment of choice for patients in whom heavy and prolonged activity is anticipated. We present our short term followup study of functional outcome of patients who underwent transfibular ankle arthrodesis for arthritis of ankle due to various indications. Materials and Methods: 29 transfibular ankle arthrodesis in 29 patients performed between April 2009 and April 2014 were included in this study. The mean age was 50 years (range 22-75 years. The outcome analysis with a minimum of 1-year postoperative followup were included. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS Hindfoot scale. Results: All cases of ankle fusions (100% progressed to solid union in a mean postoperative duration of 3.8 months (range 3-6 months. All patients had sound arthrodesis. The mean followup period was 32.52 months (standard deviation ± 10.34. The mean AOFAS score was 74 (pain score = 32, functional score = 42. We found that twenty patients (68.96% out of 29, had excellent results, 7 (24.13% had good, and 2 (6.89% showed fair results. Conclusion: Transfibular ankle arthrodesis is a simple and effective procedure for ankle arthritis. It achieves a high rate of union and good functional outcome on midterm followup.

  2. Transfibular ankle arthrodesis: A novel method for ankle fusion – A short term retrospective study

    Science.gov (United States)

    Balaji, S Muthukumar; Selvaraj, V; Devadoss, Sathish; Devadoss, Annamalai

    2017-01-01

    Background: Ankle arthrodesis has long been the traditional operative treatment for posttraumatic arthritis, rheumatoid arthritis, infection, neuromuscular conditions, and salvage of failed ankle arthroplasty. It remains the treatment of choice for patients in whom heavy and prolonged activity is anticipated. We present our short term followup study of functional outcome of patients who underwent transfibular ankle arthrodesis for arthritis of ankle due to various indications. Materials and Methods: 29 transfibular ankle arthrodesis in 29 patients performed between April 2009 and April 2014 were included in this study. The mean age was 50 years (range 22-75 years). The outcome analysis with a minimum of 1-year postoperative followup were included. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS) Hindfoot scale. Results: All cases of ankle fusions (100%) progressed to solid union in a mean postoperative duration of 3.8 months (range 3–6 months). All patients had sound arthrodesis. The mean followup period was 32.52 months (standard deviation ± 10.34). The mean AOFAS score was 74 (pain score = 32, functional score = 42). We found that twenty patients (68.96%) out of 29, had excellent results, 7 (24.13%) had good, and 2 (6.89%) showed fair results. Conclusion: Transfibular ankle arthrodesis is a simple and effective procedure for ankle arthritis. It achieves a high rate of union and good functional outcome on midterm followup. PMID:28216754

  3. Primary ankle arthrodesis for neglected open weber B ankle fracture dislocation.

    LENUS (Irish Health Repository)

    Thomason, Katherine

    2014-07-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described.

  4. Influence of musculo-tendinous stiffness of the plantar ankle flexor muscles upon maximal power output on a cycle ergometre.

    Science.gov (United States)

    Driss, Tarak; Lambertz, Daniel; Rouis, Majdi; Vandewalle, Henry

    2012-11-01

    The importance of maximal voluntary torque (T (MVC)), maximal rate of torque development (MRTD) and musculo-tendinous stiffness of the triceps surae for maximal power output on a cycle ergometre (Pmax) was studied in 21 healthy subjects by studying the relationships between maximal cycling power related to body mass (Pmax BM(-1)) with T (MVC), MRTD and different indices of musculo-tendinous stiffness of the ankle flexor. Pmax BM(-1) was calculated from the data of an all-out force-velocity test on a Monark cycle ergometre. T (MVC) and MRTD were measured on a specific ankle ergometre. Musculo-tendinous stiffness was estimated by means of quick releases at 20, 40, 60 and 80% T (MVC) on the same ankle ergometre. Pmax BM(-1) was significantly and positively correlated with MRTD related to body mass but the positive correlation between Pmax BM(-1) and T (MVC) did not reach the significance level (0.05). Pmax BM(-1) was significantly and positively correlated with the estimation of stiffness at 40% T (MVC) (S(0.4)), but not with stiffness at 20, 60 and 80% T (MVC). The results of the present study suggest that maximal power output during cycling is significantly correlated with the level of musculo-tendinous stiffness which corresponds to torque range around peak torque at optimal pedal rate. However, the low coefficient of determination (r2 = 0.203) between Pmax BM(-1) and S (0.4) BM(-1) suggested that Pmax BM(-1) largely depended on other factors than the musculo-tendinous stiffness of the only plantar flexors.

  5. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    Science.gov (United States)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  6. Direct Torque Control of Sensorless Induction Motor Drives: A Sliding-Mode Approach

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2004-01-01

    -vector pulsewidth modulation is proposed for induction motor sensorless drives. The DTC transient merits and robustness are preserved and the steady-state behaviour is improved by reducing the torque and flux pulsations. A sliding-mode observer using a dual reference frame motor model is introduced and tested...

  7. High torque miniature rotary actuator

    Science.gov (United States)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  8. Lichen simplex chronicus on the ankle (image)

    Science.gov (United States)

    Lichen simplex chronicus on the ankle: Lichen simplex chronicus is also known as neurodermatitis. A minor itch may encourage scratching which increases the irritation, leading to more scratching. This ...

  9. American College of Foot and Ankle Surgeons

    Science.gov (United States)

    ... Practice Management Education Opportunities Practice Management e-Learning e-Learning CME Transcripts Corporate Relations Faculty Application Research & Publications Journal of Foot and Ankle Surgery ACFAS Update Read ...

  10. SYSTEM FOR TORQUE CONVERTER DESIGN AND ANALYSIS BASED ON CAD/CFD INTEGRATED PLATFORM

    Institute of Scientific and Technical Information of China (English)

    WU Guangqiang; YAN Peng

    2008-01-01

    A 3D torque converter design system is developed based on numerical investigation into flow field and CAD technology. The 3D steady-state flow field simulation is undertaken by using time averaged Reynolds equation and k-epsilon turbulence model, with mixing-plane boundary conditions at three section interfaces. The blades are designed according to the flow field characteristics by using a reverse design method in the system. The accurateness of numerical analysis and the validity of design system are verified by the fluid field experiment of desingn example of the torque converter. This kind of design and analysis system for torque converter based on integration of comput ationol fluid dynamics (CFD) and CAD is a powerful tool for torque converter manufacturing, but also a prettg important significance for research and development.

  11. Improving the performance of hysteresis direct torque control of IPMSM using active filter topology

    Indian Academy of Sciences (India)

    Kayhan Gulez; Ali Ahmed Adam; Halit Pastaci

    2006-06-01

    This paper describes an active filter topology to improve the performance of hysteresis direct torque control (HDTC) of interior permanent magnet synchronous motor (IPMSM). The filter topology consists of an active filter and two RLC filters, and is connected to the main power circuit through a 1:1 transformer. The active filter is characterized by detecting the harmonics in the motor phase voltages and injecting equivalent harmonic voltages to produce almost sinusoidal voltage waveform to the motor terminals. The active filter uses hysteresis voltage controller while the motor main circuit uses hysteresis direct torque control. The simulation results of this combined control structure show considerable torque ripple reduction in the steady state range and adequate dynamic torque performance as well as considerable harmonic voltage and EMI noise reduction.

  12. Characterization of Magnetic Tunnel Junctions For Spin Transfer Torque Magnetic Random Access Memory

    Science.gov (United States)

    Dill, Joshua Luchay

    This thesis details two experimental methods for quantifying magnetic tunnel junction behavior, namely write error rates and field modulated spin-torque ferromagnetic resonance. The former examines how reliably an applied spin-transfer torque can excite magnetization dynamics that lead to a reversal of magnetization direction while the latter studies steady state dynamics provided by an oscillating spin-transfer torque. These characterization techniques reveal write error rate behavior for a particular composition magnetic tunnel junction that qualitatively deviates from theoretical predictions. Possible origins of this phenomenon are also investigated with the field modulated spin-torque ferromagnetic resonance technique. By understanding the dynamics of magnetic moments predicted by theory, one can experimentally confirm or disprove these theories in order to accurately model and predict tunnel junction behavior. By having a better model for what factors are important in magnetization dynamics, one can optimize these factors in terms of improving magnetic tunnel junctions for their use as computer memory.

  13. Bilateral differences in the net joint torques during the squat exercise.

    Science.gov (United States)

    Flanagan, Sean P; Salem, George J

    2007-11-01

    Bilateral movements are common in human movement, both as exercises and as daily activities. Because the movement patterns are similar, it is often assumed that there are no bilateral differences (BDs; differences between the left and right sides) in the joint torques that are producing these movements. The aim of this investigation was to test the assumption that the joint torques are equal between the left and right lower extremities by quantifying BDs during the barbell squat. Eighteen recreationally trained men (n = 9) and women (n = 9) completed 3 sets of 3 repetitions of the squat exercise, under 4 loading conditions: 25, 50, 75, and 100% of their 3 repetition maximum, while instrumented for biomechanical analysis. The average net joint moment (ANJM) and maximum flexion angle (MFA) for the hip, knee, and ankle as well as the average vertical ground reaction force (AVGRF) and the average distance from the ankle joint center to the center of pressure (ADCOP) were calculated. Group mean and individual data were analyzed (alpha = 0.05). At each joint, there was a significant main effect for side and load, no main effect for gender, with few significant interactions. The hip ANJM was 12.4% larger on the left side, the knee ANJM was 13.2% larger on the right side, and the ankle ANJM was 16.8% larger on the left side. Differences in MFAs between sides were less than 2 degrees for all 3 joints (all p > 0.20 except for the knee at 75% [p = 0.024] and 100% [p = 0.025]), but the AVGRF and the ADCOP were 6% and 11% larger on the left side. Few subjects exhibited the pattern identified with the group mean data, and no subject exhibited nonsignificant BDs for all 3 joints. These findings suggest that joint torques should not be assumed to be equal during the squat and that few individual subjects follow the pattern exhibited by group mean data.

  14. An epidemiological survey on ankle sprain.

    OpenAIRE

    Yeung, M S; Chan, K. M.; So, C H; Yuan, W Y

    1994-01-01

    Ankle sprain is a common sports injury and is often regarded as trivial by athletes and coaches. This epidemiological study was conducted among three categories of Hong Kong Chinese athletes: national teams, competitive athletes and recreational athletes. This study shows that as much as 73% of all athletes had recurrent ankle sprain and 59% of these athletes had significant disability and residual symptoms which led to impairment of their athletic performance. This study indicates that a pro...

  15. Total Ankle Arthroplasty: A Brief Review

    OpenAIRE

    Mann, Roger A.; Harrison, Matthew J.

    2012-01-01

    Ankle fusion has long been the standard of treatment for end-stage ankle arthritis, and a successful arthroplasty has been a long sought alternative. It is a motion sparing procedure and may greatly reduce the potential for adjacent level degeneration as seen with arthrodesis. The typical candidate for arthroplasty is a healthy low demand patient, although the indications are widening as the success of the procedure has increased. Nevertheless, it is not fail-safe, technical expertise and exp...

  16. Salvage arthrodesis for failed total ankle arthroplasty

    Science.gov (United States)

    Zürcher, Arthur W

    2010-01-01

    Background and purpose Total ankle arthroplasty (TAA) has gained popularity in recent years. If it fails, however, salvage arthrodesis must be reliable as a rescue procedure. We therefore investigated the clinical, radiographic, and subjective outcome after salvage arthrodesis in a consecutive group of patients, and concentrated on the influence of the method of fixation on union rate and on salvage in inflammatory joint disease. Patients and methods Between 1994 and 2005, salvage arthrodesis was performed on 18 ankles (18 patients). Diagnosis was inflammatory joint disease (IJD) in 15 cases and osteoarthritis (OA) in 3. Tibio-talar fusion was performed in 7 ankles, and tibio-talocalcaneal fusion in 11. Serial radiographs were studied for time to union. Clinical outcome at latest follow-up was measured by the AOFAS score, the foot function index (FFI) and by VAS scores for pain, function, and satisfaction. Results Blade plates were used in 7 ankles (4 IJD, 3 OA); all united. Nonunion developed in 7 of the 11 rheumatic ankles stabilized by other methods. 11 patients (8 fused ankles, 3 nonunions) were available for clinical evaluation. Their mean AOFAS score was 62 and mean overall FFI was 70. VAS score for pain was 20, for function 64, and for satisfaction 74. The scores were similar in united and non-united ankles. Interpretation Blade plate fixation is successful in salvage arthrodesis for failed TAA. A high nonunion rate was found after salvage ankle arthrodesis in IJD with other methods of fixation. Clinical results were fair to good. PMID:20175648

  17. Postoperative infection in the foot and ankle.

    LENUS (Irish Health Repository)

    Chan, Victoria O

    2012-07-01

    Our discussion highlights the commonly performed surgical procedures in the foot and ankle and reviews the various imaging modalities available for the detection of infection with graphic examples to better enable radiologists to approach the radiological evaluation of postoperative infection in the foot and ankle. Discrimination between infectious and noninfectious inflammation remains a diagnostic challenge usually needing a combination of clinical assessment, laboratory investigations, and imaging studies to increase diagnostic accuracy.

  18. TOTAL ANKLE REPLACEMENT: WHY, WHEN AND HOW?

    Science.gov (United States)

    Bonasia, Davide Edoardo; Dettoni, Federico; Femino, John E; Phisitkul, Phinit; Germano, Margherita; Amendola, Annunziato

    2010-01-01

    Total ankle replacement (TAR) was first attempted in the 1970s, but poor results led to its being considered inferior to ankle fusion until the late 1980s and early 1990s. By that time, newer designs which more closely replicated the natural anatomy of the ankle, showed improved clinical outcomes.1 Currently, even though controversy still exists about the effectiveness of TAR compared to ankle fusion, TAR has shown promising mid-term results and should no longer be considered an experimental procedure. Factors related to improved TAR outcomes include: 1) better patient selection, 2) more precise knowledge and replication of ankle biomechanics, 3) the introduction of less-constrained designs with reduced bone resection and no need for cementation, and 4) greater awareness of soft-tissue balance and component alignment. When TAR is performed, a thorough knowledge of ankle anatomy, pathologic anatomy and biomechanics is needed along with a careful pre-operative plan. These are fundamental in obtaining durable and predictable outcomes. The aim of this paper is to outline these aspects through a literature review. PMID:21045984

  19. Total ankle replacement for posttraumatic arthritis

    Science.gov (United States)

    Weme, Rebecca A Nieuwe; van Solinge, Guido; N Doornberg, Job; Sierevelt, Inger; Haverkamp, Daniël; Doets, H Cornelis

    2015-01-01

    Background and purpose Most studies on total ankle replacement (TAR) have used a case mix of patients. We evaluated the outcome of TAR performed for end-stage arthritis either because of fracture or ligamentous injury. Patients and methods We prospectively followed 88 consecutive patients (50 postfracture ankles and 40 ankles with instability arthritis (2 bilateral)) who underwent TAR between 2001 and 2009. Mean follow-up for both groups was 5 years. Results Preoperative varus deformity of 10° or more was present in 23 ankles in the instability group. At 6 years, survival with revision or salvage fusion as an endpoint was 87% (95% CI: 74–99) in the postfracture group and 79% (95% CI: 63–94) in the instability group. Progressive periprosthetic osteolysis was seen in 23 ankles, and required salvage fusion in 6. The number of reoperations was similar in both groups. Clinical outcome, as assessed with 2 ankle scores and 2 questionnaires, showed good results and was similar at the latest follow-up. Interpretation The outcome was similar in the postfracture and instability groups and also similar to that reported in series including a case mix of patients. In contrast to earlier reports, preoperative frontal plane deformity in this series was not identified as a risk factor for failure. PMID:25772269

  20. Design of a Robotic Ankle Joint for a Microspine-Based Robot

    Science.gov (United States)

    Thatte, Nitish

    2011-01-01

    Successful robotic exploration of near-Earth asteroids necessitates a method of securely anchoring to the surface of these bodies without gravitational assistance. Microspine grip- per arrays that can grasp rock faces are a potential solution to this problem. A key component of a future microspine-based rover will be the ankle used to attach each microspine gripper to the robot. The ankle's purpose is twofold: 1) to allow the gripper to conform to the rock so a higher percentage of microspines attach to the surface, and 2) to neutralize torques that may dislodge the grippers from the wall. Parts were developed using computer aided design and manufactured using a variety of methods including selective laser sintering, CNC milling, and traditional manual machining techniques. Upon completion of the final prototype, the gripper and ankle system was tested to demonstrate robotic engagement and disengagement of the gripper and to determine load bearing ability. The immediate application of this project is to out t the Lemur IIb robot so it can climb and hang from rock walls.

  1. Transient and steady-state velocity of domain walls for a complete range of drive fields

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.

  2. [Revision arthroplasty of the ankle joint].

    Science.gov (United States)

    Hintermann, B; Barg, A; Knupp, M

    2011-11-01

    In the last 20 years total ankle replacement has become a viable alternative to arthrodesis for end-stage osteoarthritis of the ankle. Numerous ankle prosthesis designs have appeared on the market in the past and attracted by the encouraging intermediate results reported in the literature, many surgeons have started to perform this procedure. With increased availability on the market the indications for total ankle replacement have also increased in recent years. In particular, total ankle replacement may now be considered even in younger patients. Therefore, despite progress in total ankle arthroplasty the number of failures may increase. Up to now, arthrodesis was considered to be the gold standard for salvage of failed ankle prostheses. Because of extensive bone loss on the talar side, in most instances tibiocalcaneal fusion is the only reliable solution. An alternative to such extended hindfoot fusions would be revision arthroplasty. To date, however, there are no reported results of revision arthroplasty for salvage of a failed ankle replacement.Based on our experience prosthetic components with a flat undersurface are most likely to be able to find solid support on remaining bone stock. The first 83 cases (79 patients, 46 males, 33 females, average age 58.9 years, range 30.6-80.7 years) with a average follow-up of 5.4 years (range 2-11 years) showed excellent to good results in 69 cases (83%), a satisfactory result in 12 cases (15%) and a fair result in 2 cases (2%) and 47 patients (56%) were pain free. Primary loosening was noted in three cases and of these two cases were successfully revised by another total ankle replacement and in one case with arthrodesis. Another case with hematogenous infection was also revised by arthrodesis. At the last follow-up control two components were considered to be loose and the overall loosening rate was thus 6%.This series has proven that revision arthroplasty can be a promising option for patients with failed total

  3. Do Ankle Orthoses Improve Ankle Proprioceptive Thresholds or Unipedal Balance in Older Persons with Peripheral Neuropathy?

    Science.gov (United States)

    Son, Jaebum; Ashton-Miller, James A.; Richardson, James K.

    2010-01-01

    Objective To determine whether ankle orthoses that provide medial and lateral support, and have been found to decrease gait variability in older persons with peripheral neuropathy, decrease (improve) frontal plane ankle proprioceptive thresholds or increase unipedal stance time in that same population. Design Observational study in which unipedal stance time was determined with a stopwatch, and frontal plane ankle (inversion and eversion) proprioceptive thresholds were quantified during bipedal stance with and without the ankle orthoses, in 11 older diabetic subjects with peripheral neuropathy (8 men; age 72 ± 7.1 years) using a foot cradle system which presented a series of 100 rotational stimuli. Results The subjects demonstrated no change in combined frontal plane (inversion + eversion) proprioceptive thresholds or unipedal stance time with versus without the orthoses (1.06 ± 0.56 versus 1.13 ± 0.39 degrees, respectively; p = 0.955 and 6.1 ± 6.5 versus 6.2 ± 5.4 seconds, respectively; p = 0.922). Conclusion Ankle orthoses which provide medial-lateral support do not appear to change ankle inversion/eversion proprioceptive thresholds or unipedal stance time in older persons with diabetic peripheral neuropathy. Previously identified improvements in gait variability using orthoses in this population are therefore likely related to an orthotically-induced stiffening of the ankle rather than a change in ankle afferent function. PMID:20407302

  4. Prediction of crank torque and pedal angle profiles during pedaling movements by biomechanical optimization

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Bertucci, William; Andersen, Michael Skipper;

    2015-01-01

    to predict the motion pattern and crank torque was used. An experiment was conducted on a group of eight highly trained male cyclists to compare experimental observations to the simulation results. The proposed performance criterion predicts realistic crank torque profiles and ankle movement patterns.......This paper introduces the inverse-inverse dynamics method for prediction of human movement and applies it to prediction of cycling motions. Inverse-inverse dynamics optimizes a performance criterion by variation of a parameterized movement. First, a musculoskeletal model of cycling is built...... and constraints. The cost function and the constraints typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties derived from the detailed musculoskeletal analysis. A physiology-based cost function that expresses the integral effort over a cycle...

  5. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A Three-Month Study with Proprioceptive Neuromuscular Facilitation

    Directory of Open Access Journals (Sweden)

    Zhihao Zhou

    2016-11-01

    Full Text Available In this paper, we aim to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle-foot Rehabilitation System (RARS. A modified robot-assisted system was proposed and seven post-stroke patients with hemiplegic spastic ankles participated a three-month of robotic PNF training. Their impaired sides were used as the experimental group while their unimpaired sides as the control group. A robotic intervention for the experimental group generally started from a two minutes passive stretching to warm-up or relax the soleus and gastrocnemius muscle and also ended with the same one. Then a PNF training session included 30 trails was activated between them. The rehabilitation trainings were carried out three times a week as an addition of their regular rehabilitation exercise. Passive ankle joint range of motion, resistance torque and stiffness were measured in both ankles before and after the intervention. The changes in Achilles' tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the three months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased ( p0.05 . The robotic rehabilitation also improved the muscle strength ( p0.05 and fast walking speed ( p<0.05 . These results indicated that PNF based robotic intervention could significantly alleviate lower limb spasticity and improve the motor function in chronic stroke participant. The robotic system could potentially be used as an effective tool in post-stroke rehabilitation training.

  6. An Improved Fixed Switching Frequency Direct Torque Control of Induction Motor Drives Fed by Direct Matrix Converter

    CERN Document Server

    Taib, Nabil; Francois, Bruno

    2010-01-01

    A few papers have been interested by the fixed switching frequency direct torque control fed by direct matrix converters, where we can find just the use of direct torque controlled space vector modulated method. In this present paper, we present an improved method used for a fixed switching frequency direct torque control (DTC) using a direct matrix converter (DMC). This method is characterized by a simple structure, a fixed switching frequency which causes minimal torque ripple and a unity input power factor. Using this strategy, we combine the direct matrix converters advantages with those of direct torque control (DTC) schemes. The used technique for constant frequency is combined with the input current space vector to create the switching table of direct matrix converter (DMC). Simulation results clearly demonstrate a better dynamic and steady state performances of the proposed method.

  7. The results of ankle arthrodesis with screws for end stage ankle arthrosis.

    Science.gov (United States)

    Torudom, Yingyong

    2010-02-01

    Aim of this study was to evaluate the results of ankle arthrodesis with screws in patients with ankle arthrosis. The author studied 19 patients (20 feet) who had been treated by ankle arthrodesis with screws from 2003 to 2008. Ten patients were men (11 feet) and nine (9 feet) were women. Their mean age was 56 years (30 to 65), and the average duration of follow-up was four years (2 to 6). Two compression screws were used in all feet. Union was achieved in 19 of the 20 feet (95%). Average scores for pain and clinical condition are increase after operation. One re-operation was performed for nonunion. Author conclude that ankle arthrodesis with screws was effective treatment for ankle arthrosis.

  8. Calibration of the optical torque wrench

    NARCIS (Netherlands)

    Pedaci, F.; Huang, Z.; Van Oene, M.; Dekker, N.H.

    2012-01-01

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN

  9. 14 CFR 29.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  10. Measuring the uncertainty of tapping torque

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...

  11. Prospective study of ankle and foot fractures in elderly women

    Directory of Open Access Journals (Sweden)

    Yadagiri Surender Rao

    2015-01-01

    Full Text Available The epidemiology of ankle fractures in old people is changing as time passes on. The incidence of ankle fractures increases with advancing age. The study conducted was among a rural popula-tion which comprised of 68 women (32 women with ankle fractures & 36 women with foot fractures. Patients studied were in the age group more than 50 years. The study highlights the etiological & risk factors for fractures of ankle & foot. The commonest ankle fracture was the lateral malleolar fracture & the commonest foot fracture was the 5th Metatarsal fracture. Diabetes is a risk factor which increases the occurrence of ankle and foot injuries.

  12. Arthroscopic Management of Complications Following Total Ankle Replacement.

    Science.gov (United States)

    Lui, Tun Hing; Roukis, Thomas S

    2015-10-01

    There is great potential of managing the complications of total ankle replacement arthroscopically and endoscopically, and these procedures can be summarized into 3 groups. Group 1 includes procedures of the ankle joint proper with close proximity to the articular components of the total ankle replacement. Group 2 includes procedures of the tibia and talus with close proximity to the nonarticular parts of the total ankle replacement. Group 3 includes procedures that are away from the total ankle replacement. However, these remain master arthroscopist procedures and should be performed by foot and ankle surgeons who perform them with regularity.

  13. [Ankle joint arthritis--etiology, diagnosis and treatment].

    Science.gov (United States)

    Uri, Ofir; Haim, Amir

    2008-11-01

    Ankle joint arthritis causes functional limitation and affects the quality of life many patients. It follows traumatic injuries, inflammatory joint arthritis, primary osteoarthritis, hemochromatosis and infections. Understanding the unique anatomy and biomechanics of the ankle is important for diagnosis and treatment of ankle joint pathology. The treatment of ankle joint arthritis has advanced considerably in recent years and it is still a surgical challenge. Total ankle replacement seems to be a promising form of treatment, even though current data does not demonstrate advantages over ankle joint arthrodesis.

  14. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    Science.gov (United States)

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  15. A portable powered ankle-foot orthosis for rehabilitation

    Directory of Open Access Journals (Sweden)

    K. Alex Shorter, PhD

    2011-05-01

    Full Text Available Innovative technological advancements in the field of orthotics, such as portable powered orthotic systems, could create new treatment modalities to improve the functional outcome of rehabilitation. In this article, we present a novel portablepowered ankle-foot orthosis (PPAFO to provide untethered assistance during gait. The PPAFO provides both plantar flexor and dorsiflexor torque assistance by way of a bidirectional pneumatic rotary actuator. The system uses a portable pneumatic power source (compressed carbon dioxide bottle and embedded electronics to control the actuation of the foot. We collected pilot experimental data from one impaired and three nondisabled subjects to demonstrate design functionality. The impaired subject had bilateral impairment of the lower legs due to cauda equina syndrome. We found that data from nondisabledwalkers demonstrated the PPAFO’s capability to provide correctlytimed plantar flexor and dorsiflexor assistance during gait. Reduced activation of the tibialis anterior during stance and swing was also seen during assisted nondisabled walking trials. An increase in the vertical ground reaction force during the second half of stance was present during assisted trials for the impaired subject. Data from nondisabled walkers demonstrated functionality, and data from an impaired walker demonstrated the ability to provide functional plantar flexor assistance.

  16. DTC-SVM Based on PI Torque and PI Flux Controllers to Achieve High Performance of Induction Motor

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2014-01-01

    Full Text Available The fundamental idea of direct torque control of induction machines is investigated in order to emphasize the property produced by a given voltage vector on stator flux and torque variations. The proposed control system is based on Space Vector Modulation (SVM of electrical machines, Improvement model reference adaptive system, real time of stator resistance and estimation of stator flux. The purpose of this control is to minimize electromagnetic torque and flux ripple and minimizing distortion of stator current. In this proposed method, PI torque and PI flux controller are designed to achieve estimated torque and flux with good tracking and fast response with reference torque and there is no steady state error. In addition, design of PI torque and PI flux controller are used to optimize voltages in d-q reference frame that applied to SVM. The simulation Results of proposed DTC-SVM have complete excellent performance in steady and transient states as compared with classical DTC-SVM.

  17. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    Science.gov (United States)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  18. Radiographic Evaluation of the Ankle Mortise

    Directory of Open Access Journals (Sweden)

    Hamid Mirbagheri

    2010-05-01

    Full Text Available The ankle joint is the most frequently injured joint in adults. Decisions on management are usually based on clinical examination and interpretation of the x-rays. Stability of the ankle mortise relies on the configuration of the osseous structures and the ligaments. A basic radiographic examination consists of a mortise-view and a lateral view. Some add the AP-view. The Mortise view is an AP-view with 15-25 degrees endorotation of the foot. "nThe view clearly demonstrates both lateral and medial joint spaces. On a true AP-view the talus overlaps a portion of the lateral malleolus obscuring the lateral aspect of the ankle joint. However, the AP-view will give you an extra view on both malleoli from a different angle. The lateral radiograph of the ankle should include the base of the fifth metatarsal because of the frequency of fractures at this side that clinically mimic a fracture of the ankle.

  19. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.

    Science.gov (United States)

    Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G

    2014-09-01

    The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work.

  20. Torque on an exoplanet from an anisotropic evaporative wind

    CERN Document Server

    Teyssandier, Jean; Adams, Fred C; Quillen, Alice C

    2015-01-01

    Winds from short-period Earth and Neptune mass exoplanets, driven by high energy radiation from a young star, may evaporate a significant fraction of a planet's mass. If the momentum flux from the evaporative wind is not aligned with the planet/star axis, then it can exert a torque on the planet's orbit. Using steady-state one-dimensional evaporative wind models we estimate this torque using a lag angle that depends on the product of the speed of the planet's upper atmosphere and a flow timescale for the wind to reach its sonic radius. We also estimate the momentum flux from time-dependent one-dimensional hydrodynamical simulations. We find that only in a very narrow regime in planet radius, mass and stellar radiation flux is a wind capable of exerting a significant torque on the planet's orbit. Similar to the Yarkovsky effect, the wind causes the planet to drift outward if atmospheric circulation is prograde (super-rotating) and in the opposite direction if the circulation is retrograde. A close-in super Ear...

  1. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    Science.gov (United States)

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  2. Bilateral ankle edema with bilateral iritis.

    Science.gov (United States)

    Kumar, Sunil

    2007-07-01

    I report two patient presented to me with bilateral symmetrical ankle edema and bilateral acute iritis. A 42-year-old female of Indian origin and 30-year-old female from Somalia both presented with bilateral acute iritis. In the first patient, bilateral ankle edema preceded the onset of bilateral acute iritis. Bilateral ankle edema developed during the course of disease after onset of ocular symptoms in the second patient. Both patients did not suffer any significant ocular problem in the past, and on systemic examination, all clinical parameters were within normal limit. Lacrimal gland and conjunctival nodule biopsy established the final diagnosis of sarcoidosis in both cases, although the chest x-rays were normal.

  3. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  4. Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.

    Science.gov (United States)

    Roukis, Thomas S; Simonson, Devin C

    2015-10-01

    Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented.

  5. New Torque Estimation Method Considering Spatial Harmonics and Torque Ripple Reduction in Permanent Magnet Synchronous Motors

    Science.gov (United States)

    Hida, Hajime; Tomigashi, Yoshio; Ueyama, Kenji; Inoue, Yukinori; Morimoto, Shigeo

    This paper proposes a new torque estimation method that takes into account the spatial harmonics of permanent magnet synchronous motors and that is capable of real-time estimation. First, the torque estimation equation of the proposed method is derived. In the method, the torque ripple of a motor can be estimated from the average of the torque calculated by the conventional method (cross product of the fluxlinkage and motor current) and the torque calculated from the electric input power to the motor. Next, the effectiveness of the proposed method is verified by simulations in which two kinds of motors with different components of torque ripple are considered. The simulation results show that the proposed method estimates the torque ripple more accurately than the conventional method. Further, the effectiveness of the proposed method is verified by performing on experiment. It is shown that the torque ripple is decreased by using the proposed method to the torque control.

  6. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  7. Characterization of ankle function during stair ambulation

    OpenAIRE

    Gates, Deanna H.; Lelas, Jennifer L.; Della Croce, Ugo; Herr, Hugh; Bonato, Paolo

    2004-01-01

    The aim of this study was to examine the ankle joint during level walking, stair ascent, and stair descent to determine models for use in the design of prosthetic and orthotic systems. Ten healthy subjects were asked to walk (1) across a level walkway, (2) up, and (3) down an instrumented stairway. Sagittal plane kinematic and kinetic data were analyzed to obtain ankle biomechanics during the stance phase of each task. Each stance phase was broken down into sub-phases based on the power traje...

  8. Minimization of Torque Ripple in DTC of Induction Motor Using Fuzzy Mode Duty Cycle Controller

    Directory of Open Access Journals (Sweden)

    Turki Y. Abdalla

    2011-06-01

    Full Text Available Among all control methods for induction motor drives, Direct Torque Control (DTC seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysterics controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, and the problems related to its implementation, especially the torque ripple and the possible improvements to reduce this torque ripple by using a proposed fuzzy based duty cycle controller. The effectiveness of the duty ratio method was verified by simulation using Matlab/Simulink software package. The results are compared with that of the traditional DTC models.

  9. Fault Detection of Inline Reciprocating Diesel Engine: A Mass and Gas-Torque Approach

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available Early fault detection and diagnosis for medium-speed diesel engines are important to ensure reliable operation throughout the course of their service. This work presents an investigation of the diesel engine combustion-related fault detection capability of crankshaft torsional vibrations. Proposed methodology state the way of early fault detection in the operating six-cylinder diesel engine. The model of six cylinders DI Diesel engine is developed appropriately. As per the earlier work by the same author the torsional vibration amplitudes are used to superimpose the mass and gas torque. Further mass and gas torque analysis is used to detect fault in the operating engine. The DFT of the measured crankshaft’s speed, under steady-state operating conditions at constant load shows significant variation of the amplitude of the lowest major harmonic order. This is valid both for uniform operating and faulty conditions and the lowest harmonic orders may be used to correlate its amplitude to the gas pressure torque and mass torque for a given engine. The amplitudes of the lowest harmonic orders (0.5, 1, and 1.5 of the gas pressure torque and mass torque are used to map the fault. A method capable to detect faulty cylinder of operating Kirloskar diesel engine of SL90 Engine-SL8800TA type is developed, based on the phases of the lowest three harmonic orders.

  10. Ankle fusion using a 2-incision, 3-screw technique

    NARCIS (Netherlands)

    R.P.M. Hendrickx; G.M.M.J. Kerkhoffs; S.A.S. Stufkens; C.N. van Dijk; R.K. Marti

    2011-01-01

    Reliable fusion and optimal correction of the alignment of the ankle joint using a 2-incision, 3-screw technique. Symptomatic osteoarthritis of the ankle joint after insufficient other treatment, severe deformity of the osteoarthritic ankle joint, or salvation procedure after failed arthroplasty. Ac

  11. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    Science.gov (United States)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  12. A High Performance Space Vector Modulation - Direct Torque Controlled Induction Machine Drive based on Stator Flux Orientation Technique

    Directory of Open Access Journals (Sweden)

    BELMADANI, B.

    2009-06-01

    Full Text Available This paper proposes the design and implementation of a novel direct torque controlled induction machine drive system. The control system enjoys the advantages of stator vector control and conventional direct torque control and avoids some of the implementation difficulties of either of the two control methods. The stator vector control principal is used to keep constant the amplitude of stator flux vector at rated value, and to develop the relationship between the machine torque and the rotating speed of the stator flux vector. Thus, the machine torque can be regulated to generate the stator angular speed, which becomes a command signal and permits to overcome the problem of its estimation. Furthermore, with the combined control methods, the reference stator voltage vector can be generated and proportional-integral controllers and space vector modulation technique can be used to obtain fixed switching frequency and low torque ripple. Simulation experiments results indicate that, with the proposed scheme, a precise control of the stator flux and machine torque can be achieved. Compared to conventional direct torque control, presented method is easily implemented, and the steady performances of ripples of both torque and flux are considerably improved.

  13. Comparison of Knee and Ankle Dynamometry between NASA's X1 Exoskeleton and Biodex System 4

    Science.gov (United States)

    English, K. L.; Newby, N. J.; Hackney, K. J.; DeWitt, J. K.; Beck, C. E.; Rovekamp, R. N.; Rea, R. L.; Ploutz-Snyder, L. L.

    2014-01-01

    high agreement between devices; KF did not. For ankle PF, torque differences due to the two footplates were small. However, the X1 motor reports greater torques than the Biodex motor during PF. This first prototype provides proof of concept for a reliable, robotic-based exoskeleton to perform portable dynamometry for large muscle groups of the lower body.

  14. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series.

    Science.gov (United States)

    Burdea, Grigore C; Cioi, Daniel; Kale, Angad; Janes, William E; Ross, Sandy A; Engsberg, Jack R

    2013-03-01

    The objective of this study was to investigate the feasibility of game-based robotic training of the ankle in children with cerebral palsy (CP). The design was a case study, 12 weeks intervention, with no follow-up. The setting was a university research laboratory. The participants were a referred sample of three children with cerebral palsy, age 7-12, all male. All completed the intervention. Participants trained on the Rutgers Ankle CP system for 36 rehabilitation sessions (12 weeks, three times/week), playing two custom virtual reality games. The games were played while participants were seated, and trained one ankle at-a-time for strength, motor control, and coordination. The primary study outcome measures were for impairment (DF/PF torques, DF initial contact angle and gait speed), function (GMFM), and quality of life (Peds QL). Secondary outcome measures relate to game performance (game scores as reflective of ankle motor control and endurance). Gait function improved substantially in ankle kinematics, speed and endurance. Overall function (GMFM) indicated improvements that were typical of other ankle strength training programs. Quality of life increased beyond what would be considered a minimal clinical important difference. Game performance improved in both games during the intervention. This feasibility study supports the assumption that game-based robotic training of the ankle benefits gait in children with CP. Game technology is appropriate for the age group and was well accepted by the participants. Additional studies are needed however, to quantify the level of benefit and compare the approach presented here to traditional methods of therapy.

  15. Design and Preliminary Evaluation of a Two DOFs Cable-Driven Ankle-Foot Prosthesis with Active Dorsiflexion-Plantarflexion and Inversion-Eversion.

    Science.gov (United States)

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Dallali, Houman; Rastgaar, Mohammad

    2016-01-01

    This paper describes the design of an ankle-foot robotic prosthesis controllable in the sagittal and frontal planes. The prosthesis was designed to meet the mechanical characteristics of the human ankle including power, range of motion, and weight. To transfer the power from the motors and gearboxes to the ankle-foot mechanism, a Bowden cable system was used. The Bowden cable allows for optimal placement of the motors and gearboxes in order to improve gait biomechanics such as the metabolic energy cost and gait asymmetry during locomotion. Additionally, it allows flexibility in the customization of the device to amputees with different residual limb sizes. To control the prosthesis, impedance controllers in both sagittal and frontal planes were developed. The impedance controllers used torque feedback from strain gages installed on the foot. Preliminary evaluation was performed to verify the capability of the prosthesis to track the kinematics of the human ankle in two degrees of freedom (DOFs), the mechanical efficiency of the Bowden cable transmission, and the ability of the prosthesis to modulate the impedance of the ankle. Moreover, the system was characterized by describing the relationship between the stiffness of the impedance controllers to the actual stiffness of the ankle. Efficiency estimation showed 85.4% efficiency in the Bowden cable transmission. The prosthesis was capable of properly mimicking human ankle kinematics and changing its mechanical impedance in two DOFs in real time with a range of stiffness sufficient for normal human walking. In dorsiflexion-plantarflexion (DP), the stiffness ranged from 0 to 236 Nm/rad and in inversion-eversion (IE), the stiffness ranged from 1 to 33 Nm/rad.

  16. Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke

    Directory of Open Access Journals (Sweden)

    Anindo Roy, PhD

    2011-05-01

    Full Text Available Cerebrovascular accident (stroke often results in impaired motor control and persistent weakness that may lead to chronic disability, including deficits in gait and balance function. Finding ways to restore motor control may help reduce these deficits; however, little is known regarding the capacity or temporal profile of short-term motor adaptations and learning at the hemiparetic ankle. Our objective was to determine the short-term effects of a single session of impedance-controlled ankle robot (“anklebot” training on paretic ankle motor control in chronic stroke. This was a double-arm pilot study on a convenience sample of participants with chronic stroke (n = 7 who had residual hemiparetic deficits and an equal number of age- and sex-matched nondisabled control subjects. Training consisted of participants in each group playing a target-based video game with the anklebot for an hour, for a total of 560 movement repetitions in dorsiflexion/plantar flexion ranges followed by retest 48 hours later. Task difficulty was adjusted to ankle range of motion, with robotic assistance decreased incrementally across training. Assessments included robotic measures of ankle motor control on unassisted trials before and after training and at 48 hours after training. Following exposure to the task, subjects with stroke improved paretic ankle motor control across a single training session as indexed by increased targeting accuracy (21.6 +/– 8.0 to 31.4 +/– 4.8, p = 0.05, higher angular speeds (mean: 4.7 +/– 1.5 degrees/s to 6.5 +/– 2.6 degrees/s, p 0.05 at 48 hours in both groups. Robust maintenance of motor adaptation in the robot-trained paretic ankle over 48 hours may be indicative of short-term motor learning. Our initial results suggest that the anklebot may be a flexible motor learning platform with the potential to detect rapid changes in ankle motor performance poststroke.

  17. Malignant melanoma of the foot and ankle.

    Science.gov (United States)

    John, K J; Hayes, D W; Green, D R; Dickerson, J

    2000-04-01

    Malignant melanoma is a serious and devastating skin disease that podiatrists may be called upon to treat. It is pertinent that delays in diagnosis and treatment of malignant melanoma be avoided. Some of the topics discussed in this article are causes, clinical features, classification, and treatment of malignant melanoma, focusing on the foot and ankle.

  18. SPARKy-Spring Ankle with Regenerative Kinematics

    Science.gov (United States)

    2011-09-01

    89-93215-02-1 98560/10/$15 ©ICROS 142 1 BIONIC RUNNING FOR UNILATERAL TRANSTIBIAL MILITARY AMPUTEES Joseph Hitt, James Merlo, and Jonathan...ankle joint, and n optical switch embedded at the heel provides the necessary ensor feedback. Advantech’s 650MHZ PC-104 with 512MB on oard memory is

  19. Cutaneous mechanisms of isometric ankle force control.

    Science.gov (United States)

    Choi, Julia T; Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    2013-07-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force output. We used repetitive electrical stimulation of the superficial peroneal (foot dorsum) and medial plantar nerves (foot sole) to disrupt cutaneous afferent input in 8 healthy subjects. We measured the effects of repetitive nerve stimulation on (1) tactile thresholds, (2) performance in an ankle force-matching and (3) an ankle position-matching task. Additional force-matching experiments were done to compare the effects of transient versus continuous stimulation in 6 subjects and to determine the effects of foot anesthesia using lidocaine in another 6 subjects. The results showed that stimulation decreased cutaneous sensory function as evidenced by increased touch threshold. Absolute dorsiflexion force error increased without visual feedback during peroneal nerve stimulation. This was not a general effect of stimulation because force error did not increase during plantar nerve stimulation. The effects of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases.

  20. Osteoarthritis of the Foot and Ankle

    Science.gov (United States)

    ... that creates an increased risk of arthritis. Symptoms People with osteoarthritis in the foot or ankle experience, in varying degrees, one or more of the following: Pain and stiffness in the joint Swelling in or near the joint Difficulty walking or bending the joint Some patients with osteoarthritis ...

  1. Landau-Lifshitz theory of thermomagnonic torque

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2015-07-01

    We derive the thermomagnonic torque associated with smooth magnetic textures subjected to a temperature gradient in the framework of the stochastic Landau-Lifshitz-Gilbert equation. Our approach captures on equal footing two distinct contributions: (i) a local entropic torque that is caused by a temperature dependence of the effective exchange field, the existence of which had been previously suggested based on numerics, and (ii) the well-known spin-transfer torque induced by thermally induced magnon flow. The dissipative components of two torques have the same structure, following a common phenomenology, but opposite signs, with the twice as large entropic torque leading to a domain-wall motion toward the hotter region. We compare the efficiency of the torque-driven domain-wall motion with the recently proposed Brownian thermophoresis.

  2. Total Ankle Arthroplasty: An Overview of the Canadian Experience.

    Science.gov (United States)

    Latham, Warren C W; Lau, Johnny T C

    2016-06-01

    Total ankle arthroplasty use has increased across Canada over the last two decades. Multiple implant designs are readily available and implanted across Canada. Although arthrodesis is a reliable procedure for treating end-stage ankle arthritis, ankle replacement is often the preferred surgical treatment by patients. A recent prospective study evaluated intermediate-term outcomes of ankle replacement and arthrodesis at multiple centers across Canada, with variability in prosthesis type, surgeon, and surgical technique. Intermediate-term clinical outcomes of total ankle replacement and ankle arthrodesis were comparable in a diverse cohort in which treatment was tailored to patient presentation; however, rates of reoperation and major complications were higher after ankle replacement.

  3. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    Science.gov (United States)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  4. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Directory of Open Access Journals (Sweden)

    Kohn André F

    2010-06-01

    Full Text Available Abstract Background High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons. This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods Subjects (n = 6 were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise applied to the triceps surae muscle group. In an additional investigation, Mmax and F-waves were elicited at different times before or after the vibratory stimulation. Results The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC due to the spinal recruitment of motoneurons. The association of vibration and electrical

  5. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Domingo Antoinette

    2006-02-01

    Full Text Available Abstract Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s under three conditions: without wearing orthoses, wearing orthoses unpowered (passively, and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without

  6. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  7. A universal ankle-foot prosthesis emulator for human locomotion experiments.

    Science.gov (United States)

    Caputo, Joshua M; Collins, Steven H

    2014-03-01

    Robotic prostheses have the potential to significantly improve mobility for people with lower-limb amputation. Humans exhibit complex responses to mechanical interactions with these devices, however, and computational models are not yet able to predict such responses meaningfully. Experiments therefore play a critical role in development, but have been limited by the use of product-like prototypes, each requiring years of development and specialized for a narrow range of functions. Here we describe a robotic ankle-foot prosthesis system that enables rapid exploration of a wide range of dynamical behaviors in experiments with human subjects. This emulator comprises powerful off-board motor and control hardware, a flexible Bowden cable tether, and a lightweight instrumented prosthesis, resulting in a combination of low mass worn by the human (0.96 kg) and high mechatronic performance compared to prior platforms. Benchtop tests demonstrated closed-loop torque bandwidth of 17 Hz, peak torque of 175 Nm, and peak power of 1.0 kW. Tests with an anthropomorphic pendulum "leg" demonstrated low interference from the tether, less than 1 Nm about the hip. This combination of low worn mass, high bandwidth, high torque, and unrestricted movement makes the platform exceptionally versatile. To demonstrate suitability for human experiments, we performed preliminary tests in which a subject with unilateral transtibial amputation walked on a treadmill at 1.25 ms-1 while the prosthesis behaved in various ways. These tests revealed low torque tracking error (RMS error of 2.8 Nm) and the capacity to systematically vary work production or absorption across a broad range (from -5 to 21 J per step). These results support the use of robotic emulators during early stage assessment of proposed device functionalities and for scientific study of fundamental aspects of human-robot interaction. The design of simple, alternate end-effectors would enable studies at other joints or with

  8. Game programmer's guide to Torque under the hood of the Torque game engine

    CERN Document Server

    Maurina , Edward F

    2006-01-01

    game programmer working with the Torque game engine must have ""The Game Programmer's Guide To Torque"": it teaches everything needed to design your own game, using experiences of game makers and industry veterans well versed in Torque technology. A Torque Game engine demo is included on an accompanying cd while step-by-step examples tell how to use it. Its focus on all the basics makes for an exceptional coverage for all levels of game programmer. -Bookwatch, August 2006

  9. High-torque quiet gear

    Science.gov (United States)

    Moody, Paul E.

    1995-07-01

    A high-torque quiet gear construction consists of an inner hub having a plurality of circumferentially spaced arms extending radially outwardly therefrom, and an outer ring member having a plurality of circumferentially spaced-teeth extending radially inwardly therefrom. The ring member further includes a plurality of gear formations on an outer surface thereof for intermeshing with other gears. The teeth of the ring member are received in spaced relation in corresponding spaces formed between adjacent arms of the hub. An elastomeric member is received in the space formed between the hub and the ring member to form a resilient correction between the arms of the hub and the teeth of the ring member. The side surfaces of the arms and the teeth extend generally parallel to each other and at least partially overlap in a longitudinal direction. The purpose of this configuration is to place the elastomeric member in compression when torque is applied to the hub. Since elastomeric material is relatively incompressible, the result is low shear loads on the adhesive bonds which hold the elastomeric member to both the hub and outer ring member.

  10. Variable-Structure Direct Torque Control – A Class of Fast and Robust Controllers for Induction Machine Drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2004-01-01

    A family of variable-structure controllers for induction machine drives is presented, in which the principles of direct torque control (DTC), variable-structure control (VSC) and space-vector pulsewidth modulation are combined to ensure high-performance operation, both in the steady state and und...

  11. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  12. Static torque and drag characteristics of an S-shaped Savonius rotor and prediction of dynamic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sadrul Islam, A.K.M.; Quamrul Islam, M.; Razzaque, M.M. [Bangladesh University (Bangladesh). Dept. of Mechanical Engineering; Ashref, R

    1995-12-31

    Drag and torque coefficients of a stationary S-shaped rotor have been investigated by measuring the pressure distribution on the blade surfaces for various rotor angles. The experiments have been carried out at a Reynolds number of 1.1 x 10{sup 5} in a uniform flow jet produced by an open circuit wind tunnel. The measurements indicate that the drag force, and hence the torque, varies with rotor angle. The maximum net static torque occurs at 45{sup o} of rotor angle and it becomes negative in the range of 135{sup o} to 165{sup o} of rotor angle. A quasi-steady approach has been applied for the prediction of the dynamic performance of the rotor using the static drag and torque coefficients. This method results in a fair agreement with the measured power coefficient. (Author)

  13. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.

  14. Predicting functional recovery after acute ankle sprain.

    Directory of Open Access Journals (Sweden)

    Sean R O'Connor

    Full Text Available INTRODUCTION: Ankle sprains are among the most common acute musculoskeletal conditions presenting to primary care. Their clinical course is variable but there are limited recommendations on prognostic factors. Our primary aim was to identify clinical predictors of short and medium term functional recovery after ankle sprain. METHODS: A secondary analysis of data from adult participants (N = 85 with an acute ankle sprain, enrolled in a randomized controlled trial was undertaken. The predictive value of variables (age, BMI, gender, injury mechanism, previous injury, weight-bearing status, medial joint line pain, pain during weight-bearing dorsiflexion and lateral hop test recorded at baseline and at 4 weeks post injury were investigated for their prognostic ability. Recovery was determined from measures of subjective ankle function at short (4 weeks and medium term (4 months follow ups. Multivariate stepwise linear regression analyses were undertaken to evaluate the association between the aforementioned variables and functional recovery. RESULTS: Greater age, greater injury grade and weight-bearing status at baseline were associated with lower function at 4 weeks post injury (p<0.01; adjusted R square=0.34. Greater age, weight-bearing status at baseline and non-inversion injury mechanisms were associated with lower function at 4 months (p<0.01; adjusted R square=0.20. Pain on medial palpation and pain on dorsiflexion at 4 weeks were the most valuable prognostic indicators of function at 4 months (p< 0.01; adjusted R square=0.49. CONCLUSION: The results of the present study provide further evidence that ankle sprains have a variable clinical course. Age, injury grade, mechanism and weight-bearing status at baseline provide some prognostic information for short and medium term recovery. Clinical assessment variables at 4 weeks were the strongest predictors of recovery, explaining 50% of the variance in ankle function at 4 months. Further

  15. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.

    Science.gov (United States)

    Sinkjaer, T

    1997-01-01

    In understanding the control of the ankle joint during different motor tasks, we have to investigate at least three components, namely the influence of i) the passive and intrinsic properties of the intact and active muscle system around the joint (termed the non-reflex component), ii) the mechanical importance of the stretch reflex in the stretched and unloaded muscles, and iii) the supraspinal control of the stretch reflex. This thesis is dealing with the importance of the three components in healthy and spastic persons during sitting, standing, and walking. The results are based on stretch reflex and H-reflex measurements from the ankle extensor muscles. During stretch reflex experiments the foot was mounted to a platform (portable during walking) from which the ankle joint torque and the position were measured. To elicit a stretch reflex, the ankle joint was rotated by a strong motor connected to the platform. The mechanical importance of the stretch reflex was investigated by measuring the changes in joint torque. Electrically, the stretch reflex was recorded as the compound muscle action potential through bipolar surface EMG electrodes placed over the soleus muscle. During H-reflex experiments, the tibial nerve was stimulated at the popliteal fossa and the H-reflex recorded over the soleus muscle as during stretch reflex experiments. To investigate how the contractile properties of a muscle in humans depend on the history of activation, we investigated the intrinsic stiffness of the ankle extensors in healthy subjects. At matched background contraction in sitting subjects, a prolonged contraction increased the intrinsic muscle stiffness by 49%. Muscle yielding has been considered especially important for understanding the reflex compensation. We found a general lack of muscle yield and a mechanically important non-reflex stiffness of the ankle extensors showing that non-reflex stiffness is a prominent factor in normal movements of the ankle joint. In both

  16. Radiation Forces and Torques without Stress (Tensors)

    Science.gov (United States)

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  17. Forces and torques between nonintersecting straight currents

    Science.gov (United States)

    Binder, P.-M.; Cross, Felicity; Silva, J. K.

    2016-07-01

    We analyse two very long current-carrying straight wires that point in arbitrary directions without touching. We find general expressions for the forces and torques for arbitrary points on one wire due to the other. This allows us to make calculations for the overall forces and torques and statements about the stability of parallel and anti-parallel current arrangements.

  18. The Casimir Torque on a Cylindrical Gear

    CERN Document Server

    Vaidya, Varun

    2013-01-01

    We utilize Effective Field Theory(EFT) techniques to calculate the casimir torque on a cylindrical gear in the presence of a polarizable but neutral object. We present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  19. Casimir torque on a cylindrical gear

    Science.gov (United States)

    Vaidya, Varun

    2014-08-01

    I utilize effective field theory(EFT) techniques to calculate the Casimir torque on a cylindrical gear in the presence of a polarizable but neutral object and present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  20. 14 CFR 23.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section...

  1. 14 CFR 25.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section...

  2. Diminished Foot and Ankle Muscle Volumes in Young Adults With Chronic Ankle Instability

    Science.gov (United States)

    Feger, Mark A.; Snell, Shannon; Handsfield, Geoffrey G.; Blemker, Silvia S.; Wombacher, Emily; Fry, Rachel; Hart, Joseph M.; Saliba, Susan A.; Park, Joseph S.; Hertel, Jay

    2016-01-01

    Background: Patients with chronic ankle instability (CAI) have demonstrated altered neuromuscular function and decreased muscle strength when compared with healthy counterparts without a history of ankle sprain. Up to this point, muscle volumes have not been analyzed in patients with CAI to determine whether deficits in muscle size are present following recurrent sprain. Purpose: To analyze intrinsic and extrinsic foot and ankle muscle volumes and 4-way ankle strength in young adults with and without CAI. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Five patients with CAI (mean age, 23.0 ± 4 years; 1 male, 4 females) and 5 healthy controls (mean age, 23.8 ± 4.5 years; 1 male, 4 females) volunteered for this study. Novel fast-acquisition magnetic resonance imaging (MRI) was used to scan from above the femoral condyles through the foot and ankle. The perimeter of each muscle was outlined on each axial slice and then the 2-dimensional area was multiplied by the slice thickness (5 mm) to calculate the muscle volume. Plantar flexion, dorsiflexion, inversion, and eversion isometric strength were measured using a handheld dynamometer. Patients with CAI were compared with healthy controls on all measures of muscle volume and strength. Extrinsic muscle volumes of patients with CAI were also compared with a normative database of healthy controls (n = 24) by calculating z scores for each muscle individually for each CAI subject. Results: The CAI group had smaller total shank, superficial posterior compartment, soleus, adductor hallucis obliqus, and flexor hallucis brevis muscle volumes compared with healthy controls as indicated by group means and associated 90% CIs that did not overlap. Cohen d effect sizes for the significant group differences were all large and ranged from 1.46 to 3.52, with 90% CIs that did not cross zero. The CAI group had lower eversion, dorsiflexion, and 4-way composite ankle strength, all with group means and associated 90

  3. On steady electromagnetic equilibria

    Science.gov (United States)

    Lehnert, B.

    1986-12-01

    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  4. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces

    Directory of Open Access Journals (Sweden)

    Eric Nickel, MS

    2014-09-01

    Full Text Available This article describes the development of a prototype prosthetic ankle-foot system that passively adapts to surface slopes on each step of walking. Engineering analyses were performed to design the cam clutch and clutch engagement and disengagement mechanism. The prototype was tested by a veteran with a unilateral transtibial amputation. Kinematic and kinetic data were recorded while the subject walked on a treadmill at slopes ranging from −10 to +10 degrees. After each slope condition, the subject rated his level of exertion and socket comfort. The subject reported increased comfort and reduced exertion for downhill slopes when using the prototype compared with his usual prosthesis. The subject also expressed that when walking downhill on the prototype, it was the most comfortable he had ever been in a prosthesis. The prosthetic ankle torque-angle relationship shifted toward dorsiflexion for uphill and toward plantar flexion for downhill slopes when using the prototype, indicating slope adaptation, but this effect did not occur when the subject walked with his usual prosthesis. The prototype also demonstrated late-stance plantar flexion, suggesting the potential for storing and returning more energy than standard lower-limb prostheses.

  5. A Systematic Review on the Treatment of Acute Ankle Sprain Brace versus Other Functional Treatment Types

    NARCIS (Netherlands)

    E. Kemler; I. van de Port; F. Backx; C.N. van Dijk

    2011-01-01

    Ankle injuries, especially ankle sprains, are a common problem in sports and medical care. Ankle sprains result in pain and absenteeism from work and/or sports participation, and can lead to physical restrictions such as ankle instability. Nowadays, treatment of ankle injury basically consists of ta

  6. The effects of ankle Kinesio taping on ankle stiffness and dynamic balance.

    Science.gov (United States)

    Fayson, Shirleeah D; Needle, Alan R; Kaminski, Thomas W

    2013-01-01

    The purpose of this study was to determine the effects of Kinesio® taping on static restraint and dynamic postural control of the ankle joint. Thirty female subjects with no history of ankle injury participated in this study. Subjects were tested for passive ankle laxity and stiffness, and time to stabilization following forward, backward, medial, and lateral hops. Subjects were tested prior to tape application, immediately following application, and following 24 hours of use. Differences between taping conditions were investigated using analyses of variance and pairwise comparisons. Stiffness increased following initial application and 24 hours of Kinesio® tape use (F = 6.99, p = .003), despite no observed changes in ankle laxity (F = 0.77, p = .49); however, no changes were observed in time-to-stabilization (F = 0.03, p = .97). Our results suggest that Kinesio® tape may improve static restraint in the ankle joint without altering peak motion or dynamic postural control. A future investigation into Kinesio® tape efficacy in injury prevention or rehabilitation is warranted.

  7. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  8. Direct Torque Control of Saturated Doubly-Fed Induction Generator using High Order Sliding Mode Controllers

    Directory of Open Access Journals (Sweden)

    Elhadj BOUNADJA

    2016-07-01

    Full Text Available The present work examines a direct torque control strategy using a high order sliding mode controllers of a doubly-fed induction generator (DFIG incorporated in a wind energy conversion system and working in saturated state. This research is carried out to reach two main objectives. Firstly, in order to introduce some accuracy for the calculation of DFIG performances, an accurate model considering magnetic saturation effect is developed. The second objective is to achieve a robust control of DFIG based wind turbine. For this purpose, a Direct Torque Control (DTC combined with a High Order Sliding Mode Control (HOSMC is applied to the DFIG rotor side converter. Conventionally, the direct torque control having hysteresis comparators possesses major flux and torque ripples at steady-state and moreover the switching frequency varies on a large range. The new DTC method gives a perfect decoupling between the flux and the torque. It also reduces ripples in these grandeurs. Finally, simulated results show, accurate dynamic performances, faster transient responses and more robust control are achieved.

  9. Direct Torque Control for Three-Level Neutral Point Clamped Inverter-Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    M. K. Sahu

    2012-04-01

    Full Text Available Direct torque control (DTC is a control technique in AC drive systems to obtain high performance torque control. The classical DTC drive contains a pair of hysteresis comparators and suffers from variable switching frequency and high torque ripple. These problems can be solved by using space vector depending on the reference torque and flux. In this paper the space vector modulation technique is applied to the three-level Neutral Point Clamped (NPC inverter control in the proposed DTC-based induction motor drive system, resulting to a significant reduce of torque ripple. Three-level neutral point clamped inverters have been widely used in medium voltage applications. This type of inverters have several advantages over standard two-level VSI, such as greater number of levels in the output voltage waveforms, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper emphasizes the derivation of switching states using the Space Vector Pulse Width Modulation (SVPWM technique. The control scheme is implemented using Matlab/Simulink. Experimental results using dSPACE validate the steady-state and the dynamic performance of the proposed control strategy.

  10. [Ankle joint prosthesis for bone defects].

    Science.gov (United States)

    Lampert, C

    2011-11-01

    Large defects of the talus, i.e. due to tumors, large areas of osteolysis in total ankle replacement (TAR) and posttraumatic talus body necrosis are difficult to manage. The gold standard in these circumstances is still tibiocalcaneal arthrodesis with all the negative aspects of a completely rigid hindfoot. We started 10 years ago to replace the talus by a custom-made, all cobalt-chrome implant (laser sintering). The first patient with a giant cell tumor did very well but the following patients showed all subsidence of the metal talus into the tibia due to missing bony edges. Therefore, we constructed a custom-made talus (mirrored from the healthy side) and combined it with a well functioning total ankle prosthesis (Hintegra). So far we have implanted this custom-made implant into 3 patients: the first had a chondrosarcoma of the talus (1 year follow-up), the second had massive osteolysis/necrosis of unknown origin (6 months follow-up) and the third massive osteolysis following a correct TAR (2 months follow-up). The results are very encouraging as all of the patients are practically pain free and have a good range of movement (ROM): D-P flexion 15°-0-20° but less motion in the lower ankle joint: ROM P-S 5°-0-5°. No subsidence was detected in the tibia or the calcaneus. The custom-made talus combined with the Hintegra total ankle replacement will probably be an interesting alternative to a tibiocalcaneal arthrodesis in selected cases with massive defects of the talus.

  11. Charcot foot and ankle with osteomyelitis

    OpenAIRE

    Donegan, Ryan; Sumpio, Bauer; Peter A. Blume

    2013-01-01

    This paper presents a review of the current literature discussing topics of Charcot osteoarthropathy, osteomyelitis, diagnosing osteomyelitis, antibiotic management of osteomyelitis, and treatment strategies for management of Charcot osteoarthropathy with concurrent osteomyelitis.Keywords: Charcot foot; osteomyelitis; diabetes mellitus; infection; neuropathy(Published: 1 October 2013)Citation: Diabetic Foot & Ankle 2013, 4: 21361 - http://dx.doi.org/10.3402/dfa.v4i0.21361

  12. A Biomechanical Comparison of Locking Versus Conventional Plate Fixation for Distal Fibula Fractures in Trimalleolar Ankle Injuries.

    Science.gov (United States)

    Nguyentat, Annie; Camisa, William; Patel, Sandeep; Lagaay, Pieter

    2016-01-01

    Previous biomechanical studies have advocated the use of locking plates for isolated distal fibula fractures in osteoporotic bone. Complex rotational ankle injuries involve an increased number of fractures, which can result in instability, potentially requiring the same fixed angle properties afforded by locking plates. However, the mechanical indication for locking plate technology has not been tested in this fracture model. The purpose of the present study was to compare the biomechanical properties of locking and conventional plate fixation for distal fibula fractures in trimalleolar ankle injuries. Fourteen (7 matched pairs) fresh-frozen cadaver leg specimens were used. The bone mineral density of each was obtained using dual x-ray absorptiometry scans. The fracture model simulated an OTA 44-B3.3 fracture. The syndesmosis was not disrupted. Each fracture was fixated in the same fashion, except for the distal fibula plate construct: locking (n = 7) and one-third tubular (n = 7). The specimens underwent axial and torsional cyclic loading, followed by torsional loading to failure. No statistically significant differences were found between the locking and conventional plate constructs during both fatigue and torque to failure testing (p > .05). Our specimen bone mineral density averages did not represent poor bone quality. The clinical implication of the present study is that distal fibular locking plates do not provide a mechanical advantage for trimalleolar ankle injuries in individuals with normal bone density and in the absence of fracture comminution.

  13. Diabetic patients with and without peripheral neuropathy reveal different hip and ankle biomechanical strategies during stair descent

    Directory of Open Access Journals (Sweden)

    Andreja P. Picon

    Full Text Available BACKGROUND: The progression of diabetes and the challenge of daily tasks may result in changes in biomechanical strategies. Descending stairs is a common task that patients have to deal with, however it still has not been properly studied in this population. OBJECTIVES: We describe and compare the net joint moments and kinematics of the lower limbs in diabetic individuals with and without peripheral neuropathy and healthy controls during stair descent. METHOD: Forty-two adults were assessed: control group (13, diabetic group (14, and neuropathic diabetic group (15. The flexor and extensor net moment peaks and joint angles of the hip, knee, and ankle were described and compared in terms of effect size and ANOVAs (p<0.05. RESULTS: Both diabetic groups presented greater dorsiflexion [large effect size] and a smaller hip extensor moment [large effect size] in the weight acceptance phase. In the propulsion phase, diabetics with and without neuropathy showed a greater hip flexor moment [large effect size] and smaller ankle extension [large effect size]. CONCLUSION: Diabetic patients, even without neuropathy, revealed poor eccentric control in the weight acceptance phase, and in the propulsion phase, they showed a different hip strategy, where they chose to take the leg off the ground using more flexion torque at the hip instead of using a proper ankle extension function.

  14. Forces predicted at the ankle during running.

    Science.gov (United States)

    Burdett, R G

    1982-01-01

    A biomechanical model of the ankle joint was developed and was used to predict the forces at the ankle during the stance phase of running. Measurements from five cadavers were averaged to obtain insertion points and directions of pull of equivalent tendons with respect to the assumed center of the ankle joint. A minimum joint force solution was obtained by assuming that only two equivalent muscle groups could exert force at one time. Three subjects ran at 4.47 m/s across a force platform that recorded the external forces and moments acting on the foot. Cinematography was used to measure the foot and leg positions during stance. Peak resultant joint forces ranging from 9.0 to 13.3 times body weight and peak Achilles tendon forces ranging from 5.3 to 10.0 times body weight were predicted. Small variations in some cases resulted in large differences in predicted forces. The highest tendon forces predicted exceeded those reported to cause damage to cadaver tendons in other studies.

  15. Control method for exoskeleton ankle with surface electromyography signals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen; WANG Zhen; JIANG Jia-xin; QIAN Jin-wu

    2009-01-01

    This paper is concerned with a control method for an exoskeleton ankle with clectromyography (EMG) signals.The EMG signals of human ankle and the exoskeleton ankle are introduced.Then a control method is proposed to control the exoskeleton ankle using the EMG signals.The feed-forward neural network model applied here is composed of four layers and uses the back-propagation training algorithm.The output signals from neural network are processed by the wavelet transform.Finally the control orders generated from the output signals are passed to the motor controller and drive the exoskeleton to move.Through experiments,the equality of neural network prediction of ankle movement is evaluated by giving the correlation coefficient.It is shown from the experimental results that the proposed method can accurately control the movement of ankle joint.

  16. Talar Osteochondroma Fracture Presenting as Posterior Ankle Impingement.

    Science.gov (United States)

    Ercin, Ersin; Bilgili, Mustafa Gokhan; Gamsizkan, Mehmet; Avsar, Serdar

    2016-05-01

    Osteochondromas are the most common benign bone tumors. They are usually asymptomatic and found incidentally. When symptomatic, the symptoms are usually due to its location and size. Fracture of an osteochondroma presenting as posterior ankle impingement is a rare condition. We describe a 22-year-old man with solitary exostosis who presented with a posterior ankle mass and posterior ankle impingement with 2 years of follow-up. Surgical intervention was the treatment of choice in this patient, and histologic examination revealed a benign osteochondroma. Osteochondromas found in the posterior aspect of the talus can be complicated by fracture due to persistent motion of the ankle. Talar osteochondroma should be included in the differential diagnosis of posterior ankle impingement causes. Posterior talar osteochondromas, especially when a stalk is present, should be treated surgically before it is more complicated by a fracture and posterior ankle impingement.

  17. Total ankle replacement. Early experiences with STAR prosthesis.

    Science.gov (United States)

    Murnaghan, J. M.; Warnock, D. S.; Henderson, S. A.

    2005-01-01

    Early designs of Total Ankle Replacement (TAR) had a high failure rate. More recent experience with the 3-piece, meniscal bearing, total ankle replacement has been more promising. We report a review of the early results of our first 22 prostheses in 20 patients undergoing Scandinavian Total Ankle Replacement (STAR) in Northern Ireland. There was a mean follow-up time of 26 months. Seventeen patients are pain-free at the ankle joint during normal daily activities. Two of the early cases have required revision surgery due to technical errors. Other complications have included malleolar fractures, poor wound healing and postoperative stiffness. These early results show high levels of patient satisfaction, and we are encouraged to continue with total ankle arthroplasty. There is a steep initial learning curve and use of TAR should be restricted to foot and ankle surgeons. Images Fig 1 Figs 2a and b Figs 2 c and d PMID:16022128

  18. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern

    Directory of Open Access Journals (Sweden)

    Blonien Natalie

    2008-09-01

    Full Text Available Abstract Background It is well documented that individuals with chronic stroke often exhibit considerable gait impairments that significantly impact their quality of life. While stroke subjects often walk asymmetrically, we sought to investigate whether prescribing near normal physiological gait patterns with the use of the Lokomat robotic gait-orthosis could help ameliorate asymmetries in gait, specifically, promote similar ankle, knee, and hip joint torques in both lower extremities. We hypothesized that hemiparetic stroke subjects would demonstrate significant differences in total joint torques in both the frontal and sagittal planes compared to non-disabled subjects despite walking under normal gait kinematic trajectories. Methods A motion analysis system was used to track the kinematic patterns of the pelvis and legs of 10 chronic hemiparetic stroke subjects and 5 age matched controls as they walked in the Lokomat. The subject's legs were attached to the Lokomat using instrumented shank and thigh cuffs while instrumented footlifters were applied to the impaired foot of stroke subjects to aid with foot clearance during swing. With minimal body-weight support, subjects walked at 2.5 km/hr on an instrumented treadmill capable of measuring ground reaction forces. Through a custom inverse dynamics model, the ankle, knee, and hip joint torques were calculated in both the frontal and sagittal planes. A single factor ANOVA was used to investigate differences in joint torques between control, unimpaired, and impaired legs at various points in the gait cycle. Results While the kinematic patterns of the stroke subjects were quite similar to those of the control subjects, the kinetic patterns were very different. During stance phase, the unimpaired limb of stroke subjects produced greater hip extension and knee flexion torques than the control group. At pre-swing, stroke subjects inappropriately extended their impaired knee, while during swing they

  19. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  20. Shortening-induced torque depression in old men: implications for age-related power loss.

    Science.gov (United States)

    Power, Geoffrey A; Makrakos, Demetri P; Stevens, Daniel E; Herzog, Walter; Rice, Charles L; Vandervoort, Anthony A

    2014-09-01

    Following active muscle shortening, the steady-state isometric torque at the final muscle length is lower than the steady-state torque obtained for a purely isometric contraction at that same final muscle length. This well-documented property of skeletal muscle is termed shortening-induced torque depression (TD). Despite many investigations into the mechanisms of weakness and power loss in old age, the influence of muscle shortening on the history dependence of isometric torque production remains to be elucidated. Thus, it is unclear whether older adults are disadvantaged for torque and power production following a dynamic shortening contraction. The purpose of this study was to evaluate shortening-induced TD in older adults, and to determine whether shortening-induced TD is related to power loss. Maximal voluntary isometric dorsiflexion contractions (MVC; 10s) in 8 young (25.5±3.7years) and 9 old (76.1±5.4years) men were performed on a HUMAC NORM dynamometer as a reference, and then again following an active shortening of 40° joint excursion (40°PF-0°PF) at angular velocities of 15°/s and 120°/s. Work and instantaneous power were derived during shortening. Shortening-induced TD was calculated and expressed as a percentage by determining the mean torque value over 1s during the isometric steady state of the MVC following shortening, divided by the mean torque value for the same 1s time period during the isometric reference MVC. To assess muscle activation, electromyography (root mean square; EMGRMS) of the tibialis anterior (TA) and soleus (SOL) was calculated at identical time points used in assessing shortening-induced TD, and voluntary activation (VA) was assessed using the interpolated twitch technique. Old were 18% weaker than young for MVC, and ~40% less powerful for 15°/s and 120°/s of shortening. Old produced 37% and 21% less work for 15°/s and 120°/s than young, respectively. Furthermore, old experienced 60% and 70% greater shortening-induced TD

  1. Design, modelling and simulation aspects of an ankle rehabilitation device

    Science.gov (United States)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  2. Assessment and management of patients with ankle injuries.

    Science.gov (United States)

    Walker, Jennie

    2014-08-19

    Foot and ankle injuries are common and can have a significant effect on an individual's daily activities. Nurses have an important role in the assessment, management, ongoing care and support of patients with ankle injuries. An understanding of the anatomy and physiology of the ankle enables nurses to identify significant injuries, which may result in serious complications, and communicate effectively with the multidisciplinary team to improve patient care and outcomes.

  3. Benign and malignant tumors of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Datir, Abhijit; Langley, Travis [Emory University Hospital, Department of Radiology, Section of Musculoskeletal Imaging, Atlanta, GA (United States); Tresley, Jonathan [University of Wisconsin, Department of Radiology, Madison, WI (United States); Clifford, Paul D.; Jose, Jean; Subhawong, Ty K. [University of Miami, Department of Radiology, Miami, FL (United States)

    2016-03-15

    Pain and focal masses in the foot and ankle are frequently encountered and often initiate a workup including imaging. It is important to differentiate benign lesions from aggressive benign or malignant lesions. In this review, multiple examples of osseous and soft tissue tumors of the foot and ankle will be presented. Additionally, the compartmental anatomy of the foot and ankle will be discussed in terms of its relevance for percutaneous biopsy planning and eventual surgery. Finally, a general overview of the surgical management of benign, benign aggressive and malignant tumors of the foot and ankle will be discussed. (orig.)

  4. Torque Ripple Reduction of Reluctance Torque Assisted Motors Using Asymmetric Flux Barriers

    Science.gov (United States)

    Hiramoto, Kenji; Takeda, Yoji; Sanada, Masayuki; Morimoto, Shigeo

    Interior permanent magnet synchronous motor (IPMSM) is efficient and can be operated in wide speed region; therefore it is used widely. However, torque ripple of reluctance torque assisted motors, for example IPMSM and synchronous reluctance motor (SynRM), is very large. The skew is known in the prior art as a torque ripple reduction method of AC motors. Although the skew is effective for torque ripple reduction, structure is complicated and it has the disadvantage that average torque will decrease. The discontinuous variation of magnetic resistance between flux barriers and teeth cause the torque ripple. In this paper, in order to ease the discontinuous variation of magnetic resistance, flux barriers are asymmetrically designed so that the relative position relation between flux barriers and teeth may not be in agreement as much as possible. As a result, the torque ripple can be reduced dramatically without the average torque decrease. The experimental motor has been fabricated and the results of measuring torque ripple prove the validity of the torque ripple reduction using asymmetric flux barriers.

  5. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  6. Comparison of total ankle replacement and ankle arthrodesis in patients with haemophilia using gait analysis: two case reports

    OpenAIRE

    Dauty, Marc; Gross, Raphael; Leboeuf, Fabien; Trossaert, Marc

    2015-01-01

    Background Severe hemophilia is an inherited, lifelong bleeding disorder characterized by spontaneous bleeding, which results in painful joint deformities. Currently two surgical treatments are available to treat haemophilia-related ankle joint destruction: ankle arthrodesis and total ankle replacement. The aim of the present study was to compare these two surgical procedures in haemophiliac subjects. Case presentation Kinematic and dynamic parameters were quantified using a three-dimensional...

  7. Is End-Stage Ankle Arthrosis Best Managed with Total Ankle Replacement or Arthrodesis? A Systematic Review

    OpenAIRE

    Jordan, Robert W.; Chahal, Gurdip S.; Anna Chapman

    2014-01-01

    Introduction. End-stage ankle osteoarthritis is a debilitating condition. Traditionally, ankle arthrodesis (AA) has been the surgical intervention of choice but the emergence of total ankle replacement (TAR) has challenged this concept. This systematic review aims to address whether TAR or AA is optimal in terms of functional outcomes. Methods. We conducted a systematic review according to PRISMA checklist using the online databases Medline and EMBASE after January 1, 2005. Participants must ...

  8. Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Congzhe; FANG Yuefa; GUO Sheng

    2015-01-01

    Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.

  9. Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2016-11-01

    Full Text Available The rotor design of Synchronous Reluctance Motors (SynRMs has a large effect on their efficiency, torque density and torque ripple. In order to achieve a good compromise between these three goals, an optimized rotor geometry is necessary. A finite element method (FEM is a good tool for the optimization. However, the computation time is an obstacle as there are many geometrical parameters to be optimized. The flux-barrier widths and angles are the two most crucial parameters for the SynRM output torque and torque ripple. This paper proposes an easy-to-use set of parametrized equations to select appropriate values for these two rotor parameters. With these equations, the reader can design a SynRM of distributed windings with a low torque ripple and with a better average torque. The methodology is valid for a wide range of SynRMs. To check the validity of the proposed equations, the sensitivity analysis for the variation of these two parameters on the SynRM torque and torque ripple is carried out. In addition, the analysis in this paper gives insight into the behavior of the machine as a function of these two parameters. Furthermore, the torque and torque ripple of SynRMs having a rotor with three, four and five flux-barriers are compared with three literature approaches. The comparison shows that the proposed equations are effective in choosing the flux-barrier angles and widths for low torque ripple and better average torque. Experimental results have been obtained to confirm the FEM results and to validate the methodology for choosing the rotor parameters.

  10. Implementing Torque Control with High-Ratio Gear Boxes and without Joint-Torque Sensors

    OpenAIRE

    Del Prete, Andrea; Mansard, Nicolas; Ramos Ponce, Oscar Efrain; Stasse, Olivier; Nori, Francesco

    2016-01-01

    International audience; This paper presents a complete framework (estimation, identification and control) for the implementation of joint-torque control on the humanoid robot HRP-2. While torque control has already been implemented on a few humanoid robots, this is one of the first implementations of torque control on a robot that was originally built to be position controlled (iCub[1] and Asimo[2] being the first two, to the best of our knowledge). The challenge comes from both the hardware,...

  11. Exhaust powered drive shaft torque enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A.B.

    1986-09-30

    This patent describes a power producing combination including an internal combustion engine and a mounting frame therefor, and power transmission means including rotating drive shaft means connected to the engine. The improvement described here is a drive shaft torque enhancing device, the device comprising: a multiplicity of blades secured to the drive shaft, equally spaced therearound, each generally lying in a plane containing the axis of the drive shaft; torque enhancer feed duct means for selectively directing a stream of exhaust gases from the engine to impact against the blades to impart torque to the drive shaft; and wherein the power producing combination is used in a vehicle, the vehicle having braking means including a brake pedal; and the power producing combination further comprising torque enhancer disengagement means responsive to motion of the brake pedal.

  12. High Torque, Direct Drive Electric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

  13. High Torque, Direct Drive Electric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

  14. Transmission of torque at the nanoscale

    Science.gov (United States)

    Williams, Ian; Oğuz, Erdal C.; Speck, Thomas; Bartlett, Paul; Löwen, Hartmut; Royall, C. Patrick

    2016-01-01

    In macroscopic mechanical devices, torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by 27 particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like behaviour of the device and a stick-slip mechanism reminiscent of macroscopic gearwheels slipping. The transmission behaviour is predominantly governed by the rotation rate of the boundary and the density of the confined system. We determine the efficiency of our device and thus optimize conditions to maximize power output.

  15. Sensorless vector and direct torque control

    CERN Document Server

    Vas, Peter

    1998-01-01

    This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interested in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intellige...

  16. Fundamental limits of optical force and torque

    Science.gov (United States)

    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.

    2017-01-01

    Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque, and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can add up to result in the maximum optical force and torque. Our insights are important for applications ranging from molecular sorting, particle manipulation, and nanorobotics up to ambitious projects such as laser-propelled spaceships.

  17. Torque Control of Friction Stir Welding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  18. Total ankle prostheses in rheumatoid arthropathy

    Science.gov (United States)

    Schutte, Bernard; Louwerens, Jan Willem K; van den Hoogen, Frank H J; de Waal Malefijt, Maarten C

    2009-01-01

    Background and purpose The first generations of total ankle replacements (TARs) showed a high rate of early failure. In the last decades, much progress has been made in the development of TARs, with the newer generation showing better results. We evaluated TARs implanted with rheumatoid arthritis (RA) or juvenile inflammatory arthritis (JIA) as indication. Patients and methods 58 total ankle prostheses (Buechel-Pappas and STAR type) were implanted in patients with RA (n = 53) or JIA (n = 5) in 54 patients (4 bilateral). After a mean follow-up of 2.7 (1–9) years, all patients were reviewed by two orthopedic surgeons who were not the surgeons who performed the operation. Standard AP and lateral radiographs were taken and a Kofoed ankle score was obtained; this is a clinical score ranging from 0–100 and consists of sub-scores for pain, disability, and range of motion. Results 2 patients died of unrelated causes. Of the 52 patients who were alive (56 prostheses), 51 implants were still in place and showed no signs of loosening on the most recent radiographs. The mean Kofoed score at follow-up was 73 points (SD 16, range 21–92). 4 patients showed a poor result (score < 50) with persistent pain for which no obvious reason could be found. 5 implants were removed, 4 because of infection and 1 because of aseptic loosening. Interpretation Medium-term results of the STAR and BP types of TAR in RA were satisfactory. The main reason for failure of the implant was infection. PMID:19634020

  19. 10-year survival of total ankle arthroplasties

    Science.gov (United States)

    2011-01-01

    Background and purpose There is an ongoing need to review large series of total ankle replacements (TARs) for monitoring of changes in practice and their outcome. 4 national registries, including the Swedish Ankle Register, have previously reported their 5-year results. We now present an extended series with a longer follow-up, and with a 10-year survival analysis. Patients and methods Records of uncemented 3-component TARs were retrospectively reviewed, determining risk factors such as age, sex, and diagnosis. Prosthetic survival rates were calculated with exchange or removal of components as endpoint—excluding incidental exchange of the polyethylene meniscus. Results Of the 780 prostheses implanted since 1993, 168 (22%) had been revised by June 15, 2010. The overall survival rate fell from 0.81 (95% CI: 0.79–0.83) at 5 years to 0.69 (95% CI: 0.67–0.71) at 10 years. The survival rate was higher, although not statistically significantly so, during the latter part of the period investigated. Excluding the STAR prosthesis, the survival rate for all the remaining designs was 0.78 at 10 years. Women below the age of 60 with osteoarthritis were at a higher risk of revision, but age did not influence the outcome in men or women with rheumatoid arthritis. Revisions due to technical mistakes at the index surgery and instability were undertaken earlier than revisions for other reasons. Interpretation The results have slowly improved during the 18-year period investigated. However, we do not believe that the survival rates of ankle replacements in the near future will approach those of hip and knee replacements—even though improved instrumentation and design of the prostheses, together with better patient selection, will presumably give better results. PMID:22066551

  20. Clinical measurement of mechanical ankle instability.

    Science.gov (United States)

    Parasher, Raju K; Nagy, Dawn R; Em, April L; Phillips, Howard J; Mc Donough, Andrew L

    2012-10-01

    Clinicians commonly use the anterior draw test (ligament laxity) and distal fibular position (lateral malleolus displacement), to measure ankle instability. The purpose of this study was to establish intra-rater and inter-rater reliability for the anterior draw test and distal fibular position in a clinical setting. The anterior draw test (AD) was measured with a plastic Goniometer, and was defined as the linear displacement of the foot as it is drawn anteriorly with the ankle held in 20 degrees of plantar-flexion. Distal fibular position (DFP) was measured in standing using a digital vernier caliper and was the relative linear distance between the lateral and the medial malleoli. 20 participants aged 21-28 volunteered for the study and were measured on both ankles. It was found that Intra-tester reliability (ICC) ranged from 0.88 to 0.97 for AD and DFP; while inter-tester reliability (ICC) was 0.6 for AD and 0.77 for DFP. In addition for measures across trials, the standard error of the measurement (SEM) was, on average 0.66 mm for AD and 1.7 mm for DFP. While the limits of agreement (LOA) was ±0.17 mm for AD and ±4.03 mm for DFP. However, the SEM and LOA between testers was 2.27 mm and ±2.27 mm respectively for AD; and for 3.1 mm and ±10.4 mm for DFP. Overall the results suggest that both measures, as defined in this study exhibit moderate to good reliability and low standard error of measurement, suggesting a high degree of repeatability across trials.

  1. Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  2. Fourth-order acoustic torque in intense sound fields

    Science.gov (United States)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  3. Influence of Closed Stator Slots on Cogging Torque

    DEFF Research Database (Denmark)

    Ion, Trifu; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    Cogging torque results due interaction of magnetic field of magnets and stator slots, and have negative effects on permanent magnet machines such as vibrations, noise, torque ripples and problems during turbine start-up and cut-in. In order to reduce cogging torque this paper presents a study...... of influence of closed stator slots on cogging torque using magnetic slot wedges....

  4. Robotic Ankle for Omnidirectional Rock Anchors

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish

    2013-01-01

    Future robotic exploration of near-Earth asteroids and the vertical and inverted rock walls of lava caves and cliff faces on Mars and other planetary bodies would require a method of gripping their rocky surfaces to allow mobility without gravitational assistance. In order to successfully navigate this terrain and drill for samples, the grippers must be able to produce anchoring forces in excess of 100 N. Additionally, the grippers must be able to support the inertial forces of a moving robot, as well gravitational forces for demonstrations on Earth. One possible solution would be to use microspine arrays to anchor to rock surfaces and provide the necessary load-bearing abilities for robotic exploration of asteroids. Microspine arrays comprise dozens of small steel hooks supported on individual suspensions. When these arrays are dragged along a rock surface, the steel hooks engage with asperities and holes on the surface. The suspensions allow for individual hooks to engage with asperities while the remaining hooks continue to drag along the surface. This ensures that the maximum possible number of hooks engage with the surface, thereby increasing the load-bearing abilities of the gripper. Using the microspine array grippers described above as the end-effectors of a robot would allow it to traverse terrain previously unreachable by traditional wheeled robots. Furthermore, microspine-gripping robots that can perch on cliffs or rocky walls could enable a new class of persistent surveillance devices for military applications. In order to interface these microspine grippers with a legged robot, an ankle is needed that can robotically actuate the gripper, as well as allow it to conform to the large-scale irregularities in the rock. The anchor serves three main purposes: deploy and release the anchor, conform to roughness or misalignment with the surface, and cancel out any moments about the anchor that could cause unintentional detachment. The ankle design contains a

  5. A Survey of Parachute Ankle Brace Breakages

    Science.gov (United States)

    2008-01-10

    reduced since it was subject to abrasion from the concrete in the harness shed, asphalt on the loading ramp, and dirt on the drop zone. b. DJ...strap was also directly under the heel and subject to abrasion from concrete in the harness shed, asphalt on the loading ramp, and dirt on the drop...airborne injuries), airborne students who did not wear the brace were 1.90 times more likely to experience an ankle sprain, 1.47 times more likely to

  6. Performance prediction of the high head Francis-99 turbine for steady operation points

    Science.gov (United States)

    Casartelli, E.; Mangani, L.; Ryan, O.; Del Rio, A.

    2017-01-01

    Steady-state numerical investigations are still the reference computational method for the prediction of the global machine performance during the design phase. Accordingly, steady state CFD simulations of the complete high head Francis-99 turbine, from spiral casing to draft tube have been performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL). In addition, simulations with a moving runner for the three operating points are conducted and compared to the steady state results. The prediction accuracy of the numerical results is assessed comparing global and local data to the available experimental results. A full 360°-model is applied for the unsteady simulations and for the steady state simulations a reduced domain was used for the periodic components, with respectively only one guide vane and one runner passage. The steady state rotor-stator interactions were modeled with a mixing-plane. All CFD simulations were performed at model scale with an in-house 3D, unstructured, object-oriented finite volume code designed to solve incompressible RANS-Equations. Steady and unsteady solver simulations are both able to predict similar values for torque and head in design and off-design. Flow features in off-design operation such as a vortex rope in PL operation can be predicted by both simulation types, though all simulations tend to overestimate head and torque. Differences among steady and unsteady simulations can mainly be attributed to the averaging process used in the mixing plane interface in steady state simulations. Measured efficiency agrees best with the unsteady simulations for BEP and PL operation, though the steady state simulations also provide a cost-effective alternative with comparable accuracy.

  7. Modelling of a Magnetostrictive Torque Sensor

    Directory of Open Access Journals (Sweden)

    Tsiantos Vasilios

    2016-01-01

    Full Text Available Existing magnetostrictive torque sensor designs typically measure the rotation of the saturation magnetization under an applied torque and their theoretical treatment revolves around the minimization of the free energy equation adapted according to the assumptions considered valid in each design. In the torque measurement design discussed in this paper, Ni-rich NiFe films have been electrodeposited on cylindrical austenitic steel rods. Contrary to existing designs, the excitation field is applied along the axial direction and is low enough to ensure that the resulting magnetization along the same direction remains in the linear region of the M(H characteristic. Assuming homogeneous magnetization, positive magnetostriction constant λ, negligible hysteresis and demagnetizing fields, torque T may be expressed in terms of an effective uniaxial anisotropy constant Ku around 45° to the axial direction. It is shown, that for the proposed arrangement, the resulting M is the linear superposition of the effect of a torque-induced effective field and the excitation field, the applied field accounts for the vertical offset of the magnetization response and the applied torque increases the slope of the M(H characteristic.

  8. Laser-induced torques in metallic ferromagnets

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  9. Movement Performance of Human-Robot Cooperation Control Based on EMG-driven Hill-type and Proportional Models for an Ankle Power-assist Exoskeleton Robot.

    Science.gov (United States)

    Ao, Di; Song, Rong; Gao, Jin-Wu

    2016-06-22

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  10. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  11. Mechanically induced ankle inversion during human walking and jumping.

    NARCIS (Netherlands)

    Nieuwenhuijzen, P.H.J.A.; Grüneberg, C.; Duysens, J.E.J.

    2002-01-01

    A new method to study sudden ankle inversions during human walking and jumping is presented. Ankle inversions of 25 degrees were elicited using a box containing a trap door. During the gait task, subjects walked at a speed of 4 km/h. At a pre-programmed delay after left heel strike, an electromagnet

  12. Medium- to long-term outcome of ankle arthrodesis

    NARCIS (Netherlands)

    R.P.M. Hendrickx; S.A.S. Stufkens; E.E. de Bruijn; I.N. Sierevelt; C.N. van Dijk; G.M.M.J. Kerkhoffs

    2011-01-01

    Despite improvement in outcome after ankle arthroplasty, fusion of the ankle joint is still considered the gold standard. A matter of concern is deterioration of clinical outcome as a result of loss of motion and advancing degeneration of adjacent joints. We performed a long-term study to address th

  13. THE EFFECTS OF KINESIO TAPING ON PROPRIOCEPTION AT THE ANKLE

    Directory of Open Access Journals (Sweden)

    Mark DeBeliso

    2004-03-01

    Full Text Available An experiment was designed to determine if KinesioTM taping the anterior and lateral portion of the ankle would enhance ankle proprioception compared to the untaped ankle. 30 subjects, 15 men, 15 women, ages 18-30 participated in this study. Exclusion criteria: Ankle injury < 6 months prior to testing, significant ligament laxity as determined through clinical evaluation by an ATC, or any severe foot abnormality. Experiment utilized a single group, pretest and posttest. Plantar flexion and inversion with 20° of plantar flexion reproduction of joint position sense (RJPS was determined using an ankle RJPS apparatus. Subjects were barefooted, blindfolded, and equipped with headphones playing white noise to eliminate auditory cues. Subjects had five trials in both plantar flexion and inversion with 20° plantar flexion before and after application of the KinesioTM tape to the anterior/lateral portion of the ankle. Constant error and absolute error were determined from the difference between the target angle and the trial angle produced by the subject. The treatment group (KinesioTM taped subjects showed no change in constant and absolute error for ankle RJPS in plantar flexion and 20º of plantar flexion with inversion when compared to the untaped results using the same motions. The application of KinesioTM tape does not appear to enhance proprioception (in terms of RJPS in healthy individuals as determined by our measures of RJPS at the ankle in the motions of plantar flexion and 20º of plantar flexion with inversion.

  14. Dislocated ankle fracture complicated by near total distal ischaemia

    Science.gov (United States)

    Duygun, Fatih; Sertkaya, Omer; Aldemir, Cengiz; Dogan, Ali

    2013-01-01

    Total arterial ischaemia is rarely seen following a dislocated ankle fracture but if it does and intervention is not made, it can lead to serious morbidity. We present a 39-year-old woman with almost total occlusion in the arteria tibialis and arteria dorsalis pedis following a dislocated ankle fracture as a result of a bicycle fall. PMID:24248319

  15. Simultaneous bilateral total ankle replacement using a 3-component prosthesis

    Science.gov (United States)

    2011-01-01

    Background and purpose Total ankle replacement is an established surgical procedure in patients with end-stage ankle osteoarthritis. We analyzed complications and medium-term results in patients with simultaneous bilateral total ankle replacement. Patients and methods 10 women and 16 men, mean age 60 (SD 13) years, were followed for a median of 5 (2–10) years. Results There were no intraoperative or perioperative complications, with the exception of 1 patient with prolonged wound healing. Major revision surgery was necessary in 6 of the 52 ankles, including 4 revisions of prosthetic components. The average pain score decreased from 6.9 (4−10) to 1.8 (0−4) points. The American Orthopaedic Foot and Ankle Society hindfoot score increased from 32 (SD 14) points preoperatively to 74 (SD 12) points postoperatively. The average range of motion increased from 28° (SD 12) preoperatively to 38° (SD 9) postoperatively. All 8 categories of SF-36 score improved. Interpretation Simultaneous bilateral total ankle replacement is a suitable method for restoration of function and attainment of pain relief in patients with bilateral end-stage ankle osteoarthritis. The results of this procedure, including complication rates, revision rates, and functional outcome, are comparable to those reported in patients with unilateral total ankle replacement. PMID:21999622

  16. Hindfoot endoscopy for posterior ankle impingement. Surgical technique

    NARCIS (Netherlands)

    van Dijk, C.N.; de Leeuw, P.A.J.; Scholten, P.E.

    2009-01-01

    BACKGROUND: The surgical treatment of posterior ankle impingement is associated with a high rate of complications and a substantial time to recover. An endoscopic approach to the posterior ankle (hindfoot endoscopy) may lack these disadvantages. We hypothesized that hindfoot endoscopy causes less mo

  17. Recycling Energy to Restore Impaired Ankle Function during Human Walking

    NARCIS (Netherlands)

    Collins, S.H.; Kuo, A.D.

    2010-01-01

    Background: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is nec

  18. Validation of dynamic torque response of an electrorheological (ER) clutch

    Science.gov (United States)

    Tan, K. P.; Stanway, R.; Bullough, W. A.

    2006-02-01

    It is now well established that using actuators, which have faster speeds of response than d.c. servomotors, can solve the positional errors of the robot arms. One of the possible robotic actuators can be an electro-rheological (ER) clutch. To justify this objective, the authors measured the output torque response of a co-axial ER clutch. However, due to the dynamic inefficiency of a torque transducer, the measured torque response is inaccurate for analytical studies. Therefore, this measured torque is signal processed by using the transfer functions of this torque sensor and a filter to yield the ER torque response. The validity of this ER torque is investigated by comparing the numerical errors between the measured torque and its inverse torque response. From the torque error analysis, it is concluded that the ER clutch can be an actuator to improve the positioning accuracies of the robot arms.

  19. Dynamical corotation torques on low-mass planets

    CERN Document Server

    Paardekooper, Sijme-Jan

    2014-01-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the Minimum Mass Solar Nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means the region in non-isothermal discs where outward migration is possible can be larger than what would be concluded from static torques alone.

  20. Technique of Arthroscopic Treatment of Impingement After Total Ankle Arthroplasty.

    Science.gov (United States)

    Gross, Christopher E; Neumann, Julie A; Godin, Jonathan A; DeOrio, James K

    2016-04-01

    Rates of medial and/or lateral gutter impingement after total ankle replacement are not insignificant. If impingement should occur, it typically arises an average of 17 months after total ankle replacement. Our patient underwent treatment for right ankle medial gutter bony impingement with arthroscopic debridement 5 years after her initial total ankle replacement. Standard anteromedial and anterolateral portals and a 30° 2.7-mm-diameter arthroscope were used. An aggressive soft-tissue and bony resection was performed using a combination of curettes, a 3.5-mm shaver, a 5.5-mm unsheathed burr, a drill, and a radiofrequency ablator. This case shows that arthroscopic treatment is an effective and potentially advantageous alternative to open treatment of impingement after total ankle replacement. In addition, symptoms of impingement often improve in a short amount of time after arthroscopic debridement of the medial and/or lateral gutter.

  1. Total ankle replacement – surgical treatment and rehabilitation

    Science.gov (United States)

    Krogulec, Zbigniew; Turski, Piotr; Przepiórski, Emil; Małdyk, Paweł; Księżopolska-Orłowska, Krystyna

    2015-01-01

    Functions of the ankle joint are closely connected with the gait and ability to maintain an upright position. Degenerative lesions of the joint directly contribute to postural disorders and greatly restrict propulsion of the foot, thus leading to abnormal gait. Development of total ankle replacement is connected with the use of the method as an efficient treatment of joint injuries and continuation of achievements in hip and knee surgery. The total ankle replacement technique was introduced as an alternative to arthrodesis, i.e. surgical fixation, which made it possible to preserve joint mobility and to improve gait. Total ankle replacement is indicated in post-traumatic degenerative joint disease and joint destruction secondary to rheumatoid arthritis. In this paper, total ankle replacement and various types of currently used endoprostheses are discussed. The authors also describe principles of early postoperative rehabilitation as well as rehabilitation in the outpatient setting. PMID:27407223

  2. Finite element analysis of a composite artificial ankle

    Science.gov (United States)

    Perkins, Leigh Ann; Johnston, Lawrence; Denniston, Charles; Czekalski, Blaise E.

    1993-01-01

    Ultra-light carbon fiber composite materials are being utilized in artificial limbs with increasing frequency in recent years. Dr. Arthur Copes, an orthotist from Baton Rouge, Louisiana, has developed a graphite expoxy composite material artificial ankle (Copes/Bionic Ankle) that is intended to be used by amputees who require the most advanced above-and-below-the-knee prosthetic devices. The Copes/Bionic Ankle is designed to reproduce the function of the natural ankle joint by allowing the composite material to act as a spring mechanism without the use of metal mechanical parts. NASA Marshall Space Flight Center has agreed to participate in the design effort by providing the structural analysis of the artificial ankle design.

  3. Cogging torque reduction for interior permanent magnet synchronous motors

    OpenAIRE

    Tost Candel, Miquel

    2015-01-01

    Interior permanent magnet synchronous machines show a good range of behaviours, which make these kinds of machines good candidates for an electromechanical energy conversion. However, in order to improve their accuracy in their torque responses, the cogging torque and torque ripple phenomena should be mitigated to obtain better performance of the machine. In order to reduce the cogging torque and torque ripple, control techniques as well as geometric parameters of the machine have to be im...

  4. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    Science.gov (United States)

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  5. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

    Science.gov (United States)

    Sprigle, Stephen; Huang, Morris

    2015-01-01

    Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

  6. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  7. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Directory of Open Access Journals (Sweden)

    Beomsoo Hwang

    2015-04-01

    Full Text Available In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  8. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque r...

  9. Improved Torque Control Performance of Direct Torque Control for 5-Phase Induction Machine

    Directory of Open Access Journals (Sweden)

    Logan Raj Lourdes Victor Raj

    2013-12-01

    Full Text Available In this paper, the control of five-phase induction machine using Direct Torque Control (DTC is presented. The general D-Q model of five-phase induction machine is discussed. The de-coupled control of stator flux and electromagnetic torque based on hysteresis controller similar to conventional DTC is applied to maintain the simplicity of the system. Three sets of look-up tables consist of voltage vectors with different amplitude that selects the  most optimal voltage vectors according motor operation condition is proposed. This provides excellent torque dynamic control, reduces torque ripple, lower switching frequency (high efficiency and extension of constant torque. Simulation results validate the improvement achieved.

  10. Design, Implementation and Evaluation of a Torque Transducer with Ability of Real-time Torque Monitoring

    Directory of Open Access Journals (Sweden)

    A Zeinali

    2014-04-01

    Full Text Available Torque, speed, and power as mechanical variables are associated with the functional performance of any rotating machinery. The real-time performance and the efficiency of a machine can be determined with on-line measurement of these parameters. In this investigation a rotary torque meter (transducer was constructed from strain gauge sensors for measuring the torque of rotating shafts. The system converts the torque of rotating shaft into voltage signals, based on the principle of strain gauge resistance. The signals are then amplified and converted into digital signals. These digital signals are sent to a RF receiver circuit for displaying and storage. Results of static calibration and a series of dynamic tests confirmed a satisfactory operation of the designed apparatus in various conditions. Also, the torque measuring range, resolution and the accuracy were from 3 to 700 N m, 3 N m and 1%, respectively.

  11. Einstein's steady-state cosmology

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2014-09-01

    Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.

  12. Prevailing Torque Locking Feature Wear-out

    Science.gov (United States)

    Zimandy, Adam J. C.

    This thesis provides much needed representative sample data for reuse life of fully seated and torqued locknuts. Most national requirements for prevailing torque locking fasteners only specify unseated reuse life. This could create a potentially dangerous situation if unseated is misinterpreted for seated. This thesis provides comparative data for seated verses unseated configuration. Six aerospace, 3 all-metal and 3 nylon insert, and one non-aerospace locknuts were tested at preloads levels of unseated, 66%, 75%, and 85% of yield of bolt. The locknuts tested are MS21043-4, NAS1291-4, NAS1805-4, MS17825-4, MS21044D4, NAS1021N4, and Grade 8. A fixture was created in order to allow for the simultaneous data collection of the applied preload and torque, along with the removal of preload without loosening the locknut. The results from testing indicate the number of reuse cycles is greater for nylon locknuts than the all-metal locknuts. Large losses, on the order of 20-50%, in prevailing torque occur between the first and second cycle of each locknut under all preloads. Tightening Torque required to achieve a certain preload was found to increase with reuse. Application of lubrication to nylon locknuts had a significant effect, reducing the reuse life and prevailing torque performance. The testing indicated the effect of preload reduced the number of reuse cycles to failure, failure occurs when the prevailing torque is measured outside the range of 3.5 to 30 in-lb. All locknuts survived unseated and 66% Y preload testing, except MS21043 which lasted about 14.5 reuse cycles at 66% Y and NAS1805 which survived 8 reuse cycles for unseated and 12.67 reuse cycles at 66% Y. NAS1805's loss of reuse life is due to hardness and material compatibility issues. The scatter of the torque measurements was low for the first three to five cycles, then as the coatings and lubrications are worn the scatter increases. The data collected from testing agrees with the torque friction

  13. Mobile-bearing total ankle arthroplasty : a fundamental assessment of the clinical, radiographic and functional outcomes

    NARCIS (Netherlands)

    Doets, Hendrik Cornelis

    2009-01-01

    Ankle arthritis often leads to significant impairments for the patient. As total ankle arthroplasty (TAA) with use of fixed-bearing (2-component) total ankle prostheses has a high rate of early failures, fusion of the ankle joint is, until today, considered to be the standard surgical treatment for

  14. Smooth torque speed characteristic of switched reluctance motors

    DEFF Research Database (Denmark)

    Zeng, Hui; Chen, Zhe; Chen, Hao

    2014-01-01

    of the constraints of the supply voltage and peak current. Based on previous work that sought to expand the STO range, a scheme is developed in this study to determine the maximum smooth torque range at each speed. The relationship between the maximum smooth torque and speed is defined as the smooth torque speed......The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because...... characteristics (STSC), a concept similar to torque speed characteristics (TSC). STSC can be utilized to evaluate torque utilization by comparing it with TSC. Thus, the concept benefits the special design of SRMs, especially for the generation of smooth torque. Furthermore, the torque sharing function (TSF...

  15. Influence of distal tibiofibular synostosis on ankle function

    Institute of Scientific and Technical Information of China (English)

    HOU Zhen-hai; ZHOU Ji-hong; YE Hong; SHI Jian-guo; ZHENG Long-bao; YAO Jun; NI Zhi-ming

    2009-01-01

    Objective: To study the influence distal tibiofibular synostosis on ankle function.Methods: From October 1998 to October 2004,a total of 281 consecutive patients underwent operations because of ankle fractures or distal fractures of the tibia and fibula.Distal tibiofibular synostosis occurred after operation in 8 Patients.The duration of follow-up averaged 20.6 months (14-44 months).The ankle function was assessed on the basis of functional rating system described by Mazur.1Results: According to Mazur's ankle evaluation system,4 patients achieved an excellent result,2 a good result and 2 a fair result.The dorsiflexion of the synostosis ankle reduced by 8.26 degrees as compared with that of the contralateral ankle.and there was little influence on the plantar flexion.All the Patients had a normal gait.Conclusion: The distal tibiofibular synostosis after the operation of ankle fractures or distal fractures of the tibia and fibula usually gives rise to few symptoms and needs no specific treatment.

  16. Registry data trends of total ankle replacement use.

    Science.gov (United States)

    Roukis, Thomas S; Prissel, Mark A

    2013-01-01

    Joint arthroplasty registry data are meaningful when evaluating the outcomes of total joint replacement, because they provide unbiased objective information regarding survivorship and incidence of use. Critical evaluation of the registry data information will benefit the surgeon, patient, and industry. However, the implementation and acceptance of registry data for total ankle replacement has lagged behind that of hip and knee implant arthroplasty. Currently, several countries have national joint arthroplasty registries, with only some procuring information for total ankle replacement. We performed an electronic search to identify publications and worldwide registry databanks with pertinent information specific to total ankle replacement to determine the type of prostheses used and usage trends over time. We identified worldwide registry data from 33 countries, with details pertinent to total ankle replacement identified in only 6 countries. The obtained information was arbitrarily stratified into 3 distinct periods: 2000 to 2006, 2007 to 2010, and 2011. Within these study periods, the data from 13 total ankle replacement systems involving 3,980 ankles were identified. The vast majority (97%) of the reported ankle replacements were 3-component, mobile-bearing, uncemented prostheses. Three usage trends were identified: initial robust embracement followed by abrupt disuse, minimal use, and initial embracement followed by sustained growth in implantation. Before the widespread acceptance of new total ankle replacements, the United States should scrutinize and learn from the international registry data and develop its own national joint registry that would include total ankle replacement. Caution against the adoption of newly released prostheses, especially those without readily available revision components, is recommended.

  17. Preoperative gait characterization of patients with ankle arthrosis.

    Science.gov (United States)

    Khazzam, Michael; Long, Jason T; Marks, Richard M; Harris, Gerald F

    2006-08-01

    The purpose of this study was to evaluate the kinematic changes that occur about the foot and ankle during gait in patients with degenerative joint disease (DJD). By comparing a normal adult population with what was found in the DJD population we determined how the motion of theses groups differed, thereby characterizing how this pathology affects foot and ankle motion. A 15-camera Vicon Motion Analysis System was used in conjunction with weight bearing radiographs to obtain three-dimensional motion of the foot and ankle during ambulation. The study was comprised of 34 patients and 35 ankles diagnosed with DJD (19 men and 15 women) of the ankle and 25 patients with normal ankles (13 men and 12 women). Dynamic foot and ankle motion was analyzed using the four-segment Milwaukee Foot Model (MFM). The data from this model resulted in three-dimensional (3D) kinematic parameters in the sagittal, coronal, and transverse planes as well as spatial-temporal parameters. Patient health status was evaluated using the SF-36 Health Survey and American Orthopaedics Foot and Ankle Society (AOFAS) hindfoot scores. The DJD group showed significant differences (pgait. This decreased range of motion may be related to several factors including bony deformity, muscle weakness, and attempts to decrease the pain associated with weight bearing. To date there has not been a study which describes the effect of this disease process on motion of the foot and ankle. These findings may prove to be useful in the pre-operative assessment of these patients.

  18. Agility to INBONE: anterior and posterior approaches to the difficult revision total ankle replacement.

    Science.gov (United States)

    DeVries, J George; Scott, Ryan T; Berlet, Gregory C; Hyer, Christopher F; Lee, Thomas H; DeOrio, James K

    2013-01-01

    Total ankle replacement is now acknowledged as a viable alternative to ankle arthrodesis for end-stage ankle arthritis. The authors present a series of 14 patients who were converted from the Agility total ankle replacement to an INBONE total ankle replacement. This report is unique in that anterior and posterior approaches are discussed and detailed. Although the authors present successful conversion of the Agility total ankle replacement to an INBONE total ankle replacement, the difficulty of this procedure is demonstrated by the high complication rate and 2 early failures.

  19. Outcome of unilateral ankle arthrodesis and total ankle replacement in terms of bilateral gait mechanics.

    Science.gov (United States)

    Chopra, Swati; Rouhani, Hossein; Assal, Mathieu; Aminian, Kamiar; Crevoisier, Xavier

    2014-03-01

    Previous studies assessed the outcome of ankle arthrodesis (AA) and total ankle replacement (TAR) surgeries; however, the extent of postoperative recovery towards bilateral gait mechanics (BGM) is unknown. We evaluated the outcome of the two surgeries at least 2 years post rehabilitation, focusing on BGM. 36 participants, including 12 AA patients, 12 TAR patients, and 12 controls were included. Gait assessment over 50 m distance was performed utilizing pressure insoles and 3D inertial sensors, following which an intraindividual comparison was performed. Most spatiotemporal and kinematic parameters in the TAR group were indicative of good gait symmetry, while the AA group presented significant differences. Plantar pressure symmetry among the AA group was also significantly distorted. Abnormality in biomechanical behavior of the AA unoperated, contralateral foot was observed. In summary, our results indicate an altered BGM in AA patients, whereas a relatively fully recovered BGM is observed in TAR patients, despite the quantitative differences in several parameters when compared to a healthy population. Our study supports a biomechanical assessment and rehabilitation of both operated and unoperated sides after major surgeries for ankle osteoarthrosis.

  20. Use of a trabecular metal implant in ankle arthrodesis after failed total ankle replacement

    Science.gov (United States)

    2010-01-01

    Background and purpose Arthrodesis after failed total ankle replacement is complicated and delayed union, nonunion, and shortening of the leg often occur—especially with large bone defects. We investigated the use of a trabecular metal implant and a retrograde intramedullary nail to obtain fusion. Patients and methods 13 patients with a migrated or loose total ankle implant underwent arthrodesis with the use of a retrograde intramedullary nail through a trabecular metal Tibial Cone. The mean follow-up time was 1.4 (0.6–3.4) years. Results At the last examination, 7 patients were pain-free, while 5 had some residual pain but were satisfied with the procedure. 1 patient was dissatisfied and experienced pain and swelling when walking. The implant-bone interfaces showed no radiographic zones or gaps in any patient, indicating union. Interpretation The method is a new way of simplifying and overcoming some of the problems of performing arthrodesis after failed total ankle replacement. PMID:21067435

  1. RFID Torque Sensing Tag System for Fasteners

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  2. Visual influence on haptic torque perception.

    Science.gov (United States)

    Xu, Yangqing; O'Keefe, Shélan; Suzuki, Satoru; Franconeri, Steven L

    2012-01-01

    The brain receives input from multiple sensory modalities simultaneously, yet we experience the outside world as a single integrated percept. This integration process must overcome instances where perceptual information conflicts across sensory modalities. Under such conflicts, the relative weighting of information from each modality typically depends on the given task. For conflicts between visual and haptic modalities, visual information has been shown to influence haptic judgments of object identity, spatial features (e.g., location, size), texture, and heaviness. Here we test a novel instance of haptic-visual conflict in the perception of torque. We asked participants to hold a left-right unbalanced object while viewing a potentially left-right mirror-reversed image of the object. Despite the intuition that the more proximal haptic information should dominate the perception of torque, we find that visual information exerts substantial influences on torque perception even when participants know that visual information is unreliable.

  3. Self-induced torque in hyperbolic metamaterials.

    Science.gov (United States)

    Ginzburg, Pavel; Krasavin, Alexey V; Poddubny, Alexander N; Belov, Pavel A; Kivshar, Yuri S; Zayats, Anatoly V

    2013-07-19

    Optical forces constitute a fundamental phenomenon important in various fields of science, from astronomy to biology. Generally, intense external radiation sources are required to achieve measurable effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined by an anisotropy, in order to maximize their radiation efficiency. We develop a universal quantum-mechanical theory of self-induced torques acting on an emitter placed in a material environment. The theoretical framework is based on the radiation reaction approach utilizing the rigorous Langevin local quantization of electromagnetic excitations. We show more than 2 orders of magnitude enhancement of the self-torque by an anisotropic metamaterial with hyperbolic dispersion, having negative ratio of permittivity tensor components, in comparison with conventional anisotropic crystals with the highest naturally available anisotropy.

  4. Fundamental Limits of Optical Force and Torque

    CERN Document Server

    Rahimzadegan, Aso; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can be made to add up. Our insights are important for applications ranging from molecular sorting, particle manipulation, nanorobotics up to ambitious projects such as laser-propelled spaceships.

  5. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  6. AX-5 space suit bearing torque investigation

    Science.gov (United States)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  7. Strategies for Revision Total Ankle Replacement

    Directory of Open Access Journals (Sweden)

    Thomas S. Roukis, DPM, PhD, FACFAS

    2014-12-01

    Full Text Available As the frequency of primary total ankle replacement (TAR continues to build, revision will become more commonplace. At present there are no “standard principles” associated with revision TAR. What is clear is that the current approaches are technically complex, fraught with complications and no one approach represents the only answer. Exchange of TAR metallic components to the same system standard or dedicated revision components are viable options with limited occurrence of complications. Explantation and conversion to custom-design long stemmed components has limited availability. Explantation and conversion to another TAR system is high-risk and has strong potential for complications. The use of metal reinforced polymethylmethacrylate cement augmentation of failed TAR systems and tibio-talo-calcaneal arthrodesis should be reserved for very select situations where other options are not possible. There is a real need for long-term survivorship following revision TAR and future efforts ought to be directed in this area.

  8. Internal Fixation of Open Ankle Fracture. Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Yaniel Truffin Rodríguez

    2014-10-01

    Full Text Available Open ankle fracture is sporadically seen in the orthopedic practice. Its clinical course is subject to multiple factors, showing a propensity to cause ankle osteoarthritis over the years. Two cases treated at the Dr. Gustavo Aldereguía Lima University General Hospital in Cienfuegos are presented. The patients underwent emergency surgical treatment consisting of surgical cleaning of the open wound, reduction of the dislocation and internal fixation of the fracture. These cases are presented due to the infrequency of this type of ankle injury and its importance for the medical staff, especially orthopedic doctors.

  9. Multicenter follow-up study of ankle fracture surgery

    Institute of Scientific and Technical Information of China (English)

    XU Hai-lin; WANG Gang; WANG Guang-lin; WU Xin-bao; LIU Li-min; LI Xuan; ZHANG Dian-ying; FU Zhong-guo; WANG Tian-bing; ZHANG Pei-xun; JIANG Bao-guo; SHEN Hui-liang

    2012-01-01

    Background Few data on ankle fractures in China from large multicenter epidemiological and clinical studies are available.The aim of this research was to evaluate the epidemiological features and surgical outcomes of ankle fractures by reviewing 235 patients who underwent ankle fracture surgery at five hospitals in China.Methods This study included patients who underwent ankle fracture surgery at five Chinese hospitals from January 2000 to July 2009.Age,gender,mechanism of injury,Arbeitsgemeinschaft für Osteosynthesefragen (AO) fracture type,fracture pattern,length of hospital stay and treatment outcome were recorded.Statistical analyses were conducted using SPSS software.The American Orthopedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale,visual analogue scale (VAS),and arthritis scale were used to evaluate outcome.Results Of 235 patients with ankle fractures,105 were male with an average age of 37.8 years and 130 were female with an average age of 47.3 years.The average follow-up period was 55.7 months.There were significant differences in the ratios of patients in different age groups between males and females,and in mechanisms of injury among different age groups.There were also significant differences in the length of hospital stay among different fracture types and mechanisms of injury.In healed fractures,the average AOFAS ankle-hindfoot score was 95.5,with an excellence rate of 99.6%,the average VAS score was 0.17,and the average arthritis score was 0.18.Movement of the injured ankle was significantly different to that of the uninjured ankle.There were no significant differences between AO fracture types,fracture patterns or follow-up periods and AOFAS score,but there were some significant differences between these parameters and ankle joint movements,pain VAS score and arthritis score.Conclusions Ankle fractures occur most commonly in middle-aged and young males aged 20-39 years and in elderly females aged 50-69 years.The most common mechanisms of

  10. Early intra-articular complement activation in ankle fractures

    DEFF Research Database (Denmark)

    Schmal, Hagen; Salzmann, Gian M; Niemeyer, Philipp;

    2014-01-01

    osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1 β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture...... and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures....

  11. Ultrasound-guided interventions of the foot and ankle.

    Science.gov (United States)

    Yablon, Corrie M

    2013-02-01

    Ultrasound (US) provides excellent delineation of tendons and ligaments in the foot and ankle and provides real-time visualization of a needle during interventions, yielding greater accuracy and efficacy than the traditional blind approach using anatomical landmarks. For this reason, US is rapidly gaining acceptance as the preferred modality for guiding interventions in the foot and ankle where the anatomy is complex, neurovascular structures should be identified, and precise technique is demanded. In the foot and ankle, US is especially useful to guide tendon sheath, bursal, and Achilles paratenon injections, Morton neuroma injections, plantar fascial injections, and joint aspirations and injections.

  12. Review of ankle inversion sprain simulators in the biomechanics laboratory

    Directory of Open Access Journals (Sweden)

    Sophia Chui-Wai Ha

    2015-10-01

    Full Text Available Ankle inversion ligamentous sprain is one of the most common sports injuries. The most direct way is to investigate real injury incidents, but it is unethical and impossible to replicate on test participants. Simulators including tilt platforms, trapdoors, and fulcrum devices were designed to mimic ankle inversion movements in laboratories. Inversion angle was the only element considered in early designs; however, an ankle sprain is composed of inversion and plantarflexion in clinical observations. Inversion velocity is another parameter that increased the reality of simulation. This review summarised the simulators, and aimed to compare and contrast their features and settings.

  13. Seasonality of Ankle Swelling: Population Symptom Reporting Using Google Trends.

    Science.gov (United States)

    Liu, Fangwei; Allan, G Michael; Korownyk, Christina; Kolber, Michael; Flook, Nigel; Sternberg, Harvey; Garrison, Scott

    2016-07-01

    In our experience, complaints of ankle swelling are more common in summer, typically from patients with no obvious cardiovascular disease. Surprisingly, this observation has never been reported. To objectively establish this phenomenon, we sought evidence of seasonality in the public's Internet searches for ankle swelling. Our data, obtained from Google Trends, consisted of all related Google searches in the United States from January 4, 2004, to January 26, 2016. Consistent with our expectations and confirmed by similar data for Australia, Internet searches for information on ankle swelling are highly seasonal (highest in midsummer), with seasonality explaining 86% of search volume variability.

  14. Diabetic charcot neuroarthropathy of the foot and ankle with osteomyelitis.

    Science.gov (United States)

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2014-10-01

    One of the most devastating foot and/or ankle complications in the diabetic population with peripheral neuropathy is the presence of Charcot neuroarthropathy (CN). In recent years, diabetic limb salvage has been attempted more frequently as opposed to major lower extremity amputation for CN of the foot and ankle with ulceration and/or deep infection. Treatment strategies for osteomyelitis in the diabetic population have evolved. This article reviews some of the most common surgical strategies recommended for the diabetic patient with CN of the foot and/or ankle and concomitant osteomyelitis.

  15. Optimal management of ankle syndesmosis injuries

    Directory of Open Access Journals (Sweden)

    Porter DA

    2014-08-01

    Full Text Available David A Porter, Ryan R Jaggers, Adam Fitzgerald Barnes, Angela M Rund Methodist Sports Medicine/The Orthopedic Specialists, Indianapolis, IN, USA Abstract: Syndesmosis injuries occur when there is a disruption of the distal attachment of the tibia and fibula. These injuries occur commonly (up to 18% of ankle sprains, and the incidence increases in the setting of athletic activity. Recognition of these injuries is key to preventing long-term morbidity. Diagnosis and treatment of these injuries requires a thorough understanding of the normal anatomy and the role it plays in the stability of the ankle. A complete history and physical examination is of paramount importance. Patients usually experience an external rotation mechanism of injury. Key physical exam features include detailed documentation about areas of focal tenderness (syndesmosis and deltoid and provocative maneuvers such as the external rotation stress test. Imaging workup in all cases should consist of radiographs with the physiologic stress of weight bearing. If these images are inconclusive, then further imaging with external rotation stress testing or magnetic resonance imaging are warranted. Nonoperative treatment is appropriate for stable injuries. Unstable injuries should be treated operatively. This consists of stabilizing the syndesmosis with either trans-syndesmotic screw or tightrope fixation. In the setting of a concomitant Weber B or C fracture, the fibula is anatomically reduced and stabilized with a standard plate and screw construct. Proximal fibular fractures, as seen in the Maisonneuve fracture pattern, are not repaired operatively. Recent interest is moving toward repair of the deltoid ligament, which may provide increased stability, especially in rehabilitation protocols that involve early weight bearing. Rehabilitation is focused on allowing patients to return to their pre-injury activities as quickly and safely as possible. Protocols initially focus on

  16. Diffusion of torqued active Brownian particles

    Science.gov (United States)

    Sevilla, Francisco J.

    An analytical approach is used to study the diffusion of active Brownian particles that move at constant speed in three-dimensional space, under the influence of passive (external) and active (internal) torques. The Smoluchowski equation for the position distribution of the particles is obtained from the Kramer-Fokker-Planck equation corresponding to Langevin equations for active Brownian particles subject to torques. In addition of giving explicit formulas for the mean square-displacement, the non-Gaussian behavior is analyzed through the kurtosis of the position distribution that exhibits an oscillatory behavior in the short-time limit. FJS acknowledges support from PAPIIT-UNAM through the grant IN113114

  17. Modulation of anticipatory postural adjustments of gait using a portable powered ankle-foot orthosis.

    Science.gov (United States)

    Petrucci, Matthew N; MacKinnon, Colum D; Hsiao-Wecksler, Elizabeth T

    2013-06-01

    Prior to taking a step, properly coordinated anticipatory postural adjustments (APAs) are generated to control posture and balance as the body is propelled forward. External cues (audio, visual, somatosensory) have been shown to facilitate gait initiation by improving the magnitude and timing of APAs in Parkinson's disease (PD), but the efficacy of these cueing strategies has been limited by their inability to produce the forces required to generate an appropriate APA. To date, mechanical cueing paradigms have been relatively underexplored. Using healthy young adults, we investigated the use of a portable powered ankle-foot orthosis (PPAFO) to provide a modest torque at the ankle as a mechanical cue to initiate gait. Subjects were instructed to initiate gait in five test conditions: (1) self-initiated in running shoes [baseline-shoe], (2) self-initiated trial in unpowered passive PPAFO [baseline-passive], (3) with acoustic go-cue in passive PPAFO [acoustic-passive], (4) acoustic go-cue and simultaneous mechanical assist from powered PPAFO [acoustic-assist], and (5) mechanical assist cue only [assist]. APA characteristics were quantified using ground reaction force (GRF), center of pressure (COP), and electromyography (EMG) data. Mechanical cueing significantly increased medial-lateral COP and GRF peak amplitude, and decreased GRF time to peak amplitude, COP and GRF onset times, and time to toe off. Mechanical cueing conditions also demonstrated consistent bimodal EMG behaviors across all subjects. Overall, these data suggest that the mechanical assist from the PPAFO can significantly improve APA timing parameters and increase APA force production in healthy young adults.

  18. Effect of anterior translation of the talus on outcomes of three-component total ankle arthroplasty

    Science.gov (United States)

    2013-01-01

    Background Ankle osteoarthritis commonly involves sagittal malalignment with anterior translation of the talus relative to the tibia. Total ankle arthroplasty has become an increasingly popular treatment for patients with symptomatic ankle osteoarthritis. However, no comprehensive study has been conducted on the outcomes of total ankle arthroplasty for osteoarthritis with preoperative sagittal malalignment. The purpose of this study was to evaluate the effect of anterior translation of the talus on outcomes of three-component total ankle arthroplasty. Methods One hundred and four osteoarthritic ankles in 104 patients who underwent three-component total ankle arthroplasty were included in this study. The 104 ankles were divided into 2 groups: ankles with anteriorly translated talus (50 ankles), and ankles with non-translated talus (54 ankles). Clinical and radiographic outcomes were assessed in both groups. The mean follow-up duration was 42.8 ± 17.9 months (range, 24 to 95 months). Results Forty-six (92%) of 50 ankles with anterior translation of the talus showed relocation of the talus within the mortise at 6 months, and 48 (96%) ankles were relocated at 12 months after total ankle arthroplasty. But, 2 (4%) ankles were not relocated until the final follow-up. The AOFAS scores, ankle range of motion, and radiographic outcomes showed no significant difference between the two groups at the final follow-up (p > 0.05 for each). Conclusions In majority of cases, the anteriorly translated talus in osteoarthritic ankles was restored to an anatomical position within 6 months after successful three-component total ankle arthroplasty. The clinical and radiographic outcomes in the osteoarthritic ankles with anteriorly translated talus group were comparable with those in non-translated talus group. PMID:24007555

  19. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    OpenAIRE

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle b...

  20. Treatment of Isolated Ankle Osteoarthritis with Arthrodesis or the Total Ankle Replacement: A Comparison of Early Outcomes

    Science.gov (United States)

    Saltzman, Charles L.; Kadoko, Robert G.

    2010-01-01

    Background Ankle arthrodesis and replacement are two common surgical treatment options for end-stage ankle osteoarthritis. However, the relative value of these alternative procedures is not well defined. This study compared the clinical and radiographic outcomes as well as the early perioperative complications of the two procedures. Methods Between January 2, 1998 and May 31, 2002, 138 patients were treated with ankle fusion or replacements. Seventy one patients had isolated posttraumatic or primary ankle arthritis. However, patients with inflammatory arthritis, neuropathic arthritis, concomitant hind foot fusion, revision procedures and two component system ankle replacement were excluded. Among them, one group of 42 patients had a total ankle replacement (TAR), whereas the other group of 29 patients underwent ankle fusion. A complete follow-up could be performed on 89% (37/42) and 73% (23/29) of the TAR and ankle fusion group, respectively. The mean follow-up period was 4.2 years (range, 2.2 to 5.9 years). Results The outcomes of both groups were compared using a student's t-test. Only the short form heath survery mental component summary score and Ankle Osteoarthritis Scale pain scale showed significantly better outcomes in the TAR group (p < 0.05). In the radiographic evaluation, there was no significant difference in preoperative and postoperative osteoarthritis between the TAR and fusion groups. Conclusions The clinical results of TAR are similar to those of fusion at an average follow-up of 4 years. However, the arthroplasty group showed better pain relief and more postoperative complications that required surgery. PMID:20190994

  1. The role of interaction torque and muscle torque in the control of downward squatting

    OpenAIRE

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ± 1.2 years (range, 19–24 years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, m...

  2. 异步电动机直接转矩控制转矩脉动的最小化研究%Study of Torque Ripple Minimization for Direct Torque Control of Induction Motors

    Institute of Scientific and Technical Information of China (English)

    贺德华; 刘国荣; 韦婷华; 徐美清; 曹时德; 周桂珍

    2011-01-01

    在传统的异步电动机直接转矩控制系统中,存在电压空间矢量对定子磁链幅值和磁通角的影响,特别是低速时系统脉动大.针对该问题,提出了一种的新的控制方法,将磁链区间细分控制与电压矢量合成相结合,并且为进一步提高转矩响应和减小转矩脉动,引入了模糊控制.仿真结果表明该控制方法可以大大减小转矩脉动,具有较好的动静态性能.%Considering the influence of voltage space vector on the magnitude of stator flux and the flux angle in the conventional direct torque control for induction motors especially large ripples at low speed, a new control strategy was presented in this paper. This strategy combined flux linkage section subdivide control with synthesizing vectors which can reduce torque ripples effectively. Fuzzy control was also introduced to improve torque response and decrease torque ripples. Simulation results show that a great reduction of torque ripples is achieved and the strategy has a better dynamic and steady performance.

  3. Torque loss induced by repetitive maximal eccentric contractions is marginally influenced by work-to-rest ratio.

    Science.gov (United States)

    McNeil, Chris J; Allman, Brian L; Symons, T Brock; Vandervoort, Anthony A; Rice, Charles L

    2004-05-01

    The influence of different work-to-rest (W:R) ratios during fatigue induced by maximal eccentric contractions is unknown. The present study sought to expand the understanding of the task-dependent nature of eccentric contractions, and the associated fatigue, during exercise and acute as well as extended recovery periods. Using a Biodex multi-joint dynamometer, the ankle dorsiflexors of eight men [26 (4) years] were fatigued with 150 maximal eccentric contractions. Set structure was manipulated such that one leg performed 3 sets of 50 repetitions (short rest protocol, SRP), and the other leg performed 15 sets of 10 repetitions (long rest protocol, LRP). A 1-min rest interval separated each set, which resulted in 2 and 14 min of total rest for the SRP and the LRP, respectively. At fatigue, the SRP demonstrated a marginally greater loss of average peak eccentric torque than the LRP ( Ptorque loss and the degree of low-frequency fatigue (LFF) were not recovered ( Ptorque was persistent and equal for each protocol at 96 h of recovery ( Pratio has a modest influence on the fatigue (torque loss) induced by maximal eccentric contractions, but maximal isometric torque during recovery and LFF are insensitive to changes in total rest time.

  4. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  5. Find an Orthopaedic Foot and Ankle MD/DO

    Science.gov (United States)

    ... AAOS). Selecting a Medical Provider When selecting a medical provider to care for your feet and ankles, be sure to ask him/her about: Medical school education Accredited residency training Areas of practice ...

  6. Ultrasound of ankle and foot: overuse and sports injuries.

    Science.gov (United States)

    Khoury, Viviane; Guillin, Raphaël; Dhanju, Jag; Cardinal, Etienne

    2007-06-01

    Sports and overuse injuries of the ankle and foot are commonly encountered in clinical practice. Ultrasound (US) has been established as an excellent diagnostic modality for foot and ankle injuries, providing a rapid noninvasive, economical, and readily available tool that is well tolerated by the patient with acute or chronic pain. The opportunity for dynamic examination is another advantage of US in evaluating ankle and foot pathology, where maneuvers such as muscle contraction and stressing of the joint may be particularly helpful. In many cases, US can be used as a first-line and only imaging modality for diagnosis. This article focuses on ankle disorders related to sports or overuse that affect tendons, including tendinosis, tenosynovitis, paratendinitis, rupture, dislocation, and ligaments that are commonly torn. The sonographic features of certain common foot disorders related to physical activity and overuse are also discussed, including plantar fasciitis, Morton's neuroma, stress fractures, and plantar plate injury.

  7. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-07-01

    Full Text Available Abstract Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H- reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8 that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered, then with power (powered, and finally without power again (second unpowered. We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG activation (27-48% and had concomitant reductions in H-reflex amplitude (12-24% compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance

  8. Ultrasound-guided intervention in the ankle and foot

    Science.gov (United States)

    Allen, Gina M; Watura, Roland

    2016-01-01

    In this comprehensive review, we discuss the main interventions performed in the foot and ankle for Achilles tendinopathy, Morton's neuromas and Plantar fasciitis as well as techniques for intra-articular and peritendinous injections. We present the different imaging techniques and injectable agents that can be used in clinical practice, trying to help the reader decide the most appropriate way of managing the patient with a problem in the ankle and foot. PMID:26537692

  9. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  10. Supramalleolar osteotomy for realignment of the ankle joint.

    Science.gov (United States)

    Siddiqui, Noman A; Herzenberg, John E; Lamm, Bradley M

    2012-10-01

    Ankle replacement systems have not been as reliable as hip replacements in providing long-term relief of pain, increased motion, and return to full activity. Supramalleolar Osteotomy is an extraarticular procedure that realigns the mechanical axis, thereby restoring ankle function. The literature discussing knee arthritis has shown that realignment osteotomies of the tibia improve function and prolong total knee replacement surgery. The success of the procedure is predicated on understanding the patient's clinical and radiographic presentation and proper preoperative assessment and planning.

  11. Stress Fractures of the Foot and Ankle in Athletes

    OpenAIRE

    Mayer, Stephanie W.; Joyner, Patrick W.; Almekinders, Louis C.; Parekh, Selene G.

    2014-01-01

    Context: Stress fractures of the foot and ankle are a common problem encountered by athletes of all levels and ages. These injuries can be difficult to diagnose and may be initially evaluated by all levels of medical personnel. Clinical suspicion should be raised with certain history and physical examination findings. Evidence Acquisition: Scientific and review articles were searched through PubMed (1930-2012) with search terms including stress fractures and 1 of the following: foot ankle, me...

  12. Optimizing Casimir torque between corrugated metallic plates

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Robson B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Maia Neto, Paulo A. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The Casimir effect plays a major role in micro- and nano-electromechanical systems (MEMS and NEMS). Besides the normal Casimir force between metallic or dielectric plates, the observation of the lateral Casimir force between corrugated plates opens novel possibilities of micro-mechanical control. The lateral force results from breaking the translational symmetry along directions parallel to the plates by imprinting periodic corrugations on both metallic plates. As the rotational symmetry is broken by this geometry, a Casimir torque arises when the corrugations are not aligned. We calculate the Casimir torque between two parallel metallic plates with surface profiles in the form of 'fans' with arbitrary relative spatial orientation. As compared to the case of anisotropic dielectric plates, the torque per unit area is increased by up to three orders of magnitude for a given separation distance. The experiment proposed here can be performed with torsion pendulum techniques for separation distances as large as 1 μm. From the point of view of fundamental physics, this torque makes possible a precise experimental investigation of the non-trivial geometry dependence of the Casimir effect. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We investigate the experimental conditions that optimize the effect. (author)

  13. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  14. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  15. Are torque values of preadjusted brackets precise?

    Directory of Open Access Journals (Sweden)

    Alessandra Motta Streva

    Full Text Available OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º presented statistically significant difference from the proposed values (-7º. For the mandibular canines, American Orthodontics (-6.34º and Ortho Organizers (-6.25º presented statistically significant differences from the standards (-6º. Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.

  16. Are torque values of preadjusted brackets precise?

    Directory of Open Access Journals (Sweden)

    Alessandra Motta Streva

    2011-08-01

    Full Text Available OBJECTIVE: The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. MATERIAL AND METHODS: Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. RESULTS: The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º presented statistically significant difference from the proposed values (-7º. For the mandibular canines, American Orthodontics (-6.34º and Ortho Organizers (-6.25º presented statistically significant differences from the standards (-6º. Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. CONCLUSIONS: There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment.

  17. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  18. Direct Torque Control of IPMSM to Improve Torque ripple and Efficiency based on Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    B. Mirzaeian Dehkordi

    2012-09-01

    Full Text Available In this paper, a stator-flux-reference frame control method is proposed in order to control the speed and torque of an Interior Permanent Magnet Synchronous Machine (IPMSM in different loads condition. Direct Torque Control method (DTC based on Space Vector Modulation (SVM is used for control of IPMSM. In the proposed control method, conventional PI controller is used for controlling the stator flux, and torque of the motor. Also, a fuzzy controller is considered to improve the dynamic performance of DTC technique for speed control. In comparison to the conventional reference flux controller methods, this method, in addition, improves the torque profile of the motor drive. Moreover, it reduces copper losses. Simulation results for a 240V, 120A, 2500rpm, IPMSM confirm the appropriate performances of the method.

  19. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  20. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available   Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  1. Flap surgery in treatment of patients with pathology of ankle

    Directory of Open Access Journals (Sweden)

    D. I. Kutyanov

    2013-01-01

    Full Text Available Objective: to determine the capabilities and perspectives of flap surgery in treatment of patients with traumas and diseases of ankle joint region. Material and methods. The results of surgical treatment of 88 such patients. All the patients were treated in the Vreden Russian Research Institute of Traumatology and Orthopedics within the period from 2000 to 2011. All the patients had pedicled flap transfer (46 cases or free tissue transfer (45 cases. 11 patients had additional need in other open orthopedic operations of ankle joint. Besides this, scientific works dealing with the studied problem have been analyzed. Results and conclusions. It has been stated that flap surgery is predominantly used as the only and exhaustive method of treatment of such patients (87,5%. In these situations pedicled flap transfer and free tissue transfer tend to be used in comparatively equal quantities. Flap surgery is now seldom used as a component of complex surgical treatment. It is used only in some cases of bone reconstruction of distal tibia by Ilizarov bone transport, in some cases of tumors of ankle joint as well as in some cases of local infectious complications after internal fixation and total ankle arthroplasty. Patients with the pathology of this kind have a high need in free tissue transfer (from 66,7% to 83,3%. Progressing technology of total ankle arthroplasty will contribute to the frequency of use of flap surgery for patients with pathology of ankle joint.

  2. Potentiation Increases Peak Twitch Torque by Enhancing Rates of Torque Development and Relaxation

    OpenAIRE

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscle...

  3. Frictional torque numbers for ball cup and journal bearings

    OpenAIRE

    Ligterink, D.J.

    1982-01-01

    Plastic bearing material wears in ball cup and journal bearings. Contact areas in the ball cup and the journal bearing increase. The frictional torque needed to rotate the ball or journal also increases. When the coefficient of friction is assumed to be constant during wearing out, the frictional torque increases to a maximum of 1.273 times the frictional torque at zero wear.

  4. Evaluation of torque within manual preparation with root canal instruments

    OpenAIRE

    Gorski, Christof

    2016-01-01

    Used root canal instruments are often deformed; they can fracture, persist and reinfect teeth. There are no evident studies consulting torque and manual preparation of root canals. Thus, the purpose of this study is the evaluation of torque within manual preparation in connection with its impact on file deformation. With the aid of torque measurement a change in dental education could potentially be achieved.

  5. Research on Torque Ratio Based on the Steering Wheel Torque Characteristic for Steer-by-Wire System

    Directory of Open Access Journals (Sweden)

    Yandong Han

    2014-01-01

    Full Text Available Steer-by-wire system can improve the performance of vehicle handling stability. Removing the mechanical linkages between the front wheels and the steering wheel leads to a key technique of force feedback for steer-by-wire system. In view of the characteristic of variable torque transmission ratio for steer-by-wire system, this paper proposes a method for designing torque ratio based on the steering wheel torque characteristic for steer-by-wire system. It converts the torque ratio design into equivalent assist torque design by analyzing their relationship. It achieves the torque ratio design at different conditions based on the negative equivalent assist torque characteristic curve. Simulations and vehicle experiments are conducted by the proposed method, and the results show that the design goal has been achieved and the steering wheel torque characteristic obtained is very similar to that of the reference car.

  6. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    Science.gov (United States)

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  7. Cogging Torque and Acoustic Noise Reduction in High Torque BLDC Motors by Teeth Pairings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Min [Halla Climate Control Co. (Korea, Republic of); Hwang, Sang Moon [Pusan National University (Korea, Republic of)

    1999-03-01

    This paper investigates reduction of acoustic noise and cogging torque in a BLDC motor with larger stator slot open width. Using energy method, cogging torque is analytically determined with airgap MMF function and airgap permeance function and confirmed by FEM analysis. It show that the cogging torque is firstly governed by N{sub L} G{sub NL} B{sub NL} with the fundamental period of N{sub L}, where N{sub L} is the least common multiple of the number of slots and the number of poles, G{sub NL}, airgap permeance function and B{sub NL}, airgap MMF function. It also shows that there exist several tooth width which minimizes the cogging torque, for the motors that smaller slot open width or stator teeth notching is not available. And it proposes a teeth pairing with two different tooth width which can effectively eliminate the cogging torque and thus the acoustic noise. Experimental results show that the proposed teeth pairing reduces the cogging torque by 85% and the acoustic noise by 3.1 dB. (author). 9 refs., 13 figs., 1 tab.

  8. The Effects of Kinesiotape Applied to the Lateral Aspect of the Ankle: Relevance to Ankle Sprains--A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Brendan Wilson

    Full Text Available To identify, evaluate and synthesise evidence on the effect of kinesiotape applied to the lateral aspect of the ankle, through a systematic review of quantitative studies.A search for quantitative studies was undertaken using key terms of "kinesiotape" and "ankle" in seven electronic databases, using the maximum date ranges. Databases included: the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Medline, Physiotherapy Evidence Database, Scopus, SPORTDiscus and Web of Science.Database hits were evaluated against explicit inclusion criteria. From 107 database hits, 8 quantitative studies were included.Two independent reviewers appraised the methodological rigour of the studies using the McMaster Critical Review Form for Quantitative Studies. Data were extracted on participant characteristics, kinesiotape parameters, comparison interventions, outcome measures and findings.Most studies (n=7 had good to very good methodological rigour. Meta-analysis was not possible due to heterogeneity in participants, interventions and outcome measures. No adverse events were reported. Kinesiotape may produce different effects in healthy and injured ankles. In healthy ankles, kinesiotape may increase postural control, whereas in injured ankles it may improve proprioception, plantarflexor endurance and the performance of activities. These trends were identified from a small body of evidence including 276 participants.It is recommended that kinesiotape may be used in clinical practice to prevent lateral ankle injuries (through its effects on postural control and manage lateral ankle injuries due to its positive effects on proprioception, muscle endurance and activity performance. It appears that kinesiotape may not provide sufficient mechanical support to improve postural control in unstable ankles. Adverse events associated with kinseiotape are unlikely.

  9. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches i...

  10. Effect of altering neural, muscular and tendinous factors associated with aging on balance recovery using the ankle strategy: a simulation study.

    Science.gov (United States)

    Barrett, R S; Lichtwark, G A

    2008-10-07

    Aging is associated with declines in neuromuscular function and reduced ability to recover balance from an imbalance episode. However, little is known about the relations amongst these factors. The purpose of this study was to determine the relative influence of age-related changes in neural, muscular and tendinous properties on the ability to recovery balance from a forward leaning position using the ankle strategy. A computer simulation was developed which consisted of an inverted pendulum with one rotational degree of freedom controlled by two muscles representing the ankle joint plantar flexor (PF) and dorsi flexor (DF) muscle groups. Model parameter values were adjusted so that the isometric torque-angle relation was in agreement with experimental ankle joint torque-angle curves from the literature. Muscle excitation was adjusted to match an experimentally determined maximum recoverable lean angle (MRLA) of 7.2 degrees (baseline condition). The effect of 20% alterations to maximum isometric force, optimum muscle fibre length, maximum shortening velocity, tendon stiffness, reaction time delay (RTD), activation time constant and the maximum excitation of the PF muscles, and maximum excitation of the DF muscles (co-activation) on MRLA was then assessed. The parameters that had the greatest influence on MRLA were maximum isometric force, the maximum excitation of the ankle joint PFs and RTD, which, respectively, resulted in 19.0%, 17.8% and 4.6% reductions in MRLA. Individual changes to other parameters influenced MRLA by less than 1.9%. When selected parameter values were adjusted in accordance with age-related changes reported in the literature, MRLA was reduced to 5.3 degrees , a value in relative agreement with experimental values reported in the literature (4.6+/-1.8 degrees ). In general, these results suggest that MRLA is most sensitive to PF muscle mass and the ability to maximally activate the PFs, and that the combined effect of multiple changes in

  11. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    Science.gov (United States)

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  12. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses

    Directory of Open Access Journals (Sweden)

    Evandro M. Ficanha

    2015-04-01

    Full Text Available The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF, focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to –4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  13. The mid-term outcome of total ankle arthroplasty and ankle fusion in rheumatoid arthritis: a systematic review

    Science.gov (United States)

    2013-01-01

    Background While arthrodesis is the standard treatment of a severely arthritic ankle joint, total ankle arthroplasty has become a popular alternative. This review provides clinical outcomes and complications of both interventions in patients with rheumatoid arthritis. Methods Studies were obtained from Pubmed, Embase and Web of Science (January 1980 – June 2011) and additional manual search. Inclusion criteria: original clinical study, > 5 rheumatoid arthritis (population), internal fixation arthrodesis or three-component mobile bearing prosthesis (intervention), ankle scoring system (outcome). The clinical outcome score, complication- and failure rates were extracted and the methodological quality of the studies was analysed. Results 17 observational studies of 868 citations were included. The effect size concerning total ankle arthroplasty ranged between 1.9 and 6.0, for arthrodesis the effect sizes were 4.0 and 4.7. Reoperation due to implant failure or reoperation due to non-union, was 11% and 12% for respectively total ankle arthroplasty and arthrodesis. The methodological quality of the studies was low (mean 6.4 out of a maximum of 14 points) and was lower for arthrodesis (mean 4.8) as compared to arthroplasty (mean 7.8) (p = 0.04). Conclusions 17 observational and no (randomized) controlled clinical trials are published on the effectiveness of arthroplasty or arthrodesis of the ankle in rheumatoid arthritis. Regardless of the methodological limitations it can be concluded that both interventions show clinical improvement and in line with current literature neither procedure is superior to the other. PMID:24161014

  14. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque.

    Science.gov (United States)

    Nozaki, Daichi; Nakazawa, Kimitaka; Akai, Masami

    2005-09-01

    In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help

  15. Methods of torque ripple reduction for flux reversal motor

    Science.gov (United States)

    Vakil, Gaurang; Sheth, N. K.; Miller, David

    2009-04-01

    This paper presents two-dimensional finite element based results for various methods of torque ripple reduction in flux-reversal motors. The effects of variation in magnet and rotor pole heights, rotor pole skewing, and multiple teeth per rotor pole on the cogging torque, developed torque, torque ripple, and phase inductance and also an optimum value of the magnet and rotor pole heights, skew angle, and choice of teeth per rotor pole with the teeth depth resulting in torque ripple reduction are presented.

  16. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  17. Research on Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reasonable and it performs well for predicting the drag torque peak.

  18. Combined Effects of Stretching and Resistance Training on Ankle Joint Flexibility

    Directory of Open Access Journals (Sweden)

    E. Kato

    2013-01-01

    Full Text Available The purpose of the present study was to clarify the combined effects of stretching and resistance training on the active and passive dorsiflexion range of motion of ankle joint. Sixteen young adult men were randomly assigned to a training (n=8 or a control (n=8 group. The training group trained one leg for the combined program of static calf stretching and dorsiflexors resistance training program (STR+TR and the other leg for static stretching program only (STR. The training group executed stretching of both legs every day and resistance training every other day for six weeks. After the training program, in STR+TR side, both active and passive dorsiflexion range of motions significantly (P<0.05 increased and also isometric maximal voluntary dorsiflexion torque increased, while in STR side, only passive dorsiflexion range of motion increased. In passive dorsiflexion range of motion, increased dorsiflexion ROM was accompanied by increased tendon elongation not muscle elongation. In conclusion, the combined program of stretching for calf muscles and resistance training for dorsiflexors increases active as well as passive dorsiflexion range of motion, while static calf stretching program is effective only for the increase in passive dorsiflexion range of motion.

  19. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    Directory of Open Access Journals (Sweden)

    Natália Mariana Silva Luna

    2012-09-01

    Full Text Available OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5 years were divided into three groups: a triathlete group (n=26, a long-distance runner group (n = 23, and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.

  20. Surface Roughness Effects on Vortex Torque of Air Supported Gyroscope

    Institute of Scientific and Technical Information of China (English)

    LIANG Yingchun; LIU Jingshi; SUN Yazhou; LU Lihua

    2011-01-01

    In order to improve the drift precision of air supported gyroscope, effects of surface roughness magnitude and direction on vortex torque of air supported gyroscope are studied. Based on Christensen's rough surface stochastic model and consistency transformation method, Reynolds equation of air supported gyroscope containing surface roughness information is established.Also effects of mathematical models of main machining errors on vortex torque are established. By using finite element method,the Reynolds equation is solved numerically and the vortex torque in the presence of machining errors and surface roughness is calculated. The results show that surface roughness of slit has a significant effect on vortex torque. Transverse surface roughness makes vortex torque greater, while longitudinal surface roughness makes vortex torque smaller. The maximal difference approaches 11.4% during the range analyzed in this article. However surface roughness of journal influences vortex torque insignificantly. The research is of great significance for designing and manufacturing air supported gyroscope and predicting its performance.

  1. Displaceable spur gear torque controlled driver and method

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  2. An ironless armature brushless torque motor

    Science.gov (United States)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  3. Measurement of edgewise torque force in vitro.

    Science.gov (United States)

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  4. Torque Control of Electrorheological Fluidic Actuators

    OpenAIRE

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    International audience; In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashi...

  5. A Non-Unity Torque Sharing Function for Torque Ripple Minimization of Switched Reluctance Generators in Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Hye-Ung Shin

    2015-10-01

    Full Text Available This paper deals with a new torque ripple minimization method for a Switched Reluctance Generator (SRG. Although, the SRG has many advantages including simple and robust construction, and high power density as a generator, it has not been widely employed in the industry. One of the major drawbacks of the SRG is its high torque ripple that results in high noise operation of the generator. In this paper, a non-unity Torque Sharing Function (TSF is proposed to minimize the torque ripple over a wide speed range of operation. Simulations as well as experimental results are presented to verify the effectiveness of the proposed torque ripple minimization technique.

  6. Total ankle replacement--evolution of the technology and future applications.

    Science.gov (United States)

    Yu, John J; Sheskier, Steven

    2014-01-01

    Total ankle arthroplasty was developed to reduce pain and retain motion of the ankle joint in patients with osteoarthritis much like its total hip and knee counterparts. Orthopaedic surgeons are well equipped to evaluate and treat patients with end-stage hip or knee arthritis; however, the management of patients with ankle arthritis represents a challenge to both general orthopaedic surgeons and to the foot and ankle surgeons to whom these patients are often referred. Although techniques for both hip and knee arthroplasty have evolved to provide long-term pain relief and functional improvement, neither ankle arthrodesis nor arthroplasty has demonstrated comparably favorable outcomes in long-term follow-up studies. Early ankle arthroplasty designs with highly constrained cemented components were abandoned due to unacceptably high failure rates and complications. While arthrodesis is still considered the "gold standard" for treatment of end-stage ankle arthritis, progression of adjacent joint arthrosis and diminished gait efficiency has led to a resurgence of interest in ankle arthroplasty. Long-term outcome studies for total ankle replacement found excellent or good results in 82% of patients who received a newer generation ankle device compared with 72% if undergoing ankle fusion. Continued long-term follow-up studies are necessary, but total ankle arthroplasty has become a viable option for surgical treatment of ankle arthritis.

  7. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  8. Mode coupling in spin torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  9. Central common drive to antagonistic ankle muscles in relation to short-term co-contraction training in non-dancers and professional ballet dancers

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Kjær, Majken; Pedersen, Kasper Karhu;

    2013-01-01

    Optimization of co-contraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we...... investigated whether short-term co-contraction training in ballet dancers and non-dancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and ten non-dancers were recruited for the study. Prior to training, ballet dancers and non-dancers showed an equal amount...... of coherence in the 15-35 Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable co-contraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27...

  10. The Effects of Kinesiotape Applied to the Lateral Aspect of the Ankle: Relevance to Ankle Sprains – A Systematic Review

    Science.gov (United States)

    Wilson, Brendan; Bialocerkowski, Andrea

    2015-01-01

    Objective To identify, evaluate and synthesise evidence on the effect of kinesiotape applied to the lateral aspect of the ankle, through a systematic review of quantitative studies. Data Sources A search for quantitative studies was undertaken using key terms of “kinesiotape” and “ankle” in seven electronic databases, using the maximum date ranges. Databases included: the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Medline, Physiotherapy Evidence Database, Scopus, SPORTDiscus and Web of Science. Study Selection Database hits were evaluated against explicit inclusion criteria. From 107 database hits, 8 quantitative studies were included. Data Extraction Two independent reviewers appraised the methodological rigour of the studies using the McMaster Critical Review Form for Quantitative Studies. Data were extracted on participant characteristics, kinesiotape parameters, comparison interventions, outcome measures and findings. Data Syntheses Most studies (n=7) had good to very good methodological rigour. Meta-analysis was not possible due to heterogeneity in participants, interventions and outcome measures. No adverse events were reported. Kinesiotape may produce different effects in healthy and injured ankles. In healthy ankles, kinesiotape may increase postural control, whereas in injured ankles it may improve proprioception, plantarflexor endurance and the performance of activities. These trends were identified from a small body of evidence including 276 participants. Conclusions It is recommended that kinesiotape may be used in clinical practice to prevent lateral ankle injuries (through its effects on postural control) and manage lateral ankle injuries due to its positive effects on proprioception, muscle endurance and activity performance. It appears that kinesiotape may not provide sufficient mechanical support to improve postural control in unstable ankles. Adverse events associated with kinseiotape are unlikely. PMID

  11. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off.

  12. [Arthrodesis versus total joint replacement of the ankle].

    Science.gov (United States)

    Mittlmeier, T

    2013-06-01

    In general, for the treatment of end-stage osteoarthritis of the ankle joint arthrodesis is considered to be the gold standard based on its versatility and eligibility for numerous indications. Nowadays, total ankle arthroplasty represents a viable alternative to ankle arthrodesis taking into account distinct premises as both procedures provide a calculable reduction of the preoperative pain level and a comparable functional gain. Furthermore, current 10-year-survival rates of total ankle replacement are reported to range between 76 % and 89 %. Revision rates of up to 10 % for both techniques have been reported with manifest differences within the respective spectrum of complications. Due to the fact that more than two thirds of patients suffer from post-traumatic osteoarthritis with a relatively low average of age concomitant malalignment, soft tissue damage or instability may frequently occur. A restoration of anatomic axes and an adequate centering of the talus under the tibia appear to be crucial for the outcome as well as an adequate soft tissue balancing, in particular in total ankle replacement. Thus, the selection of the correct indication and the right choice of treatment on the basis of complete preoperative diagnostics considering necessary additive surgical measures are of paramount importance for the final outcome.

  13. [PARTICULAR QUALITIES OF DIAGNOSTIC ACUTE LATERAL ANKLE LIGAMENT INJURIES].

    Science.gov (United States)

    Krasnoperov, S N; Shishka, I V; Golovaha, M L

    2015-01-01

    Delayed diagnosis of acute lateral ankle ligaments injury and subsequent inadequate treatment leads to the development of chronic instability and rapid progression of degenerative processes in the joint. The aim of our work was to improve treatment results by developing an diagnostic algorithm and treatment strategy of acute lateral ankle ligament injuries. The study included 48 patients with history of acute inversion ankle injury mechanism. Diagnostic protocol included clinical and radiological examination during 48 hours and after 7-10 days after injury. According to the high rate of inaccurate clinical diagnosis in the first 48 hours of the injury a short course of conservative treatment for 7-10 days is needed with follow-up and controlling clinical and radiographic instability tests. Clinical symptoms of ankle inversion injury showed that the combination of local tenderness in the projection of damaged ligaments, the presence of severe periarticular hematoma in the lateral department and positive anterior drawer and talar tilt tests in 7-10 days after the injury in 87% of cases shows the presence of ligament rupture. An algorithm for diagnosis of acute lateral ankle ligament injury was developed, which allowed us to determine differential indications for surgical repair of the ligaments and conservative treatment of these patients.

  14. Early Intra-Articular Complement Activation in Ankle Fractures

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2014-01-01

    Full Text Available Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001. Furthermore, synovial expressions of both proteins correlated with each other (P<0.001. Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01 and serological C-reactive protein concentrations 2 days after surgery (P<0.05. Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02. Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01. Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures.

  15. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  16. A new formulation of the understeer coefficient to relate yaw torque and vehicle handling

    Science.gov (United States)

    Bucchi, F.; Frendo, F.

    2016-06-01

    The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.

  17. 异步电机DTC系统脉动最小化研究%Study of Torque Ripple Minimization for Direct Torque Control of Asynchronous Motors

    Institute of Scientific and Technical Information of China (English)

    孙鹏

    2014-01-01

    Direct torque control has been applied widely due to its simple arithmetic, fast transient response and robust stability to parameter changed. As for the conventional direct torque control system for asynchronous motors, there is the effect of voltage space vector on the magnitude of stator flux and flux angle, especially there are large ripples at low speed. Aiming at this issue and based on conventional DTC, a new control strategy is proposed in this paper, this strategy combines flux linkage section subdivision control with synthesizing vectors and can improve the torque response time by introducing Fussy control algorithm, thereby reducing torque ripples effectively. Simulation results show that the strategy can greatly reduce the torque ripples and has a better dynamic and steady performance.%直接转矩控制具有控制简单、动态响应迅速、对参数变化鲁棒性强的特点,因此得到了广泛的应用。在传统的异步电动机直接转矩控制系统中,存在电压空间矢量对定子磁链幅值和磁通角的影响,特别是低速时系统脉动大。针对此问题,文章提出了一种的新的控制方法,该方法将磁链区间细分控制与电压矢量合成结合在一起,并通过引入模糊控制算法进一步提高了转矩响应时间,且减小了转矩脉动。仿真结果表明,本控制方法可以大大减小转矩脉动,具有较好的动静态性能。

  18. 78 FR 34708 - Proposed Information Collection (Ankle Conditions Disability Benefits Questionnaire) Activity...

    Science.gov (United States)

    2013-06-10

    ... AFFAIRS Proposed Information Collection (Ankle Conditions Disability Benefits Questionnaire) Activity... Control No. 2900--NEW (Ankle Conditions Disability Benefits Questionnaire)'' in any correspondence. During... Conditions Disability Benefits Questionnaire, VA Form 21-0960M-2. OMB Control Number: 2900--NEW...

  19. 78 FR 68908 - Agency Information Collection (Ankle Conditions Disability Benefits Questionnaire) Under OMB Review

    Science.gov (United States)

    2013-11-15

    ... AFFAIRS Agency Information Collection (Ankle Conditions Disability Benefits Questionnaire) Under OMB... Questionnaire)'' in any correspondence. FOR FURTHER INFORMATION CONTACT: Crystal Rennie, Enterprise Records... Disability Benefits Questionnaire)''. SUPPLEMENTARY INFORMATION: Title: Ankle Conditions Disability...

  20. The Effects of Anesthetic Technique on Postoperative Opioid Consumption in Ankle Fracture Surgery

    DEFF Research Database (Denmark)

    Christensen, Kristian P; Møller, Ann M; Nielsen, Jesper Kjær;

    2015-01-01

    OBJECTIVES: To investigate the impact of common anesthetic techniques on postoperative opioid consumption in ankle fracture surgery. MATERIALS AND METHODS: We performed a retrospective cohort study on 622 patients with isolated ankle fractures undergoing primary reconstructive surgery. Patients...

  1. Assessment of AK (Above Knee) Prosthesis with Different Ankle Assembly Using GRF Pattern in Stance Phase

    Science.gov (United States)

    Kim, Sung-Min; Kim, Sung-Jae; Bae, Ha-Suk

    In this study, ground reaction force (GRF), absolute symmetry index (ASI) and coefficient of variation (CV) of fixed, single-axis and multi-axis prosthetic ankle assemblies were investigated by biomechanical evaluation of above knee amputees. In the experiments, 37 normal male volunteers, two male and two female Above Knee (AK) amputees GRF data were tested with fixed, single-axis and multi-axis prosthetic ankle assembly. A gait analysis was carried out to derive the ratio of GRF to weight as the percentage of total stance phase for ten points. The results showed that fixed-axis ankle assembly was superior to other two ankle assemblies for forwarding and braking forces. Multi-axis ankle was relatively superior to other two ankle assemblies for gait balancing and movement of the mass center. Single-axis ankle was relatively superior to the other two ankle assemblies for CV and ASI of GRF.

  2. Study Casts Doubt on Need for Physical Therapy After Ankle Sprain

    Science.gov (United States)

    ... 162090.html Study Casts Doubt on Need for Physical Therapy After Ankle Sprain Rates of 'excellent recovery' similar ... a sprained ankle often involves some kind of physical therapy, but a new study questions the usefulness of ...

  3. Screening for Peripheral Artery Disease and Cardiovascular Disease Risk Assessment with Ankle Brachial Index in Adults

    Science.gov (United States)

    ... Force Recommendations Screening for Peripheral Artery Disease and Cardiovascular Disease Risk Assessment with Ankle Brachial Index in Adults ... on Screening for Peripheral Artery Disease (PAD) and Cardiovascular Disease (CVD) Risk Assessment with Ankle Brachial Index (ABI) ...

  4. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  5. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    Science.gov (United States)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  6. Transient and steady-state velocity of domain walls for a complete range of drive fields. [in magnetic material

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain-wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value of the velocity which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by others from a computer solution of the torque equation and those obtained by others with the assumption of a very large anisotropy field.

  7. Is End-Stage Ankle Arthrosis Best Managed with Total Ankle Replacement or Arthrodesis? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Robert W. Jordan

    2014-01-01

    Full Text Available Introduction. End-stage ankle osteoarthritis is a debilitating condition. Traditionally, ankle arthrodesis (AA has been the surgical intervention of choice but the emergence of total ankle replacement (TAR has challenged this concept. This systematic review aims to address whether TAR or AA is optimal in terms of functional outcomes. Methods. We conducted a systematic review according to PRISMA checklist using the online databases Medline and EMBASE after January 1, 2005. Participants must be skeletally mature and suffering from ankle arthrosis of any cause. The intervention had to be an uncemented TAR comprising two or three modular components. The comparative group could include any type of ankle arthrodesis, either open or arthroscopic, using any implant for fixation. The study must have reported at least one functional outcome measure. Results. Of the four studies included, two reported some significant improvement in functional outcome in favour of TAR. The complication rate was higher in the TAR group. However, the quality of studies reviewed was poor and the methodological weaknesses limited any definitive conclusions being drawn. Conclusion. The available literature is insufficient to conclude which treatment is superior. Further research is indicated and should be in the form of an adequately powered randomised controlled trial.

  8. Is End-Stage Ankle Arthrosis Best Managed with Total Ankle Replacement or Arthrodesis? A Systematic Review

    Science.gov (United States)

    Jordan, Robert W.; Chahal, Gurdip S.; Chapman, Anna

    2014-01-01

    Introduction. End-stage ankle osteoarthritis is a debilitating condition. Traditionally, ankle arthrodesis (AA) has been the surgical intervention of choice but the emergence of total ankle replacement (TAR) has challenged this concept. This systematic review aims to address whether TAR or AA is optimal in terms of functional outcomes. Methods. We conducted a systematic review according to PRISMA checklist using the online databases Medline and EMBASE after January 1, 2005. Participants must be skeletally mature and suffering from ankle arthrosis of any cause. The intervention had to be an uncemented TAR comprising two or three modular components. The comparative group could include any type of ankle arthrodesis, either open or arthroscopic, using any implant for fixation. The study must have reported at least one functional outcome measure. Results. Of the four studies included, two reported some significant improvement in functional outcome in favour of TAR. The complication rate was higher in the TAR group. However, the quality of studies reviewed was poor and the methodological weaknesses limited any definitive conclusions being drawn. Conclusion. The available literature is insufficient to conclude which treatment is superior. Further research is indicated and should be in the form of an adequately powered randomised controlled trial. PMID:25215242

  9. Salto Talaris fixed-bearing total ankle replacement system.

    Science.gov (United States)

    Rush, Shannon M; Todd, Nicholas

    2013-01-01

    The Salto Talaris total ankle replacement is an anatomically designed fixed bearing prosthesis available in the United States based on the successful design of the mobile-bearing Salto prosthesis available outside the United States. The original mobile-bearing design was modified and the mobile-bearing was transferred to the precision instrumentation at the trial phase evaluation. Instrumentation and technique allow the surgeon to determine the functional joint axis before final implantation. The Salto Talaris total ankle replacement design blends minimal bone resection and optimizes surface area, cortical contact, and ultra-high molecular weight polyethylene conformity. The authors present an overview of the Salto Talaris total ankle replacement surgical technique and pearls for successful application.

  10. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  11. Steady rotation of a composite sphere in a concentric spherical cavity

    Institute of Scientific and Technical Information of China (English)

    D. Srinivasacharya; M. Krishna Prasad

    2012-01-01

    The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated.A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell.The Brinkman's model for the flow inside the composite sphere and the Stokes equation for the flow in the spherical container were used to study the motion.The torque experienced by the porous spherical particle in the presence of cavity is obtained.The wall correction factor is calculated.In the limiting cases,the analytical solution describing the torque for a porous sphere and for a solid sphere in an unbounded medium are obtained from the present analysis.

  12. Perineural fibrosis of superficial peroneal nerve complicating ankle sprain: a case report.

    Science.gov (United States)

    Acus, R W; Flanagan, J P

    1991-02-01

    The peroneal nerve is susceptible to traction injury during inversion ankle sprains. Previously, these traction lesions have been identified only at the fibular neck and popliteal fossa level. This report illustrates a previously unreported condition of perineural fibrosis of the superficial peroneal nerve at the level of the ankle following an inversion ankle sprain. Perineural fibrosis should be considered in the differential diagnosis of patients with persistent pain after ankle sprain.

  13. Acute paediatric ankle trauma: MRI versus plain radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Radiological Dept., Helsinki University Central Hospital (Finland); Kivisaari, A.; Kivisaari, L. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Kallio, P.; Puntila, J. [Dept. of Paediatric Surgery, Hospital for Children and Adolescents, Helsinki Univ. Central Hospital, Helsinki (Finland); Vehmas, T. [Finnish Institute of Occupational Health, Helsinki (Finland)

    2001-09-01

    Objective: To evaluate the diagnosis of acute physeal ankle fractures on plain radiographs using MRI as the gold standard. Methods: Sixty consecutive children, 29 with a clinical diagnosis of lateral ligament injury and 31 with physeal ankle fractures, were examined using both radiographs and MRI in the acute period. The imaging data were reviewed by three ''masked'' radiologists. The fracture diagnosis and Slater-Harris classification of radiographs were compared with findings on MRI. Results: Plain radiography produced five of 28 (18%) false negative and 12 of 92 (13%) false positive fracture diagnoses compared with MRI. Six of the 12 false positive fractures were due to a misclassification of lateral ligament disruption as SH1 fractures. Altogether a difference was found in 21% of cases in either the diagnosis or the classification of the fractures according to Salter- Harris. All bone bruises in the distal tibia and fibula and 64% of bone bruises in the talus were seen in association with lateral ligament injuries. Talar bone bruises in association with fractures occurred on the same side as the malleolar fracture; talar bone bruises in association with lateral ligament disruption were seen in different locations. The errors identified on radiographs by MRI did not affect the management of the injury. Conclusions: The incidence of false negative ankle fractures in plain radiographs was small and no complex ankle fractures were missed on radiographs. The total extent of complex fractures was, however, not always obvious on radiographs. In an unselected series of relatively mild ankle injuries, we were unable to show a single case where the treatment or prognosis based on plain radiography should have been significantly altered after having done a routine MRI examination. Plain radiography is still the diagnostic cornerstone of paediatric ankle injuries. (orig.)

  14. Deltoid ligament in acute ankle injury: MR imaging analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Choi, Yun Sun; Kim, Yun Jung; Jung, Yoon Young [Eulji University, Department of Radiology, Eulji Hospital, Seoul (Korea, Republic of); Kim, Jin Su; Young, Ki Won [Eulji University, Department of Orthopedic Surgery, Eulji Hospital, Seoul (Korea, Republic of)

    2014-05-15

    To identify the pattern of deltoid ligament injury after acute ankle injury and the relationship between ankle fracture and deltoid ligament tear by magnetic resonance imaging (MRI). Thirty-six patients (32 male, and 4 female; mean age, 29.8 years) with acute deltoid ligament injury who had undergone MRI participated in this study. The deltoid ligament was classified as having 3 superficial and 2 deep components. An image analysis included the integrity and tear site of the deltoid ligament, and other associated injuries. Association between ankle fracture and deltoid ligament tear was assessed using Fisher's exact test (P < 0.05). Of the 36 patients, 21 (58.3 %) had tears in the superficial and deep deltoid ligaments, 6 (16.7 %) in the superficial ligaments only, and 4 (11.1 %) in the deep ligaments only. The most common tear site of the three components of the superficial deltoid and deep anterior tibiotalar ligaments was their proximal attachments (94 % and 91.7 % respectively), and that of the deep posterior tibiotalar ligament (pTTL) was its distal attachment (82.6 %). The common associated injuries were ankle fracture (63.9 %), syndesmosis tear (55.6 %), and lateral collateral ligament complex tear (44.4 %). All the components of the deltoid ligament were frequently torn in patients with ankle fractures (tibionavicular ligament, P = 0.009). The observed injury pattern of the deltoid ligament was complex and frequently associated with concomitant ankle pathology. The most common tear site of the superficial deltoid ligament was the medial malleolar attachment, whereas that of the deep pTTL was near its medial talar insertion. (orig.)

  15. Intraoperative Radiation Exposure During Revision Total Ankle Replacement.

    Science.gov (United States)

    Roukis, Thomas S; Iceman, Kelli; Elliott, Andrew D

    2016-01-01

    Intraoperative C-arm image intensification is required for primary total ankle replacement implantation. Significant radiation exposure has been linked to these procedures; however, the radiation exposure during revision total ankle replacement remains unknown. Therefore, we sought to evaluate the radiation exposure encountered during revision total ankle replacement. The data from 41 patients were retrospectively analyzed from a prospective database: 19 Agility(™) to Agility(™); 4 Agility(™) to Custom Agility(™); 9 Agility(™) to INBONE(®) II; 5 Agility(™) to Salto Talaris(®) XT; 2 Scandinavian Total Ankle Replacement Prosthesis to Salto Talaris(®) XT; and 2 INBONE(®) I to INBONE(®) II revision total ankle replacements were performed. Two broad categories were identified: partial revision (Agility(™) to Agility(™), Agility(™) to Custom Agility(™), INBONE(®) I to INBONE(®) II) and complete conversion (Agility(™) to INBONE(®) II, Agility(™) to Salto Talaris(®) XT, Scandinavian Total Ankle Replacement Prosthesis to Salto Talaris(®) XT). The mean radiation exposure per case was significant at 3.49 ± 2.21 mGy. Complete conversions, specifically Agility(™) to INBONE(®) II, exhibited the greatest radiation exposure and C-arm time. Revision implant selection and revision type (complete or partial) directly contributed to radiation exposure. Accordingly, revision systems requiring less radiation exposure are preferable. Surgeons should strive to minimize intraoperative complications and limit additional procedures to those necessary, because both lead to additional radiation exposure.

  16. Motion Simulation of a New Ankle Rehabilitation Device

    Directory of Open Access Journals (Sweden)

    Cristina Racu (Cazacu

    2016-06-01

    Full Text Available The ankle structure holds one of the most important role in the human biomechanics. Due to complexity of everyday activities this joint is the most prone to be injured part of the lower limb. For a complete recovery of the locomotion function, recovery exercises are mandatory. The introduction of robotic physical recovery systems represents a modern alternative to traditional recovery. Based on the 3D virtual model and a previous dimensional synthesis of a new ankle rehabilitation device, its motion simulation is presented in this paper, to prove that it may fully recover the range of motion required for this joint.

  17. Triceps surae contracture: implications for foot and ankle surgery.

    Science.gov (United States)

    Abdulmassih, Sami; Phisitkul, Phinit; Femino, John E; Amendola, Annunziato

    2013-07-01

    Restricted ankle dorsiflexion secondary to contracture of the gastrocnemius-soleus complex is frequently encountered in patients with foot and ankle pain and is well documented in the literature. During gait, decreased dorsiflexion shifts weight-bearing pressures from the heel to the forefoot, which may result in or exacerbate one of several pathologic conditions. Modest success has been achieved with nonsurgical management of triceps surae contracture, including splinting and stretching exercises. Surgical lengthening of the gastrocnemius-soleus complex at multiple levels has been described, and early clinical results have been promising. Additional research is required to further elucidate the long-term outcomes of various lengthening techniques.

  18. Functional bandage for ankle sprains. Recommendations for nursing

    Directory of Open Access Journals (Sweden)

    Mª Isabel Arcos Cirauqui

    2011-11-01

    Full Text Available Three quarters of ankle injuries are diagnosed as sprains. For the most part sprains are caused by a forced inversion movement with involvement of the lateral collateral ligament (LCL. One of the recommended guidelines is immobilization by taping. The aim of this article is to unify the recommendations for nursing, on taping in the treatment of ankle sprains. The methodology used was a literature review, analyzing the information found in books and journals in hospital libraries and nursing databases on the Internet. The main results are a set of guidelines for the most accurate and therapeutic taping.

  19. Imaging of Soft Tissue Lesions of the Foot and Ankle

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Differential diagnosis of soft tissue lesions of the foot may be narrowed with imaging. The cystic nature of ganglia, synovial cysts, and bursitis can be confirmed with MR imaging or sonography. Location and signal characteristics of noncystic lesions may suggest Morton's neuroma, giant cell tumor of the tendon sheath and plantar fibromatosis. Synovial-based lesions of the foot and ankle can be differentiated based on presence or absence of mineralization, lesion density, signal intensity, and the enhancement pattern. Knowledge of the incidence of specific neoplasms of the foot and ankle based on patient age aids in providing a limited differential diagnosis

  20. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Ortho

  1. The feasibility of total ankle prosthesis for severe arthropathy in haemophilia and prothrombin deficiency.

    NARCIS (Netherlands)

    Heide, H.J. van der; Nováková, I.R.O.; Waal Malefijt, M.C. de

    2006-01-01

    The standard treatment for end-stage arthropathy of the ankle joint in haemophilia has been fusion of the ankle joint. Total ankle replacement is used in osteoarthritis and especially in rheumatoid arthritis with good medium-term results. In this case series three patients are being described, in wh

  2. Diagnosis, treatment and prevention of ankle sprains: an evidence-based clinical guideline.

    NARCIS (Netherlands)

    Kerkhoffs, G.M.; Bekerom, M. van den; Elders, L.A.; Beek, P.A. van; Hullegie, W.A.; Bloemers, G.M.; Heus, E.M. de; Loogman, M.C.; Rosenbrand, K.C.; Kuipers, T.; Hoogstraten, J.W.; Dekker, R.; Duis, H.J. Ten; Dijk, C.N. van; Tulder, M.W. van; Wees, P.J. van der; Bie, R.A. de

    2012-01-01

    Ankle injuries are a huge medical and socioeconomic problem. Many people have a traumatic injury of the ankle, most of which are a result of sports. Total costs of treatment and work absenteeism due to ankle injuries are high. The prevention of recurrences can result in large savings on medical cost

  3. Use of an acrylic mold for mortise view improvement in ankle fractures: a feasibility study

    NARCIS (Netherlands)

    Donken, C.C.; Verhofstad, M.H.J.; Edwards, M.J.R.; Schoemaker, M.C.; Laarhoven, C.J.H.M. van

    2011-01-01

    We investigated an acrylic mold for use in obtaining ankle radiographs in 31 consecutive patients with ankle fracture. The radiologic examination consisted of routine lateral and mortise views, with the same views procured with the use of the acrylic mold to position the ankle. Radiographic evidence

  4. Diagnosis, treatment and prevention of ankle sprains : an evidence-based clinical guideline

    NARCIS (Netherlands)

    Kerkhoffs, Gino M.; van den Bekerom, Michel; Elders, Leon A. M.; van Beek, Peter A.; Hullegie, Wim A. M.; Bloemers, Guus M. F. M.; de Heus, Elly M.; Loogman, Masja C. M.; Rosenbrand, Kitty C. J. G. M.; Kuipers, Ton; Hoogstraten, J. W. A. P.; Dekker, Rienk; ten Duis, Henk-Jan; van Dijk, C. Niek; van Tulder, Maurits W.; van der Wees, Philip J.; de Bie, Rob A.

    2012-01-01

    Ankle injuries are a huge medical and socioeconomic problem. Many people have a traumatic injury of the ankle, most of which are a result of sports. Total costs of treatment and work absenteeism due to ankle injuries are high. The prevention of recurrences can result in large savings on medical cost

  5. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    Science.gov (United States)

    Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team

    2017-01-01

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.

  6. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  7. COMMUTATION TIME ESTIMATOR FOR PM BLDC MOTOR TORQUE SIGNATURE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    WAEL A. SALAH

    2014-12-01

    Full Text Available This paper presents the development of the commutation time estimator (CTE for PM BLDC motor drives. The proposed scheme is aimed to enhance motor output torque by minimizing the generated torque ripples. The torque ripples originating from commutation instances cause spikes and dips in the motor output torque. The motor output torque could be enhanced by mitigating the phase current mismatch rate during phase current commutation period. This rate could be almost matched by introducing the commutation time estimator (CTE in order to control the rate of the energized phase current to be matched with the de-energized phase rate. Results obtained have validated and verified the proposed CTE effectiveness with a 50% average reduction of the generated torque ripples in PM BLDC motor.

  8. The effect of knee joint angle on torque control.

    Science.gov (United States)

    Sosnoff, Jacob J; Voudrie, Stefani J; Ebersole, Kyle T

    2010-01-01

    The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque.

  9. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  10. Robot Vibrations Caused by Torque Ripples in Power Transmission Mechanisms

    OpenAIRE

    小島, 宏行; 田口, 和哉; 辻, 浩明

    1989-01-01

    When an industrial robot with a power transmission mechanism such as a harmonic drive gear is operated, vibrations resulting from the torque ripple of the power transmission mechanism are frequently generated. However, few studies on robot vibration characteristics owing to torque ripples have been reported. In this paper, the vibrations of a horizontal two-link robot are investigated with consideration given to the torque ripple and the nonlinearity of the power transmission mechanism. In th...

  11. The Torque of High Speed Scanning Micromirrors with Vertical Combdrives

    Science.gov (United States)

    Wada, Hiroyuki; Lee, Daesung; Zappe, Stefan; Solgaard, Olav

    2003-12-01

    200 μm by 200 μm scanning micromirror actuated by vertical combdrives was fabricated. It is important to estimate the torque in order to know the tilt angle. We propose a way to estimate the torque by using the capacitance derived from the overlap area between the upper and lower comb teeth. The tilt angle that was estimated using the calculated torque was about 80% of the measured tilt.

  12. Electronic measurement of variable torques in precision work technology

    Science.gov (United States)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  13. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R.Toufouti

    2007-09-01

    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  14. Calculation of the torque on dielectric elliptical cylinders

    OpenAIRE

    Rockstuhl, Carsten; Herzig, Hans-Peter

    2008-01-01

    We present our investigation of the torque exerted on dielectric elliptical cylinders by highly focused laser beams. The calculations are performed with rigorous diffraction theory, and the size-dependent torque is analyzed as a function of the axis ratio. It is found that highly elongated particles will experience a reversal of the torque for a radius that is approximately one third of the wavelength. This effect is attributed to interference effects inside the structure due to multiple refl...

  15. Modeling Grain Alignment by Radiative Torques and Hydrogen Formation Torques in Reflection Nebula

    CERN Document Server

    Hoang, Thiem; Andersson, B-G

    2014-01-01

    Reflection nebulae--dense cores--illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modeling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby $\\gamma$ Cas star and the diffuse interstellar radiation field. We calculate linear polarization $p$ of background stars by radiatively aligned grains and explore the variation of fractional polarization (p/A$_V)$ with visual extinction $A_{V}$ across the cloud. We show that the variation of $p/A_{V}$ from the surface of the dayside toward the IC 63 center can be described by a power law $p/A_{V}\\propto A_{V}^{\\eta}$, having a shallow slope $\\eta \\sim- 0.1$ for $A_{V} 4$. We then consider the effects of additional torques due to H$_{2}$ formation and model grain alignment by joint action of RATs and H$_2$ torques. We find that p/A$_...

  16. Analytical studies of torque motor tape active element

    Directory of Open Access Journals (Sweden)

    Dolgih Antonina

    2016-01-01

    Full Text Available The paper presents analytical studies of the torque motor tape active element. The tape active element is a novel type of a motor’s stator organization, where the conventional winding is replaced by a tape winding. Given the operation principle of proposed active element; its torque characteristics are then computationally found with using the finite element method (FEM. The results show the possibility of the optimal value of the relative electrode width, when the torque will be maximal. The analytical studies of the motor’s torque over the number of tape winding coils allowed to receive the recommendations on choosing the number of coils.

  17. Effect of antagonist muscle fatigue on knee extension torque.

    Science.gov (United States)

    Beltman, J G M; Sargeant, A J; Ball, D; Maganaris, C N; de Haan, A

    2003-09-01

    The effect of hamstring fatigue on knee extension torque was examined at different knee angles for seven male subjects. Before and after a dynamic flexion fatigue protocol (180 degrees s(-1), until dynamic torque had declined by 50%), maximal voluntary contraction extension torque was measured at four knee flexion angles (90 degrees, 70 degrees, 50 degrees and 30 degrees ). Maximal torque generating capacity and voluntary activation of the quadriceps muscle were determined using electrical stimulation. Average rectified EMG of the biceps femoris was determined. Mean dynamic flexion torque declined by 48+/-11%. Extensor maximal voluntary contraction torque, maximal torque generating capacity, voluntary activation and average rectified EMG at the four knee angles were unaffected by the hamstring fatigue protocol. Only at 50 degrees knee angle was voluntary activation significantly lower (15.7%) after fatigue ( P<0.05). In addition, average rectified EMG before fatigue was not significantly influenced by knee angle. It was concluded that a fatigued hamstring muscle did not increase the maximal voluntary contraction extension torque and knee angle did not change coactivation. Three possible mechanisms may explain the results: a potential difference in recruited fibre populations in antagonist activity compared with the fibres which were fatigued in the protocol, a smaller loss in isometric torque generating capacity of the hamstring muscle than was expected from the dynamic measurements and/or a reduction in voluntary activation.

  18. Cogging Torque Characteristics of a Magnetic-Geared Motor

    Science.gov (United States)

    Niguchi, Noboru; Hirata, Katsuhiro

    This paper describes the cogging torque characteristics of a magnetic-geared motor with permanent magnets only on the high-speed rotor. The operational principle, which is different from that of the magnetic-geared motor with permanent magnets on the high-speed rotor and stator, is described. The torque characteristics, especially the order of the cogging torque, are mathematically formulated and verified by conducting 3-D finite element analysis and carrying out measurements on a prototype. Furthermore, a novel cogging torque reduction method is proposed and verified as well.

  19. International Foot and Ankle Biomechanics Community (i-FAB: past, present and beyond

    Directory of Open Access Journals (Sweden)

    Rosenbaum Dieter

    2009-06-01

    Full Text Available Abstract The International Foot and Ankle Biomechanics Community (i-FAB is an international collaborative activity which will have an important impact on the foot and ankle biomechanics community. It was launched on July 2nd 2007 at the foot and ankle session of the International Society of Biomechanics (ISB meeting in Taipei, Taiwan. i-FAB is driven by the desire to improve our understanding of foot and ankle biomechanics as it applies to health, disease, and the design, development and evaluation of foot and ankle surgery, and interventions such as footwear, insoles and surfaces.

  20. Analysis and simulation of fully ankle actuated planar bipedal robots

    NARCIS (Netherlands)

    Franken, Michel; Oort, van Gijs; Stramigioli, Stefano

    2008-01-01

    This paper deals with the analysis of planar bipedal robots, based on passive dynamic walkers, which are actuated only by actuation of the ankle joints. An overview of the major design characteristics of such robots and their influence on the feasibility of a stable limit cycle is presented. It is s

  1. Ankle Injuries and Disorders - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Information Translations Spanish (español) Lesiones y enfermedades del tobillo Ukrainian (Українська) Ankle Sprain Розтягування зв'язок гомілковостопного ...

  2. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    Science.gov (United States)

    Batista, Jorge Pablo; del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion. PMID:26060592

  3. Dorsiflexion deficit during jogging with chronic ankle instability.

    Science.gov (United States)

    Drewes, Lindsay K; McKeon, Patrick O; Kerrigan, D Casey; Hertel, Jay

    2009-11-01

    The purpose of the study was to determine whether individuals with chronic ankle instability (CAI) demonstrate altered dorsiflexion/plantar flexion range of motion (ROM) compared to controls during jogging. The case control study took place in a university motion analysis laboratory. Fourteen volunteers participated in the study, seven suffered from CAI (age 25+/-4.2 years, height 173+/-9.4 cm, mass 71+/-8.1kg) and seven were healthy, matched controls (age 25+/-4.5 years, height 168+/-5.9 cm, mass 67+/-9.8kg). All subjects jogged on an instrumented treadmill while a ten-camera motion analysis system collected three-dimensional kinematics of the lower extremities. The main outcome measure was sagittal plane (dorsiflexion/plantar flexion) range of motion of the ankle throughout the gait cycle. CAI subjects had significantly less dorsiflexion compared to the control group from 9% to 25% during jogging (4.83+/-0.55 degrees ). CAI subjects demonstrated limited ankle dorsiflexion ROM during the time of maximal dorsiflexion during jogging. Limited dorsiflexion ROM during gait among individuals with CAI may be a risk factor for recurrent ankle sprains. These deficits should be treated appropriately by rehabilitation clinicians.

  4. An Irreducible Ankle Fracture Dislocation: The Bosworth Injury

    NARCIS (Netherlands)

    T. Schepers (Tim); T. Hagenaars (Tjebbe); D. den Hartog (Dennis)

    2012-01-01

    textabstractIrreducible fracture dislocations of the ankle are rare and represent true orthopedic emergencies. We present a case of a fracture dislocation that was irreducible owing to a fixed dislocation of the proximal fibular fragment posterior to the lateral ridge of the tibia. This particular t

  5. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    Directory of Open Access Journals (Sweden)

    Jorge Pablo Batista

    2015-01-01

    Full Text Available Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion.

  6. A controlled-release ergometer for the human ankle

    NARCIS (Netherlands)

    Hof, AL

    1997-01-01

    A hydraulic ergometer for the human foot is described that can apply ankle rotations up to 1 rad at a constant high speed of 10-20 rad/s against moments up to 200 N m. The initial acceleration is damped, so as not to exceed a preset value. With the presented set-up the series elasticity of the intac

  7. Genetic determinants of the ankle-brachial index

    DEFF Research Database (Denmark)

    Wassel, Christina L; Lamina, Claudia; Nambi, Vijay

    2012-01-01

    Candidate gene association studies for peripheral artery disease (PAD), including subclinical disease assessed with the ankle-brachial index (ABI), have been limited by the modest number of genes examined. We conducted a two stage meta-analysis of ∼50,000 SNPs across ∼2100 candidate genes to iden...... to identify genetic variants for ABI....

  8. Gait Training and Ankle Dorsiflexors in Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2015-03-01

    Full Text Available Investigators at University of Copenhagen, Denmark, evaluated whether 4 weeks of 30 min daily treadmill training with an incline may facilitate corticospinal transmission and improve control of the ankle joint in 16 children, aged 5-14 years, with cerebral palsy.

  9. Long-term Results After Ankle Syndesmosis Injuries

    NARCIS (Netherlands)

    Vlijmen, N. van; Denk, K.; Kampen, A. van; Jaarsma, R.L.

    2015-01-01

    Syndesmotic disruption occurs in more than 10% of ankle fractures. Operative treatment with syndesmosis screw fixation has been successfully performed for decades and is considered the gold standard of treatment. Few studies have reported the long-term outcomes of syndesmosis injuries. This study in

  10. Reconstructive foot and ankle surgeries in diabetic patients

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Varma

    2011-01-01

    Full Text Available Diabetic foot and ankle deformities are secondary to long-standing diabetes and neglected foot care. The concept of surgical correction for these deformities is quite recent. The primary objective of reconstructive foot and ankle surgery is the reduction of increased plantar pressures, reduction of pain and the restoration of function, stability and proper appearance. Foot and ankle deformities can result in significant disability, loss of life style, employment and even the loss of the lower limb. Therefore, restoration of normal, problem free foot function and activities will have a significant impact on peoples′ lives. Reconstructive surgical procedures are complex and during reconstruction, internal and external fixation devices, including pins, compression screws, staples, and wires, may be used for repair and stabilization. The surgeries performed depend on the type and severity of the condition. Surgery can involve any part of the foot and ankle, and may involve tendon, bone, joint, tissue or skin repair. Corrective surgeries can at times be performed on an outpatient basis with minimally invasive techniques. Recovery time depends on the type of condition being treated.

  11. Ultrasound Findings of the Painful Ankle and Foot

    Directory of Open Access Journals (Sweden)

    Suheil Artul

    2014-01-01

    Full Text Available Objectives: To document the prevalence and spectrum of musculoskeletal ultrasound (MSKUS findings at different parts of the foot. Materials and Methods: All MSKUS studies conducted on the foot during a 2-year period (2012-2013 at the Department of Radiology were reviewed. Demographic parameters including age, gender, and MSKUS findings were documented. Results: Three hundred and sixty-four studies had been conducted in the 2-year period. Ninety-three MSKUS evaluations were done for the ankle, 30 studies for the heel, and 241 for the rest of the foot. The most common MSKUS finding at the ankle was tenosynovitis, mostly in female patients; at the heel it was Achilles tendonitis, also mostly in female patients; and for the rest of the foot it was fluid collection and presence of foreign body, mainly in male patients. The number of different MSKUS abnormalities that were reported was 9 at the ankle, 9 at the heel, and 21 on the rest of the foot. Conclusions: MSKUS has the potential for revealing a huge spectrum of abnormalities. The most common finding was collection/hematoma and foreign bodies at the foot, tenosynovitis at the ankle, and Achilles tendinitis at the heel.

  12. New ankle actuation mechanism for a humanoid robot

    NARCIS (Netherlands)

    Oort, van Gijs; Reinink, Roelof; Stramigioli, Stefano

    2011-01-01

    In this article we discuss the design of a new ankle actuation mechanism for the humanoid robot TUlip. The new mechanism consists of two coupled series-elastic systems. We discuss the choice of actuators according to calculations for maximum achievable walking speed. Some control issues, MIMO and no

  13. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.

    Science.gov (United States)

    Michmizos, Konstantinos P; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2015-11-01

    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least nine training sessions for three neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood.

  14. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  15. Radiographic evaluation of foot and ankle injuries in the athlete.

    Science.gov (United States)

    Rettig, A C; Shelbourne, K D; Beltz, H F; Robertson, D W; Arfken, P

    1987-10-01

    Injuries of the ankle and foot in athletes are quite common. They range from the extremely simple sprain to the difficult stress fracture, and may result in long-term disability. In all cases, the athlete is best treated after an accurate diagnosis is achieved.

  16. Normal values of patellar and ankle tendon reflex latencies

    NARCIS (Netherlands)

    Frijns, CJM; Laman, DM; vanDuijn, MAJ; vanDuijn, H

    1997-01-01

    The clinical value of latency measurement of tendon reflexes in neurological patients has been reported by several authors. However, normal values are not readily comparable. In the present study, latencies and amplitudes of patellar (PTR) and ankle tendon reflexes (ATR) were measured at rest and af

  17. TOTAL ANKLE ARTHROPLASTY: BRAZILIAN EXPERIENCE WITH THE HINTEGRA PROSTHESIS.

    Science.gov (United States)

    Nery, Caio; Fernandes, Túlio Diniz; Réssio, Cibele; Fuchs, Mauro Luiz; Godoy Santos, Alexandre Leme de; Ortiz, Rafael Trevisan

    2010-01-01

    Ankle arthrosis is becoming more and more common. The search for solutions that preserve joint function has led to a new generation of prosthesis with three components and more degrees of freedom. This paper presents the results achieved for ten patients treated with the HINTEGRA Prosthesis (Integra, New Deal), through collaborative action between the Foot and Ankle Groups of the Orthopedics and Traumatology divisions of Escola Paulista de Medicina, Unifesp, and the School of Medicine of the University of São Paulo (USP). The ten patients (six women and four men, aged between 29 and 66 years), underwent a surgical procedure consisting of Hintermann's technique, between January and June 2005. They were evaluated at prearranged intervals, and the data were subjected to statistical analysis. The surgery led to a significant improvement in ankle mobility. Radiological evaluation showed no signs of loosening or failure in the prosthetic components in any of the patients studied. Although the complication rate in our sample was high, it was equivalent to the rates found by other authors, and directly represents the learning curve associate with this kind of procedure. Four years after the procedure, it was found that the patients pain levels had significantly decreased, and that their functional patterns had significantly improved, with AOFAS and Hintermann scores indicating results that were excellent for 20%, good for 70% and poor for 10%. Treatment of ankle arthritis by means of total arthroplasty using the HINTEGRA prosthesis was capable of providing good results over an average observation period of four years.

  18. Factors Affecting Ankle Support Device Usage in Young Basketball Players

    Directory of Open Access Journals (Sweden)

    Michael D. Cusimano

    2013-05-01

    Full Text Available This cross-sectional study explores factors affecting the decision of basketball players to wear ankle support devices (ASDs. A questionnaire regarding attitudes towards ASD usage was developed based on the Health Belief Model (HBM. The questionnaire assessed HBM perceptions (susceptibility, severity, benefits, and barriers and modifying factors (demographic, personal history of ankle injury, influence of coach to preventive action that may affect an athlete’s decision to wear ASDs. One hundred forty basketball players competing at the recreational, high school, or university levels completed the questionnaire, with the questionnaires being completed at the basketball gymnasium or at home. It was found that athletes whose coaches enforced ASD use were significantly more likely to wear them (OR: 35.71; 95% CI: 10.01, 127.36, as were athletes who perceived ankle injuries to be severe (OR: 2.77; 95% CI: 1.04, 7.37. Previous injury did not significantly increase the odds of using an ASD. The combined influence of coach enforcement and previous injury had the greatest effect on increasing ASD use. The largest barrier to ASD use was a lack of aesthetic appeal. Strategies aimed at increasing players’ willingness to wear ankle protection should be emphasized among coaches and parents as this may increase use of ASDs.

  19. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  20. On the torque mechanism of Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))

    1992-07-01

    The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.

  1. Radiative torques: Analytical Model and Basic Properties

    CERN Document Server

    Lazarian, Alex

    2007-01-01

    We attempt to get a physical insight into grain alignment processes by studying basic properties of radiative torques (RATs). For this purpose we consider a simple toy model of a helical grain that reproduces well the basic features of RATs. The model grain consists of a spheroidal body with a mirror attached at an angle to it. Being very simple, the model allows analytical description of RATs that act upon it. We show a good correspondence of RATs obtained for this model and those of irregular grains calculated by DDSCAT. Our analysis of the role of different torque components for grain alignment reveals that one of the three RAT components does not affect the alignment, but induces only for grain precession. The other two components provide a generic alignment with grain long axes perpendicular to the radiation direction, if the radiation dominates the grain precession, and perpendicular to magnetic field, otherwise. We study a self-similar scaling of RATs as a function of $\\lambda/a_{eff}$. We show that th...

  2. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  3. Combined total ankle replacement and modified bridle tendon transfer for end-stage ankle joint arthrosis with paralytic dropfoot: report of an unusual case.

    Science.gov (United States)

    Bibbo, Christopher; Baronofsky, Hyim J; Jaffe, Leland

    2011-01-01

    In recent years, total ankle replacement has become a reasonable option for many patients with end-stage ankle arthrosis. In order to be successful, total ankle replacement requires a relatively balanced alignment of the foot in relation to the leg. Such alignment is traditionally achieved surgically by means of stabilization of the hindfoot in conjunction with relocation osteotomy of the calcaneus and/or tibia. In this report, we describe the unconventional combination of total ankle replacement in an adult patient with concomitant paralysis that was addressed by means of tendon transfer.

  4. Potential savings of a program to prevent ankle sprain recurrence: Economic evaluation of a randomized controlled trial

    NARCIS (Netherlands)

    Hupperets, M.D.W.; Verhagen, E.A.L.M.; Heymans, M.W.; Bosmans, J.E.; Tulder, M.W. van; Mechelen, W. van

    2010-01-01

    Background: The most common ankle injury is the lateral ankle sprain. Dutch annual sports-related ankle sprain costs can roughly be estimated at 187,200,000. Research has shown that proprioceptive training accounts for an approximated overall 50% reduction in ankle sprain recurrence rate. Hypothesis

  5. Research on Torque Ratio Based on the Steering Wheel Torque Characteristic for Steer-by-Wire System

    OpenAIRE

    Yandong Han; Lei He; Xiang Wang; Changfu Zong

    2014-01-01

    Steer-by-wire system can improve the performance of vehicle handling stability. Removing the mechanical linkages between the front wheels and the steering wheel leads to a key technique of force feedback for steer-by-wire system. In view of the characteristic of variable torque transmission ratio for steer-by-wire system, this paper proposes a method for designing torque ratio based on the steering wheel torque characteristic for steer-by-wire system. It converts the torque ratio design into ...

  6. [Arthrodesis and endoprostheses of the ankle joint: indications, techniques and pitfalls].

    Science.gov (United States)

    Wirth, S H; Klammer, G; Espinosa, N

    2013-09-01

    If adequate conservative measures for the treatment of end-stage ankle osteoarthritis have failed, surgery may be taken into consideration. After exorbitant failure rates in the beginning of total ankle replacement, nowadays this kind of treatment has regained lot of interest and has become a viable alternative to ankle fusion. The correct indication and a precise explanation of the surgical procedure, outcomes and potential complications provide a solid base for future success.Currently, there is no doubt that total ankle replacement has become an important player in the treatment of symptomatic and debilitating end-stage ankle arthritis. With increasing number of patients who undergo total ankle replacement the experience with this kind of procedure increases too. As a consequence several surgeons have started to stretch indications favoring total ankle replacement. However, it must be mentioned here, despite progress in terms of improved anatomical and biomechanical understanding of the hindfoot and improved surgical techniques and instruments, total ankle replacement and ankle fusion remain challenging and difficult procedures. We provide a review article including an overview of the relevant techniques. This article should serve as rough guide for surgeons and help in decision-making regarding total ankle replacement and ankle fusion.

  7. Activation of brain areas following ankle dorsiflexion versus plantar flexion Functional magnetic resonance imaging verification

    Institute of Scientific and Technical Information of China (English)

    Tianyu Jiang; Weiping Wu; Xinglin Wang; Changshui Weng; Qiuhua Wang; Yanmei Guo

    2012-01-01

    Changes in activated areas of the brain during ankle active dorsiflexion and ankle active plantar flexion were observed in six healthy subjects using functional magnetic resonance imaging.Excited areas of ankle active dorsiflexion involved the bilateral primary motor area and the primary somatosensory area, as well as the bilateral supplementary sensory area, the primary visual area, the right second visual area, and the vermis of cerebellum.Excited areas of ankle active plantar flexion included the ipsilateral supplementary motor area, the limbic system, and the contralateral corpus striatum.Fine movements of the cerebral cortex control the function of the ankle dorsiflexion to a larger extent than ankle plate flexion, and the function of ankle plate flexion is more controlled by the subcortical area.

  8. Evaluation of flexibility of the ankle in elementary students with mental retardation

    Directory of Open Access Journals (Sweden)

    Stavrou V.

    2011-01-01

    Full Text Available Aim: This study aims to measure and evaluate the flexibility of the legs, namely the ankle by measuring the maximum values in flexion and extension of both legs. Method: The study included twelve students with mental retardation. Measured and recorded values of ankle-bending extent of both legs and assign the average of each test. Calculated and measurement the temperature of space and time. The measurement flexion and extension of the ankle was a plastic protractor. Results: The flexion presents decrease at the right ankle relationship with the left ankle by 1.86. The extension presents decrease at the left ankle relationship with the right ankle by 11.43. Conclusions: The results found that the normal range of motion of joints has a significant role in improving efficiency and thus on quality of life of persons with mental retardation. The flexibility is a determinant of performance and therefore should be evaluated at regular intervals.

  9. The postoperative COFAS end-stage ankle arthritis classification system: interobserver and intraobserver reliability.

    Science.gov (United States)

    Krause, Fabian G; Di Silvestro, Matthew; Penner, Murray J; Wing, Kevin J; Glazebrook, Mark A; Daniels, Timothy R; Lau, Johnny T C; Younger, Alastair S E

    2012-02-01

    End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.

  10. Ankle tenosynovitis in rheumatoid arthritis: clinical and ultrasonographic evaluation

    Directory of Open Access Journals (Sweden)

    Ana Luiza Naves Pereira

    2016-11-01

    Full Text Available Objective: To investigate ankle tenosynovitis in rheumatoid arthritis patients, regarding its presence, the kind of tendon involved and the concordance between clinical and ultrasound findings. Methods: Twenty patients with rheumatoid arthritis and pain or swollen ankle joint were evaluated. Tendon involvement was evaluated with ultrasound imaging. The Health Assessment Questionnaire (HAQ was performed for disability evaluation. Age, sex, disease duration, and vocational activity levels were also obtained. The statistical analysis included Fisher’s exact test. The significance level was 0.05. Results: Tenosynovitis was found in 13 of 20 (65.0% patients in 19 joints, in which 6 were bilaterally (46.1% and unilateral in 7 (53.8%. Tibialis posterior tenosynovitis was seen in nine (45.0% patients, Achilles tenosynovitis in seven (35.0%, tibialis anterior tenosynovitis in three (15.0%, and peroneal tenosynovitis in three (15.0% patients. We found concordance between symptomatic ankle and ultrasonographic findings in 92.3% of the patients with tenosynovitis. Association between severe HAQ with tendon involvement was not found (p>0.05. Disease duration was not associated with tenosynovitis. Patients were predominantly older, female, with mean age around 50.8 years. The long disease duration of patients presented a mean of 11.4 years and, most of them, with no vocational activity (65.0%. Conclusions: The results indicate that ankle tenosynovitis is very common in rheumatoid arthritis patients, both unilateral and bilateral. Tibialis posterior was the most common tendon involvement found. Finally, we found concordance between the clinical and ultrasound findings in almost all rheumatoid arthritis patients with ankle tenosynovitis.

  11. Staged bilateral ankle arthroplasty for the treatment of patient with severe defect of the talus (case report

    Directory of Open Access Journals (Sweden)

    K. S. Mikhaylov

    2013-01-01

    Full Text Available Ankle arthroplasty is known to become more successful procedure versus ankle fusion in patients with ankle osteoarthritis. This article represents a clinical case of performing three-staged bilateral ankle arthroplasty by means of HINTEGRA and Mobility implants in a patient with severe defect of the talus. The patient was followed up for 2 years for right ankle and 4 years - for left ankle. The correct treatment strategy gave the patient a new lease of life. He resumed sports activities, being pain-free in both the ankle joints.

  12. Comparing Arc-shaped Feet and Rigid Ankles with Flat Feet and Compliant Ankles for a Dynamic Walker

    DEFF Research Database (Denmark)

    Kuhlemann, Ilyas; Matthias Braun, Jan; Wörgötter, Florentin

    2014-01-01

    walking robot RunBot, controlled by an reflexive neural network, uses only few sensors for generating its stable gait. The results show that at feet and compliant ankles extend RunBot's parameter range especially to more leaning back postures. They also allow the robot to stably walk over obstacles...

  13. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning.

    Science.gov (United States)

    Kuo, Chien-Chung; Lu, Hsuan-Lun; Leardini, Alberto; Lu, Tung-Wu; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2014-05-01

    Morphometry of the bones of the ankle joint is important for the design of joint replacements and their surgical implantations. However, very little three-dimensional (3D) data are available and not a single study has addressed the Chinese population. Fifty-eight fresh frozen Chinese cadaveric ankle specimens, 26 females, and 32 males, were CT-scanned in the neutral position and their 3D computer graphics-based models were reconstructed. The 3D morphology of the distal tibia/fibula segment and the full talus was analyzed by measuring 31 parameters, defining the relevant dimensions, areas, and volumes from the models. The measurements were compared statistically between sexes and with previously reported data from Caucasian subjects. The results showed that, within a general similarity of ankle morphology between the current Chinese and previous Caucasian subjects groups, there were significant differences in 9 out of the 31 parameters analyzed. From a quantitative comparison with available prostheses designed for the Caucasian population, few of these designs have both tibial and talar components suitable in dimension for the Chinese population. The current data will be helpful for the sizing, design, and surgical positioning of ankle replacements and for surgical instruments, especially for the Chinese population.

  14. Multi-segment foot kinematics after total ankle replacement and ankle arthrodesis during relatively long-distance gait.

    Science.gov (United States)

    Rouhani, H; Favre, J; Aminian, K; Crevoisier, X

    2012-07-01

    This study aimed to investigate the influence of ankle osteoarthritis (AOA) treatments, i.e., ankle arthrodesis (AA) and total ankle replacement (TAR), on the kinematics of multi-segment foot and ankle complex during relatively long-distance gait. Forty-five subjects in four groups (AOA, AA, TAR, and control) were equipped with a wearable system consisting of inertial sensors installed on the tibia, calcaneus, and medial metatarsals. The subjects walked 50-m twice while the system measured the kinematic parameters of their multi-segment foot: the range of motion of joints between tibia, calcaneus, and medial metatarsals in three anatomical planes, and the peaks of angular velocity of these segments in the sagittal plane. These parameters were then compared among the four groups. It was observed that the range of motion and peak of angular velocities generally improved after TAR and were similar to the control subjects. However, unlike AOA and TAR, AA imposed impairments in the range of motion in the coronal plane for both the tibia-calcaneus and tibia-metatarsals joints. In general, the kinematic parameters showed significant correlation with established clinical scales (FFI and AOFAS), which shows their convergent validity. Based on the kinematic parameters of multi-segment foot during 50-m gait, this study showed significant improvements in foot mobility after TAR, but several significant impairments remained after AA.

  15. Van der Waals torque induced by external magnetic fields

    CERN Document Server

    Esquivel-Sirvent, R; Palomono-Ovando, M

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III-IV semiconductors such as $InSb$, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of $InSb$. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of $InSb$ increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropic materials when the magnetic fields is close to 1 T.

  16. Very simple torque magnetometer for measuring magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Fernandez, A.; Hernando, B.; Carrizo, J.

    1985-11-01

    A new torque magnetometer has been developed and built in order to measure magnetization saturation and perpendicular anisotropy of magnetic thin films. Its main characteristic is that it employs for counteraction the torque exerted on the sample in the same field used for exciting it. This gives rise to a great simplicity and sensitivity of the measuring system.

  17. Van der Waals torque induced by external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  18. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  19. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  20. Italian translation, cultural adaptation and validation of the "American Orthopaedic Foot and Ankle Society's (AOFAS) ankle-hindfoot scale".

    Science.gov (United States)

    Leigheb, Massimiliano; Janicka, Paulina; Andorno, Silvano; Marcuzzi, Augusto; Magnani, Corrado; Grassi, Federico

    2016-05-06

    Background and Aim of the workAnkle and hindfoot injuries are common and may lead to functional impairment, disability, exclusion from occupational and daily activities. It's necessary a standardized method for assessing treatment outcomes in people with same condition and disease.American-Orthopaedics-Foot-and-Ankle-Society's-Ankle-Hindfoot-Evaluation-Scale (AOFAS-AHES) is specific to estimate clinical problems of the ankle-hindfoot.Outcome evaluation scales should be translated and culturally adapted into the language of the investigated patient.Our purpose was to translate and culturally adapt into Italian AOFAS-AHES, and to check its reproducibility and validity.MethodsAn Italian translation of the AOFAS-scale was retranslated into English by a native English and compared to the original to define a second correct Italian-version, that was submitted to 50 randomized patients operated at their ankle or hindfoot with a minimum follow-up of 6 months for cultural adaptation, and to 10 healthcare professionals to check comprehension of the medical part.To check intra and inter-observer reproducibility each patient underwent 2 interviews by interviewer-A and 1 by B. ShortForm(SF)-36-questionnaire for quality of life and Visual-Analogue-Scale (VAS) for pain were also compared for validation. The Pearson's-Correlation-Coefficient and the Intra-Class-Correlation coefficient were calculated to check inter and intra-observer reproducibility for validation.ResultsCultural adaptation revealed to be good. We obtained a good correlation of the inter and intra-observer reproducibility. Further validation of the Italian-AOFAS-AHES was obtained comparing AOFAS results to SF-36.ConclusionsItalian translation, cultural adaptation and validation of the AOFAS-AHES has been performed successfully and could be useful to improve assistance quality in care practice.

  1. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  2. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  3. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.;

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...

  4. Approaching the Standard Quantum Limit of Mechanical Torque Sensing

    CERN Document Server

    Kim, P H; Doolin, C; Souris, F; Davis, J P

    2016-01-01

    Mechanical transduction of torque has been key to probing a number of physical phenomena, such as gravity, the angular momentum of light, the Casimir effect, magnetism, and quantum oscillations. Following similar trends as mass and force sensing, mechanical torque sensitivity can be dramatically improved by scaling down the physical dimensions, and therefore moment of inertia, of a torsional spring. Yet now, through precision nanofabrication and sub-wavelength cavity optomechanics, we have reached a point where geometric optimization can only provide marginal improvements to torque sensitivity. Instead, nanoscale optomechanical measurements of torque are overwhelmingly hindered by thermal noise. Here we present cryogenic measurements of a cavity-optomechanical torsional resonator cooled in a dilution refrigerator to a temperature of 25 mK, corresponding to an average phonon occupation of = 35, that demonstrate a record-breaking torque sensitivity of 2.9 yNm/Hz^{1/2}. This a 270-fold improvement over previous...

  5. Torque Characteristics of Saturated Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Takahashi, Akeshi; Kikuchi, Satoshi; Wakui, Shinichi; Mikami, Hiroyuki; Ide, Kazumasa; Shima, Kazuo

    The evaluation of torque characteristics in a saturated magnetic field for permanent-magnet (PM) synchronous motors is presented. The torque saturation characteristics of non-salient and salient pole machines are investigated by finite element analysis and measurement. Thus, it is found that the torque saturation originates in the magnetic saturation in both the stator teeth, which are located on the leading position toward the direct axis, and in the stator back yoke, which is located on the lagging position toward the direct axis. This mechanism can also explain the reason for the significant torque saturation in the salient-pole machine; the higher inductance of the quadrature axis of the salient-pole machine causes a significant magnetic saturation in the stator back yoke. Therefore, less saliency or a wider back yoke can improve the torque saturation.

  6. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  7. Approaching the standard quantum limit of mechanical torque sensing

    Science.gov (United States)

    Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.

    2016-10-01

    Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

  8. Radiative torques on interstellar grains; 1, superthermal spinup

    CERN Document Server

    Draine, B T; Weingartner, Joseph C

    1996-01-01

    Irregular dust grains are subject to radiative torques when irradiated by interstellar starlight. It is shown how these radiative torques may be calculated using the discrete dipole approximation. Calculations are carried out for one irregular grain geometry, and three different grain sizes. It is shown that radiative torques can play an important dynamical role in spinup of interstellar dust grains, resulting in rotation rates which may exceed even those expected from H_2 formation on the grain surface. Because the radiative torque on an interstellar grain is determined by the overall grain geometry rather than merely the state of the grain surface, the resulting superthermal rotation is expected to be long-lived. By itself, long-lived superthermal rotation would permit grain alignment by normal paramagnetic dissipation on the "Davis-Greenstein" timescale. However, radiative torques arising from anisotropy of the starlight background can act directly to alter the grain alignment on much shorter timescales, a...

  9. Nanocavity optomechanical torque magnetometry and RF susceptometry

    CERN Document Server

    Wu, Marcelo; Firdous, Tayyaba; Sani, Fatemeh Fani; Losby, Joseph E; Freeman, Mark R; Barclay, Paul E

    2016-01-01

    Nanophotonic optomechanical devices allow observation of nanoscale vibrations with sensitivity that has dramatically advanced metrology of nanomechanical structures [1-9] and has the potential to similarly impact studies of nanoscale physical systems [10, 11]. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radio-frequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for observation of Barkhausen steps in the magnetic hysteresis of a lithographically-patterned permalloy island [12]. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally-assisted driven hopping of a magnetic vortex core between neighboring pinning sites [13]. The ...

  10. Torque Splitting by a Concentric Face Gear Transmission

    Science.gov (United States)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  11. Comparison of different passive knee extension torque-angle assessments.

    Science.gov (United States)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  12. A New Fixed Switching Frequency Direct Torque Controlled PMSM Drives with Low Ripple in Flux and Torque

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-11-01

    Full Text Available Direct Torque Control (DTC has gained popularity for development of advanced motor control due to its simplicity and offers fast instantaneous torque and flux controls. However, the conventional DTC which is based on hysteresis controller has major drawbacks, namely high torque ripple and variable inverter switching frequency. This paper presents an improved switching strategy for reducing flux and torque ripples in DTC of PMSM drives; wherein the torque hysteresis controller and the look-up table used in the conventional DTC are replaced with a constant frequency torque controller (CFTC and an optimized look-up table, respectively. It can be shown that a constant switching frequency is established due to the use of the CFTC while the reduction of torque and flux ripples is achieved mainly because of the selection of optimized voltage vector (i.e. with an optimized look-up table. This paper also will explain the construction of DTC schemes implemented using MATLAB-Simulink blocks. Simulation results were shown that a significant reduction of flux and torque ripples which is about 90% can be achieved through the proposed DTC scheme.

  13. Functional torque ratios and torque curve analysis of shoulder rotations in overhead athletes with and without impingement symptoms.

    Science.gov (United States)

    Zanca, Gisele G; Oliveira, Ana B; Saccol, Michele F; Ejnisman, Benno; Mattiello-Rosa, Stela M

    2011-12-01

    In this study, we evaluated the peak torque, functional torque ratios, and torque curve profile of the shoulder rotators in overhead athletes with impingement symptoms so as to examine possible alterations in response to sports training and shoulder pain. Twenty-one overhead athletes with impingement symptoms were compared with 25 overhead athletes and 21 non-athletes, none of whom were symptomatic for impingement. The participants performed five maximal isokinetic concentric and eccentric contractions of medial and lateral shoulder rotations at 1.57 rad · s(-1) and 3.14 rad · s(-1). Isokinetic peak torque was used to calculate the eccentric lateral rotation-to-concentric medial rotation and the eccentric medial rotation-to-concentric lateral rotation ratios. An analysis of the torque curve profiles was also carried out. The eccentric lateral rotation-to-concentric medial rotation torque ratio of asymptomatic athletes was lower than that of non-athletes at both test velocities. The concentric medial rotation isokinetic peak torque of the asymptomatic athletes, at 3.14 rad · s(-1), was greater than that of the non-athletes, and the peak appeared to occur earlier in the movement for athletes than non-athletes. These findings suggest that there may be adaptations to shoulder function in response to throwing practice. The eccentric medial rotation-to-concentric lateral rotation torque ratio was altered neither by the practice of university-level overhead sports nor impingement symptoms.

  14. Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization

    OpenAIRE

    Peresada, Sergei; Kovbasa, Serhii; Dymko, Serhii; BOZHKO, Serhiy

    2016-01-01

    The paper presents a novel maximum torque per Ampere (MTA) controller for induction motor (IM) drives. The proposed controller exploits the concept of direct (observer based) field orientation and guarantees asymptotic torque tracking of smooth reference trajectories and maximizes the torque per Ampere ratio when the developed torque is constant or slowly varying. A dynamic output-feedback linearizing technique is employed for the torque subsystem design. In order to improve torque tracking a...

  15. Non-Markovianity assisted Steady State Entanglement

    CERN Document Server

    Huelga, Susana F; Plenio, Martin B

    2011-01-01

    We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.

  16. Total Ankle Replacement for Treatment of End-Stage Osteoarthritis in Elderly Patients

    Directory of Open Access Journals (Sweden)

    Beat Hintermann

    2012-01-01

    Full Text Available End-stage osteoarthritis of the ankle is a disabling problem, particularly in elderly patients who experience an overall loss of mobility and functional impairment and who then need compensatory adaption. Ankle arthrodesis, which has been demonstrated to provide postoperative pain relief and hindfoot stability, leaves the patient with a stiff foot and gait changes. For elderly patient, these changes may be more critical than generally believed. Additionally, the long duration of healing and rehabilitation process needed for ankle arthrodesis may be problematic in the elderly. In contrast to ankle arthrodesis, total ankle replacement has significant advantages including a less strenuous postoperative rehabilitation and preservation of ankle motion which supports physiological gait. Recently, total ankle replacement has evolved as a safe surgical treatment in patients with end-stage ankle osteoarthritis with reliable mid- to long-term results. Total ankle replacement needs less immobilization than arthrodesis and does allow for early weight-bearing and should be considered as a treatment option of first choice in many elderly patients with end-stage osteoarthritis of the ankle, especially in elderly patients with lower expectations and physical demands.

  17. Total Ankle Replacement for Treatment of End-Stage Osteoarthritis in Elderly Patients

    Science.gov (United States)

    Hintermann, Beat; Knupp, Markus; Zwicky, Lukas; Barg, Alexej

    2012-01-01

    End-stage osteoarthritis of the ankle is a disabling problem, particularly in elderly patients who experience an overall loss of mobility and functional impairment and who then need compensatory adaption. Ankle arthrodesis, which has been demonstrated to provide postoperative pain relief and hindfoot stability, leaves the patient with a stiff foot and gait changes. For elderly patient, these changes may be more critical than generally believed. Additionally, the long duration of healing and rehabilitation process needed for ankle arthrodesis may be problematic in the elderly. In contrast to ankle arthrodesis, total ankle replacement has significant advantages including a less strenuous postoperative rehabilitation and preservation of ankle motion which supports physiological gait. Recently, total ankle replacement has evolved as a safe surgical treatment in patients with end-stage ankle osteoarthritis with reliable mid- to long-term results. Total ankle replacement needs less immobilization than arthrodesis and does allow for early weight-bearing and should be considered as a treatment option of first choice in many elderly patients with end-stage osteoarthritis of the ankle, especially in elderly patients with lower expectations and physical demands. PMID:22720158

  18. A one year prospective study on ankle stability and landing technique : The occurrence of ankle and knee injuries in elite ball team athletes

    NARCIS (Netherlands)

    Does, Henrike van der; Brink, M.S.; Lemmink, K.A.P.M.

    2014-01-01

    Background: In team sports lower extremity injuries account for more than 50% of all injuries, indicating the importance of early detection of athletes at risk. Objective: To investigate the predictive value of ankle stability and landing technique at baseline for ankle and knee injury occurrence du

  19. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    LENUS (Irish Health Repository)

    O'Driscoll, Jeremiah

    2011-06-09

    Abstract Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed\\/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT) scores, 2 Star Excursion Balance Test (SEBT) reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs) during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  20. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    Directory of Open Access Journals (Sweden)

    O'Driscoll Jeremiah

    2011-06-01

    Full Text Available Abstract Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT scores, 2 Star Excursion Balance Test (SEBT reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  1. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  2. Interaction torque contributes to planar reaching at slow speed

    Directory of Open Access Journals (Sweden)

    Hoshi Fumihiko

    2008-10-01

    Full Text Available Abstract Background How the central nervous system (CNS organizes the joint dynamics for multi-joint movement is a complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated that the CNS predictively compensates for interaction torque (INT which is arising from the movement of the adjacent joints. However, most of these studies have mainly examined quick movements, presumably because the current belief is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer reaching in a wide range of motion speeds for healthy subjects. Methods Subjects performed reaching movements toward five targets under three different speed conditions. Joint position data were recorded using a 3-D motion analysis device (50 Hz. Torque components, muscle torque (MUS, interaction torque (INT, gravity torque (G, and net torque (NET were calculated by solving the dynamic equations for the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque components; NET = MUS - G - INT. Dynamic muscle torque (DMUS = MUS-G was also calculated. Contributions of INT impulse and DMUS impulse to NET impulse were examined. Results The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was additive (same direction to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to INT. The trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target, regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its magnitude varied from trial to trial in order to compensate for the variability of INT. Conclusion Interaction torque was important at

  3. System of enterprise steady economic development management

    Directory of Open Access Journals (Sweden)

    K.О. Ivanchuk

    2015-03-01

    Full Text Available Providing enterprise controlled movement from one attractor to another preserving steady space requires formation of system of enterprise steady economic development management. The main purpose of such system is providing of effective and practical tools for managing steady economic development through the development of fundamental scientific and theoretical basis. The article proves the need for the management of steady economic development based on an integrated approach of a new type, which takes into account differences in objectives, principles, conditions of decision-making at the operational, tactical and strategic levels. Proposed and justified to manage the development of the enterprise from the perspective of steadiness at the operational level, mainly using the principles of the process approach; tactical management platform should be formed based on functional-dominant approach; strategic dimension of steady development management is viewed through the prism of a systemic approach. Effective implementation of an integrated management approach needs to adhere to a set of principles that are interpreted by the author from the perspective of the element development of the enterprise individual subsystems and from the standpoint of summarizing complex aspect that reflects the unity and integrity of the steady economic development management. Scroll to the management of the enterprise steady economic development, which cover the general functions block and the specific functions block, among which are defined homeostatic, adaptive and resistant function of steady development management system. Generalized representation of theoretical propositions is a system of conceptual propositions management of steady economic development. According to these provisions, the management system of steady development contently fills the scientific and theoretical and methodological core. These cores play the role of coordinating elements between the

  4. Running with a powered knee and ankle prosthesis.

    Science.gov (United States)

    Shultz, Amanda H; Lawson, Brian E; Goldfarb, Michael

    2015-05-01

    This paper presents a running control architecture for a powered knee and ankle prosthesis that enables a transfemoral amputee to run with a biomechanically appropriate running gait and to intentionally transition between a walking and running gait. The control architecture consists firstly of a coordination level controller, which provides gait biomechanics representative of healthy running, and secondly of a gait selection controller that enables the user to intentionally transition between a running and walking gait. The running control architecture was implemented on a transfemoral prosthesis with powered knee and ankle joints, and the efficacy of the controller was assessed in a series of running trials with a transfemoral amputee subject. Specifically, treadmill trials were conducted to assess the extent to which the coordination controller provided a biomechanically appropriate running gait. Separate trials were conducted to assess the ability of the user to consistently and reliably transition between walking and running gaits.

  5. Foot and Ankle Deformity in Young Acrobatic and Artistic Gymnasts

    Directory of Open Access Journals (Sweden)

    Sobera Anna

    2015-09-01

    Full Text Available Purpose. The aim of the paper was to determine the occurrence of feet and ankle deformities in trampoline and artistic gymnasts. Methods. Ten acrobatic gymnasts (trampolinists and 10 artistic gymnasts aged 6-14 years were recruited. The calcaneal-tibial (rearfoot angle was determined as the angle of the upper calcaneal tendon and the longitudinal heel axis while Clarke angles were determined by podoscopy. Results. The trampolinists showed significantly greater medial angulation (calcaneal valgus than the group of gymnasts. Right and left foot Clark’s angles in both the trampoline and artistic gymnasts were above 55°. Conclusions. Trampolinists exhibit significantly more pronounced calcaneal valgus than artistic gymnasts. The prevalence of foot and ankle deformities in both populations should be addressed by coaches in the gymnastics training of young children.

  6. Journal of Foot and Ankle Research, one year on

    Directory of Open Access Journals (Sweden)

    Borthwick Alan M

    2009-11-01

    Full Text Available Abstract Journal of Foot and Ankle Research was launched one year ago, and a number of its key achievements are highlighted in this editorial. Although the journal is underpinned by professional bodies associated with the podiatry professions in the UK and Australasia, its content is aimed at the wider foot and ankle research community. Nevertheless, the journal's achievements over the past year reflect the development of research in the profession of podiatry. From this perspective, the journal may be viewed as contributing to the overall attainment of some of the profession's key goals and strategic aims over the last decade, across the UK and Australasia. The journal has also witnessed policy changes in the last year, and these are discussed - notably, the decision not to accept case reports for publication. We also report on a few of the key metrics, providing readers with a summary of the journal's performance over the last year.

  7. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation

    Science.gov (United States)

    Kaufmann, Tanja; Kukolj, Eva; Brachner, Andreas; Beltzung, Etienne; Bruno, Melania; Kostrhon, Sebastian; Opravil, Susanne; Hudecz, Otto; Mechtler, Karl; Warren, Graham

    2016-01-01

    ABSTRACT Sirtuin 2 (SIRT2) is an NAD-dependent deacetylase known to regulate microtubule dynamics and cell cycle progression. SIRT2 has also been implicated in the pathology of cancer, neurodegenerative diseases and progeria. Here, we show that SIRT2 depletion or overexpression causes nuclear envelope reassembly defects. We link this phenotype to the recently identified regulator of nuclear envelope reassembly ANKLE2. ANKLE2 acetylation at K302 and phosphorylation at S662 are dynamically regulated throughout the cell cycle by SIRT2 and are essential for normal nuclear envelope reassembly. The function of SIRT2 therefore extends beyond the regulation of microtubules to include the regulation of nuclear envelope dynamics. PMID:27875273

  8. Ankle Arthritis: You Can't Always Replace It.

    Science.gov (United States)

    Hayes, Brandon J; Gonzalez, Tyler; Smith, Jeremy T; Chiodo, Christopher P; Bluman, Eric M

    2016-02-01

    End-stage arthritis of the tibiotalar joint is disabling and causes substantial functional impairment. Most often it is the residual effect of a previous traumatic injury. Nonsurgical treatment of end-stage arthritis of the ankle includes bracing, shoe-wear modifications, and selective joint injections. For patients who fail to respond to nonsurgical modalities, the two primary treatment options are arthroplasty and arthrodesis. Each has its proponents. Although no ideal treatment of ankle arthritis exists, high-quality studies can help guide treatment in patients of varying demographics. Inherent risks are linked with each treatment option, but those of greatest concern are early implant loosening that requires revision following arthroplasty and the acceleration of adjacent joint degeneration associated with arthrodesis.

  9. Mutual phase-locking of microwave spin torque nano-oscillators.

    Science.gov (United States)

    Kaka, Shehzaad; Pufall, Matthew R; Rippard, William H; Silva, Thomas J; Russek, Stephen E; Katine, Jordan A

    2005-09-15

    The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.

  10. Quasi-steady state aerodynamics of the cheetah tail

    Science.gov (United States)

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  11. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  12. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  13. Can an Ankle-Foot Orthosis Change Hearts and Minds?

    Science.gov (United States)

    2011-01-01

    ities. The most common fracture of the lower extremity is to the tibia and fibula . As opposed to prior military From 1Orthopaedic Surgery Service...patients, demonstrates that 26% of patients with extremity wounds have fractures , 82% of which are open, divided evenly between the upper and lower extrem...sustained a severe open ankle fracture and underwent irrigation and debridement with splint immobilization in theater on the day of injury. Thereafter he

  14. THE FEATURES OF TIBIOFIBULAR INJURY IN PATENTS WITH ANKLE FRACTURES

    Directory of Open Access Journals (Sweden)

    N. F. Fomin

    2010-01-01

    Full Text Available The role of interposition of soft tissues into tibiofibular syndesmosis is analyzed as a cause of unsatisfactory outcomes in the ankle joint pronation fracture treatment. The study is based on clinical (452 patients and experimental material (36 experiments including unfixed anatomic objects. The elevator for minimal invasive operative elimination of interposition of stumps of distal tibiofibular syndesmosis anterior and posterior ligaments is developed and tested.

  15. Surgical efficacy of the ankle tourniquet for forefoot surgery.

    Science.gov (United States)

    Roberts, Rachel K; Cleave, Elizabeth S; Rambani, Rohit

    2014-12-01

    For precise, safe and proficient procedures haemostasis is critical. For forefoot surgery, the customary thigh tourniquet is commonly accepted for this role as the additional muscle mass and minimal bony prominences in the thigh avert neuromuscular and skin injury. However, for patients with pathophysiological issues that may be exacerbated by a thigh tourniquet, application of an ankle tourniquet may decrease the risks and increase cuff tolerance as the volume of ischaemic tissue is reduced.

  16. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  17. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  18. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  19. Immediate Weight-Bearing after Ankle Fracture Fixation

    Directory of Open Access Journals (Sweden)

    Reza Firoozabadi

    2015-01-01

    Full Text Available We believe that a certain subset of surgical ankle fracture patients can be made weight-bearing as tolerated immediately following surgery. Immediate weight-bearing as tolerated (IWBAT allows patients to return to ambulation and activities of daily living faster and may facilitate rehabilitation. A prospectively gathered orthopaedic trauma database at a Level 1 trauma center was reviewed retrospectively to identify patients who had ORIF after unstable ankle injuries treated by the senior author. Patients were excluded if they were not IWBAT based on specific criteria or if they did meet followup requirement. Only 1/26 patients was noted to have loss of fixation. This was found at the 6-week followup and was attributed to a missed syndesmotic injury. At 2-week followup, 2 patients had peri-incisional erythema that resolved with a short course of oral antibiotics. At 6-week followup, 20 patients were wearing normal shoes and 6 patients continued to wear the CAM Boot for comfort. To conclude, IWBAT in a certain subset of patients with stable osteosynthesis following an ankle fracture could potentially be a safe alternative to a period of protected weight-bearing.

  20. Experimental and computational analysis of composite ankle-foot orthosis.

    Science.gov (United States)

    Zou, Dequan; He, Tao; Dailey, Michael; Smith, Kirk E; Silva, Matthew J; Sinacore, David R; Mueller, Michael J; Hastings, Mary K

    2014-01-01

    Carbon fiber (CF) ankle-foot orthoses (AFOs) can improve gait by increasing ankle plantar-flexor power and improving plantar-flexor ankle joint moment and energy efficiency compared with posterior leaf spring AFOs made of thermoplastic. However, fabricating a CF AFO to optimize the performance of the individual user may require multiple AFOs and expensive fabrication costs. Finite element analysis (FEA) models were developed to predict the mechanical behavior of AFOs in this study. Three AFOs, two made of CF composite material and one made of thermoplastic material, were fabricated and then mechanically tested to produce force-displacement data. The FEA models were validated by comparing model predictions with mechanical testing data performed under the same loading and boundary conditions. The actual mechanical testing demonstrated that CF performs better than thermoplastic. The simulation results showed that FEA models produced accurate predictions for both types of orthoses. The relative error of the energy return ratio predicted by the CF AFO FEA model developed in this study is less than 3%. We conclude that highly accurate FEA models will allow orthotists to improve CF AFO fabrication without wasting resources (time and money) on trial and error fabrications that are expensive and do not consistently improve AFO and user performance.