WorldWideScience

Sample records for ankle torque steadiness

  1. Ankle torque steadiness is related to muscle activation variability and co-activation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin; Sløk, Rikke

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...... contractions in those children. Fourteen children with CP who walked with equinus foot deformity and 14 healthy (control) children performed maximal and steady submaximal ankle dorsi- and plantarflexions. Dorsiflexion torque steadiness was related to agonist and antagonist muscle activation variability as well...

  2. Ankle torque steadiness is related to muscle activation variability and coactivation in children with cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin Høyer; Sløk, Rikke

    2009-01-01

    The aims of this study were to: (1) investigate the significance of muscle activation variability and coactivation for the ability to perform steady submaximal ankle torque (torque steadiness) in healthy children and those with cerebral palsy (CP), and (2) assess ankle function during isometric...

  3. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor.

    Science.gov (United States)

    Toumi, A; Leteneur, S; Gillet, C; Debril, J-F; Decoufour, N; Barbier, F; Jakobi, J M; Simoneau-Buessinger, Emilie

    2015-11-01

    Many studies have focused on maximum torque exerted by ankle joint muscles during plantar flexion. While strength parameters are typically measured with isokinetic or isolated ankle dynamometers, these devices often present substantial limitations for the measurement of torque because they account for force in only 1 dimension (1D), and the device often constrains the body in a position that augments torque through counter movements. The purposes of this study were to determine the contribution of body position to ankle plantar-flexion torque and to assess the use of 1D and 3D torque sensors. A custom designed 'Booted, Open-Unit, Three dimension, Transportable, Ergometer' (B.O.T.T.E.) was used to quantify plantar flexion in two conditions: (1) when the participant was restrained within the unit (locked-unit) and (2) when the participant's position was independent of the ankle dynamometer (open-unit). Ten young males performed maximal voluntary isometric plantar-flexion contractions using the B.O.T.T.E. in open and locked-unit mechanical configurations. The B.O.T.T.E. was reliable with ICC higher than 0.90, and CV lower than 7 %. The plantar-flexion maximal resultant torque was significantly higher in the locked-unit compared with open-unit configuration (P torque sensor significantly underestimated the proper capacity of plantar-flexion torque production (P torque should be performed with an open-unit dynamometer mounted with a 3D sensor that is exclusive of accessory muscles but inclusive of all ankle joint movements.

  4. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship

    Directory of Open Access Journals (Sweden)

    Filiz Ateş

    2018-01-01

    Full Text Available Intramuscular pressure (IMP is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA activity at different ankle positions. We hypothesized that (1 the TA IMP and the surface EMG (sEMG and fine-wire EMG (fwEMG correlate to ankle joint torque, (2 the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3 the electromechanical delay (EMD is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD age = 26.9 (4.2 years old with 25.9 (5.5 kg/m2 body mass index] performed (i three isometric dorsiflexion (DF maximum voluntary contraction (MVC and (ii three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  5. Comparison of Stretch Reflex Torques in Ankle Dorsiflexors and Plantarflexors

    National Research Council Canada - National Science Library

    Tung, J

    2001-01-01

    ...) ankle muscles, Pulse, step, and a combination of random perturbation and step inputs were used to identify the reflex and intrinsic contributions to the measured torque, TA reflex torques were very...

  6. Intrinsic ankle stiffness during standing increases with ankle torque and passive stretch of the Achilles tendon

    Science.gov (United States)

    Gill, Jaspret

    2018-01-01

    Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469

  7. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  8. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  9. Postural steadiness and ankle force variability in peripheral neuropathy

    Science.gov (United States)

    Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.

    2015-01-01

    Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897

  10. Tremor irregularity, torque steadiness and rate of force development in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    with idiopathic PD and 15 neurologically healthy matched controls performed isometric maximal contractions (extension/flexion) as well as steady submaximal and powerful isometric knee extensions. The patients with PD showed decreased isometric tremor irregularity. Torque steadiness was reduced in PD...... that both knee isometric tremor Approximate Entropy and torque steadiness clearly differentiate between patients with PD and healthy controls. Furthermore, severely compromised RFD was found in patients with PD and was associated with decreased agonist muscle activation....

  11. Gymnasts and non-athletes muscle activation and torque production at the ankle joint

    Directory of Open Access Journals (Sweden)

    Natália Batista Albuquerque Goulart

    2014-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2014v16n5p555  Artistic Gymnasts (AG execute specific movements that require substantial movement control and force production at the ankle joint. This high demand might change the neuromechanical properties of the ankle joint muscles in these athletes compared to non-athlete girls (NAG. The aim of this study was to compare muscle activation and torque production at the ankle joint between AG and NAG. Ten AG (11.70 ± 1.06 years of age and 10 NAG (11.70 ± 1.49 years of age participated in the study. Electromyographic  (EMG signals of medial gastrocnemius (MG, soleus (SO and tibialis anterior (TA were obtained simultaneously to the maximal isometric plantarflexion (PFT and dorsiflexion (DFT torques of the dominant limb during a maximal voluntary isometric contraction (MVIC at five different joint angles (20°, 10°, 0°, -10° e -20°. Neuromuscular efficiency was also calculated by the Torque/EMG ratio. AG presented higher PFT (p0.05. In addition, AG showed higher values for plantar flexion neuromuscular efficiency and smaller values of dorsiflexion neuromuscular efficiency compared to the NAG (p<0.01. Higher sports demands of AG determined higher PFT, higher plantar flexor efficiency, smaller DFT but similar activation of MG, SO and TA compared to NAG.

  12. Postural steadiness during quiet stance does not associate with ability to recover balance in older women.

    Science.gov (United States)

    Mackey, Dawn C; Robinovitch, Stephen N

    2005-10-01

    Fall risk depends on ability to maintain balance during daily activities, and on ability to recover balance following a perturbation such as a slip or trip. We examined whether similar neuromuscular variables govern these two domains of postural stability. We conducted experiments with 25 older women (mean age=78 yrs, SD=7 yrs). We acquired measures of postural steadiness during quiet stance (mean amplitude, velocity, and frequency of centre-of-pressure movement when standing with eyes open or closed, on a rigid or compliant surface). We also measured ability to recover balance using the ankle strategy after release from a forward leaning position (based on the maximum release angle where recovery was possible, and corresponding values of reaction time, rate of ankle torque generation, and peak ankle torque). We found that balance recovery variables were not strongly or consistently correlated with postural steadiness variables. The maximum release angle associated with only three of the sixteen postural steadiness variables (mean frequency in rigid, eyes open condition (r=0.36, P=.041), and mean amplitude (r=0.41, P=.038) and velocity (r=0.49, P=.015) in compliant, eyes closed condition). Reaction time and peak torque did not correlate with any steadiness variables, and rate of torque generation correlated moderately with the mean amplitude and velocity of the centre-of-pressure in the compliant, eyes closed condition (r=0.48-0.60). Our results indicate that postural steadiness during quiet stance is not predictive of ability to recover balance with the ankle strategy. Accordingly, balance assessment and fall prevention programs should individually target these two components of postural stability.

  13. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia.

    Science.gov (United States)

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2016-04-01

    Quantification of increased muscle tone for patients with spasticity has been performed to date using various devices to replace the manual scales, such as the modified Ashworth scale or the Tardieu scale. We developed a device that could measure resistive plantar flexion (PF) torque of the ankle during passive dorsiflexion (DF) as an indicator of muscle tone of ankle plantar flexors. The primary objective was to explore the test-retest intrarater reliability of a custom-built device. Participants were 11 healthy subjects (7 men, 4 women; mean age 47.0 years) and 22 patients with poststroke hemiplegia (11 hemorrhagic, 11 ischemic; 14 men, 8 women; mean age 57.2 years). The device was affixed to the ankle. Subjects were seated with knees either flexed or extended. The ankle was passively dorsiflexed from 20° of PF to more than 10° of DF at 5°/second (slow stretch) or 90°/second (fast stretch). Angle and torque were measured twice during the stretches. The intraclass correlation coefficients (ICCs) of torque at 10° of DF (T10) in the 4 conditions-slow and fast stretches with knee flexed or extended-were calculated. The T10 ICCs of the 4 conditions were .95-.99 in both groups. The healthy subjects showed significantly higher T10 of knee extension than of knee flexion during slow and fast stretches. The patients showed increased velocity-dependent torque during fast stretches. Excellent reliability was observed. The device is suitable for measuring resistive PF torque during passive stretch in a flexed knee condition. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elías, Ricardo Gabriel

    2017-03-09

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  15. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elí as, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurelien

    2017-01-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  16. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    Science.gov (United States)

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  17. The Relationship between Isokinetic Relative Torque of Hip, Knee and Ankle Joints and the Height of Guide Leg Jump in Young Men

    Directory of Open Access Journals (Sweden)

    Saeed Nikoukheslat

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate the relationship between isokinetic relative torques of hip, knee and ankle joints and the height of guide leg jump in young men. Methods: 27 college male athletes with mean age of 25±3.5 years, height 178.5±7.8 cm and weight of 75.7±10.7 kg voluntarily participated in this study. Isokinetic torque of hip, knee and ankle joints and the height of vertical jump were measured using BIODEX SYSTEM PRO 4 and digital vertical jumping tester systems respectively. Pearson correlation test at p<0.05 was used for statistical analysis. Results: Results showed that there were significant correlations between height of jump and hip joint flexion (p= 0.047 & r= 0.39 and extension (p= 0.003 & r= 0.55 torques of guide leg, hip joint extension torque of support leg (p= 0.020 & r=0.45 and knee joint flexion (p= 0.019 & r=0.45 and extension torques of support leg (p=0.006 & r=0.52. Conclusion: The results of this study show that flexion and extension torques of hip joint in guide leg and knee joint in support leg and also extension torque of hip joint in support leg have main effect on height of guide leg jump. Thus, in designing a specific training program for athletes in whom the nature of jump in their sports is guide leg jump, particular attention should be given to hip and knee joints strength.

  18. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    Science.gov (United States)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  19. The role of series ankle elasticity in bipedal walking.

    Science.gov (United States)

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Biomechanical Study about Lateral Ankle Laxity

    Directory of Open Access Journals (Sweden)

    Bogdan Voicu

    2009-12-01

    Full Text Available The objective of this paper is to study the contribution of the anterior talofibular ligament to ankle laxity at 18 cadaver ankles. For this, there was made an original, bipolar transoseus system, in a monitorized test stand Mx-500N Schmidt with a digital force gauge Imada. It was measured the motion response for applied antero-posterior force, inversion-eversion moment and internal-external rotary torque, in three positions of flexion of the ankle, with an intact anterior talofibular ligament and after it’s sectioning. The results showed a significant increases in laxity in plantar flexion for the inversion and internal rotary torque, this mechanism coresponding with common modes of injury.

  1. Electron spin torque in atoms

    International Nuclear Information System (INIS)

    Hara, Takaaki; Senami, Masato; Tachibana, Akitomo

    2012-01-01

    The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.

  2. Assessment of torque-steadiness reliability at the ankle level in healthy young subjects: implications for cerebral palsy

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rose, Martin Høyer; Sonne-Holm, Stig

    2008-01-01

    It was the primary objective of this study to investigate whether quantifying fluctuations in dorsi and plantarflexor torque during submaximal isometric contractions is a reliable measurement in young healthy subjects. A secondary objective was to investigate the reliability of the associated mus...

  3. EMG-Torque Dynamics Change With Contraction Bandwidth.

    Science.gov (United States)

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  4. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  5. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    Science.gov (United States)

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  6. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.

    Science.gov (United States)

    Shepherd, Max K; Rouse, Elliott J

    2017-12-01

    Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.

  7. Ankle rehabilitation device with two degrees of freedom and compliant joint

    Science.gov (United States)

    Racu (Cazacu, C.-M.; Doroftei, I.

    2015-11-01

    We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.

  8. TRAINING-INDUCED CHANGES IN THE TOPOGRAPHY OF MUSCLE TORQUES AND MAXIMAL MUSCLE TORQUES IN BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Krzysztof Buśko

    2012-01-01

    Full Text Available The aim of the study was to detect changes in the maximal muscle torques in male basketball players during a two-year training cycle. We verified the hypothesis that different workloads applied during the preparation and competition periods would result in changes in the maximal muscle torques of the athletes (increase during the former and decrease or no change during the latter period accompanied by no alteration of the percent muscle topography of all the muscle groups tested. The examinations were conducted on nine senior male basketball players from the Polish national team. Estimations of the muscle torques in static conditions were performed at the end of the preparation (measurements I and III and competition (measurements II and IV periods of a two-year training cycle. Eleven muscle groups were studied including flexors and extensors of the trunk and flexors and extensors of the shoulder, the elbow, the hip, the knee, and the ankle. Muscle torques of the shoulder and the elbow insignificantly decreased except for the muscle torque of the flexors of the shoulder. Muscle torques of the flexors and extensors of the trunk as well as of the flexors and extensors of the hip, the knee, and the ankle increased between measurements I and III and between measurements I and IV with the only exception being the muscle torque of the flexors of the knee (which significantly decreased by 7.4% In the case of the flexors and extensors of the trunk and the flexors and extensors of the hip, the changes appeared to be significant. The sum of the muscle torques of the upper limbs markedly decreased between the preparation (measurement I and competition (measurement IV periods. The sum of the muscle torques of the trunk and the lower limbs and the sum of the muscle torques of the eleven muscle groups significantly increased between measurements I and IV. Percent muscle topography significantly decreased for the flexors and extensors of the shoulder and the

  9. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study

    Directory of Open Access Journals (Sweden)

    Sara J. Hussain

    2016-11-01

    Full Text Available Abstract Background The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF and dorsiflexion (DF ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Methods Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (−10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF] and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s in 53 healthy adults. These data were used to generate 3D plots, or “strength surfaces”, for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Results Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. Conclusions The 3D strength data and surface models provide a more comprehensive dataset

  10. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    Science.gov (United States)

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These

  11. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue.

    Science.gov (United States)

    Hunt, Michael A; Hatfield, Gillian L

    2017-08-01

    The purpose of this study was to investigate the immediate effects of unilateral ankle plantarflexor fatigue on bilateral knee and ankle biomechanics during gait. Lower leg kinematics, kinetics, and muscle activation were assessed before and after an ankle plantarflexor fatiguing protocol in 31 healthy individuals. Fatigue (defined as >10% reduction in maximal isometric ankle plantarflexor torque production and a downward shift in the median power frequency of both heads of the gastrocnemius muscle of the fatigued limb) was achieved in 18 individuals, and only their data were used for analysis purposes. Compared to pre-fatigue walking trials, medial gastrocnemius activity was significantly reduced in the study (fatigued) limb. Other main changes following fatigue included significantly more knee flexion during loading, and an associated larger external knee flexion moment in the study limb. At the ankle joint, participants exhibited significantly less peak plantarflexion (occurring at toe-off) with fatigue. No significant differences were observed in the contralateral (non-fatigued) limb. Findings from this study indicate that fatigue of the ankle plantarflexor muscle does not produce widespread changes in gait biomechanics, suggesting that small to moderate changes in maximal ankle plantarflexor force production capacity (either an increase or decrease) will not have a substantial impact on normal lower limb functioning during gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    Science.gov (United States)

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P torque (P torque when the cervical and thoracic spines were flexed (P torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    Science.gov (United States)

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  14. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  16. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  17. Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive

    Directory of Open Access Journals (Sweden)

    BRANDSTETTER, P.

    2017-05-01

    Full Text Available The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.

  18. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.

    Science.gov (United States)

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-01-19

    To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, probotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Tibial shaft fracture and ankle injury - Case report

    Directory of Open Access Journals (Sweden)

    Caio Zamboni

    Full Text Available ABSTRACT The authors report on a case of tibial shaft fracture associated with ankle injury. The clinical, radiological and surgical characteristics are discussed. Assessment of associated injuries is often overlooked and these injuries are hard to diagnose. When torque occurs in the lower limb, the ankle becomes susceptible to simultaneous injury. It is essential to make careful assessment based on clinical, radiographic, intraoperative and postoperative characteristics in order to attain functional recovery.

  20. Identification of a parametric, discrete-time model of ankle stiffness.

    Science.gov (United States)

    Guarin, Diego L; Jalaleddini, Kian; Kearney, Robert E

    2013-01-01

    Dynamic ankle joint stiffness defines the relationship between the position of the ankle and the torque acting about it and can be separated into intrinsic and reflex components. Under stationary conditions, intrinsic stiffness can described by a linear second order system while reflex stiffness is described by Hammerstein system whose input is delayed velocity. Given that reflex and intrinsic torque cannot be measured separately, there has been much interest in the development of system identification techniques to separate them analytically. To date, most methods have been nonparametric and as a result there is no direct link between the estimated parameters and those of the stiffness model. This paper presents a novel algorithm for identification of a discrete-time model of ankle stiffness. Through simulations we show that the algorithm gives unbiased results even in the presence of large, non-white noise. Application of the method to experimental data demonstrates that it produces results consistent with previous findings.

  1. Exoskeleton Power and Torque Requirements Based on Human Biomechanics

    National Research Council Canada - National Science Library

    Crowell, Harrison

    2002-01-01

    .... In providing design guidance, the authors had two goals. The first goal was to provide estimates of the angles, torques, and powers for the ankles, knees, and hips of an exoskeleton based on data collected from humans...

  2. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    Science.gov (United States)

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  3. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.

    Science.gov (United States)

    Lee, Jeffrey D; Mooney, Luke M; Rouse, Elliott J

    2017-07-01

    The majority of commercially available passive prosthetic feet are not capable of providing joint mechanics that match that of the intact human ankle. Due to their cantilever design, their stiffness characteristics contrast with what has been observed in the biological ankle, namely, an increase in stiffness during the stance phase of walking. In this paper, we introduce the design and control of a pneumatic foot-ankle prosthesis that attempts to provide biomimetic mechanics. The prosthesis is comprised of a pneumatic cylinder in series with a fiberglass leaf spring, and a solenoid valve to control the flow of air between the two sides of the cylinder. The solenoid valve acts as a mechanical clutch, enabling resetting of the ankle's equilibrium position. By adjusting the pressure inside the cylinder, the prosthesis can be customized to provide a range of ankle mechanics. A mechanical testing machine is used to compare the torque-angle curve of the pneumatic prosthesis with a low-profile passive prosthetic foot. Finally, data are presented of one transtibial amputee walking with the prosthesis at 1.2 m/s. The testing shows that the pneumatic prosthesis is capable of providing an appropriate range of motion as well a maximum torque of 94 Nm, while returning approximately 11.5 J of energy.

  4. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    Science.gov (United States)

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p therapy.

  5. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    orthosis design provided knee torques smaller than the ankle torques due to the trade-off in torque and range of motion that occurs with artificial pneumatic muscles. Future KAFO designs could incorporate cams, gears, or different actuators to transmit greater torque to the knee.

  6. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    provided knee torques smaller than the ankle torques due to the trade-off in torque and range of motion that occurs with artificial pneumatic muscles. Future KAFO designs could incorporate cams, gears, or different actuators to transmit greater torque to the knee. PMID:19549338

  7. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome.

    Science.gov (United States)

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Morishita, Katsuyuki; Ichihashi, Noriaki

    2017-01-01

    A high proportion of flexor digitorum longus attachment is found at the posteromedial border of the tibia, which is the most common location of medial tibial stress syndrome (MTSS). Therefore, plantar flexion strength of the lesser toes could be related to MTSS; however, the relationship between MTSS and muscle strength of the hallux and lesser toes is not yet evaluated due to the lack of quantitative methods. This study investigated the muscle strength characteristics in runners with a history of MTSS by using a newly developed device to measure the muscle strength of the hallux, lesser toes, and ankle. This study comprised 27 collegiate male runner participants (20.0 ± 1.6 years, 172.1 ± 5.1 cm, 57.5 ± 4.0 kg). Maximal voluntary isometric contraction (MVIC) torque of the plantar flexion, dorsiflexion, inversion, and eversion of the ankle were measured by using an electric dynamometer. MVIC torque of the 1st metatarsophalangeal joint (MTPJ) and 2nd-5th MTPJ were measured by using a custom-made torque-measuring device. MVIC torques were compared between runners with and without a history of MTSS. MVIC torque of the 1st MTPJ plantar flexion was significantly higher in runners with a history of MTSS than in those without it. In contrast, there were no significant differences in the MVIC torque values of the 2nd-5th MTPJ plantar flexion and each MVIC torque of the ankle between runners with and without a history of MTSS. A history of MTSS increased the isometric FHL strength.

  8. Peroneal electromechanical delay and fatigue in patients with chronic ankle instability.

    Science.gov (United States)

    Flevas, Dimitrios A; Bernard, Manfred; Ristanis, Stavros; Moraiti, Constantina; Georgoulis, Anastasios D; Pappas, Evangelos

    2017-06-01

    The purpose of this study was to investigate the effect of chronic ankle instability (CAI) on electromechanical delay times (EMD) before and after fatigue. Understanding the mechanisms that contribute to CAI is essential for the development of effective rehabilitation programmes. It was hypothesized that patients with CAI will demonstrate prolonged EMD times compared to healthy subjects and that fatigue will cause greater increases in EMD times in the CAI group. Twenty-one male volunteers participated in the study providing data on 16 ankles with CAI and 26 with no history of ankle injury. EMD was measured on an isokinetic dynamometer. Measurements were taken with the ankle in neutral (0°) and at 30° of inversion. All subjects followed an isokinetic fatigue protocol until eversion torque fell below 50 % of initial torque for three consecutive repetitions. A 2 × 2 × 2 ANOVA was used to calculate the effect of ankle status (CAI vs. healthy), fatigue, angle (0° vs. 30°) and their interactions on EMD. Fatigue caused a significant increase on EMD [non-fatigued: 122(29)ms vs. fatigue 155(54)ms; p ankle status and angle was found (p = 0.026) with CAI ankles demonstrating longer EMD [CAI: 156(45)ms vs. healthy: 133(40)ms] in neutral but not at 30° of inversion [CAI: 133(46)ms vs. 132(33)ms]. Patients with CAI had longer EMD times in neutral, but not when the ankle was placed in inversion. This suggests that rehabilitation programmes may be more effective when retraining occurs with the ankle in neutral position. It is likely that low EMD times prevent ankle acceleration at the beginning of the mechanism of injury, but they are less important when the ankle has already inverted at 30°. Both CAI and healthy subjects demonstrated longer EMD after fatigue, emphasizing the importance of proper conditioning in the prevention of delayed peroneal response and subsequent ankle injury. Improving resistance to fatigue of the peroneals may prove to be an effective

  9. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  10. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  11. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model

    Directory of Open Access Journals (Sweden)

    Shaowei Yao

    2018-04-01

    Full Text Available Various rehabilitation robots have been employed to recover the motor function of stroke patients. To improve the effect of rehabilitation, robots should promote patient participation and provide compliant assistance. This paper proposes an adaptive admittance control scheme (AACS consisting of an admittance filter, inner position controller, and electromyography (EMG-driven musculoskeletal model (EDMM. The admittance filter generates the subject's intended motion according to the joint torque estimated by the EDMM. The inner position controller tracks the intended motion, and its parameters are adjusted according to the estimated joint stiffness. Eight healthy subjects were instructed to wear the ankle exoskeleton robot, and they completed a series of sinusoidal tracking tasks involving ankle dorsiflexion and plantarflexion. The robot was controlled by the AACS and a non-adaptive admittance control scheme (NAACS at four fixed parameter levels. The tracking performance was evaluated using the jerk value, position error, interaction torque, and EMG levels of the tibialis anterior (TA and gastrocnemius (GAS. For the NAACS, the jerk value and position error increased with the parameter levels, and the interaction torque and EMG levels of the TA tended to decrease. In contrast, the AACS could maintain a moderate jerk value, position error, interaction torque, and TA EMG level. These results demonstrate that the AACS achieves a good tradeoff between accurate tracking and compliant assistance because it can produce a real-time response to stiffness changes in the ankle joint. The AACS can alleviate the conflict between accurate tracking and compliant assistance and has potential for application in robot-assisted rehabilitation.

  12. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    Science.gov (United States)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  13. An ankle-foot orthosis powered by artificial pneumatic muscles.

    Science.gov (United States)

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  14. Improvement of Torque Production in Single-Phase Induction Motors

    African Journals Online (AJOL)

    OLUWASOGO

    PID controller. Simulation results show the starting torque of the motor increased by 75% under the developed drive scheme. In addition, torque pulsations reduced from 1.4 Nm peak-peak to 0.14 Nm peak-peak at steady state. It was observed that the accelerating time reduced by 30% compared to the accelerating time ...

  15. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    Science.gov (United States)

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  16. Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle brace application: a biomechanical experimental study.

    Science.gov (United States)

    Kamiya, Tomoaki; Kura, Hideji; Suzuki, Daisuke; Uchiyama, Eiichi; Fujimiya, Mineko; Yamashita, Toshihiko

    2009-12-01

    The roles of each ligament supporting the subtalar joint have not been clarified despite several biomechanical studies. The effects of ankle braces on subtalar instability have not been shown. The ankle brace has a partial effect on restricting excessive motion of the subtalar joint. Controlled laboratory study. Ten normal fresh-frozen cadaveric specimens were used. The angular motions of the talus were measured via a magnetic tracking system. The specimens were tested while inversion and eversion forces, as well as internal and external rotation torques, were applied. The calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament were sectioned sequentially, and the roles of each ligament, as well as the stabilizing effects of the ankle brace, were examined. Complete sectioning of the ligaments increased the angle between the talus and calcaneus in the frontal plane to 51.7 degrees + or - 11.8 degrees compared with 35.7 degrees + or - 6.0 degrees in the intact state when inversion force was applied. There was a statistically significant difference in the angles between complete sectioning of the ligaments and after application of the brace (34.1 degrees + or - 7.3 degrees ) when inversion force was applied. On the other hand, significant differences in subtalar rotation were not found between complete sectioning of the ligaments and application of the brace when internal and external rotational torques were applied. The ankle brace limited inversion of the subtalar joint, but it did not restrict motion after application of internal or external rotational torques. In cases of severe ankle sprains involving the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament injuries, application of an ankle brace might be less effective in limiting internal-external rotational instabilities than in cases of inversion instabilities in the subtalar joint. An improvement in the design of the brace is needed to restore

  17. Muscle recruitment and coordination with an ankle exoskeleton.

    Science.gov (United States)

    Steele, Katherine M; Jackson, Rachel W; Shuman, Benjamin R; Collins, Steven H

    2017-07-05

    Exoskeletons have the potential to assist and augment human performance. Understanding how users adapt their movement and neuromuscular control in response to external assistance is important to inform the design of these devices. The aim of this research was to evaluate changes in muscle recruitment and coordination for ten unimpaired individuals walking with an ankle exoskeleton. We evaluated changes in the activity of individual muscles, cocontraction levels, and synergistic patterns of muscle coordination with increasing exoskeleton work and torque. Participants were able to selectively reduce activity of the ankle plantarflexors with increasing exoskeleton assistance. Increasing exoskeleton net work resulted in greater reductions in muscle activity than increasing exoskeleton torque. Patterns of muscle coordination were not restricted or constrained to synergistic patterns observed during unassisted walking. While three synergies could describe nearly 95% of the variance in electromyography data during unassisted walking, these same synergies could describe only 85-90% of the variance in muscle activity while walking with the exoskeleton. Synergies calculated with the exoskeleton demonstrated greater changes in synergy weights with increasing exoskeleton work versus greater changes in synergy activations with increasing exoskeleton torque. These results support the theory that unimpaired individuals do not exclusively use central pattern generators or other low-level building blocks to coordinate muscle activity, especially when learning a new task or adapting to external assistance, and demonstrate the potential for using exoskeletons to modulate muscle recruitment and coordination patterns for rehabilitation or performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  19. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.

    Science.gov (United States)

    Tarler, Matthew D; Mortimer, J Thomas

    2003-09-01

    Using a self-sizing spiral-cuff electrode placed on the sciatic nerve of the cat, the joint torque evoked with stimulation applied to contacts in a monopolar configuration was judged to be the same as the torque evoked by stimulation applied to contacts in a tripolar configuration. Experiments were carried out in six acute cat preparations. In each experiment, a 12-contact electrode was placed on the sciatic nerve and used to effect both the monopolar and tripolar electrode configurations. The ankle torque produced by electrically evoked isometric muscle contraction was measured in three dimensions: plantar flexion, internal rotation, and inversion. Based on the recorded ankle torque, qualitative and quantitative comparisons were performed to determine if any significant difference existed in the pattern or order in which motor nerve fibers were recruited. No significant difference was found at a 98% confidence interval in either the recruitment properties or the repeatability of the monopolar and tripolar configurations. Further, isolated activation of single fascicles within the sciatic nerve was observed. Once nerve fibers in a fascicle were activated, recruitment of that fascicle was modulated over the full range before "spill-over" excitation occurred in neighboring fascicles. These results indicate that a four contact, monopolar nerve-cuff electrode is a viable substitute for a 12 contact, tripolar nerve-cuff electrode. The results of this study are also consistent with the hypothesis that multicontact self-sizing spiral-cuff electrodes can be used in motor prostheses to provide selective control of many muscles. These findings should also apply to other neuroprostheses employing-cuff electrodes on nerve trunks.

  20. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  2. Model-Based Estimation of Ankle Joint Stiffness

    Directory of Open Access Journals (Sweden)

    Berno J. E. Misgeld

    2017-03-01

    Full Text Available We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  3. Model-Based Estimation of Ankle Joint Stiffness.

    Science.gov (United States)

    Misgeld, Berno J E; Zhang, Tony; Lüken, Markus J; Leonhardt, Steffen

    2017-03-29

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model's inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  4. Model-Based Estimation of Ankle Joint Stiffness

    Science.gov (United States)

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  5. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.

    Science.gov (United States)

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2017-09-01

    This paper describes a new small signal parametric model of ankle joint intrinsic mechanics in normal subjects. We found that intrinsic ankle mechanics is a third-order system and the second-order mass-spring-damper model, referred to as IBK, used by many researchers in the literature cannot adequately represent ankle dynamics at all frequencies in a number of important tasks. This was demonstrated using experimental data from five healthy subjects with no voluntary muscle contraction and at seven ankle positions covering the range of motion. We showed that the difference between the new third-order model and the conventional IBK model increased from dorsi to plantarflexed position. The new model was obtained using a multi-step identification procedure applied to experimental input/output data of the ankle joint. The procedure first identifies a non-parametric model of intrinsic joint stiffness where ankle position is the input and torque is the output. Then, in several steps, the model is converted into a continuous-time transfer function of ankle compliance, which is the inverse of stiffness. Finally, we showed that the third-order model is indeed structurally consistent with agonist-antagonist musculoskeletal structure of human ankle, which is not the case for the IBK model.

  6. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    Science.gov (United States)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  7. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    Science.gov (United States)

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  8. Experiments of steady state head and torque of centrifugal pumps in two-phase flow

    International Nuclear Information System (INIS)

    Minato, Akihiko; Tominaga, Kenji.

    1988-01-01

    Circulation pump behavior has large effect on coolant discharge flow rate in case of reactor pipe break. Experiment of two-phase pump performance was conducted as a joint study of Japanese BWR user utilities and makers. Two-phase head and torque of three centrifugal pumps in high temperature and high pressure (around 6 MPa) steam/water were measured. Head was decreased from single-phase characteristics when gas was mixed in liquid flow in condition with normal flow and normal rotation directions. When flow rate was large enough, two-phase head was about the same as single-phase one in reversal flow conditions. Two-phase head was smoothly increased as flowing steam volumetic concentration increased when flow rate was small and flow direction was reversal. Changes of torque with gas concentration were correspondent to those of head. This suggested that changes of interaction between flow and impellers due to phase slip effected on torque which caused head differences between single- and two-phase flows. Dependence of dimensionless head and torque of three test pumps on steam concentration were almost the same as each other. (author)

  9. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    Science.gov (United States)

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  10. Recycling energy to restore impaired ankle function during human walking.

    Directory of Open Access Journals (Sweden)

    Steven H Collins

    Full Text Available BACKGROUND: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is necessary for steady gait, in which mechanical energy is constant on average, external dissipation is negligible, and no net work is performed over a stride. However, dissipation and replacement by muscles might not be necessary if energy were instead captured and reused by an assistive device. METHODOLOGY/PRINCIPAL FINDINGS: We developed a microprocessor-controlled artificial foot that captures some of the energy that is normally dissipated by the leg and "recycles" it as positive ankle work. In tests on subjects walking with an artificially-impaired ankle, a conventional prosthesis reduced ankle push-off work and increased net metabolic energy expenditure by 23% compared to normal walking. Energy recycling restored ankle push-off to normal and reduced the net metabolic energy penalty to 14%. CONCLUSIONS/SIGNIFICANCE: These results suggest that reduced ankle push-off contributes to the increased metabolic energy expenditure accompanying ankle impairments, and demonstrate that energy recycling can be used to reduce such cost.

  11. EFFECT OF SPEED VARITION AND STRETCH-SHORTENING CYCLE ON LOWER MUSCLES ACTIVITY AND JOINT TORQUE DURING PARALLEL SQUAT

    OpenAIRE

    真鍋, 芳明; 横澤, 俊治; 島田, 一志; 尾縣, 貢

    2004-01-01

    The purpose of this study was to compare joint torque and the activity pattern of eight muscles crossing the ankle, knee and hip joints during three kinds of squats with different speeds (Slow, Normal, Quick). Ten male athletes performed squats at three different speeds. Variables such as net torque and power about the joint were calculated during the descending and ascending phase of each squat. At the same time, surface electrodes were placed over the eight lower extremity muscles,.and %iEM...

  12. Subspace methods for identification of human ankle joint stiffness.

    Science.gov (United States)

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  13. Understanding acute ankle ligamentous sprain injury in sports

    Directory of Open Access Journals (Sweden)

    Fong Daniel TP

    2009-07-01

    Full Text Available Abstract This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms. Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms. The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative

  14. Arthroscopic suture anchor repair of the lateral ligament ankle complex: a cadaveric study.

    Science.gov (United States)

    Giza, Eric; Shin, Edward C; Wong, Stephanie E; Acevedo, Jorge I; Mangone, Peter G; Olson, Kirstina; Anderson, Matthew J

    2013-11-01

    Operative treatment of mechanical ankle instability is indicated for patients with multiple sprains and continued episodes of instability. Open repair of the lateral ankle ligaments involves exposure of the attenuated ligaments and advancement back to their anatomic insertions on the fibula using bone tunnels or suture implants. Open and arthroscopic fixation are equal in strength to failure for anatomic Broström repair. Controlled laboratory study. Seven matched pairs of human cadaveric ankle specimens were randomized into 2 groups of anatomic Broström repair: open or arthroscopic. The calcaneofibular ligament and anterior talofibular ligament were excised from their origin on the fibula. In the open repair group, 2 suture anchors were used to reattach the ligaments to their anatomic origins. In the arthroscopic repair group, identical suture anchors were used for repair via an arthroscopic technique. The ligaments were cyclically loaded 20 times and then tested to failure. Torque to failure, degrees to failure, initial stiffness, and working stiffness were measured. A matched-pair analysis was performed. Power analysis of 0.8 demonstrated that 7 pairs needed to show a difference of 30%, with a 15% standard error at a significance level of α = .05. There was no difference in the degrees to failure, torque to failure, or stiffness for the repaired ligament complex. Nine of 14 specimens failed at the suture anchor. There is no statistical difference in strength or stiffness of a traditional open repair as compared with an arthroscopic anatomic repair of the lateral ligaments of the ankle. An arthroscopic technique can be considered for lateral ligament stabilization in patients with mild to moderate mechanical instability.

  15. Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living.

    Science.gov (United States)

    Argunsah Bayram, Hande; Bayram, Mehmed B

    2018-03-30

    Exploring ankle joint physiologic functional stiffness is crucial for improving the design of prosthetic feet that aim to mimic normal gait. We hypothesized that ankle joint stiffness would vary among the different activities of daily living and that the magnitude of the stiffness would indicate the degree of energy storage element sufficiency in terms of harvesting and returning energy. We examined sagittal plane ankle moment versus flexion angle curves from 12 healthy subjects during the daily activities. The slopes of these curves were assessed to find the calculated stiffness during the peak energy return and harvest phases. For the energy return and harvest phases, stiffness varied from 0.016 to 0.283 Nm/kg° and 0.025 and 0.858 Nm/kg°, respectively. The optimum stiffness during the energy return phase was 0.111 ± 0.117 Nm/kg° and during the energy harvest phase was 0.234 ± 0.327 Nm/kg°. Ankle joint stiffness varied significantly during the activities of daily living, indicating that an energy storage unit with a constant stiffness would not be sufficient in providing energy regenerative gait during all activities. The present study was directed toward the development of a complete data set to determine the torque-angle properties of the ankle joint to facilitate a better design process. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects

    Directory of Open Access Journals (Sweden)

    Qing Miao

    2018-01-01

    Full Text Available This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”. The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.

  17. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  18. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    Science.gov (United States)

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability.

    Science.gov (United States)

    Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner

    2007-05-01

    The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p isokinetic exercise program used in this study had a positive effect on these parameters.

  20. The effect of isokinetic and proprioception training on strength, movement and gait parameters after acute supination injury of the ankle ligaments

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2009-01-01

    Full Text Available The effects of a three-week isokinetic training compared to typical proprio -ceptive training on parameters of strength, movement and gait function after acute ankle ligament sprain were investigated. Thirty-nine patients were randomly allocated to two comparison groups. In group 1 (n=20a proprioceptive training and in group 2 (n=19 an isokinetic strength training (Cybex 6000® were administered. Thepatients of both groups underwent training five times a week for three weeks. Before and at the end of the treatmentcourse, in both groups isokinetic strength was tested, the range of motion in the ankle joint was recorded and gait wasanalyzed (multicomponent strength measurement platform, Henschel-System®. The maximum isokinetic torque(60°/s [Nm] and the contact time (monopedal support time of the injured leg during gait cycle were the basis for evaluation.The data obtained show that in group 2 a significantly greater increase of the maximum isokinetic torque wasattained in almost all range of motion of the ankle joint in the course of treatment. A t the same time, in group 2 theshortening of the contact time in the stance phase of the injured leg could be compensated. The active range of motionin the ankle joint was less at the end of treatment in group 2 than in group 1. The isokinetic training obviously did notonly lead to better strength regeneration, but also to a functionally more stable ankle joint with a rhythmically moreevenly balanced stance phase of the gait cycle.  These results suggest that the used isokinetic training had positive effects on functional stability after acute ankle sprain.

  1. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    Science.gov (United States)

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  2. Design of a Robotic Ankle Joint for a Microspine-Based Robot

    Science.gov (United States)

    Thatte, Nitish

    2011-01-01

    Successful robotic exploration of near-Earth asteroids necessitates a method of securely anchoring to the surface of these bodies without gravitational assistance. Microspine grip- per arrays that can grasp rock faces are a potential solution to this problem. A key component of a future microspine-based rover will be the ankle used to attach each microspine gripper to the robot. The ankle's purpose is twofold: 1) to allow the gripper to conform to the rock so a higher percentage of microspines attach to the surface, and 2) to neutralize torques that may dislodge the grippers from the wall. Parts were developed using computer aided design and manufactured using a variety of methods including selective laser sintering, CNC milling, and traditional manual machining techniques. Upon completion of the final prototype, the gripper and ankle system was tested to demonstrate robotic engagement and disengagement of the gripper and to determine load bearing ability. The immediate application of this project is to out t the Lemur IIb robot so it can climb and hang from rock walls.

  3. Orthopedic rehabilitation using the "Rutgers ankle" interface.

    Science.gov (United States)

    Girone, M; Burdea, G; Bouzit, M; Popescu, V; Deutsch, J E

    2000-01-01

    A novel ankle rehabilitation device is being developed for home use, allowing remote monitoring by therapists. The system will allow patients to perform a variety of exercises while interacting with a virtual environment (VE). These game-like VEs created with WorldToolKit run on a host PC that controls the movement and output forces of the device via an RS232 connection. Patients will develop strength, flexibility, coordination, and balance as they interact with the VEs. The device will also perform diagnostic functions, measuring the ankle's range of motion, force exertion capabilities and coordination. The host PC transparently records patient progress for remote evaluation by therapists via our existing telerehabilitation system. The "Rutgers Ankle" Orthopedic Rehabilitation Interface uses double-acting pneumatic cylinders, linear potentiometers, and a 6 degree-of-freedom (DOF) force sensor. The controller contains a Pentium single-board computer and pneumatic control valves. Based on the Stewart platform, the device can move and supply forces and torques in 6 DOFs. A proof-of-concept trial conducted at the University of Medicine and Dentistry of New Jersey (UMDNJ) provided therapist and patient feedback. The system measured the range of motion and maximum force output of a group of four patients (male and female). Future medical trials are required to establish clinical efficacy in rehabilitation.

  4. Ankle arthroscopy

    Science.gov (United States)

    Ankle surgery; Arthroscopy - ankle; Surgery - ankle - arthroscopy; Surgery - ankle - arthroscopic ... Arthroscopy may be recommended for these ankle problems: Ankle pain. Arthroscopy allows the surgeon to explore what ...

  5. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    Science.gov (United States)

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, pankles exhibited significantly lower viscosity (pankle instability (pankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (pankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Persistence of long term isokinetic strength deficits in subjects with lateral ankle sprain as measured with a protocol including maximal preloading.

    Science.gov (United States)

    Perron, Marc; Moffet, Hélène; Nadeau, Sylvie; Hébert, Luc J; Belzile, Sylvain

    2014-12-01

    The assessment of muscle function is a cornerstone in the management of subjects who have sustained a lateral ankle sprain. The ankle range of motion being relatively small, the use of preloading allows to measure maximal strength throughout the whole amplitude and therefore to better characterize ankle muscles weaknesses. This study aimed to assess muscle strength of the injured and uninjured ankles in subjects with a lateral ankle sprain, to document the timeline of strength recovery, and to determine the influence of sprain grade on strength loss. Maximal torque of the periarticular muscles of the ankle in a concentric mode using a protocol with maximal preloading was tested in 32 male soldiers at 8 weeks and 6 months post-injury. The evertor muscles of the injured ankles were weaker than the uninjured ones at 8 weeks and 6 months post-injury (Pankles at 8 weeks (P=0.0014, effect size=0.52-0.58) while at 6 months, only the subjects with a grade II sprain displayed such weaknesses (Pankle sprain in very active individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

    Science.gov (United States)

    Takahashi, Kota Z; Stanhope, Steven J

    2013-09-01

    Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  9. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  10. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  11. An MR-compatible device for the in situ assessment of isometric contractile performance of mouse hind-limb ankle flexors.

    NARCIS (Netherlands)

    Drost, M.R.; Heemskerk, A.M.; Strijkers, G.J.; Dekkers, E.C.A.; Kranenburg, van G.; Nicolaij, K.

    2003-01-01

    The goal of the present study was to develop and evaluate an isometric dynamometer for measuring mouse ankle flexor torque after electric stimulation of the nerve. The dynamometer was to be used within an magnetic resonance (MR) apparatus and should require minimal surgical intervention. To quantify

  12. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  13. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  15. Evidence for forcing-dependent steady states in a turbulent swirling flow.

    Science.gov (United States)

    Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F

    2013-12-06

    We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.

  16. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... Ankle replacement surgery is most often done while you are under general anesthesia. This means you will ...

  17. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Domingo Antoinette

    2006-02-01

    Full Text Available Abstract Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s under three conditions: without wearing orthoses, wearing orthoses unpowered (passively, and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without

  18. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  19. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  20. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  1. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

    Science.gov (United States)

    Sprigle, Stephen; Huang, Morris

    2015-01-01

    Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

  2. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  3. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  4. Ankle instability

    NARCIS (Netherlands)

    Krips, Rover; de Vries, Jasper; van Dijk, C. Niek

    2006-01-01

    The ankle joint is the most congruent joint of the human body. Stability is provided by the bony configuration of the ankle mortise and the talar dome and by the ankle ligaments. During ankle motions, rotation and translation around and along the movement axes occur. Soft tissue stability is

  5. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  6. Syndesmotic ankle sprain.

    Science.gov (United States)

    Childs, Sharon G

    2012-01-01

    Ankle sprain injuries are the most common type of joint sprain. The prevalence of ankle joint sprains accounts for 21% of joint injuries in the body. Although somewhat rare, high-ankle or syndesmotic ankle sprains occur in up to 15% of ankle trauma. This article will present the pathomechanics of the high-ankle or syndesmotic sprain.

  7. Ankle sprain (image)

    Science.gov (United States)

    An ankle sprain is a common injury to the ankle. The most common way the ankle is injured is when ... swelling, inflammation, and bruising around the ankle. An ankle sprain injury may take a few weeks to many ...

  8. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    2017-01-01

    Full Text Available Objective. This study aims to establish a steady-state visual evoked potential- (SSVEP- based passive training protocol on an ankle rehabilitation robot and validate its feasibility. Method. This paper combines SSVEP signals and the virtual reality circumstance through constructing information transmission loops between brains and ankle robots. The robot can judge motion intentions of subjects and trigger the training when subjects pay their attention on one of the four flickering circles. The virtual reality training circumstance provides real-time visual feedback of ankle rotation. Result. All five subjects succeeded in conducting ankle training based on the SSVEP-triggered training strategy following their motion intentions. The lowest success rate is 80%, and the highest one is 100%. The lowest information transfer rate (ITR is 11.5 bits/min when the biggest one of the robots for this proposed training is set as 24 bits/min. Conclusion. The proposed training strategy is feasible and promising to be combined with a robot for ankle rehabilitation. Future work will focus on adopting more advanced data process techniques to improve the reliability of intention detection and investigating how patients respond to such a training strategy.

  9. Ankle sprain - aftercare

    Science.gov (United States)

    Lateral ankle sprain - aftercare; Medial ankle sprain - aftercare; Medial ankle injury - aftercare; Ankle syndesmosis sprain - aftercare; Syndesmosis injury - aftercare; ATFL injury - aftercare; CFL injury - ...

  10. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  11. Quasi-Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity

    Science.gov (United States)

    2016-09-01

    10 Fig. 5 Pitching-moment coefficient for BF comparing dα variation to steady-state results, CFL = 10 and N = 50...11 Fig. 6 Roll-torque coefficient for BF comparing dα variation to steady-state results, CFL = 10 and N = 50...compute the flow solution. The Goldberg 3-equation k-ε-Rt turbulence model ( Goldberg et. al. 1998) was implemented in this study based on the findings

  12. Ankle Sprains

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Ankle Sprains KidsHealth / For Teens / Ankle Sprains What's in this ... How Do I Know if I Have a Sprain? If your ankle hurts enough after an injury that you need ...

  13. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    Science.gov (United States)

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Evaluation of the lambda model for human postural control during ankle strategy.

    Science.gov (United States)

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  15. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  16. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  17. Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets

    Directory of Open Access Journals (Sweden)

    Ogbuka Cosmas

    2016-03-01

    Full Text Available A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM. With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90° to 180° torque angle.

  18. Comparison Between a Reference Torque Standard Machine and a Deadweight Torque Standard Machine to BE Used in Torque Calibration

    Science.gov (United States)

    Meng, Feng; Zhang, Zhimin; Lin, Jing

    The paper describes the reference torque standard machine with high accuracy and multifunction, developed by our institute, and introduces the structure and working principle of this machine. It has three main functions. The first function is the hydraulic torque wrench calibration function. The second function is torque multiply calibration function. The third function is reference torque standard machine function. We can calibrate the torque multipliers, hydraulic wrenches and transducers by this machine. A comparison experiment has been done between this machine and a deadweight torque standard machine. The consistency between the 30 kNm reference torque machine and the 2000 Nm dead-weight torque standard machine under the claimed uncertainties was verified.

  19. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    Science.gov (United States)

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  20. All-inside arthroscopic modified Broström operation for chronic ankle instability: a biomechanical study.

    Science.gov (United States)

    Lee, Kyung Tai; Kim, Eung Soo; Kim, Young Ho; Ryu, Je Seong; Rhyu, Im Joo; Lee, Young Koo

    2016-04-01

    The all-inside arthroscopic modified Broström operation has been developed for lateral ankle instability. We compared the biomechanical parameters of the all-inside arthroscopic procedure to the open modified Broström operation. Eleven matched pairs of human cadaver specimens [average age 71.5 (range 58-98) years] were subject to the arthroscopic modified Broström operation using a suture anchor and the open modified Broström operation. The ligaments were loaded cyclically 20 times and then tested to failure. Torque to failure, degrees to failure, and stiffness were measured. A matched-pair analysis was performed. There was no significant difference in torque to failure between the open and arthroscopic modified Broström operation (19.9 ± 8.9 vs. 23.3 ± 12.1 Nm, n.s). The degrees to failure did not differ significantly between the open and arthroscopic modified Broström operations (46.8 ± 9.9° vs. 46.7 ± 7.6°, n.s). The working construct stiffness (or stiffness to failure) was no significant difference in the two groups (0.438 ± 0.21 vs. 0.487 ± 0.268 Nm/deg for the open and arthroscopic modified Broström operations, respectively, n.s). The all-inside arthroscopic modified Broström operation and the open modified Broström operation resulted in no significantly different torque to failure, degrees to failure, and working construct stiffness with no significant differences (n.s, n.s, and n.s, respectively). Our results indicate that the arthroscopic modified Broström operation is a reasonable alternative procedure for chronic ankle instability.

  1. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    Science.gov (United States)

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of Elastic Bandage and Neoprene Ankle Support on Ankle Position Sense and Pain in Subjects with Ankle Sprain (Grade I & II

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2004-06-01

    Full Text Available Objective: to investigate whether a neoprene ankle support and elastic bandage around the ankle joint of subjects with ankle sprain (grade I&II would , in short term (a reduce pain (b improve ankle joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (16men, 14 women, age between 16-52 with ankle sprain grade I&II. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of ankle pain for study entry. All patients were randomly assigned to either an elastic bandage or a neoprene ankle support. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. ankle pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene ankle support application. Results: the mean of scores for ankle variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene ankle support had significant effect on ankle JPS (P=0.034. But elastic bandage had no effect (P=0.539. Both of them had significantly reduced ankle pain. (P=0.000  Conclusion: In subjects with both neoprene ankle support and elastic bandage reduced ankle pain with more effect of neoprene ankle support. Only the neoprene ankle support had effect on knee JPS.

  3. Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.

    Science.gov (United States)

    Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty

    2017-08-01

    Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.

  4. Ankle Joint Contact Loads and Displacement With Progressive Syndesmotic Injury.

    Science.gov (United States)

    Hunt, Kenneth J; Goeb, Yannick; Behn, Anthony W; Criswell, Braden; Chou, Loretta

    2015-09-01

    Ligamentous injuries to the distal tibiofibular syndesmosis are predictive of long-term ankle dysfunction. Mild and moderate syndesmotic injuries are difficult to stratify, and the impact of syndesmosis injury on the magnitude and distribution of forces within the ankle joint during athletic activities is unknown. Eight below-knee cadaveric specimens were tested in the intact state and after sequential sectioning of the following ligaments: anterior-inferior tibiofibular, anterior deltoid (1 cm), interosseous/transverse (IOL/TL), posterior-inferior tibiofibular, and whole deltoid. In each condition, specimens were loaded in axial compression to 700 N and then externally rotated to 20 N·m torque. During axial loading and external rotation, both the fibula and the talus rotated significantly after each ligament sectioning as compared to the intact condition. After IOL/TL release, a significant increase in posterior translation of the fibula was observed, although no syndesmotic widening was observed. Mean tibiotalar contact pressure increased significantly after IOL/TL release, and the center of pressure shifted posterolaterally, relative to more stable conditions, after IOL/TL release. There were significant increases in mean contact pressure and peak pressure along with a reduction in contact area with axial loading and external rotation as compared to axial loading alone for all 5 conditions. Significant increases in tibiotalar contact pressures occur when external rotation stresses are added to axial loading. Moderate and severe injuries are associated with a significant increase in mean contact pressure combined with a shift in the center of pressure and rotation of the fibula and talus. Considerable changes in ankle joint kinematics and contact mechanics may explain why moderate syndesmosis injuries take longer to heal and are more likely to develop long-term dysfunction and, potentially, ankle arthritis. © The Author(s) 2015.

  5. Dynamic ankle control in athletes with ankle instability during sports maneuvers.

    Science.gov (United States)

    Lin, Cheng-Feng; Chen, Chin-Yang; Lin, Chia-Wei

    2011-09-01

    Ankle sprain is a common sports injury. While the effects of static constraints in stabilizing the ankle joint are relatively well understood, those of dynamic constraints are less clear and require further investigation. This study was undertaken to evaluate the dynamic stability of the ankle joint during the landing phase of running and stop-jump maneuvers in athletes with and without chronic ankle instability (CAI). Controlled laboratory study. Fifteen athletes with CAI and 15 age-matched athletes without CAI performed running and stop-jump landing tasks. The dynamic ankle joint stiffness, tibialis anterior (TA)/peroneus longus (PL) and TA/gastrocnemius lateralis (GL) co-contraction indices, ankle joint angle, and root-mean-square (RMS) of the TA, PL, and GL electromyographic signals were measured during each task. During running, the CAI group exhibited a greater ankle inversion angle than the control group in the pre-landing phase (P = .012-.042) and a lower dynamic ankle joint stiffness in the post-landing phase (CAI: 0.109 ± 0.039 N·m/deg; control: 0.150 ± 0.068 N·m/deg; P = .048). In the stop-jump landing task, athletes with CAI had a significantly lower TA/PL co-contraction index during the pre-landing phase (CAI: 49.1 ± 19; control: 64.8 ± 16; P = .009). In addition, the CAI group exhibited a greater ankle inversion (P = .049), a lower peak eversion (P = .04), and a smaller RMS of the PL electromyographic signal in the post-landing phase (CAI: 0.73 ± 0.32; control: 0.51 ± 0.22; P = .04). Athletes with CAI had a relatively inverted ankle, reduced muscle co-contraction, and a lower dynamic stiffness in the ankle joint during the landing phase of sports maneuvers and this may jeopardize the stability of the ankle. Sports training or rehabilitation programs should differentiate between the pre-landing and post-landing phases of sports maneuvers, and should educate athletes to land with an appropriate ankle position and muscle recruitment.

  6. A novel steady state wind turbine simulator using an inverter controlled induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Kojabadi, H.M.; Liuchen Chang

    2005-07-01

    This paper presents a new wind turbine simulator for steady state conditions. In order to provide a test platform for wind turbine drive trains, the authors have developed an experimental system to simulate the static characteristics of real wind turbines. This system consists of a 10 hp induction motor (IM), which drives a synchronous generator and is driven by a 10 kW variable-speed drive inverter, and real time control software. A microcontroller, a PC interfaced to a LAB Windows I/O board, and an IGBT inverter-controlled induction motor are used instead of a real wind turbine to supply shaft torque. A control program written in the C language is developed that obtains wind profiles and, by using turbine characteristics and the rotational speed of the IM, calculates the theoretical shaft torque of a real wind turbine. Based on the comparison of the measured torque with this demand torque, the shaft torque of the IM is regulated accordingly by controlling stator current demand and frequency demand of an inverter. In this way, the relationships between shaft rotating speed, shaft torque of the IM and wind speed are made to conform to the characteristics of a real wind turbine. The drive is controlled using the measured shaft torque directly, instead of estimating it as conventional drives do. (author)

  7. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...

  8. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    Science.gov (United States)

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  9. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series.

    Science.gov (United States)

    Burdea, Grigore C; Cioi, Daniel; Kale, Angad; Janes, William E; Ross, Sandy A; Engsberg, Jack R

    2013-03-01

    The objective of this study was to investigate the feasibility of game-based robotic training of the ankle in children with cerebral palsy (CP). The design was a case study, 12 weeks intervention, with no follow-up. The setting was a university research laboratory. The participants were a referred sample of three children with cerebral palsy, age 7-12, all male. All completed the intervention. Participants trained on the Rutgers Ankle CP system for 36 rehabilitation sessions (12 weeks, three times/week), playing two custom virtual reality games. The games were played while participants were seated, and trained one ankle at-a-time for strength, motor control, and coordination. The primary study outcome measures were for impairment (DF/PF torques, DF initial contact angle and gait speed), function (GMFM), and quality of life (Peds QL). Secondary outcome measures relate to game performance (game scores as reflective of ankle motor control and endurance). Gait function improved substantially in ankle kinematics, speed and endurance. Overall function (GMFM) indicated improvements that were typical of other ankle strength training programs. Quality of life increased beyond what would be considered a minimal clinical important difference. Game performance improved in both games during the intervention. This feasibility study supports the assumption that game-based robotic training of the ankle benefits gait in children with CP. Game technology is appropriate for the age group and was well accepted by the participants. Additional studies are needed however, to quantify the level of benefit and compare the approach presented here to traditional methods of therapy.

  10. Influence of ankle joint plantarflexion and dorsiflexion on lateral ankle sprain: A computational study.

    Science.gov (United States)

    Purevsuren, Tserenchimed; Kim, Kyungsoo; Batbaatar, Myagmarbayar; Lee, SuKyoung; Kim, Yoon Hyuk

    2018-05-01

    Understanding the mechanism of injury involved in lateral ankle sprain is essential to prevent injury, to establish surgical repair and reconstruction, and to plan reliable rehabilitation protocols. Most studies for lateral ankle sprain posit that ankle inversion, internal rotation, and plantarflexion are involved in the mechanism of injury. However, recent studies indicated that ankle dorsiflexion also plays an important role in the lateral ankle sprain mechanism. In this study, the contributions of ankle plantarflexion and dorsiflexion on the ankle joint were evaluated under complex combinations of internal and inversion moments. A multibody ankle joint model including 24 ligaments was developed and validated against two experimental cadaveric studies. The effects of ankle plantarflexion (up to 60°) and dorsiflexion (up to 30°) on the lateral ankle sprain mechanism under ankle inversion moment coupled with internal rotational moment were investigated using the validated model. Lateral ankle sprain injuries can occur during ankle dorsiflexion, in which the calcaneofibular ligament and anterior talofibular ligament tears may occur associated with excessive inversion and internal rotational moment, respectively. Various combinations of inversion and internal moment may lead to anterior talofibular ligament injuries at early ankle plantarflexion, while the inversion moment acts as a primary factor to tear the anterior talofibular ligament in early plantarflexion. It is better to consider inversion and internal rotation as primary factors of the lateral ankle sprain mechanism, while plantarflexion or dorsiflexion can be secondary factor. This information will help to clarify the lateral ankle sprain mechanism of injury.

  11. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  12. Ankle Sprain Treatment

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Ankle Sprain Treatment Page Content Article Body Acute ankle and ... Pediatrics summarizing the treatment phases of rehabilitation for ankle sprain. Phase Summary Description I Phase I treatment involves ...

  13. Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2018-01-01

    Full Text Available Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous research, including the distribution of the electromagnetic field and torque output, and particularly the relationship between them. In addition, conventional studies of hydraulic torque motors generally assume an evenly distributed magnetic flux field and ignore the influence of special mechanical geometry in the air gaps, which may compromise the accuracy of analyzing the result and the high-precision motion control performance. Therefore, the objective of this study is to conduct a detailed analysis of the distribution of the magnetic field and torque output; the influence of limiting holes in the air gaps is considered to improve the accuracy of both numerical computation and analytical modeling. The structure and working principle of the torque motor are presented first. The magnetic field distribution in the air gaps and the magnetic saturation in the iron blocks are analyzed by using a numerical approach. Subsequently, the torque generation with respect to the current input and assembly errors is analyzed in detail. This shows that the influence of limiting holes on the magnetic field is consistent with that on torque generation. Following this, a novel modified equivalent magnetic circuit is proposed to formulate the torque output of the hydraulic torque motor analytically. The comparison among the modified equivalent magnetic circuit, the conventional modeling approach and the numerical computation is conducted, and it is found that the proposed method helps to improve the modeling accuracy by taking into account the effect of special geometry inside the air gaps.

  14. A Novel Design for Adjustable Stiffness Artificial Tendon for the Ankle Joint of a Bipedal Robot: Modeling & Simulation

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2015-12-01

    Full Text Available Bipedal humanoid robots are expected to play a major role in the future. Performing bipedal locomotion requires high energy due to the high torque that needs to be provided by its legs’ joints. Taking the WABIAN-2R as an example, it uses harmonic gears in its joint to increase the torque. However, using such a mechanism increases the weight of the legs and therefore increases energy consumption. Therefore, the idea of developing a mechanism with adjustable stiffness to be connected to the leg joint is introduced here. The proposed mechanism would have the ability to provide passive and active motion. The mechanism would be attached to the ankle pitch joint as an artificial tendon. Using computer simulations, the dynamical performance of the mechanism is analytically evaluated.

  15. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    Science.gov (United States)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  16. Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-02-10

    Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.

  17. LATERAL ANKLE INJURY

    OpenAIRE

    Pollard, Henry; Sim, Patrick; McHardy, Andrew

    2002-01-01

    Background: Injury to the ankle joint is the most common peripheral joint injury. The sports that most commonly produce high ankle injury rates in their participating athletes include: basketball, netball, and the various codes of football. Objective: To provide an up to date understanding of manual therapy relevant to lateral ligament injury of the ankle. A discussion of the types of ligament injury and common complicating factors that present with lateral ankle pain is presented along with ...

  18. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    Science.gov (United States)

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  19. Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking.

    Science.gov (United States)

    Kahn, Michelle; Williams, Gavin

    2015-02-01

    The aim of this study was to investigate the relationship between a clinical test of ankle plantarflexor strength and ankle power generation (APG) at push-off during walking. This is a prospective cross-sectional study of 102 patients with traumatic brain injury. Handheld dynamometry was used to measure ankle plantarflexor strength. Three-dimensional gait analysis was performed to quantify ankle power generation at push-off during walking. Ankle plantarflexor strength was only moderately correlated with ankle power generation at push-off (r = 0.43, P < 0.001; 95% confidence interval, 0.26-0.58). There was also a moderate correlation between ankle plantarflexor strength and self-selected walking velocity (r = 0.32, P = 0.002; 95% confidence interval, 0.13-0.48). Handheld dynamometry measures of ankle plantarflexor strength are only moderately correlated with ankle power generation during walking. This clinical test of ankle plantarflexor strength is a poor predictor of calf muscle function during gait in people with traumatic brain injury.

  20. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  1. Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems

    Directory of Open Access Journals (Sweden)

    R. Obreja

    2011-01-01

    Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.

  2. The effects of total ankle replacement on ankle joint mechanics during walking

    Directory of Open Access Journals (Sweden)

    Henry Wang

    2017-09-01

    Conclusion: Three months after surgeries, the STAA patients experienced improvements in ankle function and gait parameters. The STAA ankle demonstrated improved ankle mechanics during daily activities such as walking.

  3. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A Three-Month Study with Proprioceptive Neuromuscular Facilitation

    Directory of Open Access Journals (Sweden)

    Zhihao Zhou

    2016-11-01

    Full Text Available In this paper, we aim to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle-foot Rehabilitation System (RARS. A modified robot-assisted system was proposed and seven post-stroke patients with hemiplegic spastic ankles participated a three-month of robotic PNF training. Their impaired sides were used as the experimental group while their unimpaired sides as the control group. A robotic intervention for the experimental group generally started from a two minutes passive stretching to warm-up or relax the soleus and gastrocnemius muscle and also ended with the same one. Then a PNF training session included 30 trails was activated between them. The rehabilitation trainings were carried out three times a week as an addition of their regular rehabilitation exercise. Passive ankle joint range of motion, resistance torque and stiffness were measured in both ankles before and after the intervention. The changes in Achilles' tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the three months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased ( p0.05 . The robotic rehabilitation also improved the muscle strength ( p0.05 and fast walking speed ( p<0.05 . These results indicated that PNF based robotic intervention could significantly alleviate lower limb spasticity and improve the motor function in chronic stroke participant. The robotic system could potentially be used as an effective tool in post-stroke rehabilitation training.

  4. Regularity in an environment produces an internal torque pattern for biped balance control.

    Science.gov (United States)

    Ito, Satoshi; Kawasaki, Haruhisa

    2005-04-01

    In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.

  5. Reliability and smallest real difference of the ankle lunge test post ankle fracture.

    Science.gov (United States)

    Simondson, David; Brock, Kim; Cotton, Susan

    2012-02-01

    This study aimed to determine the reliability and the smallest real difference of the Ankle Lunge test in an ankle fracture patient population. In the post immobilisation stage of ankle fracture, ankle dorsiflexion is an important measure of progress and outcome. The Ankle Lunge test measures weight bearing dorsiflexion, resulting in negative scores (knee to wall distance) and positive scores (toe to wall distance), for which the latter has proven reliability in normal subjects only. A consecutive sample of ankle fracture patients with permission to commence weight bearing, were recruited to the study. Three measurements of the Ankle Lunge Test were performed each by two raters, one senior and one junior physiotherapist. These occurred prior to therapy sessions in the second week after plaster removal. A standardised testing station was utilised and allowed for both knee to wall distance and toe to wall distance measurement. Data was collected from 10 individuals with ankle fracture, with an average age of 36 years (SD 14.8). Seventy seven percent of observations were negative. Intra and inter-rater reliability yielded intra class correlations at or above 0.97, p Ankle Lunge test is a practical and reliable tool for measuring weightbearing dorsiflexion post ankle fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Primary ankle arthrodesis for neglected open Weber B ankle fracture dislocation.

    Science.gov (United States)

    Thomason, Katherine; Ramesh, Ashwanth; McGoldrick, Niall; Cove, Richard; Walsh, James C; Stephens, Michael M

    2014-01-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  8. Ankle Problems

    Science.gov (United States)

    ... Read MoreDepression in Children and TeensRead MoreBMI Calculator Ankle ProblemsFollow this chart for more information about problems that can cause ankle pain. Our trusted Symptom Checker is written and ...

  9. Total ankle joint replacement.

    Science.gov (United States)

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Effects of ankle eversion taping using kinesiology tape in a patient with ankle inversion sprain

    OpenAIRE

    Lee, Sun-Min; Lee, Jung-Hoon

    2016-01-01

    [Purpose] The aim of this study was to report the effects of ankle eversion taping using kinesiology tape on ankle inversion sprain. [Subject] The subject was a 21-year-old woman with Grade 2 ankle inversion sprain. [Methods] Ankle eversion taping was applied to the sprained left ankle using kinesiology tape for 4 weeks (average, 15?h/day). [Results] Ankle instability and pain were reduced, and functional dynamic balance was improved after ankle eversion taping for 4 weeks. The Cumberland Ank...

  11. Accuracy of dental torque wrenches.

    Science.gov (United States)

    Wood, James S; Marlow, Nicole M; Cayouette, Monica J

    2015-01-01

    The aim of this in vitro study was to compare the actual torque of 2 manual wrench systems to their stated (target) torque. New spring- (Nobel Biocare USA, LLC) and friction-style (Zimmer Dental, Inc.) manual dental torque wrenches, as well as spring torque wrenches that had undergone sterilization and clinical use, were tested. A calibrated torque gauge was used to compare actual torque to target torque values of 15 and 35 N/cm. Data were statistically analyzed via mixed-effects regression model with Bonferroni correction. At a target torque of 15 N/cm, the mean torque of new spring wrenches (13.97 N/cm; SE, 0.07 N/cm) was significantly different from that of used spring wrenches (14.94 N/cm; SE, 0.06 N/cm; P torques of new spring and new friction wrenches (14.10 N/cm; SE, 0.07 N/cm; P = 0.21) were not significantly different. For torque measurements calibrated at 35 N/cm, the mean torque of new spring wrenches (35.29 N/cm; SE, 0.10 N/cm) was significantly different (P torque could impact the clinical success of screw-retained dental implants. It is recommended that torque wrenches be checked regularly to ensure that they are performing to target values.

  12. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    Science.gov (United States)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  13. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    Science.gov (United States)

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  14. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    Science.gov (United States)

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  15. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    Science.gov (United States)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  16. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  17. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    Science.gov (United States)

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Therapeutic interventions for increasing ankle dorsiflexion after ankle sprain: a systematic review.

    Science.gov (United States)

    Terada, Masafumi; Pietrosimone, Brian G; Gribble, Phillip A

    2013-01-01

    Clinicians perform therapeutic interventions, such as stretching, manual therapy, electrotherapy, ultrasound, and exercises, to increase ankle dorsiflexion. However, authors of previous studies have not determined which intervention or combination of interventions is most effective. To determine the magnitude of therapeutic intervention effects on and the most effective therapeutic interventions for restoring normal ankle dorsiflexion after ankle sprain. We performed a comprehensive literature search in Web of Science and EBSCO HOST from 1965 to May 29, 2011, with 19 search terms related to ankle sprain, dorsiflexion, and intervention and by cross-referencing pertinent articles. Eligible studies had to be written in English and include the means and standard deviations of both pretreatment and posttreatment in patients with acute, subacute, or chronic ankle sprains. Outcomes of interest included various joint mobilizations, stretching, local vibration, hyperbaric oxygen therapy, electrical stimulation, and mental-relaxation interventions. We extracted data on dorsiflexion improvements among various therapeutic applications by calculating Cohen d effect sizes with associated 95% confidence intervals (CIs) and evaluated the methodologic quality using the Physiotherapy Evidence Database (PEDro) scale. In total, 9 studies (PEDro score = 5.22 ± 1.92) met the inclusion criteria. Static-stretching interventions with a home exercise program had the strongest effects on increasing dorsiflexion in patients 2 weeks after acute ankle sprains (Cohen d = 1.06; 95% CI = 0.12, 2.42). The range of effect sizes for movement with mobilization on ankle dorsiflexion among individuals with recurrent ankle sprains was small (Cohen d range = 0.14 to 0.39). Static-stretching intervention as a part of standardized care yielded the strongest effects on dorsiflexion after acute ankle sprains. The existing evidence suggests that clinicians need to consider what may be the limiting factor of

  19. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  20. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  1. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    Science.gov (United States)

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  2. Primary ankle arthrodesis for neglected open weber B ankle fracture dislocation.

    LENUS (Irish Health Repository)

    Thomason, Katherine

    2014-07-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described.

  3. Clinical examination results in individuals with functional ankle instability and ankle-sprain copers.

    Science.gov (United States)

    Wright, Cynthia J; Arnold, Brent L; Ross, Scott E; Ketchum, Jessica; Ericksen, Jeffrey; Pidcoe, Peter

    2013-01-01

    Why some individuals with ankle sprains develop functional ankle instability and others do not (ie, copers) is unknown. Current understanding of the clinical profile of copers is limited. To contrast individuals with functional ankle instability (FAI), copers, and uninjured individuals on both self-reported variables and clinical examination findings. Cross-sectional study. Sports medicine research laboratory. Participants consisted of 23 individuals with a history of 1 or more ankle sprains and at least 2 episodes of giving way in the past year (FAI: Cumberland Ankle Instability Tool [CAIT] score = 20.52 ± 2.94, episodes of giving way = 5.8 ± 8.4 per month), 23 individuals with a history of a single ankle sprain and no subsequent episodes of instability (copers: CAIT score = 27.74 ± 1.69), and 23 individuals with no history of ankle sprain and no instability (uninjured: CAIT score = 28.78 ± 1.78). Self-reported disability was recorded using the CAIT and Foot and Ankle Ability Measure for Activities of Daily Living and for Sports. On clinical examination, ligamentous laxity and tenderness, range of motion (ROM), and pain at end ROM were recorded. Questionnaire scores for the CAIT, Foot and Ankle Ability Measure for Activities of Daily Living and for Sports, ankle inversion and anterior drawer laxity scores, pain with palpation of the lateral ligaments, ankle ROM, and pain at end ROM. Individuals with FAI had greater self-reported disability for all measures (P < .05). On clinical examination, individuals with FAI were more likely to have greater talar tilt laxity, pain with inversion, and limited sagittal-plane ROM than copers (P < .05). Differences in both self-reported disability and clinical examination variables distinguished individuals with FAI from copers at least 1 year after injury. Whether the deficits could be detected immediately postinjury to prospectively identify potential copers is unknown.

  4. Ultrasonography of the ankle joint

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Won; Lee, Sun Joo; Choo, Hye Jung; Kim, Sung Kwan; Gwak, Heui Chul [Inje University Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Lee, Sung Moon [Dept. of Radiology, Dae Kyung Imaging Center, Daegu (Korea, Republic of)

    2017-10-15

    Ankle disorders are a relatively common pathological condition, and ankle injuries account for approximately 14% of sports-related orthopedic emergency visits. Various imaging modalities can be used to make a diagnosis in cases of ankle pain; however, ultrasound (US) has several benefits for the evaluation of ankle pain, especially in the tendons, ligaments, and nerves of the ankle. The purpose of this article is to review the common causes of ankle pathology, with particular reference to US features. In addition, the importance of a dynamic evaluation and a stress test with US is emphasized.

  5. Ultrasonography of the ankle joint

    International Nuclear Information System (INIS)

    Park, Jung Won; Lee, Sun Joo; Choo, Hye Jung; Kim, Sung Kwan; Gwak, Heui Chul; Lee, Sung Moon

    2017-01-01

    Ankle disorders are a relatively common pathological condition, and ankle injuries account for approximately 14% of sports-related orthopedic emergency visits. Various imaging modalities can be used to make a diagnosis in cases of ankle pain; however, ultrasound (US) has several benefits for the evaluation of ankle pain, especially in the tendons, ligaments, and nerves of the ankle. The purpose of this article is to review the common causes of ankle pathology, with particular reference to US features. In addition, the importance of a dynamic evaluation and a stress test with US is emphasized

  6. Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael James; Crone, Clarissa

    2010-01-01

    to distinguish the contribution of active reflex mechanisms from passive muscle properties to ankle joint stiffness in 31 healthy, 10 stroke, 30 multiple sclerosis and 16 spinal cord injured participants. The results were compared to routine clinical evaluation of spasticity. METHODS: A computer...... (Ashworth score1) showed normal reflex torque without normalization. With normalization this was only the case in 11 participants. Increased reflex mediated stiffness was detected in only 64% participants during clinical examination. CONCLUSION: The findings confirm that the clinical diagnosis of spasticity...

  7. Mechanical instability destabilises the ankle joint directly in the ankle-sprain mechanism.

    Science.gov (United States)

    Gehring, Dominic; Faschian, Katrin; Lauber, Benedikt; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    Despite massive research efforts, it remains unclear how mechanical ankle instability (MAI) and functional ankle instability (FAI) affect joint control in the situation of ankle sprain. Thus, the purpose of this study was to evaluate whether individuals with MAI have deficits in stabilising their ankle joint in a close-to-injury situation compared with those with FAI and healthy controls. Ankle-joint control was assessed by means of three-dimensional motion analysis and electromyography in participants with FAI and MAI (n=19), in participants with pure FAI (n=9) and in healthy controls (n=18). Close-to-injury situations were simulated during standing, walking and jumping by means of a custom-made tilt platform. Individuals with FAI and MAI displayed significantly greater maximum ankle inversion angles (+5°) and inversion velocities (+50°/s) in the walking and jumping conditions compared to those with pure FAI and controls. Furthermore, individuals in the FAI and MAI group showed a significantly decreased pre-activation of the peroneus longus muscle during jumping compared to those with FAI. No differences between groups were found for plantar flexion and internal rotation, or for muscle activities following tilting of the platform. The present study demonstrates that MAI is characterised by impairments of ankle-joint control in close-to-injury situations. This could make these individuals more prone to recurrent ankle sprains, and suggests the need for additional mechanical support such as braces or even surgery. In addition, the study highlights the fact that dynamic experimental test conditions in the acting participant are needed to further unravel the mystery of chronic ankle instability.

  8. Development of high torque belt CVT with torque converter; Torque converter tsuki daiyoryogata belt CVT no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, M; Fujikawa, T; Yoshida, K; Kobayahi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    Nissan has successfully developed a new belt CVT (Continuously Variable Transmission) with torque converter and has installed it 2L-class vehicle for the first time in the world. This paper describes about the technology of high torque transmission, the need of torque converter, the importance of electronic control and the introduce of driving mode. As the result the CVT has improved driving performance and fuel economy for current CVT and 4 speed automatic transmission. 13 figs., 2 tabs.

  9. Desequilíbrios musculares entre flexores dorsais e plantares do tornozelo após tratamento conservador e acelerado da ruptura do tendão calcâneo Muscle imbalance between ankle dorsiflexors and plantarflexors after conservative and accelerated treatment of Achilles tendon rupture

    Directory of Open Access Journals (Sweden)

    Alexandre Mayer

    2010-06-01

    Full Text Available A ruptura do tendão calcâneo (TC reduz a sobrecarga mecânica dos flexores plantares (FP do tornozelo. Essa alteração muda o equilíbrio natural entre os FP e flexores dorsais (FD do tornozelo. O objetivo do estudo foi avaliar as razões isocinéticas concêntricas convencionais de torque de pacientes submetidos a tratamento cirúrgico de ruptura aguda do TC após dois protocolos diferentes de reabilitação. Após procedimento cirúrgico para reconstrução do TC, a amostra foi dividida de forma intencional em dois grupos: conservador (GC, 11 homens, 41,3±7,9 anos e grupo acelerado (GA, 13 homens, 43,5±13,7 anos. O GC permaneceu com imobilização gessada no tornozelo por seis semanas (tratamento tradicional, enquanto o GA usou uma órtese robofoot em posição neutra e, após duas semanas, iniciou mobilização e apoio precoce do tornozelo, com reabilitação por seis semanas. Após 3 meses de pós-operatório, a razão do torque concêntrico máximo dos FD pelos FP do tornozelo foi avaliada por dinamômetro isocinético. As razões de torque do lado operado se mantiveram superiores às do lado saudável mesmo após 3 meses de pós-operatório (pAchilles tendon rupture reduces ankle plantarflexor (PF muscles mechanical overload. This change in the ankle joint mechanics changes the natural muscle balance between dorsiflexor (DF and PF muscles. The purpose of this study was to assess such imbalance by concentric conventional isokinetic torque ratios of patients who underwent different rehabilitation protocols after surgical repair of the Achilles tendon. After surgery, subjects were assigned to either a conservative or to an accelerated rehabilitation group. The conservative group (11 men, 41.3±7.9 years old remained with a plaster cast for 6 weeks after surgery. The accelerated group (13 men, 43.5±13,7 years old used a"robofoot" cast for 2 weeks and underwent ankle mobilization and early weight bearing for a period of 6 weeks post

  10. Ankle Injuries and Disorders

    Science.gov (United States)

    Your ankle bone and the ends of your two lower leg bones make up the ankle joint. Your ligaments, which connect bones to one ... muscles and tendons move it. The most common ankle problems are sprains and fractures. A sprain is ...

  11. Sprained Ankles

    Science.gov (United States)

    ... away before the ligament is injured. Types of Sprains In young children, the ankle is the most commonly sprained joint, followed by ... A walking cast may be necessary if the ankle or foot injury has been severe. Most grade 1 sprains will heal within two weeks without subsequent complications. ...

  12. Using torque switch settings and spring pack characteristics to determine actuator output torques

    International Nuclear Information System (INIS)

    Black, B.R.

    1992-01-01

    Actuator output torque of motor operated valves is often a performance parameter of interest. It is not always possible to directly measure this torque. Torque spring pack deflection directly reflects actuator output torque and can be directly measured on most actuators. The torque spring pack may be removed from the actuator and tested to determine its unique force-deflection relationship. Or, a representative force-deflection relationship for the particular spring pack model may be available. With either relationship, measurements of torque spring pack deflection may then be correlated to corresponding forces. If the effective length of the moment arm within the actuator is known, actuator output torque can then be determined. The output torque is simply the product of the effective moment arm length and the spring pack force. This paper presents the reliability of this technique as indicated by testing. TU Electric is evaluating this technique for potential use in the future. Results presented in this paper should be considered preliminary. Applicability of these results may be limited to actuators and their components in a condition similar to those for which test data have been examined

  13. Advancements in ankle arthroscopy

    NARCIS (Netherlands)

    van Dijk, C. Niek; van Bergen, Christiaan J. A.

    2008-01-01

    Important progress has been made during the past 30 years in arthroscopic ankle surgery. Ankle arthroscopy has gradually changed from a diagnostic to a therapeutic tool. Most arthroscopic procedures can be performed by using the anterior working area with the ankle in dorsiflexion or plantar

  14. Complications in ankle arthroscopy

    NARCIS (Netherlands)

    Zengerink, Maartje; van Dijk, C. Niek

    2012-01-01

    To determine the complication rate for ankle arthroscopy. A review of a consecutive series of patients undergoing ankle arthroscopy in our hospital between 1987 and 2006 was undertaken. Anterior ankle arthroscopy was performed by means of a 2-portal dorsiflexion method with intermittent soft tissue

  15. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  16. Ankle sprain

    NARCIS (Netherlands)

    Struijs, Peter; Kerkhoffs, Gino

    2007-01-01

    Injury of the lateral ligament complex of the ankle joint occurs in about one per 10,000 people a day, accounting for a quarter of all sports injuries. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatment strategies for acute ankle

  17. Ankle sprain

    NARCIS (Netherlands)

    Struijs, Peter Aa; Kerkhoffs, Gino Mmj

    2010-01-01

    Injury of the lateral ligament complex of the ankle joint occurs in about one in 10,000 people a day, accounting for a quarter of all sports injuries. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatment strategies for acute ankle

  18. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  19. Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles

    Science.gov (United States)

    La Porta, Arthur; Wang, Michelle D.

    2004-05-01

    We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.

  20. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  1. Ankle inversion taping using kinesiology tape for treating medial ankle sprain in an amateur soccer player

    OpenAIRE

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-01-01

    [Purpose] The purpose of this study was to report the effects of ankle inversion taping using kinesiology tape in a patient with a medial ankle sprain. [Subject] A 28-year-old amateur soccer player suffered a Grade 2 medial ankle sprain during a match. [Methods] Ankle inversion taping was applied to the sprained ankle every day for 2 months. [Results] His symptoms were reduced after ankle inversion taping application for 2 months. The self-reported function score, the reach distances in the S...

  2. Ankle Plantarflexor Spasticity Does Not Restrict the Recovery of Ankle Plantarflexor Strength or Ankle Power Generation for Push-Off During Walking Following Traumatic Brain Injury.

    Science.gov (United States)

    Williams, Gavin; Banky, Megan; Olver, John

    2016-01-01

    The main aim of this project was to determine the impact of plantarflexor spasticity on muscle performance for ambulant people with traumatic brain injury (TBI). A large metropolitan rehabilitation hospital. Seventy-two ambulant people with TBI who were attending physiotherapy for mobility limitations. Twenty-four participants returned for a 6-month follow-up reassessment. Cross-sectional cohort study. Self-selected walking speed, Tardieu scale, ankle plantarflexor strength, and ankle power generation (APG). Participants with ankle plantarflexor spasticity had significantly lower self-selected walking speed; however, there was no significant difference in ankle plantarflexor strength or APG. Participants with ankle plantarflexor spasticity were not restricted in the recovery of self-selected walking speed, ankle plantarflexor strength, or APG, indicating equivalent ability to improve their mobility over time despite the presence of spasticity. Following TBI, people with ankle plantarflexor spasticity have significantly greater mobility limitations than those without spasticity, yet retain the capacity for recovery of self-selected walking speed, ankle plantarflexor strength, and APG.

  3. Dynamic balance deficits in individuals with chronic ankle instability compared to ankle sprain copers 1 year after a first-time lateral ankle sprain injury.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To quantify the dynamic balance deficits that characterise a group with chronic ankle instability compared to lateral ankle sprain copers and non-injured controls using kinematic and kinetic outcomes. Forty-two participants with chronic ankle instability and twenty-eight lateral ankle sprain copers were initially recruited within 2 weeks of sustaining a first-time, acute lateral ankle sprain and required to attend our laboratory 1 year later to complete the current study protocol. An additional group of non-injured individuals were also recruited to act as a control group. All participants completed the anterior, posterior-lateral and posterior-medial reach directions of the star excursion balance test. Sagittal plane kinematics of the lower extremity and associated fractal dimension of the centre of pressure path were also acquired. Participants with chronic ankle instability displayed poorer performance in the anterior, posterior-medial and posterior-lateral reach directions compared with controls bilaterally, and in the posterior-lateral direction compared with lateral ankle sprain copers on their 'involved' limb only. These performance deficits in the posterior-lateral and posterior-medial directions were associated with reduced flexion and dorsiflexion displacements at the hip, knee and ankle at the point of maximum reach, and coincided with reduced complexity of the centre of pressure path. In comparison with lateral ankle sprain copers and controls, participants with chronic ankle instability were characterised by dynamic balance deficits as measured using the SEBT. This was attested to reduced sagittal plane motions at the hip, knee and ankle joints, and reduced capacity of the stance limb to avail of its supporting base. III.

  4. Peak torque and rate of torque development in elderly with and without fall history.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Pereira, Gleber; Ugrinowitsch, Carlos; Rodacki, André Luiz Felix

    2010-06-01

    Falls are one of the greatest concerns among the elderly. A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history. It was also aimed to determine whether these parameters of muscle performance (i.e., peak torque and rate of torque development) are related to the number of falls. Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present. Then, participants with no fall history (GI; n=13; 67.6[7.5] years-old), one fall (GII; n=8; 66.0[4.9] years-old) and two or more falls (GIII; n=10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (GI) was greater than that observed in the fallers (Pfalls (Pelderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque. Copyright (c) 2010. Published by Elsevier Ltd.

  5. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2017-08-01

    Full Text Available This paper proposes decoupled speed and torque control of interior permanent magnet synchronous motor (IPMSM drives using a novel load torque estimator (LTE. The proposed LTE is applied for computing a load torque and yielding a feed-forward value in the speed controller to separate the torque control from the speed control. Indirect flux weakening using direct current component is obtained for high speed operation of the IPMSM drive, and its value for maximum torque per ampere (MTPA control in constant torque region is also used. LTE uses values of direct and quadrature currents to improve the behavior of the speed controller under the reference tracking and torque disturbances. The complete IPMSM drive by Matlab/Simulink is built. The effectiveness of the proposed control scheme using an experimental setup of the complete drive system implemented on a DSP-DS1102 control board is confirmed. Extensive results over a wide speed range are verified. The efficacy of the proposed method is confirmed in comparison to a conventional PI controller under both the reference speed tracking and load torque disturbance.

  6. Ankle Fractures: The Operative Outcome

    Directory of Open Access Journals (Sweden)

    Ahmad Hafiz Z

    2011-03-01

    Full Text Available Ankle fractures are commonly seen in orthopaedic practice. This retrospective study of patients with ankle fractures who underwent surgical treatment in our institution from January 2000 to December 2003 was undertaken to analyze the common causes and patterns of ankle fractures; and the functional outcome of operative treatment for these fractures. Eighty patients were identified and reviewed. There were 65 male (81.3% and 15 female patients (18.7% with age ranging from 13 to 71 years old (mean, 32.3y. Common causes of ankle fractures were trauma (especially motor vehicle accidents, sports injuries and the osteoporotic bones in the elderly. Weber C (64.0% was the most common pattern of fracture at presentation. The most common operative treatment for ankle fractures was open reduction and internal fixation (73 patients, 91.2%. Excellent and good outcomes were achieved in 93.8% of cases when measured using the Olerud and Molander scoring system for foot and ankle. In conclusion, operative treatment for ankle fractures restores sufficient stability and allowed mobility of the ankle joint.

  7. Assessment of Ankle Injuries

    Science.gov (United States)

    Mai, Nicholas; Cooper, Leslie

    2009-01-01

    School nurses are faced with the challenge of identifying and treating ankle injuries in the school setting. There is little information guiding the assessment and treatment of these children when an injury occurs. It is essential for school nurses to understand ankle anatomy, pathophysiology of the acute ankle injury, general and orthopedic…

  8. Chronic Ankle Instability

    Science.gov (United States)

    ... top of the talus is dome-shaped and... Softball Injuries to the Foot and Ankle Your feet ... ankles take a beating when you are playing softball. Softball players should be aware of the following ...

  9. Game programmer's guide to Torque under the hood of the Torque game engine

    CERN Document Server

    Maurina , Edward F

    2006-01-01

    game programmer working with the Torque game engine must have ""The Game Programmer's Guide To Torque"": it teaches everything needed to design your own game, using experiences of game makers and industry veterans well versed in Torque technology. A Torque Game engine demo is included on an accompanying cd while step-by-step examples tell how to use it. Its focus on all the basics makes for an exceptional coverage for all levels of game programmer. -Bookwatch, August 2006

  10. Talofibular compartment of the ankle joint after recent ankle sprain

    International Nuclear Information System (INIS)

    Lindstrand, A.; Mortensson, W.; Norman, O.

    1978-01-01

    The validity of predicting the condition of the anterior talofibular ligament from the shape of the lateral compartment of the ankle joint was investigated in patients with recent ankle sprain. The diagnostic value of the method was found to be restricted. (Auth.)

  11. Anterior ankle arthroscopy, distraction or dorsiflexion?

    Science.gov (United States)

    de Leeuw, Peter A J; Golanó, Pau; Clavero, Joan A; van Dijk, C Niek

    2010-05-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7-1.5) and 0.7 cm (range 0.5-0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy.

  12. Transfibular ankle arthrodesis: A novel method for ankle fusion - A short term retrospective study

    Directory of Open Access Journals (Sweden)

    S Muthukumar Balaji

    2017-01-01

    Full Text Available Background: Ankle arthrodesis has long been the traditional operative treatment for posttraumatic arthritis, rheumatoid arthritis, infection, neuromuscular conditions, and salvage of failed ankle arthroplasty. It remains the treatment of choice for patients in whom heavy and prolonged activity is anticipated. We present our short term followup study of functional outcome of patients who underwent transfibular ankle arthrodesis for arthritis of ankle due to various indications. Materials and Methods: 29 transfibular ankle arthrodesis in 29 patients performed between April 2009 and April 2014 were included in this study. The mean age was 50 years (range 22-75 years. The outcome analysis with a minimum of 1-year postoperative followup were included. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS Hindfoot scale. Results: All cases of ankle fusions (100% progressed to solid union in a mean postoperative duration of 3.8 months (range 3-6 months. All patients had sound arthrodesis. The mean followup period was 32.52 months (standard deviation ± 10.34. The mean AOFAS score was 74 (pain score = 32, functional score = 42. We found that twenty patients (68.96% out of 29, had excellent results, 7 (24.13% had good, and 2 (6.89% showed fair results. Conclusion: Transfibular ankle arthrodesis is a simple and effective procedure for ankle arthritis. It achieves a high rate of union and good functional outcome on midterm followup.

  13. Active ankle motion may result in changes to the talofibular interval in individuals with chronic ankle instability and ankle sprain copers: a preliminary study.

    Science.gov (United States)

    Croy, Theodore; Cosby, Nicole L; Hertel, Jay

    2013-08-01

    Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73-4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9-6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: -1.5-1.4; P = 0.93). The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists.

  14. On the minimum circulating power of steady state tokamaks

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1995-07-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  15. Torque sensor

    Science.gov (United States)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  16. The adult ball-and-socket ankle joint: surgical management of late ankle and subtalar arthritis.

    Science.gov (United States)

    Lewis, John S; DeOrio, James K

    2015-04-01

    We review the surgical management of 4 adult patients with ball-and-socket ankle deformity who developed end-stage subtalar and/or ankle joint arthritis. We retrospectively reviewed a series of 4 adult patients with ball-and-socket ankle configurations who underwent surgical treatment for either end-stage tibiotalar or subtalar arthritis, with either subtalar arthrodesis or total ankle replacement (TAR). Clinical outcome, including subjective pain assessment, limitation of activities, and difficulty with shoe wear, were assessed at follow-up. A total of 5 ankles in 4 patients were identified that met the inclusion criteria. There were 3 subtalar arthrodeses in 2 patients and 2 primary TARs in 2 patients. At an average follow-up of 30.5 (range = 17 to 59) months, there were no failures, although 1 patient who underwent TAR was considered an impending failure with aseptic component loosening. Of the 4 patients, 3 resumed normal activity with minimal pain and were very pleased with their overall outcome. Standard surgical interventions for ankle and subtalar arthritis, such as total ankle arthroplasty and subtalar arthrodesis, can be successfully performed in patients with ball-and-socket ankles; clinical outcome and survivorship, however, may be inferior to that in patients with normal ankle configurations. Therapeutic, Level IV: Case Series. © 2014 The Author(s).

  17. Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: a preliminary investigation.

    Science.gov (United States)

    You, Sung H; Granata, Kevin P; Bunker, Linda K

    2004-08-01

    Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was

  18. Ankle ligament injuries

    Directory of Open Access Journals (Sweden)

    Per A.F.H. Renström

    1998-06-01

    Full Text Available Acute ankle ligament sprains are common injuries. The majority of these occur during athletic participation in the 15 to 35 year age range. Despite the frequency of the injury, diagnostic and treatment protocols have varied greatly. Lateral ligament complex injuries are by far the most common of the ankle sprains. Lateral ligament injuries typically occur during plantar flexion and inversion, which is the position of maximum stress on the anterotalofibular liagment (ATFL. For this reason, the ATFL is the most commonly torn ligament during an inversion injury. In more severe inversion injuries the calcaneofibular (CFL, posterotalofibular (PTFL and subtalar ligament can also be injured. Most acute lateral ankle ligament injuries recover quickly with nonoperative management. The treatment program, called "functional treatment," includes application of the RICE principle (rest, ice, compression, and elevation immediately after the injury, a short period of immobilization and protection with an elastic or inelastic tape or bandage, and early motion exercises followed by early weight bearing and neuromuscular ankle training. Proprioceptive training with a tilt board is commenced as soon as possible, usually after 3 to 4 weeks. The purpose is to improve the balance and neuromuscular control of the ankle. Sequelae after ankle ligament injuries are very common. As much as 10% to 30% of patients with a lateral ligament injury may have chronic symptoms. Symptoms usually include persistent synovitis or tendinitis, ankle stiffness, swelling, and pain, muscle weakness, and frequent giving-way. A well designed physical therapy program with peroneal strengthening and proprioceptive training, along with bracing and/or taping can alleviate instability problems in most patients. For cases of chronic instability that are refractory to bracing and external support, surgical treatment can be explored. If the chronic instability is associated with subtalar instability

  19. All-inside, anatomical lateral ankle stabilization for revision and complex primary lateral ankle stabilization: a technique guide.

    Science.gov (United States)

    Prissel, Mark A; Roukis, Thomas S

    2014-12-01

    Lateral ankle instability is a common mechanical problem that often requires surgical management when conservative efforts fail. Historically, myriad open surgical approaches have been proposed. Recently, consideration for arthroscopic management of lateral ankle instability has become popular, with promising results. Unfortunately, recurrent inversion ankle injury following lateral ankle stabilization can occur and require revision surgery. To date, arthroscopic management for revision lateral ankle stabilization has not been described. We present a novel arthroscopic technique combining an arthroscopic lateral ankle stabilization kit with a suture anchor ligament augmentation system for revision as well as complex primary lateral ankle stabilization. © 2014 The Author(s).

  20. Ankle Sprains. A Round Table.

    Science.gov (United States)

    Physician and Sportsmedicine, 1986

    1986-01-01

    Types of ankle sprains, surgical versus nonsurgical treatment, tape versus brace for support, rehabilitation, exercise, and prevention of ankle sprains are discussed by a panel of experts. An acute ankle taping technique is illustrated. (MT)

  1. Role of Ankle Arthroscopy in Management of Acute Ankle Fracture.

    Science.gov (United States)

    Chan, Kwok Bill; Lui, Tun Hing

    2016-11-01

    To report the operative findings of ankle arthroscopy during open reduction and internal fixation of acute ankle fractures. This was a retrospective review of 254 consecutive patients with acute ankle fractures who were treated with open reduction and internal fixation of the fractures, and ankle arthroscopy was performed at the same time. The accuracy of fracture reduction, the presence of syndesmosis disruption and its reduction, and the presence of ligamentous injuries and osteochondral lesions were documented. Second-look ankle arthroscopy was performed during syndesmosis screw removal 6 weeks after the key operation. There were 6 patients with Weber A, 177 patients with Weber B, 51 patients with Weber C, and 20 patients with isolated medial malleolar fractures. Syndesmosis disruption was present in 0% of patients with Weber A fracture, 52% of patients with Weber B fracture, 92% of patients with Weber C fracture, and 20% of the patients with isolated medial malleolar fracture. Three patients with Weber B and one patient with Weber C fracture have occult syndesmosis instability after screw removal. Osteochondral lesion was present in no patient with Weber A fracture, 26% of the Weber B cases, 24% of the Weber C cases, and 20% of isolated medial malleolar fracture cases. The association between the presence of deep deltoid ligament tear and syndesmosis disruption (warranting syndesmosis screw fixation) in Weber B cases was statistically significant but not in Weber C cases. There was no statistically significant association between the presence of posterior malleolar fracture and syndesmosis instability that warrant screw fixation. Ankle arthroscopy is a useful adjuvant tool to understand the severity and complexity of acute ankle fracture. Direct arthroscopic visualization ensures detection and evaluation of intra-articular fractures, syndesmosis disruption, and associated osteochondral lesions and ligamentous injuries. Level IV, case series

  2. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  3. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    Science.gov (United States)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  4. Adaptações neuromusculares de flexores dorsais e plantares a duas semanas de imobilização após entorse de tornozelo Dorsiflexor and plantarflexor neuromuscular adaptations at two-week immobilization after ankle sprain

    Directory of Open Access Journals (Sweden)

    Bruno Manfredini Baroni

    2010-10-01

    Full Text Available INTRODUÇÃO: A entorse de tornozelo é uma lesão de alta incidência comumente tratada com períodos de imobilização, levando a adaptações estruturais e funcionais dos músculos atuantes nesta articulação. OBJETIVO: Identificar as adaptações dos músculos flexores dorsais e flexores plantares após duas semanas de imobilização em sujeitos que sofreram entorse de tornozelo. MÉTODOS: Onze indivíduos (seis mulheres e cinco homens acometidos por entorse de tornozelo grau II foram submetidos a 14 dias de imobilização por tala gessada. Após a retirada da imobilização, foram realizadas avaliações bilaterais de (1 perimetria da perna, (2 amplitude de movimento (ADM do tornozelo, (3 torque isométrico máximo de flexores dorsais e flexores plantares em sete ângulos do tornozelo e (4 ativação eletromiográfica dos músculos tibial anterior (TA, sóleo (SO e gastrocnêmio medial (GM. Os resultados obtidos no segmento imobilizado foram comparados com os do segmento saudável contralateral através de um teste t de Student pareado (p INTRODUCTION: Ankle sprains are a kind of injury with high incidence that is usually treated with an immobilization period, leading to structural and functional adaptation in the muscles around this joint. PURPOSE: To identify the dorsiflexor and plantarflexor muscles adaptations after two weeks of immobilization in subjects who suffered ankle sprain. METHODS: Eleven subjects (six women and five men who suffered a second degree ankle sprain underwent 14 days of ankle joint immobilization with a plaster cast. After removal of the plaster cast, the following bilaterally evaluations were obtained: (1 leg circumference; (2 ankle joint range of motion (ROM; (3 maximal isometric torque of plantar and dorsiflexors obtained in seven different angles; and (4 electromyographic signals of the tibialis anterior (TA, gastrocnemius medialis (GM and soleus (SO muscles. Results obtained in the immobilized side were

  5. Difference in balance measures between patients with chronic ankle instability and patients after an acute ankle inversion trauma

    NARCIS (Netherlands)

    de Vries, J. S.; Kingma, I.; Blankevoort, L.; van Dijk, C. N.

    2010-01-01

    Neuromuscular control of the ankle is disturbed in patients with chronic ankle instability due to an initial ankle inversion trauma. Static balance is assumed to be a measure for this disturbance. Functional (ankle) scores are another way to evaluate ankle impairment. The hypothesis was that there

  6. Central common drive to antagonistic ankle muscles in relation to short-term co-contraction training in non-dancers and professional ballet dancers

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Kjær, Majken; Pedersen, Kasper Karhu

    2013-01-01

    Optimization of co-contraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we inve...

  7. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    Science.gov (United States)

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  8. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    Directory of Open Access Journals (Sweden)

    Beomsoo Hwang

    2015-04-01

    Full Text Available In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  9. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  10. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    International Nuclear Information System (INIS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-01-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity. (paper)

  11. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  12. Electromagnetic torque on the toroidal plasma and the error-field induced torque

    International Nuclear Information System (INIS)

    Pustovitov, V. D.

    2007-01-01

    The electromagnetic torque on the toroidal plasma is calculated assuming a linear plasma response to the applied perturbation, which may be the error field or the field created by the correction coils, or both. The result is compared with recently published expressions for the error field induced torque (Zheng et al 2006 Nucl. Fusion 46 L9, Zheng and Kotschenreuther 2006 Phys. Rev. Lett. 97 165001), and the conclusions of these papers are revised. We resolve the problem of the torque resonance raised there. It is shown that the strong increase in the torque due to the static error field must occur at the resistive wall mode stability limit and not at the no-wall stability limit

  13. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    Science.gov (United States)

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Acute ankle sprain in dancers.

    Science.gov (United States)

    Russell, Jeffrey A

    2010-01-01

    Ankle sprain is a common injury in dancers. Because of the relative frequency of this injury and its wide acceptance as a likely part of an active lifestyle, in many individuals it may not receive the careful attention it deserves. An extreme ankle range of motion and excellent ankle stability are fundamental to success in dance. Hence, following a proper treatment protocol is crucial for allowing a dancer who suffers an ankle sprain to return to dance as soon as possible without impaired function. This article reviews the basic principles of the etiology and management of ankle sprain in dancers. Key concepts are on-site examination and treatment, early restoration, dance-specific rehabilitation, and a carefully administered safe return to dance. Additionally, injuries that may occur in conjunction with ankle sprain are highlighted, and practical, clinically relevant summary concepts for dance healthcare professionals, dance scientists, dance teachers, and dancers are provided.

  15. Functional Instability of the Ankle Joint: Etiopathogenesis

    Directory of Open Access Journals (Sweden)

    Aydan ÖRSÇELİK

    2016-09-01

    Full Text Available Ankle sprain is one of the most common sports injuries. Chronic ankle instability is a common complication of ankle sprains. Two causes of chronic ankle instability are mechanical instability and functional instability. It is important to understand functional instability etiopathogenesis of the ankle joint in order to guide diagnosis and treatment. This article aims to understand the etiopathogenesis of functional ankle instability.

  16. Thermomagnetic torque in hydrogen isotopes

    International Nuclear Information System (INIS)

    Cramer, J.A.

    1975-01-01

    The thermomagnetic torque has been measured in parahydrogen and ortho and normal deuterium for pressures from 0.10 to 2.0 torr and temperatures from 100 to 370 K. Since the torque depends on the precession of the molecular rotational magnetic moment around the field direction, coupling of the molecular nuclear spin to the rotational moment can affect the torque. Evidence of spin coupling effects is found for the torque in both deuterium modifications. In para hydrogen the torque at all temperatures and pressures exhibits behavior expected of a gas of zero nuclear spin molecules. Additionally, earlier data for hydrogen deuteride and for normal hydrogen from 105 to 374 K are evaluated and discussed. The high pressure limiting values of torque peak heights and positions for all these gases are compared with theory

  17. High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature.

    Science.gov (United States)

    Watson, T F; Flanagan, D; Stone, D G

    2000-06-24

    The aim of these experiments was to compare the cutting dynamics of high-speed high-torque (speed-increasing) and high-speed low-torque (air-turbine) handpieces and evaluate the effect of handpiece torque and bur type on sub-surface enamel cracking. Temperature changes were also recorded in teeth during cavity preparation with high and low torque handpieces with diamond and tungsten carbide (TC) burs. The null hypothesis of this study was that high torque handpieces cause more damage to tooth structure during cutting and lead to a rise in temperature within the pulp-chamber. Images of the dynamic interactions between burs and enamel were recorded at video rate using a confocal microscope. Central incisors were mounted on a specially made servomotor driven stage for cutting with a type 57 TC bur. The two handpiece types were used with simultaneous recording of cutting load and rate. Sub-surface enamel cracking caused by the use of diamond and TC burs with high and low torque was also examined. Lower third molars were sectioned horizontally to remove the cusp tips and then the two remaining crowns cemented together with cyanoacrylate adhesive, by their flat surfaces. Axial surfaces of the crowns were then prepared with the burs and handpieces. The teeth were then separated and the original sectioned surface examined for any cracks using a confocal microscope. Heat generation was measured using thermocouples placed into the pulp chambers of extracted premolars, with diamond and TC burs/high-low torque handpiece variables, when cutting occlusal and cervical cavities. When lightly loaded the two handpiece types performed similarly. However, marked differences in cutting mechanisms were noted when increased forces were applied to the handpieces with, generally, an increase in cutting rate. The air turbine could not cope with steady heavy loads, tending to stall. 'Rippling' was seen in the interface as this stall developed, coinciding with the bur 'clearing' itself. No

  18. Comparison of Multisegmental Foot and Ankle Motion Between Total Ankle Replacement and Ankle Arthrodesis in Adults.

    Science.gov (United States)

    Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Lee, Dong Yeon

    2017-09-01

    Total ankle replacement (TAR) and ankle arthrodesis (AA) are usually performed for severe ankle arthritis. We compared postoperative foot segmental motion during gait in patients treated with TAR and AA. Gait analysis was performed in 17 and 7 patients undergoing TAR and AA, respectively. Subjects were evaluated using a 3-dimensional multisegmental foot model with 15 markers. Temporal gait parameters were calculated. The maximum and minimum values and the differences in hallux, forefoot, hindfoot, and arch in 3 planes (sagittal, coronal, transverse) were compared between the 2 groups. One hundred healthy adults were evaluated as a control. Gait speed was faster in the TAR ( P = .028). On analysis of foot and ankle segmental motion, the range of hindfoot sagittal motion was significantly greater in the TAR (15.1 vs 10.2 degrees in AA; P = .004). The main component of motion increase was hindfoot dorsiflexion (12.3 and 8.6 degrees). The range of forefoot sagittal motion was greater in the TAR (9.3 vs 5.8 degrees in AA; P = .004). Maximum ankle power in the TAR (1.16) was significantly higher than 0.32 in AA; P = .008). However, the range of hindfoot and forefoot sagittal motion was decreased in both TAR and AA compared with the control group ( P = .000). Although biomechanical results of TAR and AA were not similar to those in the normal controls, joint motions in the TAR more closely matched normal values. Treatment decision making should involve considerations of the effect of surgery on the adjacent joints. Level III, case-control study.

  19. Vladimir Byurchiev, Ankle Bones

    OpenAIRE

    Churyumov, Anton

    2017-01-01

    Vladimir says that today not many children play with ankle bones. He recalls when he was young, children played with bones more often. According to Vladimir, various games using ankle bones develop flexibility, agility, and muscle in children’s hands. Ankles bones are taken from the back legs of a cow or a sheep. It is possible to determine the age and health of animals by examining this particular bone. Arcadia

  20. Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis.

    Science.gov (United States)

    Hasan, Z; Enoka, R M

    1985-01-01

    Since the moment arms for the elbow-flexor muscles are longest at intermediate positions of the elbow and shorter at the extremes of the range of motion, it was expected that the elbow torque would also show a peak at an intermediate angle provided the activity of the flexor muscles remained constant. We measured the isometric elbow torque at different elbow angles while the subject attempted to keep constant the electromyographic activity (EMG) of the brachioradialis muscle. The torque-angle relationship thus obtained exhibited a peak, as expected, but the shape of the relationship varied widely among subjects. This was due in part to differences in the variation of the biceps brachii EMG with elbow angle among the different subjects. The implications of these observations for the equilibrium-point hypothesis of movement were investigated as follows. The subject performed elbow movements in the presence of an external torque (which tended to extend the elbow joint) provided by a weight-and-pulley arrangement. We found in the case of flexion movements that invariably there was a transient increase in flexor EMG, as would seem necessary for initiating the movement. However, the steady-state EMG after the movement could be greater or less than the pre-movement EMG. Specifically, the least flexor EMG was required for equilibrium in the intermediate range of elbow angles, compared to the extremes of the range of motion. The EMG-angle relationship, however, varied with the muscle and the subject. The observation that the directions of change in the transient and the steady-state EMG are independent of each other militates against the generality of the equilibrium-point hypothesis. However, a form of the hypothesis which includes the effects of the stretch reflex is not contradicted by this observation.

  1. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    Science.gov (United States)

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  2. Prospective Computed Tomographic Analysis of Osteochondral Lesions of the Ankle Joint Associated With Ankle Fractures

    NARCIS (Netherlands)

    Nosewicz, Tomasz L.; Beerekamp, M. Suzan H.; de Muinck Keizer, Robert-Jan O.; Schepers, Tim; Maas, Mario; Niek van Dijk, C.; Goslings, J. Carel

    2016-01-01

    Osteochondral lesions (OCLs) associated with ankle fracture correlate with unfavorable outcome. The goals of this study were to detect OCLs following ankle fracture, to associate fracture type to OCLs and to investigate whether OCLs affect clinical outcome. 100 ankle fractures requiring operative

  3. Prospective Computed Tomographic Analysis of Osteochondral Lesions of the Ankle Joint Associated With Ankle Fractures.

    Science.gov (United States)

    Nosewicz, Tomasz L; Beerekamp, M Suzan H; De Muinck Keizer, Robert-Jan O; Schepers, Tim; Maas, Mario; Niek van Dijk, C; Goslings, J Carel

    2016-08-01

    Osteochondral lesions (OCLs) associated with ankle fracture correlate with unfavorable outcome. The goals of this study were to detect OCLs following ankle fracture, to associate fracture type to OCLs and to investigate whether OCLs affect clinical outcome. 100 ankle fractures requiring operative treatment were prospectively included (46 men, 54 women; mean age 44 ± 14 years, range 20-77). All ankle fractures (conventional radiography; 71 Weber B, 22 Weber C, 1 Weber A, 4 isolated medial malleolus and 2 isolated posterior malleolus fractures) were treated by open reduction and internal fixation. Multidetector computed tomography (CT) was performed postoperatively. For each OCL, the location, size, and Loomer OCL classification (CT modified Berndt and Harty classification) were determined. The subjective Foot and Ankle Outcome Scoring (FAOS) was used for clinical outcome at 1 year. OCLs were found in 10/100 ankle fractures (10.0%). All OCLs were solitary talar lesions. Four OCLs were located posteromedial, 4 posterolateral, 1 anterolateral, and 1 anteromedial. There were 2 type I OCLs (subchondral compression), 6 type II OCLs (partial, nondisplaced fracture) and 2 type IV OCLs (displaced fracture). Mean OCL size (largest diameter) was 4.4 ± 1.7 mm (range, 1.7 mm to 6.2 mm). Chi-square analysis showed no significant association between ankle fracture type and occurrence of OCLs. OCLs did occur only in Lauge-Hansen stage III/IV ankle fractures. There were no significant differences in FAOS outcome between patients with or without OCLs. Ten percent of investigated ankle fractures had associated OCLs on CT. Although no significant association between fracture type and OCL was found, OCLs only occurred in Lauge-Hansen stage III/IV ankle fractures. With the numbers available, OCLs did not significantly affect clinical outcome at 1 year according to FAOS. Level IV, observational study. © The Author(s) 2016.

  4. Clinical value of the Ottawa ankle rules for diagnosis of fractures in acute ankle injuries.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available BACKGROUND: The Ottawa ankle rules (OAR are clinical decision guidelines used to identify whether patients with ankle injuries need to undergo radiography. The OAR have been proven that their application reduces unnecessary radiography. They have nearly perfect sensitivity for identifying clinically significant ankle fractures. OBJECTIVES: The purpose of this study was to assess the applicability of the OAR in China, to examine their accuracy for the diagnosis of fractures in patients with acute ankle sprains, and to assess their clinical utility for the detection of occult fractures. METHODS: In this prospective study, patients with acute ankle injuries were enrolled during a 6-month period. The eligible patients were examined by emergency orthopedic specialists using the OAR, and then underwent ankle radiography. The results of examination using the OAR were compared with the radiographic results to assess the accuracy of the OAR for ankle fractures. Patients with OAR results highly suggestive of fracture, but no evidence of a fracture on radiographs, were advised to undergo 3-dimensional computed tomography (3D-CT. RESULTS: 183 patients with ankle injuries were enrolled in the study and 63 of these injuries involved fractures. The pooled sensitivity, specificity, positive predictive value and negative predictive value of the OAR for detection of fractures of the ankle were 96.8%, 45.8%, 48.4% and 96.5%, respectively. Our results suggest that clinical application of the OAR could decrease unnecessary radiographs by 31.1%. Of the 21 patients with positive OAR results and negative radiographic findings who underwent 3D-CT examination, five had occult fractures of the lateral malleolus. CONCLUSIONS: The OAR are applicable in the Chinese population, and have high sensitivity and modest specificity for the diagnosis of fractures associated with acute ankle injury. They may detect some occult fractures of the malleoli that are not visible on

  5. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2015-01-01

    Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for

  6. Recalcitrant Lateral Premalleolar Bursitis of the Ankle Associated with Lateral Ankle Instability

    Directory of Open Access Journals (Sweden)

    Masashi Naito

    2017-01-01

    Full Text Available Lateral premalleolar bursitis of the ankle is a rarely reported disorder in the English literature although it is not uncommon in Asian countries where people commonly sit on their feet. Here, we present the case of a 66-year-old woman with recalcitrant lateral premalleolar bursitis associated with lateral ankle instability which was successfully treated with surgical resection of the bursa and repair of the anterior talofibular ligament. Operative findings revealed a communication between the bursa and articular cavity of the ankle joint via the sheath of the extensor digitorum longus tendon, which was considered to act as a check valve leading to a large and recalcitrant bursitis. This report provides a novel concept about the etiology of recalcitrant lateral premalleolar bursitis of the ankle.

  7. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    Science.gov (United States)

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  8. Retrospective comparison of the Low Risk Ankle Rules and the Ottawa Ankle Rules in a pediatric population.

    Science.gov (United States)

    Ellenbogen, Amy L; Rice, Amy L; Vyas, Pranav

    2017-09-01

    A recent multicenter prospective Canadian study presented prospective evidence supporting the Low Risk Ankle Rules (LRAR) as a means of reducing the number of ankle radiographs ordered for children presenting with an ankle injury while maintaining nearly 100% sensitivity. This is in contrast to a previous prospective study which showed that this rule yielded only 87% sensitivity. It is important to further investigate the LRAR and compare them with the already validated Ottawa Ankle Rules (OAR) to potentially curb healthcare costs and decrease unnecessary radiation exposure without compromising diagnostic accuracy. We conducted a retrospective chart review of 980 qualifying patients ages 12months to 18years presenting with ankle injury to a commonly staffed 310 bed children's hospital and auxiliary site pediatric emergency department. There were 28 high-risk fractures identified. The Ottawa Ankle Rules had a sensitivity of 100% (95% CI 87.7-100), specificity of 33.1% (95% CI 30.1-36.2), and would have reduced the number of ankle radiographs ordered by 32.1%. The Low Risk Ankle Rules had a sensitivity of 85.7% (95% CI 85.7-96), specificity of 64.9% (95% CI 61.8-68), and would have reduced the number of ankle radiographs ordered by 63.1%. The latter rule missed 4 high-risk fractures. The Low Risk Ankle Rules may not be sensitive enough for use in Pediatric Emergency Departments, while the Ottawa Ankle Rules again demonstrated 100% sensitivity. Further research on ways to implement the Ottawa Ankle Rules and maximize its ability to decrease wait times, healthcare costs, and improve patient satisfaction are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Modelling the joint torques and loadings during squatting at the Smith machine.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio; Mastrandrea, Francesco; Zanuso, Silvano

    2011-03-01

    An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.

  10. The ANKLE TRIAL (ANKLE treatment after injuries of the ankle ligaments: what is the benefit of external support devices in the functional treatment of acute ankle sprain? : a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Witjes Suzanne

    2012-02-01

    Full Text Available Abstract Background Acute lateral ankle ligament injuries are very common problems in present health care. Still there is no hard evidence about which treatment strategy is superior. Current evidence supports the view that a functional treatment strategy is preferable, but insufficient data are present to prove the benefit of external support devices in these types of treatment. The hypothesis of our study is that external ankle support devices will not result in better outcome in the treatment of acute ankle sprains, compared to a purely functional treatment strategy. Overall objective is to compare the results of three different strategies of functional treatment for acute ankle sprain, especially to determine the advantages of external support devices in addition to functional treatment strategy, based on balance and coordination exercises. Methods/design This study is designed as a randomised controlled multi-centre trial with one-year follow-up. Adult and healthy patients (N = 180 with acute, single sided and first inversion trauma of the lateral ankle ligaments will be included. They will all follow the same schedule of balancing exercises and will be divided into 3 treatment groups, 1. pressure bandage and tape, 2. pressure bandage and brace and 3. no external support. Primary outcome measure is the Karlsson scoring scale; secondary outcomes are FAOS (subscales, number of recurrent ankle injuries, Visual Analogue Scales of pain and satisfaction and adverse events. They will be measured after one week, 6 weeks, 6 months and 1 year. Discussion The ANKLE TRIAL is a randomized controlled trial in which a purely functional treated control group, without any external support is investigated. Results of this study could lead to other opinions about usefulness of external support devices in the treatment of acute ankle sprain. Trial registration Netherlands Trial Register (NTR: NTR2151

  11. The ANKLE TRIAL (ANKLE treatment after injuries of the ankle ligaments): what is the benefit of external support devices in the functional treatment of acute ankle sprain? : a randomised controlled trial

    Science.gov (United States)

    2012-01-01

    Background Acute lateral ankle ligament injuries are very common problems in present health care. Still there is no hard evidence about which treatment strategy is superior. Current evidence supports the view that a functional treatment strategy is preferable, but insufficient data are present to prove the benefit of external support devices in these types of treatment. The hypothesis of our study is that external ankle support devices will not result in better outcome in the treatment of acute ankle sprains, compared to a purely functional treatment strategy. Overall objective is to compare the results of three different strategies of functional treatment for acute ankle sprain, especially to determine the advantages of external support devices in addition to functional treatment strategy, based on balance and coordination exercises. Methods/design This study is designed as a randomised controlled multi-centre trial with one-year follow-up. Adult and healthy patients (N = 180) with acute, single sided and first inversion trauma of the lateral ankle ligaments will be included. They will all follow the same schedule of balancing exercises and will be divided into 3 treatment groups, 1. pressure bandage and tape, 2. pressure bandage and brace and 3. no external support. Primary outcome measure is the Karlsson scoring scale; secondary outcomes are FAOS (subscales), number of recurrent ankle injuries, Visual Analogue Scales of pain and satisfaction and adverse events. They will be measured after one week, 6 weeks, 6 months and 1 year. Discussion The ANKLE TRIAL is a randomized controlled trial in which a purely functional treated control group, without any external support is investigated. Results of this study could lead to other opinions about usefulness of external support devices in the treatment of acute ankle sprain. Trial registration Netherlands Trial Register (NTR): NTR2151 PMID:22340371

  12. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot

    Science.gov (United States)

    Roy, Anindo; Bever, Christopher T.; Forrester, Larry W.; Macko, Richard F.; Hogan, Neville

    2011-01-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults. PMID:21346215

  13. Mobile ankle and knee perturbator.

    Science.gov (United States)

    Andersen, Jacob Buus; Sinkjaer, Thomas

    2003-10-01

    A mobile ankle and knee perturbator has been developed. It consists of a functional joint with an integrated clutch. Four Bowden wires connect the joint to a powerful motor and a double pneumatic cylinder. When needed during any time of the gait cycle, it is possible to impose an ankle rotation by engaging the clutch and rotating the ankle or knee joint with a predefined displacement. The system is designed to investigate electrophysiological and biomechanical features of the human ankle or knee joint during gait.

  14. Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan; Bonetti, S; Zha, C L; Akerman, Johan [Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden)], E-mail: zhouyan@kth.se

    2009-10-15

    Using nonlinear system theory and numerical simulations, we map out the static and dynamic phase diagrams in the zero applied field of a spin torque nano device with a tilted polarizer (TP). We find that for sufficiently large currents, even very small tilt angles ({beta}>1 deg.) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 deg. <{beta}<19 deg., we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 deg. <{beta}<5 deg.) one of the static states turns into a limit cycle (precession). The coexistence of current-driven static and dynamic states in the zero magnetic field is unique to the TP device and leads to large hysteresis in the upper and lower threshold currents for its operation. The nano device with TP can facilitate the generation of large amplitude mode of spin torque signals without the need for cumbersome magnetic field sources and thus should be very important for future telecommunication applications based on spin transfer torque effects.

  15. Adaptive Engine Torque Compensation with Driveline Model

    Directory of Open Access Journals (Sweden)

    Park Jinrak

    2018-01-01

    Full Text Available Engine net torque is the total torque generated by the engine side, and includes the fuel combustion torque, the friction torque, and additionally the starter motor torque in case of hybrid vehicles. The engine net torque is utilized to control powertrain items such as the engine itself, the transmission clutch, also the engine clutch, and it must be accurate for the precise powertrain control. However, this net torque can vary with the engine operating conditions like the engine wear, the changes of the atmospheric pressure and the friction torque. Thus, this paper proposes the adaptive engine net torque compensator using driveline model which can cope with the net torque change according to engine operating conditions. The adaptive compensator was applied on the parallel hybrid vehicle and investigated via MATLAB Simcape Driveline simulation.

  16. 40 CFR 1065.310 - Torque calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Torque calibration. 1065.310 Section... Conditions § 1065.310 Torque calibration. (a) Scope and frequency. Calibrate all torque-measurement systems including dynamometer torque measurement transducers and systems upon initial installation and after major...

  17. Three-dimensional magnetic resonance imaging for ruptures of the lateral ligaments of the ankle

    International Nuclear Information System (INIS)

    Verhaven, E.; Handelberg, F.; Opdecam, P.; Shahabpour, M.; Osteaux, M.; Vaes, P.

    1990-01-01

    The accuracy has been determined of three-dimensional MRI in visualizing the anterior talofibular and the calcaneofibular ligament in young athletes with an acute severe sprain of the lateral ligaments of the ankle by comparing these findings with those found at operation and evaluating three-dimensional fast imaging with steady state precession (3D FISP) as a diagnostic aid to operative planning for tears of both the anterior talofibular and the calcaneofibular ligament in younger competitive athletes. (author). 20 refs.; 2 figs

  18. The American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale; translation and validation of the Dutch language version for ankle fractures.

    Science.gov (United States)

    de Boer, A Siebe; Tjioe, Roderik J C; Van der Sijde, Fleur; Meuffels, Duncan E; den Hoed, Pieter T; Van der Vlies, Cornelis H; Tuinebreijer, Wim E; Verhofstad, Michael H J; Van Lieshout, Esther M M

    2017-08-03

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale is among the most commonly used instruments for measuring outcome of treatment in patients who sustained a complex ankle or hindfoot injury. It consists of a patient-reported and a physician-reported part. A validated, Dutch version of this instrument is currently not available. The aim of this study was to translate the instrument into Dutch and to determine the measurement properties of the AOFAS Ankle-Hindfoot Scale Dutch language version (DLV) in patients with a unilateral ankle fracture. Multicentre (two Dutch hospitals), prospective observational study. In total, 142 patients with a unilateral ankle fracture were included. Ten patients were lost to follow-up. Patients completed the subjective (patient-reported) part of the AOFAS Ankle-Hindfoot Scale-DLV. A physician or trained physician-assistant completed the physician-reported part. For comparison and evaluation of the measuring characteristics, the Foot Function Index and the Short Form-36 were completed by the patient. Descriptive statistics (including floor and ceiling effects), reliability (ie, internal consistency), construct validity, reproducibility (ie, test-retest reliability, agreement and smallest detectable change) and responsiveness were determined. The AOFAS-DLV and its subscales showed good internal consistency (Cronbach's α >0.90). Construct validity and longitudinal validity were proven to be adequate (76.5% of predefined hypotheses were confirmed). Floor effects were not present. Ceiling effects were present from 6 months onwards, as expected. Responsiveness was adequate, with a smallest detectable change of 12.0 points. The AOFAS-DLV is a reliable, valid and responsive measurement instrument for evaluating functional outcome in patients with a unilateral ankle fracture. This implies that the questionnaire is suitable to compare different treatment modalities within this population or to compare outcome across

  19. [Arthroscopic therapy of ankle joint impingement syndrome after operation of ankle joint fracture dislocation].

    Science.gov (United States)

    Feng, Zhibin; Mi, Kun; Wei, Renzhi; Liu, Wu; Wang, Bin

    2011-07-01

    To study the operative procedure and the effectiveness of arthroscopic therapy for ankle joint impingement syndrome after operation of ankle joint fracture dislocation. Between March 2008 and April 2010, 38 patients with ankle joint impingement syndrome after operation of ankle joint fracture dislocation were treated. Among them, there were 28 males and 10 females with an average age of 28 years (range, 18 to 42 years). The time from internal fixation to admission was 12-16 months (mean, 13.8 months). There were pressing pain in anterolateral and anterior ankle. The dorsal extension ranged from -20 to -5 degrees (mean, -10.6 degrees), and the palmar flexion was 30-40 degrees (mean, 35.5 degrees). The total score was 48.32 +/- 9.24 and the pain score was 7.26 +/- 1.22 before operation according to American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. The X-ray films showed osteophyte formation in anterior tibia and talus; MRI showed cartilage injury in 22 cases. Arthroscopic intervention included removing osteophytes, debriding fabric scars and synovial membrane tissues, and removing osteochondral fragments. Arthroscopic microfracture technique was used in 22 patients with cartilage injury. All incisions healed primarily. Thirty-eight cases were followed up 10-26 months (mean, 16 months). At last follow-up, 26 patients had normal range of motion (ROM); the dorsal extension was 15-25 degrees (mean, 19.6 degrees) and the palmar flexion was 35-45 degrees (mean, 40.7 degrees). Eight patients had mild limited ROM; the dorsal extension was 5-15 degrees (mean, 7.2 degrees) and the palmar flexion was 35-45 degrees (mean, 39.5 degrees). Four patients had mild limited ROM and pain in posterior portion of the ankle after a long walking (3-4 hours); the dorsal extension was 0-5 degrees (mean, 2.6 degrees) and the palmar flexion was 35-40 degrees (mean, 37.5 degrees). The total score was 89.45 +/- 9.55 and the pain score was 1.42 +/- 1.26 after

  20. Differences in lateral ankle laxity measured via stress ultrasonography in individuals with chronic ankle instability, ankle sprain copers, and healthy individuals.

    Science.gov (United States)

    Croy, Theodore; Saliba, Susan A; Saliba, Ethan; Anderson, Mark W; Hertel, Jay

    2012-07-01

    Cross-sectional. To use stress ultrasonography to measure the change in anterior talofibular ligament length during the simulated anterior drawer and ankle inversion stress tests. In approximately 30% of individuals, ankle sprains may eventually develop into chronic ankle instability (CAI) with recurrent symptoms. Individuals with CAI and those who have a history of ankle sprain (greater than 1 year prior) without chronic instability (copers) may or may not have mechanical laxity. Sixty subjects (n=60 ankles) were divided into 3 groups: 1) Control subjects without ankle injury history (n=20; mean ± SD age; 24.8 ± 4.8 years; height, 173.7 ± 9.4 cm; weight, 77.2 ± 19.5 kg), ankle sprain copers (n=20; 22.3 ± 2.9 years; 172.8 ± 11.3 cm; 72.4 ± 14.3 kg), and subjects with CAI (n=20; 23.5 ± 4.2 years; 174.6 ± 9.6 cm; 74.8 ± 17.3 kg). Ligament length change with the anterior drawer and end range ankle inversion was calculated from ultrasound images. The Foot and Ankle Ability Measure (FAAM) was used to quantify self-reported function on activities-of-daily living (ADL) and sports. The anterior drawer test resulted in length changes that were greater (F₂,₅₇=6.2, P=.004) in the CAI (mean ± SD length change, 15.6 ± 15.1%, P=.006) and the coper groups (14.0 ± 15.9%, P=.016) compared to the control group (1.3 ± 10.7%); however the length change for the CAI and coper groups were not different (P=.93). Ankle inversion similarly resulted in greater ligament length change (F₂,₅₇=6.5, P=.003) in the CAI (25.3 ± 15.5%, P=.003) and coper groups (20.2 ± 19.6%, P=.039) compared to the control group (7.4 ± 12.9%); with no difference in length change between the copers and CAI groups (P=.59). The CAI group had a lower score on the FAAM-ADL (87.4 ± 13.4%) and FAAM-Sports (74.2 ± 17.8%) when compared to the control (98.8 ± 2.9% and 98.9 ± 3.1%, P<.0001) and coper groups (99.4 ± 1.8% and 94.6 ± 8.8%, P<.0001). Stress ultrasonography identified greater

  1. Installation Torque Tables for Noncritical Applications

    Science.gov (United States)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  2. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    Science.gov (United States)

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during

  3. Acute ankle sprain: conservative or surgical approach?

    Science.gov (United States)

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprains fall into two main categories: acute ankle sprains and chronic ankle instability, which are among the most common recurrent injuries during occupational activities, athletic events, training and army service. Acute ankle sprain is usually managed conservatively and functional rehabilitation failure by conservative treatment leads to development of chronic ankle instability, which most often requires surgical intervention. Enhancing the in-depth knowledge of the ankle anatomy, biomechanics and pathology helps greatly in deciding the management options. Cite this article: Al-Mohrej OA, Al-Kenani NS. Acute ankle sprain: conservative or surgical approach? EFORT Open Rev 2016;1:34-44. DOI: 10.1302/2058-5241.1.000010. PMID:28461926

  4. Analytical prediction of the electromagnetic torques in single-phase and two-phase ac motors

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, M.

    2004-07-01

    The single-phase and two-phase versions of AC motors can be modelled by means of the two-axis (d-q) theory with sufficient accuracy when the equivalent circuit parameters are correctly estimated. This work attempts to present a unified approach to the analytical prediction of the electromagnetic torque of these machines. Classical d-q axes formulation requires that the reference frame should be fixed on the frame where the asymmetries arise, i.e. the stator and rotor. The asynchronous torques that characterize the induction motors are modelled in a stationary reference frame, where the d-q axes coincide with the physical magnetic axes of the stator windings. For the permanent magnet motors, that may exhibit asymmetries on both stator and rotor, the proposed solution includes: a series of frame transformations, followed by symmetrical components decomposition. As in single-phase and two-phase systems the homopolar component is zero; each symmetrical component - negative and positive - is further analysed using d-q axes theory. The superposition principle is employed to consider the magnets and rotor cage effects. The developed models account for the most important asymmetries of the motor configuration. These are, from the stator point of view, different distribution, conductors' dimensions and number of effective turns, non-orthogonal magnetic axes windings and from the rotor point of view, asymmetrical rotor cage, variable reluctance, and permanent magnets effect. The time and space harmonics effect is ignored. Test data are compared with the computed data in order to observe how the simplifying assumptions affect the level of accuracy. The analytical prediction methods make possible torque computation according to the nature of the torque being computed, namely, induction, reluctance and excitation (permanent magnet). The results are available for quasi steady-state, steady-state (rated or synchronous speed) and dynamic analyses. All the developed

  5. The Influence of Mulligan Ankle Taping on Dynamic Balance in the Athletes with and without Chronic Ankle Instability

    Directory of Open Access Journals (Sweden)

    Tahereh Pourkhani

    2014-04-01

    Full Text Available Objective: The ankle joint is the most frequently injured anatomical site in athletes. Ankle instability is responsible for 25% of all time lost from sport. Clinical efficacy of the effect of taping in athletes with chronic ankle instability is unknown. So the purpose of this investigation is the study of the influence of Mulligan ankle taping on dynamic balance in the athletes with and without chronic ankle instability. Materials & Methods: 32 athletes participated in this investigation: 16 subjects with chronic ankle instability, 6 women and 10 men (age 23.5±0.3 years, height 175.4±10.3 cm, weight 73.6±14.5 kg, Foot Ankle Disability Index 74.5±8.62% and Foot Ankle Disability Index Sport 63.5±7.86% and 16 healthy subjects, 6 women and 10 men (age 22.81±7.1 years, height 173.6±12.26 cm, weight 66.4±11.4 kg, Foot Ankle Disability Index and Foot Ankle Disability Index Sport 100%. Dynamic balance was assessed with Star Excursion Balance Test in 3 reaching directions (medial, antero-medial and postero-medial before and after Mulligan ankle taping. Independent and paired t-test were used for statistical analysis. Results: Dynamic balance in healthy group significantly was better than injured group (P&le0.05. Application of taping caused significantly improvement in dynamic balance in both groups (reaching in media, antero-medial and postero-medial directions (P&le0.05 (except reaching in antero-medial direction in healthy group (P>0.05. Conclusion: So it seems that Mulligan ankle taping can improve dynamic balance in the athletes with and without chronic ankle instability.

  6. Effects of ankle foot orthoses on body functions and activities in people with floppy paretic ankle muscles : a systematic review

    NARCIS (Netherlands)

    Wilk, van der Dymphy; Dijkstra, Pieter Ubele; Postema, Klaas; Verkerke, Gijsbertus Jacob; Hijmans, Juha Markus

    2015-01-01

    Background: People with floppy ankle muscles paresis use ankle foot orthoses to improve their walking ability. Ankle foot orthoses also limit ankle range of motion thereby introducing additional problems. Insight in effects of ankle foot orthoses on body functions and activities in people with

  7. Lower limb strength and flexibility in athletes with and without patellar tendinopathy.

    Science.gov (United States)

    Scattone Silva, Rodrigo; Nakagawa, Theresa H; Ferreira, Ana Luisa G; Garcia, Luccas C; Santos, José E M; Serrão, Fábio V

    2016-07-01

    To compare the hip, knee and ankle torques, as well as knee and ankle flexibility between athletes with patellar tendinopathy and asymptomatic controls. Cross-sectional study. Laboratory setting. Fourteen male volleyball, basketball or handball athletes, divided into 2 groups, patellar tendinopathy group (TG; n = 7) and asymptomatic control group (CG; n = 7). Hip, knee and ankle isometric torques were measured with a handheld dynamometer. Weight-bearing ankle dorsiflexion, hamstring and quadriceps flexibility were measured with a gravity inclinometer. The TG had 27% lower hip extensor torque when compared to the CG (P = 0.031), with no group differences in knee and ankle torques (P > 0.05). Also, the TG had smaller weight-bearing ankle dorsiflexion (P = 0.038) and hamstring flexibility (P = 0.006) when compared to the CG. Regarding quadriceps flexibility, no group differences were found (P = 0.828). Strength and flexibility deficits might contribute to a greater overload on the knee extensor mechanism, possibly contributing to the origin/perpetuation of patellar tendinopathy. Interventions aiming at increasing hip extensors strength as well as ankle and knee flexibility might be important for the rehabilitation of athletes with patellar tendinopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  9. 14 CFR 27.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  10. [Influence of Ankle Braces on the Prevalence of Ankle Inversion Injuries in the Swiss Volleyball National League A].

    Science.gov (United States)

    Jaggi, J; Kneubühler, S; Rogan, S

    2016-06-01

    Ankle inversion is a common injury among volleyball players. The injury rate during a game is 2.1 times higher than during training. As a result, the preventive use of ankle braces is frequently observed in Swiss volleyball leagues. Studies have shown that ankle braces have a preventive effect on the prevalence of ankle inversion. In Switzerland there has been no investigation into the preventive use of braces and their influence on prevalence. For this reason, the goals of this study are 1) to determine when, why and by whom ankle braces are worn and 2) to evaluate the injury rate of users and non-users of ankle braces. A modified questionnaire was sent to 18 men's and women's teams of the Swiss National League A. The questionnaire included questions about injury rates and the circumstances of ankle inversion injuries. The data were statistically analysed with Microsoft Excel 2012 and SPSS Version 20. The overall response rate was 61 %, allowing data from 181 players to be analysed. 33 % (59 of 181) of the players used an ankle brace. There was a statistically significant difference in the prevalence of ankle inversion between users (12 injured) and non-users (8 injured) (p = 0.006). Wearing an ankle brace during training or during a game made no difference in the prevention of injuries (p = 0.356). More athletes were injured during training (n = 13) than during a game (n = 7). The results of the present study indicate that volleyball players preferably wear ankle braces to prevent injury. More than one third of the players in the study wore an ankle brace, 60 % for primary prevention and 40 % for secondary prevention due to a previous injury. The study shows that significantly more users than non-users of ankle braces were injured. This is contrary to literature. Furthermore it was shown that more injuries occur during training than during a game. This finding results from the fact that ankle braces were rarely worn during training. It is

  11. Ball-and-socket ankle joint

    International Nuclear Information System (INIS)

    Pistoia, F.; Ozonoff, M.B.; Wintz, P.; Hartford Hospital, CT

    1987-01-01

    The ball-and-socket ankle joint is a malformation of the ankle in which the articular surface of the talus is hemispherical in both the anteroposterior and lateral projections and has a congruent, concave tibial articular surface. Fourteen patients with this condition were identified retrospectively. Thirteen patients were thought to have the congenital type of ball-and-socket ankle joint which in many was associated with tarsal coalition, short limb, and ray fusion and deletion anomalies. One case of the acquired type, demonstrating less geometric rounding of the talar margins, was seen in a patient with myelomeningocele, probably resulting from sensory and motor deficits. Although the exact etiology of the congenital type is unknown, its association with other malformations suggests that the ball-and-socket ankle joint results from an overall maldevelopment of the ankle and foot. (orig.)

  12. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

    Science.gov (United States)

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-07-26

    To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the

  13. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.

    Science.gov (United States)

    Lai, A K M; Lichtwark, G A; Schache, A G; Pandy, M G

    2018-03-30

    The primary human ankle plantarflexors, soleus (SO), medial gastrocnemius (MG), and lateral gastrocnemius (LG) are typically regarded as synergists and play a critical role in running. However, due to differences in muscle-tendon architecture and joint articulation, the muscle fascicles and tendinous tissue of the plantarflexors may exhibit differences in their behavior and interactions during running. We combined in vivo dynamic ultrasound measurements with inverse dynamics analyses to identify and explain differences in muscle fascicle, muscle-tendon unit, and tendinous tissue behavior of the primary ankle plantarflexors across a range of steady-state running speeds. Consistent with their role as a force generator, the muscle fascicles of the uniarticular SO shortened less rapidly than the fascicles of the MG during early stance. Furthermore, the MG and LG exhibited delays in tendon recoil during the stance phase, reflecting their ability to transfer power and work between the knee and ankle via tendon stretch and storage of elastic strain energy. Our findings add to the growing body of evidence surrounding the distinct mechanistic functions of uni- and biarticular muscles during dynamic movements. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Charge-induced spin torque in Weyl semimetals

    Science.gov (United States)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  15. Joint stability characteristics of the ankle complex in female athletes with histories of lateral ankle sprain, part II: clinical experience using arthrometric measurement.

    Science.gov (United States)

    Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W

    2014-01-01

    This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Cross-sectional study. University research laboratory. Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles.

  16. Osteoligamentous injuries of the medial ankle joint.

    Science.gov (United States)

    Lötscher, P; Lang, T H; Zwicky, L; Hintermann, B; Knupp, M

    2015-12-01

    Injuries of the ankle joint have a high incidence in daily life and sports, thus, playing an important socioeconomic role. Therefore, proper diagnosis and adequate treatment are mandatory. While most of the ligament injuries around the ankle joint are treated conservatively, great controversy exists on how to treat deltoid ligament injuries in ankle fractures. Missed injuries and inadequate treatment of the medial ankle lead to inferior outcome with instability, progressive deformity, and ankle joint osteoarthritis.

  17. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work

    NARCIS (Netherlands)

    Bregman, D.J.J.; Harlaar, J.; Meskers, C.G.M.; de Groot, V.

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the

  18. Minor or occult ankle instability as a cause of anterolateral pain after ankle sprain.

    Science.gov (United States)

    Vega, Jordi; Peña, Fernando; Golanó, Pau

    2016-04-01

    The aim of this study was to determine which intra-articular injuries are associated with chronic anterolateral pain and functional instability after an ankle sprain. From 2008 to 2010, records of all patients who underwent ankle joint arthroscopy with anterolateral pain and functional instability after an ankle sprain were reviewed. A systematic arthroscopic examination of the intra-articular structures of the ankle joint was performed. Location and characteristics of the injuries were identified and recorded. A total of 36 ankle arthroscopic procedures were reviewed. A soft-tissue occupying mass over the lateral recess was present in 18 patients (50%). A partial injury of the anterior talofibular ligament (ATFL) was observed in 24 patients (66.6%). Cartilage abrasion due to the distal fascicle of the anteroinferior tibiofibular ligament coming into contact with the talus was seen in 21 patients (58.3%), but no thickening of the ligament was observed. Injury to the intra-articular posterior structures, including the transverse ligament in 19 patients (52.7%) and the posterior surface of the distal tibia in 21 patients (58.3%), was observed. Intra-articular pathological findings have been observed in patients affected by anterolateral pain after an ankle sprain. Despite no demonstrable abnormal lateral laxity, morphologic ATFL abnormality has been observed on arthroscopic evaluation. An injury of the ATFL is present in patients with chronic anterolateral pain and functional instability after an ankle sprain. A degree of microinstability due to a deficiency of the ATFL could explain the intra-articular pathological findings and the patients' complaints. IV.

  19. Outcome of ankle arthrodesis in posttraumatic arthritis

    Directory of Open Access Journals (Sweden)

    B S Narayana Gowda

    2012-01-01

    Full Text Available Background: Ankle arthrodesis is still a gold standard salvage procedure for the management of ankle arthritis. There are several functional and mechanical benefits of ankle arthrodesis, which make it a viable surgical procedure in the management of ankle arthritis. The functional outcomes following ankle arthrodesis are not very well known. The purpose of this study was to perform a clinical and radiographic evaluation of ankle arthrodesis in posttraumatic arthritis performed using Charnley′s compression device. Materials and Methods: Between January 2006 and December 2009 a functional assessment of 15 patients (10 males and 5 females who had undergone ankle arthrodesis for posttraumatic arthritis and/or avascular necrosis (AVN talus (n=6, malunited bimalleolar fracture (n=4, distal tibial plafond fractures (n=3, medial malleoli nonunion (n=2. All the patients were assessed clinically and radiologically after an average followup of 2 years 8 months (range 1-5.7 years. Results: All patients had sound ankylosis and no complications related to the surgery. Scoring the patients with the American Orthopaedic Foot and Ankle Society (AOFAS Ankle-Hindfoot scale, we found that 11 of the 15 had excellent results, two had good, and two showed fair results. They were all returned to their preinjury activities. Conclusion: We conclude that, the ankle arthrodesis can still be considered as a standard procedure in ankle arthritis. On the basis of these results, patients should be counseled that an ankle fusion will help to relieve pain and to improve overall function. Still, one should keep in mind that it is a salvage procedure that will cause persistent alterations in gait with a potential for deterioration due to the development of subtalar arthritis.

  20. Directing clinical care using lower extremity biomechanics in patients with ankle osteoarthritis and ankle arthroplasty.

    Science.gov (United States)

    Queen, Robin

    2017-11-01

    Ankle osteoarthritis is a debilitating disease with approximately 50,000 new cases per year leading to skeletal deformity, severe and recurrent pain, cartilage breakdown, and gait dysfunction limiting patient mobility and well-being. Although many treatments (total ankle arthroplasty [TAA], ankle fusion [arthrodesis], and ankle distraction arthroplasty) relieve pain, it is not clear that these procedures significantly improve patient mobility. The goal of the research presented here is to summarize what is presently known about lower extremity gait mechanics and outcomes and to quantify the impact of ankle osteoarthritis and TAA have on these measures using an explicitly holistic and mechanistic approach. Our recent studies have explored physical performance and energy recovery and revealed unexpected patterns and sequelae to treatment including incomplete restoration of gait function. These studies demonstrated for the first time the extreme levels and range of gait and balance dysfunction present in ankle osteoarthritis patients as well as quantifying the ways in which the affected joint alters movement and loading patterns not just in the painful joint, but throughout both the ipsilateral and contralateral lower extremity. Through this work, we determined that relieving pain alone through TAA is not enough to restore normal walking mechanics and balance due to underlying causes including limited ankle range of motion and balance deficits leading to long-term disability despite treatment. The results indicate the need to consider additional therapeutic interventions aimed at restoring balance, ankle range of motion, and movement symmetry in order to improve long-term health and function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2345-2355, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Anatomy of the ankle ligaments: a pictorial essay

    NARCIS (Netherlands)

    Golanó, Pau; Vega, Jordi; de Leeuw, Peter A. J.; Malagelada, Francesc; Manzanares, M. Cristina; Götzens, Víctor; van Dijk, C. Niek

    2010-01-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the

  2. Anatomy of the ankle ligaments: a pictorial essay

    NARCIS (Netherlands)

    Golanó, Pau; Vega, Jordi; de Leeuw, Peter A. J.; Malagelada, Francesc; Manzanares, M. Cristina; Götzens, Víctor; van Dijk, C. Niek

    2016-01-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the

  3. Realignment Surgery for Malunited Ankle Fracture.

    Science.gov (United States)

    Guo, Chang-Jun; Li, Xing-Cheng; Hu, Mu; Xu, Yang; Xu, Xiang-Yang

    2017-02-01

    To investigate the characteristics and the results of realignment surgery for the treatment of malunited ankle fracture. Thirty-three patients with malunited fractures of the ankle who underwent reconstructive surgery at our hospital from January 2010 to January 2014 were reviewed. The tibial anterior surface angle (TAS), the tibiotalar tilt angle (TTA), the malleolar angle (MA), and the tibial lateral surface angle (TLS) were measured. Clinical assessment was performed with use of the American Orthopaedic Foot and Ankle Society (AOFAS) scale and visual analogue scale (VAS) scores, and the osteoarthritis stage was determined radiographically with the modified Takakura classification system. The Wilcoxon matched-pairs test was used to analyze the difference between the preoperative and the postoperative data. The mean follow-up was 36 months (range, 20-60 months). The mean age at the time of realignment surgery was 37.1 years (range, 18-62 years). Compared with preoperation, the TAS at the last follow-up showed a significant increase (88.50° ± 4.47° vs. 90.80° ± 3.49°, P = 0.0035); similar results were observed in TTA (1.62° ± 1.66° vs. 0.83° ± 0.90°, P ankle osteoarthritis, and was treated by ankle joint distraction. Realignment surgery for a malunited ankle fracture can reduce pain, improve function, and delay ankle arthrodesis or total ankle replacement. Postoperative large talar tilt and advanced stages of ankle arthritis are the risk factors for the surgery. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  4. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  5. Quantitative evaluation of the viscoelastic properties of the ankle joint complex in patients suffering from ankle sprain by the anterior drawer test.

    Science.gov (United States)

    Lin, Che-Yu; Shau, Yio-Wha; Wang, Chung-Li; Chai, Huei-Ming; Kang, Jiunn-Horng

    2013-06-01

    Biological tissues such as ligaments exhibit viscoelastic behaviours. Injury to the ligament may induce changes of these viscoelastic properties, and these changes could serve as biomarkers to detect the injury. In the present study, a novel instrument was developed to non-invasive quantify the viscoelastic properties of the ankle in vivo by the anterior drawer test. The purpose of the study was to investigate the reliability of the instrument and to compare the viscoelastic properties of the ankle between patients suffering from ankle sprain and controls. Eight patients and eight controls participated in the present study. The reliability test was performed on three randomly chosen subjects. In patient and control test, both ankles of each subject were tested to evaluate the viscoelastic properties of the ankle. The viscosity index was defined for quantitatively evaluating the viscosity of the ankle. Greater viscosity index was associated with lower viscosity. Injured and uninjured ankles of patient and both ankles of controls were compared. The instrument exhibited excellent test-retest reliability (r > 0.9). Injured ankles exhibited significantly less viscosity than uninjured ankles, since injured ankles of patients had significantly higher viscosity index (8,148 ± 5,266) compared with uninjured ankles of patients (948 ± 617; p = 0.008) and controls (1,326 ± 613; p ankle can serve as sensitive and useful clinical biomarkers to differentiate between injured and uninjured ankles. The method may provide a clinical examination for objectively evaluating lateral ankle ligament injuries.

  6. A new formulation of the understeer coefficient to relate yaw torque and vehicle handling

    Science.gov (United States)

    Bucchi, F.; Frendo, F.

    2016-06-01

    The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.

  7. The cost-effectiveness of semi-rigid ankle brace to facilitate return to work following first-time acute ankle sprains.

    Science.gov (United States)

    Fatoye, Francis; Haigh, Carol

    2016-05-01

    To examine the cost-effectiveness of semi-rigid ankle brace to facilitate return to work following first-time acute ankle sprains. Economic evaluation based on cost-utility analysis. Ankle sprains are a source of morbidity and absenteeism from work, accounting for 15-20% of all sports injuries. Semi-rigid ankle brace and taping are functional treatment interventions used by Musculoskeletal Physiotherapists and Nurses to facilitate return to work following acute ankle sprains. A decision model analysis, based on cost-utility analysis from the perspective of National Health Service was used. The primary outcomes measure was incremental cost-effectiveness ratio, based on quality-adjusted life years. Costs and quality of life data were derived from published literature, while model clinical probabilities were sourced from Musculoskeletal Physiotherapists. The cost and quality adjusted life years gained using semi-rigid ankle brace was £184 and 0.72 respectively. However, the cost and quality adjusted life years gained following taping was £155 and 0.61 respectively. The incremental cost-effectiveness ratio for the semi-rigid brace was £263 per quality adjusted life year. Probabilistic sensitivity analysis showed that ankle brace provided the highest net-benefit, hence the preferred option. Taping is a cheaper intervention compared with ankle brace to facilitate return to work following first-time ankle sprains. However, the incremental cost-effectiveness ratio observed for ankle brace was less than the National Institute for Health and Care Excellence threshold and the intervention had a higher net-benefit, suggesting that it is a cost-effective intervention. Decision-makers may be willing to pay £263 for an additional gain in quality adjusted life year. The findings of this economic evaluation provide justification for the use of semi-rigid ankle brace by Musculoskeletal Physiotherapists and Nurses to facilitate return to work in individuals with first-time ankle

  8. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  9. Spontaneous resolution of posterior ankle joint loose bodies after total ankle replacement: A case report.

    Science.gov (United States)

    Lee, Raymond P; Cheng, Sally H S

    2017-06-01

    Late stage ankle osteoarthritis often presents with debilitating pain. It is common to find osteophytes and loose body formation around the joint. Total ankle arthroplasty can preserve joint mobility and pain relieve for such patient. However, when trying to remove the osteophytes and loose bodies at the posterior ankle joint, there is risk of damaging posterior structures such as the neurovascular bundle during the procedure. We are presenting a case where the posterior loose bodies remained untouched during the operation, and patient showed spontaneous resolution of the lesions with time. Patient enjoyed good function outcome after the surgery. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  10. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    Science.gov (United States)

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  11. The conservative treatment of ankle osteoarthritis

    NARCIS (Netherlands)

    Witteveen, A.G.H.

    2015-01-01

    In 70% to 78% of patients with ankle osteoarthritis (OA), they present themselves with the sequelae of a traumatic event in the past. Ankle trauma occurs in many patients at a relatively young age. Consequently, the expected life span of many patients with ankle OA is relatively long. Many treatment

  12. Predicted percentage dissatisfied with ankle draft.

    Science.gov (United States)

    Liu, S; Schiavon, S; Kabanshi, A; Nazaroff, W W

    2017-07-01

    Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12, 21-39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPD AD ) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1-0.6 m/s), temperature (nominal range: 16.5-22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole-body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Clinical evaluation of a new noninvasive ankle arthrometer.

    Science.gov (United States)

    Nauck, Tanja; Lohrer, Heinz; Gollhofer, Albert

    2010-06-01

    A nonradiographic arthrometer was developed to objectively quantify anterior talar drawer instability in stable and unstable ankles. Diagnostic validity of this device was previously demonstrated in a cadaver study. The aim of the present study was to validate the ankle arthrometer in an in vivo setting. Twenty-three subjects participated in the study. An orthopedic surgeon first performed a manual anterior talar drawer test to classify the subjects' ankles as stable or unstable. The subjects were then evaluated using the ankle arthrometer, and filled out a validated self-reported questionnaire (German version of the Foot and Ankle Ability Measure [FAAM-G]). Ankle stiffness was calculated from the low linear region (40-60 N) of the load deformation curves obtained from the ankle arthrometer. Reliability testing of these stiffness values was done based on load deformation curves, with 150 and 200 N maximum anterior drawer loads applied in the ankle arthrometer. Using the manual anterior drawer test, 16 ankles were classified as stable and 7 were classified as unstable. Arthrometer stiffness analysis differentiated stable from unstable ankles (P = 0.00 and P = 0.01, respectively). Test-retest demonstrated an accurate reliability (intraclass correlation coefficient = 0.80). A significant correlation was found between both FAAM-G subscales and the arthrometer stiffness values (r = 0.43 and 0.54; P = 0.04 and 0.01). Discussion Subjects with and without mechanical ankle instability could be differentiated by ankle arthrometer stiffness analysis and the FAAM-G questionnaire results. This nonradiographic device may be relevant for screening athletes at risk for ankle injuries, for clinical follow-up studies, and implementing preventive strategies. Validity and reliability of the new ankle arthrometer is demonstrated in a small cohort in an in vivo setting.

  14. Measuring the uncertainty of tapping torque

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...

  15. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    Science.gov (United States)

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  16. What Is a Foot and Ankle Surgeon?

    Science.gov (United States)

    ... A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle surgeons are the surgical ... every age. What education has a foot and ankle surgeon received? After completing undergraduate education, the foot ...

  17. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  18. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  19. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  20. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  1. The Cumberland Ankle Instability Tool (CAIT) in the Dutch population with and without complaints of ankle instability.

    Science.gov (United States)

    Vuurberg, Gwendolyn; Kluit, Lana; van Dijk, C Niek

    2018-03-01

    To develop a translated Dutch version of the Cumberland Ankle Instability Tool (CAIT) and test its psychometric properties in a Dutch population with foot and ankle complaints. The CAIT was translated into the Dutch language using a forward-backward translation design. Of the 130 subsequent patients visiting the outpatient clinic for foot and ankle complaints who were asked to fill out a questionnaire containing the CAIT, the Foot and Ankle Outcome Score (FAOS), and the numeric rating scale (NRS) pain, 98 completed the questionnaire. After a 1-week period, patients were asked to fill out a second questionnaire online containing the CAIT and NRS pain. This second questionnaire was completed by 70 patients. With these data, the construct validity, test-retest reliability, internal consistency, measurement error, and ceiling and floor effects were assessed. Additionally, a cut-off value to discriminate between stable and unstable ankles, in patients with ankle complaints, was calculated. Construct validity showed moderate correlations between the CAIT and FAOS subscales (Spearman's correlation coefficient (SCC) = 0.36-0.43), and the NRS pain (SCC = -0.55). The cut-off value was found at 11.5 points of the total CAIT score (range 0-30). Test-retest reliability showed to be excellent with an intraclass correlation coefficient of 0.94. Internal consistency was high (Cronbach's α = 0.86). No ceiling or floor effects were detected. Based on the results, the Dutch version of the CAIT is a valid and reliable questionnaire to assess ankle instability in the Dutch population and is able to differentiate between a functionally unstable and stable ankle. The tool is the first suitable tool to objectify the severity of ankle instability specific complaints and assess change in the Dutch population. Level of evidence II.

  2. Ankle Fractures Often Not Diagnosed

    Science.gov (United States)

    ... top of the talus is dome-shaped and... Softball Injuries to the Foot and Ankle Your feet ... ankles take a beating when you are playing softball. Softball players should be aware of the following ...

  3. Real time implementation of viable torque and flux controllers and torque ripple minimization algorithm for induction motor drive

    International Nuclear Information System (INIS)

    Vasudevan, M.; Arumugam, R.; Paramasivam, S.

    2006-01-01

    Field oriented control (FOC) and direct torque control (DTC) are becoming the industrial standards for induction motors torque and flux control. This paper aims to give a contribution for a detailed comparison between these two control techniques, emphasizing their advantages and disadvantages. The performance of these two control schemes is evaluated in terms of torque and flux ripple and their transient response to step variations of the torque command. Moreover, a new torque and flux ripple minimization technique is also proposed to improve the performance of the DTC drive. Based on the experimental results, the analysis has been presented

  4. Postoperative MRI of the ankle

    International Nuclear Information System (INIS)

    Sharabianlou Korth, M.; Fritz, L.B.

    2017-01-01

    Postoperative imaging of the ankle can be challenging, even for the experienced radiologist. Pathological and postoperative changes to the primarily complex anatomy of the ankle with its great variety of bone structures, tendons, ligaments, and soft tissue in a very limited space may cause great difficulty in differentiating underlying pathology from expected postoperative changes and artifacts, especially in magnetic resonance imaging (MRI). Selecting the appropriate radiological modality is key to making the correct diagnosis. Therefore, knowledge of the initial and current symptoms is just as important as familiarity with the most frequently performed operations in the ankle. This article aims to give its reader a summary of the most important and frequently performed operation techniques of the ankle and discusses the expected appearance and possible complications in postoperative imaging. (orig.) [de

  5. Development of a Portable Torque Wrench Tester

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Gou, C.; Su, D.

    2018-03-01

    A portable torque wrench tester (PTWT) with calibration range from 0.5 Nm to 60 Nm has been developed and evaluated for periodic or on-site calibration of setting type torque wrenches, indicating type torque wrenches and hand torque screwdrivers. The PTWT is easy to carry with weight about 10 kg, simple and efficient operation and energy saving with an automatic loading and calibrating system. The relative expanded uncertainty of torque realized by the PTWT was estimated to be 0.8%, with the coverage factor k=2. A comparison experiment has been done between the PTWT and a reference torque standard at our laboratory. The consistency between these two devices under the claimed uncertainties was verified.

  6. 14 CFR 23.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with...

  7. 14 CFR 25.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Supplementary Conditions § 25.361 Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque...

  8. THE FUZZY LOGIC BASED POWER INJECTION INTO ROTOR CIRCUIT FOR INSTANTANEOUS HIGH TORQUE AND SPEED CONTROL IN INDUCTION MACHINES

    Directory of Open Access Journals (Sweden)

    Selami KESLER

    2009-01-01

    Full Text Available The power flow of the rotor circuit is controlled by different methods in induction machines used for producing high torque in applications involved great power and constant output power with constant frequency in wind turbines. The voltage with slip frequency can be applied on rotor windings to produce controlled high torque and obtain optimal power factor and speed control. In this study, firstly, the dynamic effects of the voltage applying on rotor windings through the rings in slip-ring induction machines are researched and undesirable aspects of the method are exposed with simulations supported by experiments. Afterwards, a fuzzy logic based inverter model on rotor side is proposed with a view to improving the dynamic effects, controlling high torque producing and adjusting machine speed in instantaneous forced conditions. For the simulation model of the system in which the stator side is directly connected to the grid in steady state operation, a C/C++ algorithm is developed and the results obtained for different load conditions are discussed.

  9. Torque limit of PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  10. Ankle Arthrodesis Following Trauma, a Useful Salvage Procedure ...

    African Journals Online (AJOL)

    progressive loss of ankle-joint motion, weight-bearing pain, and functional disability. ... of patients after the reconstructionof ankle malunions.[6] ... Three patients with severe open ankle ... diabetic nor was he known to be on any steroid medication. He was .... Charnley J. Compression arthrodesis of the ankle and shoulder.

  11. 14 CFR 29.361 - Engine torque.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  12. The foot and ankle

    International Nuclear Information System (INIS)

    Berquist, T.H.

    1985-01-01

    Imaging of the foot and ankle can be difficult because of the complex anatomy. Familiarity with the bony and ligamentous anatomy is essential for proper evaluation of radiographic findings. Therefore, pertinent anatomy is discussed as it applies to specific injuries. Special views, tomography, arthrography, and other techniques may be indicated for complete evaluation of foot and ankle trauma

  13. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    Science.gov (United States)

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.

    Science.gov (United States)

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-11-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.

  15. The origin of the ankle

    International Nuclear Information System (INIS)

    Codino, Antonio; Plouin, Francois

    2007-01-01

    The differential intensity of cosmic radiation shows a sequence of depressions referred to as knees in a large energy band above 10 15 eV. The global depression entailed in the complete spectrum with respect to the extrapolated intensity based on low energy data, amounts to a maximum factor of 8, occurring at 5x10 18 eV, where flux measurements exhibit a relative minimum, referred to as the ankle. It is demonstrated by a full simulation of cosmic ray trajectories in the Galaxy that the intensity minimum around the ankle energy is primarily due to the nuclear interactions of the cosmic ions with the interstellar matter and to the galactic magnetic field. Ankles signal the onset energies of the rectilinear propagation in the Milky Way at Earth, being for example, 4x10 18 eV for helium and 6x10 19 eV for iron. The ankle, in spite of its notable importance at Earth, is a local perturbation of the universal spectrum which, between the knee and the ankle, decreases by a round factor 10 9 regaining its unperturbed status above 10 19 eV

  16. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium

    NARCIS (Netherlands)

    Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.L.; Fourchet, F.; Fong, D.; Hertel, J.; Hiller, C.; Kaminski, T.W.; McKeon, P.O.; Refshauge, K.M.; Wees, P.J. van der; Vicenzino, B.; Wikstrom, E.A.

    2013-01-01

    The International Ankle Consortium is an international community of researchers and clinicians whose primary scholastic purpose is to promote scholarship and dissemination of research-informed knowledge related to pathologies of the ankle complex. The constituents of the International Ankle

  17. Peculiarities in Ankle Cartilage.

    Science.gov (United States)

    Kraeutler, Matthew J; Kaenkumchorn, Tanyaporn; Pascual-Garrido, Cecilia; Wimmer, Markus A; Chubinskaya, Susanna

    2017-01-01

    Posttraumatic osteoarthritis (PTOA) is the most common form of osteoarthritis (OA) of the ankle joint. PTOA occurs as a result of several factors, including the poor regenerative capacity of hyaline articular cartilage as well as increased contact stresses following trauma. The purpose of this article is to review the epidemiology, pathogenesis, and potential targets for treatment of PTOA in the ankle joint. Previous reviews primarily addressed clinical approaches to ankle PTOA, while the focus of the current article will be specifically on the newly acquired knowledge of the cellular mechanisms that drive PTOA in the ankle joint and means for potential targeted therapeutics that might halt the progression of cartilage degeneration and/or improve the outcome of surgical interventions. Three experimental treatment strategies are discussed in this review: (1) increasing the anabolic potential of chondrocytes through treatment with growth factors such as bone morphogenetic protein-7; (2) limiting chondrocyte cell death either through the protection of cell membrane with poloxamer 188 or inhibiting activity of intracellular proteases, caspases, which are responsible for cell death by apoptosis; and (3) inhibiting catabolic/inflammatory responses of chondrocytes by treating them with anti-inflammatory agents such as tumor necrosis factor-α antagonists. Future studies should focus on identifying the appropriate timing for treatment and an appropriate combination of anti-inflammatory, chondro- and matrix-protective biologics to limit the progression of trauma-induced cartilage degeneration and prevent the development of PTOA in the ankle joint.

  18. Quantifying normal ankle joint volume: An anatomic study

    Directory of Open Access Journals (Sweden)

    Draeger Reid

    2009-01-01

    Full Text Available Background: Many therapeutic and diagnostic modalities such as intraarticular injections, arthrography and ankle arthroscopy require introduction of fluid into the ankle joint. Little data are currently available in the literature regarding the maximal volume of normal, nonpathologic, human ankle joints. The purpose of this study was to measure the volume of normal human ankle joints. Materials and Methods: A fluoroscopic guided needle was passed into nine cadaveric adult ankle joints. The needle was connected to an intracompartmental pressure measurement device. A radiopaque dye was introduced into the joint in 2 mL boluses, while pressure measurements were recorded. Fluid was injected into the joint until three consecutive pressure measurements were similar, signifying a maximal joint volume. Results: The mean maximum ankle joint volume was 20.9 ± 4.9 mL (range, 16-30 mL. The mean ankle joint pressure at maximum volume was 142.2 ± 13.8 mm Hg (range, 122-166 mm Hg. Two of the nine samples showed evidence of fluid tracking into the synovial sheath of the flexor hallucis longus tendon. Conclusion: Maximal normal ankle joint volume was found to vary between 16-30 mL. This study ascertains the communication between the ankle joint and the flexor hallucis longus tendon sheath. Exceeding maximal ankle joint volume suggested by this study during therapeutic injections, arthrography, or arthroscopy could potentially damage the joint.

  19. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  20. Total ankle arthroplasty: An imaging overview

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Rae; Choi, Yun Sun; Chun, Ka Young; Jung, Yoon Young; Kim, Jin Su; Young, Ki Won [Eulji Hospital, Eulji University, Seoul (Korea, Republic of); Potter, Hollis G.; Li, Angela E. [Dept. of Radiology and Imaging, Hospital for Special Surgery, New York (United States)

    2016-06-15

    With advances in implant technology, total ankle arthroplasty (TAA) has become an increasingly popular alternative to arthrodesis for the management of end-stage ankle arthritis. However, reports in the literature do not focus on the imaging features of TAA. Through a literature review, we demonstrate basic design features of the current ankle arthroplasty system, and the normal and abnormal postoperative imaging features associated with such devices. Pre- and postoperative evaluations of ankle arthroplasty mainly include radiography; in addition, computed tomography and magnetic resonance imaging provide further characterization of imaging abnormalities. Familiarization with multimodal imaging features of frequent procedural complications at various postoperative intervals is important in radiological practice.

  1. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  2. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  3. Evidence-based treatment for ankle injuries: a clinical perspective

    OpenAIRE

    Lin, Chung-Wei Christine; Hiller, Claire E; de Bie, Rob A

    2010-01-01

    The most common ankle injuries are ankle sprain and ankle fracture. This review discusses treatments for ankle sprain (including the management of the acute sprain and chronic instability) and ankle fracture, using evidence from recent systematic reviews and randomized controlled trials. After ankle sprain, there is evidence for the use of functional support and non-steroidal anti-inflammatory drugs. There is weak evidence suggesting that the use of manual therapy may lead to positive short-t...

  4. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    Science.gov (United States)

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were

  5. Muscle response to pneumatic hand tool torque reaction forces.

    Science.gov (United States)

    Radwin, R G; VanBergeijk, E; Armstrong, T J

    1989-06-01

    Surface electromyography was used for studying the effects of torque reaction force acting against the hand, on forearm muscle activity and grip force for five subjects operating right angle, air shut-off nutrunners. Four tools having increasing spindle torque were operated using short and long torque reaction times. Nutrunner spindle torque ranged between 30 Nm and 100 Nm. Short torque reaction time was considered 0.5 s while long torque reaction time was 2 s. Peak horizontal force was the greatest component of the reaction force acting against the hand and accounted for more than 97% of the peak resultant hand force. Peak hand force increased from 89 N for the smallest tool to 202 N for the largest tool. Forearm muscle rms EMG, scaled for grip force, indicated average flexor activity during the Torque-reaction phase was more than four times greater than the Pre-start and Post Shut-off phases, and two times greater than the Run-down phase. Flexor EMG activity during the Torque-reaction phase increased for increasing tool peak spindle torque. Average flexor rms EMG activity, scaled for grip force, during the Torque-reaction phase increased from 372 N for the 30 Nm nutrunner to 449 N for the 100 Nm nutrunner. Flexor rms EMG activity averaged during the Torque-reaction phase and scaled for grip force was 390 N for long torque reaction times and increased to 440 N for short torque reaction times. Flexor rms EMG integrated over the torque reaction phase was 839 Ns for long torque reaction times and decreased to 312 Ns for short torque reaction times. The average latency between tool spindle torque onset and peak initial flexor rms EMG for long torque reaction times was 294 ms which decreased to 161 ms for short torque reaction times. The average latency between peak tool spindle torque, just prior to tool shut-off, and peak final rms EMG for long torque reaction times was 97 ms for flexors and 188 ms for extensors, which decreased for short torque reaction times to 47

  6. Steady reconstruction process - development, testing and comparison in ultrasonic testing

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Schmitz, V.

    1986-01-01

    The fault parameters can be extracted from a few data of high quality in steady test procedures. The boundary conditions for the successful use of such a process were researched and found, so that by using theoretical models for the elasto-dynamic interaction of fault and ultrasonics, a concentration of wavefronts instead of resonances and a wide band careful collection of data makes a physical interpretation in the form of specific geometry torques possible. Models of the interaction of ultrasonics and faults for two fault geometries (cracks and pores) were developed which permit the calculation of A scans of any bandwidth and with any angle of scatter for the direct and mode converted parts of the elastic ultrasonic scatter wave. The curved pressure and shear waves including the mode converted bending fields over an angular range of 360deg were experimentally recorded. Their agreement including the additional wavefronts caused by the close field of the crack bending field is close. Classification of torques is done on two examples (crack, cylinder) for evaluation purposes. It was found that a classification was possible according to the sign of the a 1 polynomial coefficient. (orig./HP) [de

  7. [Eleven-Year Experience with Total Ankle Arthroplasty].

    Science.gov (United States)

    Popelka, S; Sosna, A; Vavřík, P; Jahoda, D; Barták, V; Landor, I

    2016-01-01

    PURPOSE OF THE STUDY Total joint replacement is one of the options in surgical treatment of advanced ankle arthritis. It allows the ankle to remain mobile but, unfortunately, it does not provide the same longevity as total knee or hip replacements. Therefore, decisions concerning the kind of treatment are very individual and depend on the clinical status and opinion of each patient. MATERIAL AND METHODS A total of 132 total ankle replacements were carried out in the period from 2004 to 2015. The prostheses used included the Ankle Evolutive System (AES) in 52 patients, Mobility Total Ankle System (DePuy) in 24 patients and, recently, Rebalance Total Ankle Replacement implant in 53 patients. Three patients allergic to metal received the Taric prosthesis. Revision arthroplasty using the Hintegra prosthesis was carried out in four patients. The outcome of arthroplasty was evaluated on the American Orthopaedic Foot and Ankle Society (AOFAS) scoring scale. Indications for total ankle arthroplasty included post-traumatic arthritis in 83 patients, rheumatoid arthritis in 37 and primary arthritis in 12 patients. There were 78 women and 54 men, with an average age of 55.6 years at the time of surgery. RESULTS The average follow-up was 6.1 years (1-11 years). The average AOFAS score of the whole group increased from 33.2 before surgery to 82.5 after it. The primary indication had an important role. Arthroplasty outcomes were poorer in patients with post-traumatic arthritis than in those with rheumatoid arthritis or primary arthritis. In patients with post-traumatic arthritis, the average AOFAS score rose to 78.6 due to restricted motion of the ankle, and some patients continued to have pain when walking. The average AOFAS score in a total of 49 patients who had rheumatoid arthritis or primary arthritis reached a value of 86.4. Post-operative complications were recorded in ten patients (7.6%) in whom part of the wound was healing by second intention. Ossification was also a

  8. Arthroscopy of the ankle joint

    NARCIS (Netherlands)

    van Dijk, C. N.; Scholte, D.

    1997-01-01

    Ankle arthroscopy has become a standard procedure for a variety of indications. Joint distraction is applied by many authors. A recent retrospective multicentre study provoked the following questions. Is there an indication for diagnostic arthroscopy? Can arthroscopic surgery of the ankle joint be

  9. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    Science.gov (United States)

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P abutment is definitively placed.

  10. A quasi-linear control theory analysis of timesharing skills

    Science.gov (United States)

    Agarwal, G. C.; Gottlieb, G. L.

    1977-01-01

    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

  11. Postoperative MR study of the ankle

    International Nuclear Information System (INIS)

    Tosch, U.; Sander, B.; Schubeus, P.; Tepe, H.; Goudarzi, Y.M.

    1991-01-01

    20 patients with acute traumatic rupture of the anterior talofibular ligament and ligamental suture were studied postoperatively by MRI. MR results were correlated with stress X-ray studies. We found a normal anterior talofibular ligament in eight cases. However, stress X-ray images showed normal stability of the ankle joint in eighteen cases. In six patients the anterior talofibular ligament was thickened, in another six cases it could not be separated from scar tissue. Therefore MR imaging of ankle ligaments did not allow a diagnosis of their function. Nevertheless, sequelae of the ankle trauma such as osteochondrosis, exsudation into the ankle joint and tendovaginitis of the flexor muscles were sensitively visualised by MR. (orig.) [de

  12. Foot and ankle problems in Thai monks.

    Science.gov (United States)

    Vaseenon, Tanawat; Wattanarojanaporn, Thongaek; Intharasompan, Piyapong; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Foot and ankle problems in Thai monks have not been explored. This is an unshod population, and its members have a unique lifestyle living among others in our modern era. Beginning at their ordainment, they follow strict rules about barefoot walking, the amount of daily walking, and their sitting position, practices that theoretically can increase their risk of developing foot and ankle problems. To evaluate the prevalence ofcommon foot and ankle problems in Thai monks. A cross-sectional survey was conducted in combination with foot and ankle examinations of monks living in northern Thailand Foot morphology was examined using a Harris mat footprint. Results of the interviews and the foot and ankle examinations were evaluated. Two hundred and nine monks from 28 temples were included in this study. Common foot and ankle problems found included callosity (70.8%), toe deformities (18.2%), plantar fasciitis (13.4%), metatarsalgia (3.8%), and numbness (2.9%). Callosity and toe deformities were associated with prolonged barefoot walking over extended periods since ordainment (p < 0.05). The callosity was found on the forefoot (47.3%), lateral malleolus (40.7%), and heel (12%). Arch types were considered normal in 66.4% of cases, high in 21.6%, and low in 12%. No association was found between arch type and foot and ankle problems. Callosity and toe deformity were the most common foot and ankle problems found in Thai monks, especially those with prolonged period of barefoot walking and long-term duration ofordainment. The unique pattern of walking and sitting of Thai monks may have contributed to the development of those feet and ankle problems.

  13. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque...

  14. Effect of Ankle Taping and Fatigue on Dynamic Stability in Athletes With and Without Chronic Ankle Instability

    Directory of Open Access Journals (Sweden)

    Tahereh Pourkhani

    2017-07-01

    Conclusion In the athletes with chronic ankle instability, taping without fatigue improved dynamic balance in the vertical direction. Taping after fatigue could not improve dynamic stability in the athletes with and without chronic ankle instability. Future researchers should examine injured and uninjured participants tested under these conditions to determine if these results are useful in selecting appropriate prophylactic method that can treat or prevent injury to the ankle during functional activities.

  15. Anterior ankle arthroscopy, distraction or dorsiflexion?

    OpenAIRE

    de Leeuw, P.A.J.; Golanó, P.; Clavero, J.A.; van Dijk, C.N.

    2010-01-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, where...

  16. Trends of Concurrent Ankle Arthroscopy at the Time of Operative Treatment of Ankle Fracture: A National Database Review.

    Science.gov (United States)

    Ackermann, Jakob; Fraser, Ethan J; Murawski, Christopher D; Desai, Payal; Vig, Khushdeep; Kennedy, John G

    2016-04-01

    The purpose of this study was to report trends associated with concurrent ankle arthroscopy at the time of operative treatment of ankle fracture. The current procedural terminology (CPT) billing codes were used to search the PearlDiver Patient Record Database and identify all patients who were treated for acute ankle fracture in the United States. The Medicare Standard Analytic Files were searchable between 2005 and 2011 and the United Healthcare Orthopedic Dataset from 2007 to 2011. Annual trends were expressed only between 2007 and 2011, as it was the common time period among both databases. Demographic factors were identified for all procedures as well as the cost aspect using the Medicare data set. In total, 32 307 patients underwent open reduction internal fixation (ORIF) of an ankle fracture, of whom 313 (1.0%) had an ankle arthroscopy performed simultaneously. Of those 313 cases, 70 (22.4%) patients received microfracture treatment. Between 2005 and 2011, 85 203 patients were treated for an ankle fracture whether via ORIF or closed treatment. Of these, a total of 566 patients underwent arthroscopic treatment within 7 years. The prevalence of arthroscopy after ankle fracture decreased significantly by 45% from 2007 to 2011 (Pankle fracture treatment, it appears that only a small proportion of surgeons in the United States perform these procedures concurrently. Therapeutic, Level IV: Retrospective. © 2015 The Author(s).

  17. The Incidence of Ankle Sprains in Orienteering.

    Science.gov (United States)

    Ekstrand, Jan; And Others

    1990-01-01

    Investigates relationship between ankle sprains and participation time in competitive orienteering. Examined 15,474 competitors in races in the Swedish O-ringen 5-day event in 1987. Injuries requiring medical attention were analyzed, showing 137 (23.9 percent) ankle sprains. Injury incidence was 8.4/10,000 hours. Incidence of ankle sprains was…

  18. Arthrography of the ankle sprains

    International Nuclear Information System (INIS)

    Han, Moon Hee

    1985-01-01

    Ankle arthrography, by direct puncture of joint cavity, is considered to be a simple and accurate diagnostic method for a precise evaluation of ligamentous injury. Forty-seven cases of ankle arthrography were successively performed in the patients of acute ankle sprains. The purpose of this study is to demonstrate how ankle arthrography can delineate the pathologic anatomy in such cases. The results are as follows: 1. Thirty cases among forty seven revealed the findings of ligament tears. 2. For better diagnostic accuracy, the arthrography should be performed within 72 hrs. after injury. 3. The anterior talofibular ligament tears were the most common (twenty-nine cases) of all and seventeen of them revealed tears without association of any other ligament tears. 4. There were ten cases of calcaneofibular ligament tears and nine of them were associated with anterior talofibular ligament tears. 5. Three cases of anterior tibiofibular and one deltoid ligament tears were demonstrated

  19. EFFECT OF KINESIO TAPE VERSUS ATHLETIC TAPE ON MYOELECTRIC ACTIVITY OF ANKLE MUSCLES IN PATIENTS WITH CHRONIC ANKLE SPRAIN

    Directory of Open Access Journals (Sweden)

    Asmaa F Abdelmonem

    2018-04-01

    Full Text Available Background: Sprained ankle a common orthopedic injury. The standard treatment for ankle sprains remains nonoperative. Ankle taping was used to protect and prevent ligaments excessive strain. So, the current study aimed at investigating the effect of spa-care Kinesio tape versus standard white athletic tape on myoelectric activities (EMG of ankle evertors (peroneus longus and invertors (tibialis anterior in a chronic ankle sprain. Methods: A convenient sample of 30 patients with a chronic ankle sprain (18 females and 12 males were included in this study. Their mean age ±SD was 24 ±1.2 years. Their height was 175±4.8 cm among men & 163±5.2 cm for females, and weight was 85±5.2 kg for males & 74±5.5 kg for women. It was a within-group design in which the same participant experienced the two types of taping compared to no taping condition. Root mean square (RMS was measured while participants were moving the isokinetic dynamometer at an angular velocity of 120°/sec using concentric contraction mode through full ankle range of motion. The EMG (RMS of evertors and invertors was measured immediately after the three taping ways (no tape, Kinesio tape, and athletic tape with a one-week interval between each taping. Results: Spa-care Kinesiotape significantly reduced evertors and invertors EMG (RMS compared with no tape or athletic tape in patients with chronic ankle sprain. Mean± SD of the evertors was 0.7 (±0.1 for no tape and 0.58 (±0.2 for Kinesio tape. The P value was 0.000 for kinesio tape in evertors compared with no tape. Also, mean± SD of the invertors was 0.87 (±0.23 for no tape, and 0.54 (±0.1 for Kinesio tape and the P value was 0.001 for Kinesio tape in invertors compared with no tape. Conclusion: Spa-care Kinesio tape may be useful for reducing EMG activity of ankle muscles in a chronic ankle sprain.

  20. Acute injury of the ankle joint

    International Nuclear Information System (INIS)

    Breitenseher, M.J.

    1999-01-01

    The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination, and clinical stress tests. If the clinical stress test is positive, stress radiography could be performed. There is no consensus about the usefulness of stress radiography in acute ankle sprain, particularly about the cut-off talar tilt angle beyond which a two-ligament rupture would be certain, ranging from 5 to 30 . Today MRI is not used for this indication, although it allows, with controlled positioning of the foot and with defined sections, visualization of injured lateral collateral ankle ligaments. In ankle injuries, plain radiographs form the established basis of diagnostic imaging and can provide definitive answers in most cases. CT is used in complex fractures for complete visualization. MRI is the method of choice for several diagnostic problem cases, including occult fractures and post-traumatic avascular necrosis. In tendon injuries, MRI is important if ultrasound is not diagnostic. Generally, for the evaluation of acute ankle injuries, MRI is the most important second-step procedure when radiographs are nondiagnostic. (orig.) [de

  1. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    Science.gov (United States)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  2. Bilateral Arthrodesis of the Ankle Joint: Self-Reported Outcomes in 35 Patients From the Swedish Ankle Registry.

    Science.gov (United States)

    Henricson, Anders; Kamrad, Ilka; Rosengren, Björn; Carlsson, Åke

    Bilateral ankle arthrodesis is seldom performed, and results concerning the outcome and satisfaction can only sparsely be found in published studies. We analyzed the data from 35 patients who had undergone bilateral ankle arthrodesis in the Swedish Ankle Registry using patient-reported generic and region-specific outcome measures. Of 36 talocrural arthrodeses and 34 tibio-talar-calcaneal arthrodeses, 6 ankles (9%) had undergone repeat arthrodesis because of nonunion. After a mean follow-up period of 47 ± 5 (range 12 to 194) months, the mean scores were as follows: self-reported foot and ankle score, 33 ± 10 (range 4 to 48); the EuroQol Group's EQ-5D ™ score, 0.67 ± 0.28 (range -0.11 to 1), the EuroQol Group's visual analog scale score, 70 ± 19 (range 20 to 95), 36-item Short Form Health Survey (SF-36) physical domain, 39 ± 11 (range 16 to 58); and SF-36 mental domain, 54 ± 14 (range 17 to 71). Patients with rheumatoid arthritis seemed to have similar self-reported foot and ankle scores but possibly lower EQ-5D ™ and SF-36 scores. Those with talocrural arthrodeses scored higher than did those with tibio-talar-calcaneal arthrodeses on the EQ5D ™ and SF-36 questionnaires (p = .03 and p = .04). In 64 of 70 ankles (91%), the patients were satisfied or very satisfied with the outcome. In conclusion, we consider bilateral ankle arthrodesis to be a reasonable treatment for symptomatic hindfoot arthritis, with high postoperative mid-term satisfaction and satisfactory scores on the patient-reported generic and region-specific outcome measures, when no other treatment option is available. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Incidence and Cost of Ankle Sprains in United States Emergency Departments

    Science.gov (United States)

    Shah, Shweta; Thomas, Abbey C.; Noone, Joshua M.; Blanchette, Christopher M.; Wikstrom, Erik A.

    2016-01-01

    Background: Ankle sprains represent a common injury in emergency departments, but little is known about common complications, procedures, and charges associated with ankle sprains in emergency departments. Hypothesis: There will be a higher incidence of ankle sprains among younger populations (≤25 years old) and in female patients. Complications and procedures will differ between ankle sprain types. Lateral ankle sprains will have lower health care charges relative to medial and high ankle sprains. Study Design: Descriptive epidemiological study. Level of Evidence: Level 3. Methods: A cross-sectional study of the 2010 Nationwide Emergency Department Sample was conducted. Outcomes such as charges, complications, and procedures were compared using propensity score matching between lateral and medial as well as lateral and high ankle sprains. Results: The sample contained 225,114 ankle sprains. Female patients sustained more lateral ankle sprains (57%). After propensity score adjustment, lateral sprains incurred greater charges than medial ankle sprains (median [interquartile range], $1008 [$702-$1408] vs $914 [$741-$1108]; P sprain of the foot (2.96% vs 0.70%, P ankle sprain events. Among procedures, medial ankle sprains were more likely to include diagnostic radiology (97.91% vs 83.62%, P ankle sprains (0.87% vs 2.79%, P ankle sprains than lateral ankle sprains (24 [6.06%] vs 1 [0.25%], P Ankle sprain emergency department visits account for significant health care charges in the United States. Age- and sex-related differences persist among the types of ankle sprains. Clinical Relevance: The health care charges associated with ankle sprains indicate the need for additional preventive measures. There are age- and sex-related differences in the prevalence of ankle sprains that suggest these demographics may be risk factors for ankle sprains. PMID:27474161

  4. Technology on precision measurement of torque and force

    International Nuclear Information System (INIS)

    2005-12-01

    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  5. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  6. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  7. Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2017-11-01

    Full Text Available With the development of electric vehicles and More-Electric/All-Electric aircraft, high reliability is required in motor servo systems. The redundancy technique is one of the most effective methods to improve the reliability of motor servo systems. In this paper, the structure of dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is analyzed and the mathematical model of this motor is established. However, there is little research on how to suppress the torque ripple caused by short-circuited coils in the DRPMSM. The main contribution of this paper is to present the advantages of DRPMSM and to find a way to suppress the torque ripple caused by the short circuit fault in DRPMSM. In order to improve operation quality and enhance the reliability of DRPMSM after a short circuit occurs, the torque ripple caused by the coils inter-turn short circuit fault in DRPMSM is analyzed in detail. Then, a control method for suppressing the electromagnetic torque ripple of a short-circuited coil is proposed for the first time by using an improved adaptive proportional resonant (PR controller and a proportional integral (PI controller in parallel. PR control is a method of controlling alternating components without steady-state error, and it can be used to suppress torque ripple. DRPMSM adopts speed and current double closed-loop control strategies. An improved adaptive PR controller and a PI controller are employed in parallel for the speed loop, while traditional PI control is adopted in current loop. From the simulation and experimental results, the torque ripple is reduced from 45.4 to 5.6% when the torque ripple suppression strategy proposed in this paper is adopted, in the case that the speed is 600 r/min. The torque ripple suppression strategy based on the PR controller can quickly and effectively suppress the torque ripple caused by the short-circuited coils, which makes the motor speed

  8. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  9. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  10. Trends in Ankle Arthroscopy and Its Use in the Management of Pathologic Conditions of the Lateral Ankle in the United States: A National Database Study.

    Science.gov (United States)

    Werner, Brian C; Burrus, M Tyrrell; Park, Joseph S; Perumal, Venkat; Gwathmey, F Winston

    2015-07-01

    This study aimed to investigate current trends in ankle arthroscopy across time, sex, age, and region of the United States as well as the use of ankle arthroscopy in the management of lateral ankle instability. Patients who underwent ankle arthroscopy and those who underwent ankle arthroscopy and lateral ankle ligament repair or peroneal retinacular repair from 2007 through 2011 were identified using the PearlDiver national database. These searches yielded volumes of unique patients, sex and age distribution, and regional volumes of patients. Χ-square linear-by-linear association analysis was used for comparisons, with P arthroscopy procedures in the database from 2007 to 2011. Over the 5-year study period, there was a significant increase in the overall number of ankle arthroscopies being performed, from 2,814 in 2007 to 3,314 in 2011 (P arthroscopy more frequently than did male patients (P = .027). The majority of patients who had ankle arthroscopy were between the ages of 30 and 49 years. The use of ankle arthroscopy during lateral ligament repair procedures increased from 37.2% in 2007 to 43.7% in 2011 (P arthroscopy and peroneal tendon retinacular repair increased 50%, from 2.8/100 ankle arthroscopies in 2007 to 4.2/100 ankle arthroscopies in 2011 (P arthroscopy increased significantly from 2007 to 2011, outpacing shoulder, knee, and elbow arthroscopy. Ankle arthroscopy was performed more frequently in female patients and most commonly in patients younger than 50 years. The use of ankle arthroscopy in the surgical management of lateral ankle instability also increased significantly. The incidence of concomitant ankle arthroscopy and lateral ligament repair increased significantly, as did the incidence of concomitant ankle arthroscopy and repair of peroneal tendon subluxation. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  12. Force steadiness, muscle activity, and maximal muscle strength in subjects with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Rasmussen, Lars; Aagaard, Per

    2006-01-01

    physically active in spite of shoulder pain and nine healthy matched controls were examined to determine isometric and isokinetic submaximal shoulder-abduction force steadiness at target forces corresponding to 20%, 27.5%, and 35% of the maximal shoulder abductor torque, and maximal shoulder muscle strength......We investigated the effects of the subacromial impingement syndrome (SIS) on shoulder sensory-motor control and maximal shoulder muscle strength. It was hypothesized that both would be impaired due to chronic shoulder pain associated with the syndrome. Nine subjects with unilateral SIS who remained...

  13. Operative Fixation Options for Elective and Diabetic Ankle Arthrodesis.

    Science.gov (United States)

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2017-07-01

    Ankle arthrodesis remains one of the most definitive treatment options for end-stage arthritis, paralysis, posttraumatic and postinfectious conditions, failed total ankle arthroplasty, and severe deformities. The general aims of ankle arthrodesis are to decrease pain and instability, correct the accompanying deformity, and create a stable plantigrade foot. Several surgical approaches have been reported for ankle arthrodesis with internal fixation options. External fixation has also evolved for ankle arthrodesis in certain clinical scenarios. This article provides a comprehensive analysis of midterm to long-term outcomes for ankle arthrodesis using internal and/or external fixation each for elective and diabetic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang; Wang, Xuhui; Doǧan, Fatih; Manchon, Aurelien

    2013-01-01

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  15. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  16. Ankle and subtalar synovitis in a ball-and-socket ankle joint causing posterolateral painful coarse crepitus: a case report.

    Science.gov (United States)

    Fan, Ka Yuk; Lui, Tun Hing

    2014-01-01

    A 17-year-old girl with bilateral ball-and-socket ankles reported left medial heel pain. Her left heel had gone into a varus position on tiptoeing, and a painful clunk had occurred when returning to normal standing. The clunk persisted after physiotherapy and treatment with an orthosis. Subtalar arthroscopy and peroneal tendoscopy showed mild diffuse synovitis of the ankle joint, especially over the posterior capsule, and a patch of inflamed and fibrotic synovium at the posterolateral corner of the subtalar joint. The clunk subsided immediately after arthroscopic synovectomy and had not recurred during 5 years of follow-up. We found no other reported cases of ankle and subtalar synovitis occurring in patients with a ball-and-socket ankle joint. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Influence of Closed Stator Slots on Cogging Torque

    DEFF Research Database (Denmark)

    Ion, Trifu; Leban, Krisztina Monika; Ritchie, Ewen

    2013-01-01

    Cogging torque results due interaction of magnetic field of magnets and stator slots, and have negative effects on permanent magnet machines such as vibrations, noise, torque ripples and problems during turbine start-up and cut-in. In order to reduce cogging torque this paper presents a study...... of influence of closed stator slots on cogging torque using magnetic slot wedges....

  18. Weak-field precession of nano-pillar spin-torque oscillators using MgO-based perpendicular magnetic tunnel junction

    Science.gov (United States)

    Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming

    2018-04-01

    This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.

  19. Arthroscopic ankle arthrodesis with intra-articular distraction.

    Science.gov (United States)

    Kim, Hyong Nyun; Jeon, June Young; Noh, Kyu Cheol; Kim, Hong Kyun; Dong, Quanyu; Park, Yong Wook

    2014-01-01

    Arthroscopic ankle arthrodesis has shown high rates of union comparable to those with open arthrodesis but with substantially less postoperative morbidity, shorter operative times, less blood loss, and shorter hospital stays. To easily perform arthroscopic resection of the articular cartilage, sufficient distraction of the joint is necessary to insert the arthroscope and instruments. However, sometimes, standard noninvasive ankle distraction will not be sufficient in post-traumatic ankle arthritis, with the development of arthrofibrosis and joint contracture after severe ankle trauma. In the present report, we describe a technique to distract the ankle joint by inserting a 4.6-mm stainless steel cannula with a blunt trocar inside the joint. The cannula allowed sufficient intra-articular distraction, and, at the same time, a 4.0-mm arthroscope can be inserted through the cannula to view the joint. Screws can be inserted to fix the joint under fluoroscopic guidance without changing the patient's position or removing the noninvasive distraction device and leg holder, which are often necessary during standard arthroscopic arthrodesis with noninvasive distraction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Developing a Framework for Ankle Function: A Delphi Study

    Science.gov (United States)

    Snyder, Kelli R.; Evans, Todd A.; Neibert, Peter J.

    2014-01-01

    Context: Addressing clinical outcomes is paramount to providing effective health care, yet there is no consensus regarding the appropriate outcomes to address after ankle injuries. Compounding the problem is the repetitive nature of lateral ankle sprains, referred to as functional (FAI) or chronic (CAI) ankle instability. Although they are commonly used terms in practice and research, FAI and CAI are inconsistently defined and assessed. Objective: To establish definitions of a healthy/normal/noninjured ankle, FAI, and CAI, as well as their characteristics and assessment techniques. Design: Delphi study. Setting: Telephone interviews and electronic surveys. Patients or Other Participants: Sixteen experts representing the fields of ankle function and treatment, ankle research, and outcomes assessment and research were selected as panelists. Data Collection and Analysis: A telephone interview produced feedback regarding the definition of, functional characteristics of, and assessment techniques for a healthy/normal/noninjured ankle, an unhealthy/acutely injured ankle, and FAI/CAI. Those data were compiled, reduced, and returned through electronic surveys and were either included by reaching consensus (80% agreement) or excluded. Results: The definitions of a healthy/normal/noninjured ankle and FAI reached consensus. Experts did not agree on a definition of CAI. Eleven functional characteristics of a healthy/normal/noninjured ankle, 32 functional characteristics of an unhealthy/acutely injured ankle, and 13 characteristics of FAI were agreed upon. Conclusions: Although a consensus was reached regarding the definitions and functional characteristics of a healthy/normal/noninjured ankle and FAI, the experts could only agree on 1 characteristic to include in the FAI definition. Several experts did, however, provide additional comments that reinforced the differences in the interpretation of those concepts. Although the experts could not agree on the definition of CAI, its

  1. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  2. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  3. Kinematic analysis of a televised medial ankle sprain

    Directory of Open Access Journals (Sweden)

    Francesca E. Wade

    2018-04-01

    Full Text Available Ankle sprains are one of the most prevalent athletic injuries. Prior work has investigated lateral ankle sprains, but research on generally more severe medial sprains is lacking. This case report performs a kinematic analysis using novel motion analysis methods on a non-contact medial ankle sprain. Peak eversion (50° occurred 0.2 seconds following ground contact, maximum velocity of 426°/s, while peak dorsiflexion (64° occurred with a greater maximum velocity (573°/s. The combination of dorsiflexion at ground contact and rapid eversion is associated with a non-contact eversion sprain. This study provides a quantitative analysis of the eversion ankle sprain injury mechanism. Keywords: Athletic injury, Biomechanics, Ankle injury, Kinematics

  4. Accuracy of mechanical torque-limiting devices for dental implants.

    Science.gov (United States)

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (Ptorque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly more accurate than Biohorizons (C) torque-limiting devices (Ptorque-limiting devices fell within ±10% of the target torque value preset by the

  5. Ankle manual therapy for individuals with post-acute ankle sprains: description of a randomized, placebo-controlled clinical trial

    OpenAIRE

    Fisher Beth E; Kulig Kornelia; Davenport Todd E

    2010-01-01

    Abstract Background Ankle sprains are common within the general population and can result in prolonged disablement. Limited talocrural dorsiflexion range of motion (DF ROM) is a common consequence of ankle sprain. Limited talocrural DF ROM may contribute to persistent symptoms, disability, and an elevated risk for re-injury. As a result, many health care practitioners use hands-on passive procedures with the intention of improving talocrural joint DF ROM in individuals following ankle sprains...

  6. Integral torque balance in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2011-01-01

    The study is aimed at clarifying the balance between the sinks and sources in the problem of intrinsic plasma rotation in tokamaks reviewed recently by deGrassie (2009 Plasma Phys. Control. Fusion 51 124047). The integral torque on the toroidal plasma is calculated analytically using the most general magnetohydrodynamic (MHD) plasma model taking account of plasma anisotropy and viscosity. The contributions due to several mechanisms are separated and compared. It is shown that some of them, though, possibly, important in establishing the rotation velocity profile in the plasma, may give small input into the integral torque, but an important contribution can come from the magnetic field breaking the axial symmetry of the configuration. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field-induced electromagnetic torque show that the amplitude of this torque is comparable to the typical values of torques introduced into the plasma by neutral beam injection. The obtained relations allow us to quantify the effect that can be produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments to study the origin and physics of intrinsic rotation in tokamaks. Several problems are proposed for theoretical studies and experimental tests.

  7. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To compare the movement patterns and underlying energetics of individuals with chronic ankle instability (CAI) to ankle sprain 'copers' during a landing task. Twenty-eight (age 23.2 ± 4.9 years; body mass 75.5 ± 13.9 kg; height 1.7 ± 0.1 m) participants with CAI and 42 (age 22.7 ± 1.7 years; body mass 73.4 ± 11.3 kg; height 1.7 ± 0.1 m) ankle sprain 'copers' were evaluated 1 year after incurring a first-time lateral ankle sprain injury. Kinematics and kinetics of the hip, knee and ankle joints from 200 ms pre-initial contact (IC) to 200 ms post-IC, in addition to the vertical component of the landing ground reaction force, were acquired during performance of a drop land task. The CAI group adopted a position of increased hip flexion during the landing descent on their involved limb. This coincided with a reduced post-IC flexor pattern at the hip and increased overall hip joint stiffness compared to copers (-0.01 ± 0.05 vs. 0.02 ± 0.05°/Nm kg(-1), p = 0.03). Individuals with CAI display alterations in hip joint kinematics and energetics during a unipodal landing task compared to LAS 'copers'. These alterations may be responsible for the increased risk of injury experienced by individuals with CAI during landing manoeuvres. Thus, clinicians must recognise the potential for joints proximal to the affected ankle to contribute to impaired function following an acute lateral ankle sprain injury and to develop rehabilitation protocols accordingly. Level III.

  8. Compression therapy after ankle fracture surgery

    DEFF Research Database (Denmark)

    Winge, R; Bayer, L; Gottlieb, H

    2017-01-01

    PURPOSE: The main purpose of this systematic review was to investigate the effect of compression treatment on the perioperative course of ankle fractures and describe its effect on edema, pain, ankle joint mobility, wound healing complication, length of stay (LOS) and time to surgery (TTS). The aim...... undergoing surgery, testing either intermittent pneumatic compression, compression bandage and/or compression stocking and reporting its effect on edema, pain, ankle joint mobility, wound healing complication, LOS and TTS. To conclude on data a narrative synthesis was performed. RESULTS: The review included...

  9. Fracture line index of fibular stalk and the ankle joint bone in the classification of the ankle joint trauma

    International Nuclear Information System (INIS)

    Wu Jun; Zhang Qiang

    2003-01-01

    Objective: To evaluate the fracture line index of fibular stalk and the ankle joint bone in the classification of the ankle joint trauma. Methods: Measure fracture line index of fibular stalk and the ankle joint in 217 adult cases of fracture and dislocation of ankle joint. And the cases were classified by the results of the measurement. Results: Measurement was unavailable in 9 cases of tearing fracture. In 31 cases, the lesions could not be particularly classified. And in the rest 176 cases the trauma were precisely classified. The over all successful rate was 81.6%. Conclusion: Fracture line index of fibular stalk and the ankle joint bone are valuable in classification of the trauma of the angle joint. While the specificity of this method is low in differentiating the adducting and abducting fracture of the medial angle, in which a combined investigation is recommended

  10. Intra-articular fibrous band of the ankle: an uncommon cause of post-traumatic ankle pain

    International Nuclear Information System (INIS)

    Slavotinek, J.P.; Martin, D.K.

    2006-01-01

    A case of an intra-articular fibrous band of the ankle is presented with emphasis on the MR imaging appearances. This entity is an important but uncommon cause of post-traumatic ankle pain and is well recognized within the arthroscopy literature, but there is little if any documentation of this condition in the imaging literature

  11. TORQUE MEASUREMENT IN WORM AGLOMERATION MACHINE

    Directory of Open Access Journals (Sweden)

    Marian DUDZIAK

    2014-03-01

    Full Text Available The paper presents the operating characteristics of the worm agglomeration machine. The paper indicates the need for continuous monitoring of the value of the torque due to the efficiency of the machine. An original structure of torque meter which is built in the standard drive system of briquetting machine was presented. A number of benefits arising from the application of the proposed solution were presented. Exemplary measurement results obtained by means of this torque meter were presented.

  12. Two ankle joint laxity testers: reliability and validity

    NARCIS (Netherlands)

    Kerkhoffs, Gino M. M. J.; Blankevoort, Leendert; Sierevelt, Inger N.; Corvelein, Ruby; Janssen, Guido H. W.; van Dijk, C. Niek

    2005-01-01

    Two test devices were manufactured to objectively measure ankle joint laxity: the dynamic anterior ankle tester (DAAT) and the quasi-static anterior ankle tester (QAAT). The primary aim was to analyse the reliability of both testers; The secondary aim was to assess validity in correlation with TELOS

  13. Possible factors for ankle fractures

    Directory of Open Access Journals (Sweden)

    Tabaković Dejan

    2010-01-01

    Full Text Available Background/Aim. Classification of ankle fractures is commonly used for selecting an appropriate treatment and prognosing an outcome of definite management. One of the most used classifications is the Danis-Weber classification. To the best of our knowledge, in the available literature, there are no parameters affecting specific types of ankle fractures according to the Danis-Weber classification. The aim of this study was to analyze the correlation of the following parameters: age, body weight, body mass index (BMI, height, osteoporosis, osteopenia and physical exercises with specific types of ankle fractures using the Danis-Weber classification. Methods. A total of 85 patients grouped by the Danis-Weber classification fracture types were analyzed and the significance of certain parameters for specific types of ankle fractures was established. Results. The proportion of females was significantly higher (p < 0.001 with a significantly higher age (59.9 years, SD ± 14.2 in relation to males (45.1 years, SD ± 12.8 (p < 0.0001. Type A fracture was most frequent in the younger patients (34.2 years, SD ± 8.6, and those with increased physical exercises (p = 0.020. In type B fracture, the risk factor was osteoporosis (p = 0.0180, while in type C fracture, body weight (p = 0.017 and osteoporosis (p = 0.004 were significant parameters. Conclusion. Statistical analysis using the Danis-Weber classification reveals that there are certain parameters suggesting significant risk factors for specific types of ankle fractures.

  14. Improvements in remote equipment torquing and fastening

    International Nuclear Information System (INIS)

    Garin, J.

    1978-01-01

    Remote torquing and fastening is a requirement of generic interest for application in an environment not readily accessible to man. The developments over the last 30 years in torque-controlled equipment above 200 nm (150 ft/lb) have not been emphasized. The development of specialized subassemblies to torque and fasten equipment in a remotely controlled environment is an integral part of the Advanced Fuel Recycle Program at Oak Ridge National Laboratory. Commercially available subassemblies have been adapted into a system that would provide remote torquing and fastening in the range of 200 to 750 nm (150 to 550 ft/lb). 9 figures

  15. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-01-01

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  16. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  17. MRI of injuries of the lateral ankle ligaments

    International Nuclear Information System (INIS)

    Breitenseher, Martin

    2011-01-01

    The most frequent sport injury of the ankle is located in the lateral ankle ligaments. The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination, and stress radiography, allowing a fair diagnosis for the daily routine. For the direct visualization and precise diagnosis of the lateral ankle ligaments MRI provides the best answer. MRI is used with controlled positioning of the foot, correct angulation of sequenzes, and distinct analysis of MR findings. Sinus tarsi ligaments and ligaments of the distal syndesmosis should be included to the report. In selected patients MRI allows the best evaluation of the extent of the lateral ankle ligaments. MRI is the method of choice for combined osteochondral injuries and soft tissue lesions too. (orig.)

  18. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle

    OpenAIRE

    Goh, Colleen; Blanchard, Mary L.; Crompton, Robin H.; Gunther, Michael M.; Macaulay, Sophie; Bates, Karl T.

    2017-01-01

    Abstract Three?dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodolog...

  19. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  20. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Manchon, Aurelien; Stiles, M. D.

    2013-01-01

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  1. Detecting Casimir torque with an optically levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  2. Reducing torque ripples in permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Rihab Abdelmoula

    2017-09-01

    Full Text Available Permanent magnet synchronous motors (PMSMs are exceptionally promising thanks to their many advantages compared with other types of electrical machines. Indeed, PMSMs are characterized by their important torque density, light weight, high air gap flux density, high acceleration, high efficiency and strong power-to-weight ratio. A surface-mounted PMSM (SPMSM is used in this work. The SPMSM is built using a 2D finite element method (FEM. Cogging torque, torque ripples and back-EMF are examined during the design process in order to obtain sinusoidal back-EMF and to minimise torque ripples which are one of the major problems with PMSMs. Two procedures are used to reduce the cogging torque of SPMSM: the effect of slot opening and the influence of skewing the stator laminations. Cogging torque factor tc and the torque ripples factor tr have been calculated to compare the two configurations (open slots and closed slots. Then, the configuration with closed slots is utilised with skewing the stator laminations for different angle 0°, 10° and 15°.

  3. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  4. Measurement of blood pressure, ankle blood pressure and calculation of ankle brachial index in general practice

    DEFF Research Database (Denmark)

    Nexøe, Jørgen; Damsbo, Bent; Lund, Jens Otto

    2012-01-01

    BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values......BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values...

  5. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  6. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  7. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  8. Radiological aspects of sprained ankle syndrome

    NARCIS (Netherlands)

    Sijbrandij, E.S.

    2001-01-01

    This thesis addresses several problems related to sprained ankle syndrome. The purpose of this thesis is to evaluate the imaging features of sprained ankles, found on new radiological modalities, and to assess the additional diagnostic understanding and treatment planning of helical CT as well as

  9. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  10. Complications of ankle fracture in patients with diabetes.

    Science.gov (United States)

    Chaudhary, Saad B; Liporace, Frank A; Gandhi, Ankur; Donley, Brian G; Pinzur, Michael S; Lin, Sheldon S

    2008-03-01

    Ankle fractures in patients with diabetes mellitus have long been recognized as a challenge to practicing clinicians. Complications of impaired wound healing, infection, malunion, delayed union, nonunion, and Charcot arthropathy are prevalent in this patient population. Controversy exists as to whether diabetic ankle fractures are best treated noninvasively or by open reduction and internal fixation. Patients with diabetes are at significant risk for soft-tissue complications. In addition, diabetic ankle fractures heal, but significant delays in bone healing exist. Also, Charcot ankle arthropathy occurs more commonly in patients who were initially undiagnosed and had a delay in immobilization and in patients treated nonsurgically for displaced ankle fractures. Several techniques have been described to minimize complications associated with diabetic ankle fractures (eg, rigid external fixation, use of Kirschner wires or Steinmann pins to increase rigidity). Regardless of the specifics of treatment, adherence to the basic principles of preoperative planning, meticulous soft-tissue management, and attention to stable, rigid fixation with prolonged, protected immobilization are paramount in minimizing problems and yielding good functional outcomes.

  11. Complications in ankle fracture surgery

    OpenAIRE

    Ovaska, Mikko

    2015-01-01

    Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki, Finland. Helsinki 2014. Ankle fractures are among the most frequently encountered surgically treated fractures. The operative treatment of this fracture may be associated with several complications. The most frequently encountered complications are related wound healing, and deep infection may have d...

  12. Torque control for electric motors

    Science.gov (United States)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  13. A study of semi-rigid support on ankle supination sprain kinematics.

    Science.gov (United States)

    Tang, Y M; Wu, Z H; Liao, W H; Chan, K M

    2010-12-01

    Ankle sprain injury is very common in sports and the use of ankle support is crucial. This research investigated the effect of an ankle brace in reducing the ankle angular displacement and angular velocity during sudden supination. In the experiment, 11 healthy males were tested. The bracing condition, semi-rigid ankle braces were investigated. The angular displacement and angular velocity of the ankle were computed. The motion-capture system was adopted to capture the three-dimensional coordinates of the reflective markers. The coordinates of the reflective markers were used to compute the ankle kinematics during simulated ankle supination. A mechanical supination platform was used to simulate the sprain motions. Experimental results showed that the semi-rigid brace tested significantly reduced the ankle angular displacement and angular velocity compared with control conditions during sudden supination. In conclusion, the semi-rigid-type brace can provide significant restriction to reduce the magnitudes of the angular displacement and angular velocity of the ankle during sudden supination sprain. The semi-rigid-type brace is suggested as the prophylactic bracing for the ankle. © 2009 John Wiley & Sons A/S.

  14. An in Silico Analysis of Ankle Joint Loads in Secondary Ankle Osteoarthritis. Case Study.

    Science.gov (United States)

    Lorkowski, Jacek; Mrzygłód, Mirosław W; Grzegorowska, Oliwia; Kotela, Ireneusz

    2015-01-01

    Secondary, post-traumatic, degenerative lesions of the ankle joint remain a serious clinical challenge. This paper presents the case of a 66-year-old patient with secondary, post-traumatic ankle osteoarthritis and subchondral cysts. The use of rapid computer modelling FEM 2D enabled optimization of surgical treatment. A FEM 2D model of biomechanical changes in bones may help in streamlining treatment as well as improve our understanding of the pathomechanism of osteoarthritis.

  15. Lateral ankle injury. Literature review and report of two cases.

    Science.gov (United States)

    Pollard, Henry; Sim, Patrick; McHardy, Andrew

    2002-07-01

    Injury to the ankle joint is the most common peripheral joint injury. The sports that most commonly produce high ankle injury rates in their participating athletes include: basketball, netball, and the various codes of football. To provide an up to date understanding of manual therapy relevant to lateral ligament injury of the ankle. A discussion of the types of ligament injury and common complicating factors that present with lateral ankle pain is presented along with a review of relevant anatomy, assessment and treatment. Also included is a discussion of the efficacy of manual therapy in the treatment of ankle sprain. A detailed knowledge of the anatomy of the ankle as well as the early recognition of factors that may delay the rate of healing are important considerations when developing a management plan for inversion sprains of the ankle. This area appears to be under-researched however it was found that movement therapy and its various forms appear to be the most efficient and most effective method of treating uncomplicated ankle injury. Future investigations should involve a study to determine the effect chiropractic treatment (manipulation) may have on the injured ankle.

  16. Incidence of hockey ankle injuries in Kwa-Zulu Natal, South Africa ...

    African Journals Online (AJOL)

    ankle injuries amongst hockey players was 26.41%. The most frequent ankle injury sustained by male adolescent hockey players was an inversion ankle sprain (84.62% of the 26.41% injured subjects of the sample cohort). The mechanisms of ankle injuries were attributed to rapid rotational movements of the ankle joint ...

  17. Bevel gear driver and method having torque limit selection

    Science.gov (United States)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  18. Pitfalls in the ankle-brachial index and brachial-ankle pulse wave velocity

    Directory of Open Access Journals (Sweden)

    Ato D

    2018-04-01

    Full Text Available Dai Ato Gakujutsu Shien Co., Ltd., Tokyo, Japan Background: The ankle-brachial index (ABI and pulse wave velocity (PWV are indices of atherosclerosis and arterial stiffness. The Japan-made measuring devices of those indices have spread widely because of their convenience and the significance of the parameters. However, studies that comprehensively discuss the various pitfalls in using these indices are not available.Methods: This study presents several representative pitfalls in using the ABI and brachial-ankle PWV (baPWV by showing the result sheets of the device, “the Vascular Profiler”. Furthermore, some considerations when utilizing these indices in the future are also discussed.Results: Several diseases such as arteriosclerosis obliterans (ASO, arterial calcification in the lower limb, arterial stenosis in the right upper-limb, aortic valve diseases, arterial stenosis in the upper-limb of the contralateral side of the hemodialysis access, are the representative pitfalls when evaluating ABI and baPWV. Moreover, a measurement error is found to actually exist. Furthermore, same phenomena are considered most likely to occur when using other similar indices and devices.Conclusion: The ABI and baPWV are the useful and significant biomarkers. Nevertheless, caution is sometimes necessary when interpreting them. Moreover, rigorous patient exclusion criteria should be considered when using those indices in the severely conditioned patient population. And the results of this study can be applied to enhance the literacy using other indices, such as the cardio-ankle vascular index and other similar devices. Keywords: ankle-brachial index, pulse wave velocity, peripheral arterial disease, aortic valve disease, hemodialysis

  19. Diagnosis of ligament injuries in the superior ankle joint

    International Nuclear Information System (INIS)

    Gebing, R.; Fiedler, V.

    1991-01-01

    Nearly 40 years after ankle arthrography was first introduced, the anterior and inversion stress views of the ankle are still widely preferred as a noninvasive method of evaluating ligament injuries in the upper ankle. We consider the stress test, bilaterally performed using a standardized stress apparatus, as a basic examination by which to differentiate between slight and severe sprain. Intensive muscel splinting due to painful swelling can sometimes be treated by injection of local anesthetic. Like many authors, we perform ankle arthrography in cases where there is a significant difference between the clinical findings and the stress test. The technique of ankle arthrography can be readily learned and is extremely accurate in delineating the extent of ligamentous injury produced by moderate or severe ankle sprains. It can be performed in any X-ray department. (orig.) [de

  20. Prospective study of ankle and foot fractures in elderly women

    Directory of Open Access Journals (Sweden)

    Yadagiri Surender Rao

    2015-01-01

    Full Text Available The epidemiology of ankle fractures in old people is changing as time passes on. The incidence of ankle fractures increases with advancing age. The study conducted was among a rural popula-tion which comprised of 68 women (32 women with ankle fractures & 36 women with foot fractures. Patients studied were in the age group more than 50 years. The study highlights the etiological & risk factors for fractures of ankle & foot. The commonest ankle fracture was the lateral malleolar fracture & the commonest foot fracture was the 5th Metatarsal fracture. Diabetes is a risk factor which increases the occurrence of ankle and foot injuries.

  1. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  2. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  3. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  4. Translation, cross-cultural adaption and validation of the German version of the Foot and Ankle Ability Measure for patients with chronic ankle instability.

    Science.gov (United States)

    Nauck, T; Lohrer, H

    2011-08-01

    The evaluation of health-related quality of life and physical function is important for determining therapeutic strategies following ankle injuries. The Anglo-American Foot and Ankle Ability Measure (FAAM) is a valid and reliable self-reported measure to detect functional deficits in chronic lateral ankle instability. The purpose of this study was to translate, cross-culturally adapt and validate the FAAM questionnaire for use with German-speaking patients with chronic lateral ankle instability. Preoperative and conservatively treated patients with chronic lateral ankle instability. Sport students and volleyball athletes served as control groups. The FAAM was forward and back translated, cross-culturally adapted and validated. The study population completed the FAAM-G questionnaire twice within 3-5 days. Additionally, the patients were scored with the Good ankle laxity classification system. Test-Retest reliability, construct validity and internal consistency were calculated. Reliability and validity of the FAAM-G were examined in presurgical chronic ankle instability patients (n=24), conservatively treated chronic ankle instability patients (n=17), university sport students (n=31) and volleyballers (n=37). Test-retest reliability revealed fair, good, or excellent reliability (inter-class correlation coefficient (ICC)=0.590-0.998; ρ=0.528-1.000). Construct validity, tested between the FAAM-G subscores and the Good et al ankle laxity classification system demonstrated strong correlations (ρ = -0.819 to -0.861). The original FAAM questionnaire was successfully translated and cross-culturally adapted from English to German. Corresponding to the Anglo-American version, the FAAM-G is a reliable and valid questionnaire for self-reported assessment of pain and disability in German-speaking patients suffering from chronic ankle instability.

  5. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  6. Analysis of PITFL injuries in rotationally unstable ankle fractures.

    Science.gov (United States)

    Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G

    2015-04-01

    Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for

  7. PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance.

    Science.gov (United States)

    Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R

    2017-01-01

    Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily

  8. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  9. Managing ankle ligament sprains and tears: current opinion

    Directory of Open Access Journals (Sweden)

    McGovern RP

    2016-03-01

    Full Text Available Ryan P McGovern,1 RobRoy L Martin,1,2 1Department of Physical Therapy, Rangos School of Health Sciences, Duquesne University, 2Centers for Sports Medicine – University of Pittsburgh, Pittsburgh, PA, USA Abstract: The purpose of this paper is to present a current review of pathoanatomical features, differential diagnosis, objective assessment, intervention, and clinical course associated with managing lateral ankle ligament sprains. Proper diagnosis and identification of affected structures should be obtained through history and objective assessment. From this information, an individualized evidence-based intervention plan can be developed to enable recovery while decreasing the risk of reinjury. An appropriate evaluation is needed not only to determine the correct diagnosis but also to allow for grading and determining the prognosis of the injury in those with an acute lateral ankle sprain. Examination should include an assessment of impairments as well as a measure of activity and participation. Evidence-based interventions for those with an acute lateral ankle sprain should include weight bearing with bracing, manual therapy, progressive therapeutic exercises, and cryotherapy. For those with chronic ankle instability (CAI, interventions should include manual therapy and a comprehensive rehabilitation program. It is essential to understand the normal clinical course for athletes who sustain a lateral ankle sprain as well as risk factors for an acute injury and CAI. Risk factors for both an acute lateral ankle sprain and CAI include not using an external support and not participating in an appropriate exercise program. Incorporating the latest evidence-based rehabilitation techniques provides the best course of treatment for athletes with an acute ankle sprain or CAI. Keywords: reinjury, chronic ankle instability, rehabilitation techniques, diagnosis, intervention, athlete

  10. Foot and ankle problems in Muay Thai kickboxers.

    Science.gov (United States)

    Vaseenon, Tanawat; Intharasompan, Piyapong; Wattanarojanapom, Thongaek; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Muay Thai kickboxing is a common sport that uses the foot and ankle in fighting. Muay Thai kickboxing trainees usually receive training in Thailand Foot and ankle problems in this group ofpeople who usually train barefoot remain unexplored To evaluate the prevalence of common foot and ankle problems in Muay Thai kick boxers. The present study is a cross-sectional survey of Muay Thai kick boxers practicing in northern Thailand. Interviews were conducted and foot and ankle examinations were evaluated Foot morphology was examined using a Harris mat footprint. One hundred and twenty-three Muay Thai kickbox ersinnine training gyms were included in this study. Common foot and ankle problems found in the Muay Thai kick boxers were callosity (59%), gastrocnemius contracture (57%), toe deformities (49.3%), wounds (10%) and heel pain (9%). Callosity was most commonly found on the forefoot (77.5%), on the plantar first metatarsal (55.3%) and on the big toe (33.3%). An association was found between a tight heel cord and a history of foot injury with prolonged periods of weekly training. Toe deformities such as hallux rigidus (37.6%) were also associated with prolonged periods of training (p = 0.001). No correlation was found between type of foot arch and foot and ankle problems. Plantar forefoot callosities and wounds as well as toe deformities including tight heel cords are some of the foot and ankle problems commonly found in Muay Thai kick boxers. They are associated with prolonged periods of barefoot training. The unique pattern of training and of the kicks in Muay Thai might be a path mechanism, leading to the development of foot and ankle problems.

  11. Effect of kinesio-taping on ankle joint stability

    Directory of Open Access Journals (Sweden)

    Mervat A. Mohamed

    2016-05-01

    Full Text Available Ankle Instability is characterized by recurrent giving way and often develops after repeated lateral ankle sprains. Kinesiotape is more elastic than traditional athletic tape and is becoming increasingly popular. It is reported to decrease pain, improve muscle function, circulation and proprioception, however, research examining the effects of Kinesiotape in ankle instability is limited. The objective of this study was to determine if applying Kinesiotape to unstable ankle may improve performance in the Star Excursion Balance Test (SEBT, which has been shown to be a sensitive and reliable measure for quantifying dynamic balance. Thirty subjects with first degree ankle sprain were participated in this study. SEBT was used to test the subject dynamic balance under three conditions; without taping, with white athletic tape and with kinesiotape. One way repeated measure ANOVA using Greenhouse-Geisser corrections were conducted to evaluate differences in SEBT for the three conditions. Pairwise comparison of the outcome measures in the three occasions (without taping, with athletic taping, and with kinesio taping revealed statistically significant differences of all outcomes between occasion 1 (without taping and occasion 2 (with athletic taping favoring the athletic taping (p < 0.05. Also, a statistically significant difference between occasion 1 (without taping and occasion 3 (with kinesio taping were found (p < 0.05 favoring kinesio taping. Moreover, pairwise comparison of the ankle stability outcomes using athletic taping versus kinesio taping indicated a statistically significant difference (p < 0.05 in favor of kinesio taping measures. Conclusion: kinesiotape has superior effect than athletic tape in patients with first degree ankle sprain and can be used safely for improving ankle joint stability.

  12. Adaptive sports ankle prosthetics. Interview by Sarah A. Curran.

    Science.gov (United States)

    Lyle, David K

    2012-09-01

    Participating in sport at all levels is gaining a dedicated following and this is also apparent in individuals with an amputation. Currently, there is a wide variety of ankle prostheses available which attempt to provide function, control, and comfort, as well as good aesthetic appeal. Participation in sport, however, increases the demands placed upon ankle prostheses. This can compromise function and performance, and constrain the opportunities of participation in various outdoor and water sports. In acknowledging this limitation and the need to develop more versatile ankle prostheses, this article introduces the evolution of a prototype ankle prosthesis referred to as "Adaptive Sports Ankle." The ankle prosthesis, which is compatible with any foot pyramid adapter, offers the same range of motion as the normal human ankle joint and is made up of components that are chemical and corrosion resistant. These design features that are specifically created to accommodate below-the-knee amputees provide an ideal prosthesis for those wishing to lead an active lifestyle and participate in aquatic (i.e. swimming, surfing, and scuba diving), snowboarding, and equestrian activities. Although it is acknowledged that there is a need to establish research on the Adaptive Sports Ankle, its introduction to the market will enhance and expand opportunities of those individuals with a lower limb amputation to lead an active and healthy lifestyle.

  13. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force through a distance into a torque must be used in a horizontal position for horizontal shaft...

  14. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force through a distance into a torque must be used in a horizontal position...

  15. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  16. 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains.

    Science.gov (United States)

    Gribble, Phillip A; Bleakley, Chris M; Caulfield, Brian M; Docherty, Carrie L; Fourchet, François; Fong, Daniel Tik-Pui; Hertel, Jay; Hiller, Claire E; Kaminski, Thomas W; McKeon, Patrick O; Refshauge, Kathryn M; Verhagen, Evert A; Vicenzino, Bill T; Wikstrom, Erik A; Delahunt, Eamonn

    2016-12-01

    The Executive Committee of the International Ankle Consortium presents this 2016 position paper with recommendations for information implementation and continued research based on the paradigm that lateral ankle sprain (LAS), and the development of chronic ankle instability (CAI), serve as a conduit to a significant global healthcare burden. We intend our recommendations to serve as a mechanism to promote efforts to improve prevention and early management of LAS. We believe this will reduce the prevalence of CAI and associated sequelae that have led to the broader public health burdens of decreased physical activity and early onset ankle joint post-traumatic osteoarthritis. Ultimately, this can contribute to healthier lifestyles and promotion of physical activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Analysis of a non-contact magnetoelastic torque transducer

    International Nuclear Information System (INIS)

    Andreescu, R.; Spellman, B.; Furlani, E.P.

    2008-01-01

    Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors

  18. Managing ankle ligament sprains and tears: current opinion

    Science.gov (United States)

    McGovern, Ryan P; Martin, RobRoy L

    2016-01-01

    The purpose of this paper is to present a current review of pathoanatomical features, differential diagnosis, objective assessment, intervention, and clinical course associated with managing lateral ankle ligament sprains. Proper diagnosis and identification of affected structures should be obtained through history and objective assessment. From this information, an individualized evidence-based intervention plan can be developed to enable recovery while decreasing the risk of reinjury. An appropriate evaluation is needed not only to determine the correct diagnosis but also to allow for grading and determining the prognosis of the injury in those with an acute lateral ankle sprain. Examination should include an assessment of impairments as well as a measure of activity and participation. Evidence-based interventions for those with an acute lateral ankle sprain should include weight bearing with bracing, manual therapy, progressive therapeutic exercises, and cryotherapy. For those with chronic ankle instability (CAI), interventions should include manual therapy and a comprehensive rehabilitation program. It is essential to understand the normal clinical course for athletes who sustain a lateral ankle sprain as well as risk factors for an acute injury and CAI. Risk factors for both an acute lateral ankle sprain and CAI include not using an external support and not participating in an appropriate exercise program. Incorporating the latest evidence-based rehabilitation techniques provides the best course of treatment for athletes with an acute ankle sprain or CAI. PMID:27042147

  19. Improvement of the Torque-Speed Performance and Drive Efficiency in an SRM Using an Optimal Torque Sharing Function

    Directory of Open Access Journals (Sweden)

    Wei Ye

    2018-05-01

    Full Text Available In this paper, by evaluating the extreme value of the qth-power current, a torque sharing function (TSF family for reducing the torque ripples in the switched reluctance motor (SRM is proposed. The optimization criteria of the TSF has two secondary objectives, including the maximization of the torque-speed range and the minimization of copper loss. The evaluation indices in terms of the peak phase current, the rms (root mean square phase current, and the torque ripple factor are compared between the proposed TSF family and four conventional TSFs including linear, sinusoidal, exponential, and cubic TSFs. An optimization objective function that combines the maximum absolute value of the rate-of-change of the flux linkage (MAV-RCFL and the qth-power of current is proposed and a weighting factor is used to balance the influence of the two optimization objectives. An optimal TSF can be easily obtained by solving the optimization problem from the TSF family. The proposed TSF is validated by using simulations and experiments with a three-phase 6/4 SRM with 7.5 kW, 3000 rpm, and 270 V DC-link voltage. The dynamic simulation model is implemented in Matlab/Simulink. The results demonstrate the validity and superiority of the proposed control method; the optimal TSF provides better torque-speed performance, and a better reduction in copper loss and torque ripples at high speed, as compared to conventional TSFs.

  20. Comparing Arc-shaped Feet and Rigid Ankles with Flat Feet and Compliant Ankles for a Dynamic Walker

    DEFF Research Database (Denmark)

    Kuhlemann, Ilyas; Matthias Braun, Jan; Wörgötter, Florentin

    2014-01-01

    In this paper we show that exchanging curved feet and rigid ankles by at feet and compliant ankles improves the range of gait parameters for a bipedal dynamic walker. The new lower legs were designed such that they t to the old set-up, allowing for a direct and quantitative comparison. The dynamic...

  1. Injury of the ankle joint ligaments

    International Nuclear Information System (INIS)

    Breitenseher, M.J.

    2007-01-01

    The diagnosis of lateral collateral ankle ligament trauma is based on patient history, clinical examination and clinical stress tests. If the clinical stress test is positive, stress radiography can be performed. There is, however, no consensus about the usefulness of stress radiography in acute ankle sprain, and in particular about the cut-off talar tilt angle beyond which a two-ligament rupture would be certain, ranging from 5 to 30 . Today, magnetic resonance imaging (MRI) is not used in this area, although it does allow controlled positioning of the foot and defined section visualization of injured lateral collateral ankle ligaments. In acute and chronic sinus tarsi injuries, MRI forms the established basis for diagnostic imaging, and can provide a definitive answer in most cases. MRI is also the method of choice for chronic posttraumatic pain with anterolateral impingement after rupture of the anterior talofibular ligament. Generally, for the evaluation of acute ankle injuries, MRI has developed to be the most important second-step procedure when projection radiology is non-diagnostic. (orig.) [de

  2. Ankle manual therapy for individuals with post-acute ankle sprains: description of a randomized, placebo-controlled clinical trial.

    Science.gov (United States)

    Davenport, Todd E; Kulig, Kornelia; Fisher, Beth E

    2010-10-19

    Ankle sprains are common within the general population and can result in prolonged disablement. Limited talocrural dorsiflexion range of motion (DF ROM) is a common consequence of ankle sprain. Limited talocrural DF ROM may contribute to persistent symptoms, disability, and an elevated risk for re-injury. As a result, many health care practitioners use hands-on passive procedures with the intention of improving talocrural joint DF ROM in individuals following ankle sprains. Dosage of passive hands-on procedures involves a continuum of treatment speeds. Recent evidence suggests both slow- and fast-speed treatments may be effective to address disablement following ankle sprains. However, these interventions have yet to be longitudinally compared against a placebo study condition. We developed a randomized, placebo-controlled clinical trial designed to test the hypotheses that hands-on treatment procedures administered to individuals following ankle sprains during the post-acute injury period can improve short-, intermediate-, and long-term disablement, as well as reduce the risk for re-injury. This study is designed to measure the clinical effects of hands-on passive stretching treatment procedures directed to the talocrural joint that vary in treatment speed during the post-acute injury period, compared to hands-on placebo control intervention. http://www.clinicaltrials.gov identifier NCT00888498.

  3. Multi-digit maximum voluntary torque production on a circular object

    Science.gov (United States)

    SHIM, JAE KUN; HUANG, JUNFENG; HOOKE, ALEXANDER W.; LATSH, MARK L.; ZATSIORSKY, VLADIMIR M.

    2010-01-01

    Individual digit-tip forces and moments during torque production on a mechanically fixed circular object were studied. During the experiments, subjects positioned each digit on a 6-dimensional force/moment sensor attached to a circular handle and produced a maximum voluntary torque on the handle. The torque direction and the orientation of the torque axis were varied. From this study, it is concluded that: (1) the maximum torque in the closing (clockwise) direction was larger than in the opening (counter clockwise) direction; (2) the thumb and little finger had the largest and the smallest share of both total normal force and total moment, respectively; (3) the sharing of total moment between individual digits was not affected by the orientation of the torque axis or by the torque direction, while the sharing of total normal force between the individual digit varied with torque direction; (4) the normal force safety margins were largest and smallest in the thumb and little finger, respectively. PMID:17454086

  4. Gait biomechanics of skipping are substantially different than those of running.

    Science.gov (United States)

    McDonnell, Jessica; Willson, John D; Zwetsloot, Kevin A; Houmard, Joseph; DeVita, Paul

    2017-11-07

    The inherit injury risk associated with high-impact exercises calls for alternative ways to achieve the benefits of aerobic exercise while minimizing excessive stresses to body tissues. Skipping presents such an alternative, incorporating double support, flight, and single support phases. We used ground reaction forces (GRFs), lower extremity joint torques and powers to compare skipping and running in 20 healthy adults. The two consecutive skipping steps on each limb differed significantly from each other, and from running. Running had the longest step length, the highest peak vertical GRF, peak knee extensor torque, and peak knee negative and positive power and negative and positive work. Skipping had the greater cadence, peak horizontal GRF, peak hip and ankle extensor torques, peak ankle negative power and work, and peak ankle positive power. The second vs first skipping step had the shorter step length, higher cadence, peak horizontal GRF, peak ankle extensor torque, and peak ankle negative power, negative work, and positive power and positive work. The first skipping step utilized predominately net negative joint work (eccentric muscle action) while the second utilized predominately net positive joint work (concentric muscle action). The skipping data further highlight the persistence of net negative work performed at the knee and net positive work performed at the ankle across locomotion gaits. Evidence of step segregation was seen in distribution of the braking and propelling impulses and net work produced across the hip, knee, and ankle joints. Skipping was substantially different than running and was temporally and spatially asymmetrical with successive foot falls partitioned into a dominant function, either braking or propelling whereas running had a single, repeated step in which both braking and propelling actions were performed equally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparison of different passive knee extension torque-angle assessments

    International Nuclear Information System (INIS)

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-01-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m −2 ; tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome. (paper)

  6. Assessment and management of patients with ankle injuries.

    Science.gov (United States)

    Walker, Jennie

    2014-08-19

    Foot and ankle injuries are common and can have a significant effect on an individual's daily activities. Nurses have an important role in the assessment, management, ongoing care and support of patients with ankle injuries. An understanding of the anatomy and physiology of the ankle enables nurses to identify significant injuries, which may result in serious complications, and communicate effectively with the multidisciplinary team to improve patient care and outcomes.

  7. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  8. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    Science.gov (United States)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  9. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  10. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  11. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  12. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  13. A real-time computational model for estimating kinematics of ankle ligaments.

    Science.gov (United States)

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  14. Interaction torque contributes to planar reaching at slow speed

    Directory of Open Access Journals (Sweden)

    Hoshi Fumihiko

    2008-10-01

    Full Text Available Abstract Background How the central nervous system (CNS organizes the joint dynamics for multi-joint movement is a complex problem, because of the passive interaction among segmental movements. Previous studies have demonstrated that the CNS predictively compensates for interaction torque (INT which is arising from the movement of the adjacent joints. However, most of these studies have mainly examined quick movements, presumably because the current belief is that the effects of INT are not significant at slow speeds. The functional contribution of INT for multijoint movements performed in various speeds is still unclear. The purpose of this study was to examine the contribution of INT to a planer reaching in a wide range of motion speeds for healthy subjects. Methods Subjects performed reaching movements toward five targets under three different speed conditions. Joint position data were recorded using a 3-D motion analysis device (50 Hz. Torque components, muscle torque (MUS, interaction torque (INT, gravity torque (G, and net torque (NET were calculated by solving the dynamic equations for the shoulder and elbow. NET at a joint which produces the joint kinematics will be an algebraic sum of torque components; NET = MUS - G - INT. Dynamic muscle torque (DMUS = MUS-G was also calculated. Contributions of INT impulse and DMUS impulse to NET impulse were examined. Results The relative contribution of INT to NET was not dependent on speed for both joints at every target. INT was additive (same direction to DMUS at the shoulder joint, while in the elbow DMUS counteracted (opposed to INT. The trajectory of reach was linear and two-joint movements were coordinated with a specific combination at each target, regardless of motion speed. However, DMUS at the elbow was opposed to the direction of elbow movement, and its magnitude varied from trial to trial in order to compensate for the variability of INT. Conclusion Interaction torque was important at

  15. New arthroscopic assisted technique for ankle instability

    International Nuclear Information System (INIS)

    Gerstner Garces, Juan Ricardo

    2004-01-01

    An assisted arthroscopic technique for chronic ankle instability is presented by the author, together with his results for 27 patients treated between January 2000 and February 2004, with a minimum follow-up of six months. Indications for his technique, according to the rehabilitation protocol of the Medical Centre, included patients with chronic subjective and objective ankle instability, anteroposterior instability, associated anteromedical impingement syndromes, non competitive athletes, patients not displaying defects in the alignment of the axis of foot and ankle, or systemic disorders such as diabetes mellitus, collagenisis or hyperelasticity. Patients were evaluated according to the AOFAS scale for the outcome of ankle procedures, and followed up for a minimum period of six months. Positive results confirm an efficient and effective technique, simple and easy to reproduce, that does not hinder future open anatomical or non-anatomical reconstruction, and in which complications are minimal

  16. An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures.

    Science.gov (United States)

    Jin, Jin; Weber, Ewald; Destruel, Aurelien; O'Brien, Kieran; Henin, Bassem; Engstrom, Craig; Crozier, Stuart

    2018-03-01

    We present the initial in vivo imaging results of an open architecture eight-channel parallel transmission (pTx) transceive radiofrequency (RF) coil array that was designed and constructed for static and dynamic 7T MRI of the knee and ankle joints. The pTx coil has a U-shaped dual-row configuration (200 mm overall length longitudinally) that allows static and dynamic imaging of the knee and ankle joints at various postures and during active movements. This coil structure, in combination with B 1 shimming, allows flexible configuration of B 1 transmit profiles, with good homogeneity over 120-mm regions of interest. This coil enabled high-resolution gradient echo (e.g., 3D dual-echo steady state [DESS] and 3D multiecho data image combination [MEDIC]) and turbo spin echo (TSE) imaging (e.g., with proton density weighting [PDw], PDw with fat saturation, and T 1 and T 2 weightings) with local RF energy absorption rates well below regulatory limits. High-resolution 2D and 3D image series (e.g., 0.3 mm in-plane resolution for TSE, 0.47 mm isotropic for DESS and MEDIC) were obtained from the knee and ankle joints with excellent tissue contrast. Dynamic imaging during continuous knee and ankle flexion-extension cycles were successfully acquired. The new open pTx coil array provides versatility for high-quality static and dynamic MRI of the knee and ankle joints at 7T. Magn Reson Med 79:1804-1816, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Current-induced Rashba spin orbit torque in silicene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ji, E-mail: muze7777@hdu.edu.cn [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Peng, Yingzi [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhou, Jie [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-06-15

    Highlights: • The spin dynamics of a ferromagnetic layer coupled to a silicene is investigated. • The Rashba spin orbit torque is obtained and the well-known LLG equation is modified. • The explicit forms of spin orbit torques in Domain Wall and vortex is also obtained. - Abstract: We study theoretically the spin torque of a ferromagnetic layer coupled to a silicene in the presence of the intrinsic Rashba spin orbit coupling (RSOC) effect. By using gauge field method, we find that under the applied current, the RSOC can induce an effective field which will result in the spin precession of conduction electron without applying any magnetic field. We also derive the spin torques due to the RSOC, which generalize the Landau-Lifshitz-Gilbert (LLG) equation. The spin torques are related to the applied current, the carrier density and Rashba strength of the system.

  18. Ankle and Other Signatures in Uhecr

    Science.gov (United States)

    Berezinsky, Veniamin

    2015-03-01

    The interaction signatures of UHE protons propagating through CMB are discussed. Much attention is given to ankle, which starting from 1963 is usually interpreted as a feature of transition from galactic to extragalactic cosmic rays. We argue here that this interpretation is now excluded. It gives more credit to alternative explanation of the ankle as an intrinsic part of the pair-production dip.

  19. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-10-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact on current-driven magnetization dynamics and on devices performances. After a brief overview of the progress made to date in the theoretical description of the spin torque in tunnel junctions, I present different ways to alter and control the bias dependence of both components of the spin torque. Engineering the junction (barrier and electrodes) structural asymmetries or controlling the spin accumulation profile in the free layer offer promising tools to design effcient spin devices.

  20. [Theoretical origin and clinical application of wrist-ankle acupuncture therapy].

    Science.gov (United States)

    Wang, Qiong; Zhou, Qinghui

    2017-05-12

    The theory of wrist-ankle acupuncture is consistent with traditional meridian-collateral theory. For example, the body divisions of wrist-ankle acupuncture are corresponding to the distribution of 12 cutaneous regions of meridians, the needling sites of it are to the running courses of 12 meridians; the indications of it are to those of 12 meridians. The needling sites of wrist-ankle acupuncture are relevant with some special acupoints of acupuncture theory. For example, the 12-needling sites of wrist-ankle acupuncture are located similar to those of 12 meridian points and have very similar indications. The needling sites of it are located in the wrist and ankle regions, in which the five- shu points are located nearby, for meridian disorders. Most luo -connecting points are located near to the needling sites of wrist-ankle acupuncture or the needle tip points to. Additionally, the needling method of wrist-ankle acupuncture is consistent with some of the subcutaneous needling methods in traditional acupuncture therapy. On the basis of the aspects mentioned above, it is explained that wrist-ankle acupuncture is the development of traditional acupuncture and cannot be independent from the traditional theories of acupuncture and meridians. It is necessary to seek for the evidence from the traditional theories of TCM. The traditional theories of TCM are summarized from clinical practice, which can be newly verified from the practice of wrist-ankle acupuncture.

  1. Relationship between stress ankle radiographs and injured ligaments on MRI

    International Nuclear Information System (INIS)

    Lee, Kyoung Min; Chung, Chin Youb; Chung, Myung Ki; Won, Sung Hun; Lee, Seung Yeol; Park, Moon Seok; Kwon, Soon-Sun

    2013-01-01

    This study was performed to investigate the relationship between the injured lateral ankle ligaments on MRI and stress ankle radiographs. Two hundred and twenty-nine consecutive patients (mean age 35.5 years, SD 14.6 years; 136 males and 93 females) that underwent ankle stress radiographs and MRI for lateral ankle instability were included. Tibiotalar tilt angle and anterior translation of talus were measured on stress ankle radiographs. Degree of lateral ligaments (anterior talofibular, calcaneofibular, and posterior talofibular) and deltoid ligament injuries were evaluated and scored as intact (0), partial injury (1), and complete injury (2) on MR images. Effusion of ankle joint was also recorded. The effects of gender, age, injuries of ligaments, and ankle joint effusion on stress radiographs were statistically analyzed. Gender (p = 0.010), age (p = 0.020), and anterior talofibular ligament (ATFL) injury (p < 0.001) were the factors significantly affecting tibiotalar tilt angle. Posterior talofibular ligament (PTFL) injury (p = 0.014) was found to be the only significant factor affecting the anterior translation on the anterior drawer radiographs. ATFL injury and PTFL injury on MRI significantly affected tibiotalar tilt angle and anterior drawer on stress radiographs. Other factors, such as age and gender, need to be considered in evaluating radiographic lateral ankle instability. (orig.)

  2. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  3. The implementation effectiveness of the 'Strengthen your ankle' smartphone application for the prevention of ankle sprains: design of a randomized controlled trial.

    Science.gov (United States)

    Van Reijen, Miriam; Vriend, Ingrid I; Zuidema, Victor; van Mechelen, Willem; Verhagen, Evert A

    2014-01-07

    Ankle sprains continue to pose a significant burden to the individual athlete, as well as to society as a whole. However, despite ankle sprains being the single most common sports injury and despite an active approach by various Dutch organisations in implementing preventive measures, large-scale community uptake of these preventive measures, and thus actual prevention of ankle sprains, is lagging well behind. In an attempt to bridge this implementation gap, the Dutch Consumer Safety Institute VeiligheidNL developed a freely available interactive App ('Strenghten your ankle' translated in Dutch as: 'Versterk je enkel; available for iOS and Android) that contains - next to general advice on bracing and taping - a proven cost-effective neuromuscular program. The 'Strengthen your ankle' App has not been evaluated against the 'regular' prevention approach in which the neuromuscular program is advocated through written material. The aim of the current project is to evaluate the implementation value of the 'Strengthen your ankle' App as compared to the usual practice of providing injured athletes with written materials. In addition, as a secondary outcome measure, the cost-effectiveness will be assessed against usual practice. The proposed study will be a randomised controlled trial. After stratification for medical caregiver, athletes will be randomised to two study groups. One group will receive a standardized eight-week proprioceptive training program that has proven to be cost-effective to prevent recurrent ankle injuries, consisting of a balance board (machU/ MSG Europe BVBA), and a traditional instructional booklet. The other group will receive the same exercise program and balance board. However, for this group the instructional booklet is exchanged by the interactive 'Strengthen your ankle' App. This trial is the first randomized controlled trial to study the implementation effectiveness of an App for proprioceptive balance board training program in comparison to

  4. Minimal clinically important difference and the effect of clinical variables on the ankle osteoarthritis scale in surgically treated end-stage ankle arthritis.

    Science.gov (United States)

    Coe, Marcus P; Sutherland, Jason M; Penner, Murray J; Younger, Alastair; Wing, Kevin J

    2015-05-20

    There is much debate regarding the best outcome tool for use in foot and ankle surgery, specifically in patients with ankle arthritis. The Ankle Osteoarthritis Scale (AOS) is a validated, disease-specific score. The goals of this study were to investigate the clinical performance of the AOS and to determine a minimal clinically important difference (MCID) for it, using a large cohort of 238 patients undergoing surgery for end-stage ankle arthritis. Patients treated with total ankle arthroplasty or ankle arthrodesis were prospectively followed for a minimum of two years at a single site. Data on demographics, comorbidities, AOS score, Short Form-36 results, and the relationship between expectations and satisfaction were collected at baseline (preoperatively), at six and twelve months, and then yearly thereafter. A linear regression analysis examined the variables affecting the change in AOS scores between baseline and the two-year follow-up. An MCID in the AOS change score was then determined by employing an anchor question, which asked patients to rate their relief from symptoms after surgery. Surgical treatment of end-stage ankle arthritis resulted in a mean improvement (and standard deviation) of 31.2 ± 22.7 points in the AOS score two years after surgery. The MCID of the AOS change score was a mean of 28.0 ± 17.9 points. The change in AOS score was significantly affected by the preoperative AOS score, smoking, back pain, and age. Patients undergoing arthroplasty or arthrodesis for end-stage ankle arthritis experienced a mean improvement in AOS score that was greater than the estimated MCID (31.2 versus 28.0 points). Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  5. Orthopaedic management of haemophilia arthropathy of the ankle.

    Science.gov (United States)

    Pasta, G; Forsyth, A; Merchan, C R; Mortazavi, S M J; Silva, M; Mulder, K; Mancuso, E; Perfetto, O; Heim, M; Caviglia, H; Solimeno, L

    2008-07-01

    Joint bleeding, or haemarthrosis, is the most common type of bleeding episode experienced by individuals with haemophilia A and B. This leads to changes within the joints, including synovial proliferation, which results in further bleeding and chronic synovitis. Blood in the joint can also directly damage the cartilage, and with repeated bleeding, there is progressive destruction of both cartilage and bone. The end result is known as haemophilic arthropathy. The joints most commonly affected are the knees, elbows and ankles, although any synovial joint may be involved. In the ankle, both the tibiotalar and subtalar joints may be affected and joint bleeding and arthropathy can lead to a number of deformities. Haemophilic arthropathy can be prevented through regular factor replacement prophylaxis and implementing physiotherapy. However, when necessary, there are multiple surgical and non-surgical options available. In early ankle arthropathy with absent or minimal joint changes, both radioisotopic and chemical synoviorthesis can be used to reduce the hypertrophied synovium. These procedures can decrease the frequency of bleeding episodes, minimizing the risk of articular cartilage damage. Achilles tendon lengthening can be performed, in isolation or in combination with other surgical measures, to correct Achilles tendon contractures. Both arthroscopic and open synovectomies are available as a means to remove the friable villous layer of the synovium and are often indicated when bleeding episodes cannot be properly controlled by factor replacement therapy or synoviorthesis. In the later stages of ankle arthropathy, other surgical options may be considered. Debridement may be indicated when there are loose pieces of cartilage or anterior osteophytes, and can help to improve the joint function, even in the presence of articular cartilage damage. Supramalleolar tibial osteotomy may be indicated in patients with a valgus deformity of the hindfoot without degenerative

  6. Analysis of thrust/torque signature of MOV

    International Nuclear Information System (INIS)

    Ryu, Ho Geun; Park, Seong Keun; Kim, Dae Woong

    2001-01-01

    For the evaluation of operability of MOV(Motor Operated Valve), the precision prediction of thrust/torque acting on the valve is important. In this paper, the analytical prediction method of thrust/torque was proposed. The design basis stem thrust calculation typically considers the followings: packing thrust, stem rejection load, design basis differential pressure load. In general, test results show that temperature, pressure, fluid type, and differential pressure, independently and combination, all have an effect on the friction factor. The prediction results of thrust/torque are well agreement with dynamic test results

  7. Ankle manual therapy for individuals with post-acute ankle sprains: description of a randomized, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Fisher Beth E

    2010-10-01

    Full Text Available Abstract Background Ankle sprains are common within the general population and can result in prolonged disablement. Limited talocrural dorsiflexion range of motion (DF ROM is a common consequence of ankle sprain. Limited talocrural DF ROM may contribute to persistent symptoms, disability, and an elevated risk for re-injury. As a result, many health care practitioners use hands-on passive procedures with the intention of improving talocrural joint DF ROM in individuals following ankle sprains. Dosage of passive hands-on procedures involves a continuum of treatment speeds. Recent evidence suggests both slow- and fast-speed treatments may be effective to address disablement following ankle sprains. However, these interventions have yet to be longitudinally compared against a placebo study condition. Methods/Design We developed a randomized, placebo-controlled clinical trial designed to test the hypotheses that hands-on treatment procedures administered to individuals following ankle sprains during the post-acute injury period can improve short-, intermediate-, and long-term disablement, as well as reduce the risk for re-injury. Discussion This study is designed to measure the clinical effects of hands-on passive stretching treatment procedures directed to the talocrural joint that vary in treatment speed during the post-acute injury period, compared to hands-on placebo control intervention. Trial Registration http://www.clinicaltrials.gov identifier NCT00888498.

  8. Corotation torques in the solar nebula - the cutoff function

    International Nuclear Information System (INIS)

    Ward, W.R.

    1989-01-01

    The behavior of high-order corotation resonances in a disk of finite thickness is examined. The torque exerted at an mth-order resonance is determined by employing a vertically averaged disturbing function, and the ratio of this torque to that exerted on a cold, two-dimensional disk is identified as the so-called torque cutoff function. This function is then used to calculate contributions from the corotation torques to eccentricity variations of a perturber's orbit assumed orbiting in the disk. 11 references

  9. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  10. Benign and malignant tumors of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Datir, Abhijit; Langley, Travis [Emory University Hospital, Department of Radiology, Section of Musculoskeletal Imaging, Atlanta, GA (United States); Tresley, Jonathan [University of Wisconsin, Department of Radiology, Madison, WI (United States); Clifford, Paul D.; Jose, Jean; Subhawong, Ty K. [University of Miami, Department of Radiology, Miami, FL (United States)

    2016-03-15

    Pain and focal masses in the foot and ankle are frequently encountered and often initiate a workup including imaging. It is important to differentiate benign lesions from aggressive benign or malignant lesions. In this review, multiple examples of osseous and soft tissue tumors of the foot and ankle will be presented. Additionally, the compartmental anatomy of the foot and ankle will be discussed in terms of its relevance for percutaneous biopsy planning and eventual surgery. Finally, a general overview of the surgical management of benign, benign aggressive and malignant tumors of the foot and ankle will be discussed. (orig.)

  11. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  12. Return to sports after ankle fractures: a systematic review.

    Science.gov (United States)

    Del Buono, Angelo; Smith, Rebecca; Coco, Manuela; Woolley, Laurence; Denaro, Vincenzo; Maffulli, Nicola

    2013-01-01

    This review aims to provide information on the time athletes will take to resume sports activity following ankle fractures. We systematically searched Medline (PubMED), EMBASE, CINHAL, Cochrane, Sports Discus and Google scholar databases using the combined keywords 'ankle fractures', 'ankle injuries', 'athletes', 'sports', 'return to sport', 'recovery', 'operative fixation', 'pinning', 'return to activity' to identify articles published in English, Spanish, French, Portuguese and Italian. Seven retrospective studies fulfilled our inclusion criteria. Of the 793 patients, 469 (59%) were males and 324 (41%) were females, and of the 356 ankle fractures we obtained information on, 338 were acute and 18 stress fractures. The general principles were to undertake open reduction and internal fixation of acute fractures, and manage stress fractures conservatively unless a thin fracture line was visible on radiographs. The best timing to return to sports after an acute ankle fracture is still undefined, given the heterogeneity of the outcome measures and results. The time to return to sports after an acute stress injury ranged from 3 to 51 weeks. When facing athletes with ankle fractures, associated injuries have to be assessed and addressed to improve current treatment lines and satisfy future expectancies. The best timing to return to sports after an ankle fracture has not been established yet. The ideas of the return to activity parameter and surgeon databases including sports-related information could induce research to progress.

  13. Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.

    Science.gov (United States)

    Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A

    2016-01-01

    In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.

  14. Steady-state configurations of Dzyaloshinskii domain walls driven by field and current

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L., E-mail: luis.st@ee.uva.es [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Alejos, O. [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain)

    2017-02-01

    The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.

  15. Steady-state configurations of Dzyaloshinskii domain walls driven by field and current

    International Nuclear Information System (INIS)

    Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.

    2017-01-01

    The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.

  16. Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports.

    Science.gov (United States)

    Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki

    2015-01-01

    In a competitive sport, the outcome of a game is determined by an athlete's relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender's initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state

  17. Calculation of Cogging Torque in Hybrid Stepping Motors | Agber ...

    African Journals Online (AJOL)

    When the windings of a hybrid stepping motor are unexcited the permanent magnet's flux produces cogging torque. This torque has both desirable and undesirable features depending on the application that the motor is put into. This paper formulates an analytical method for predicting cogging torque using measured ...

  18. Home-based Exercise on Functional Outcome of the Donor Lower Extremity in Oral Cancer Patients after Fibula Flap Harvest

    Directory of Open Access Journals (Sweden)

    Ting-Yuan Liu

    2013-04-01

    Full Text Available Background: After harvesting the fibula flap, pain, sensory disturbance, weakness of donor leg, reduced walking endurance, ankle instability, and lower walking speed had been reported. The aim of this study was to quantitatively assess functional outcome of regular home-based exercise on donor ankle strength, endurance, and walking ability after free fibula flap for mandibular reconstruction. Methods: Fourteen patients were recruited. Objective isokinetic testing and a 6-min walk test (6MWT were used to evaluate ankle strength/endurance and walking ability, respectively. Results: There was a significant increase in the peak torque of ankle dorsiflexion/foot inversion of the healthy leg and ankle dorsiflexion/foot eversion of the donor leg after exercise (p < 0.05. After home-based exercise, there was reduced asymmetry in the peak torques of ankle dorsiflexion and foot eversion and the total work of foot eversion between the donor and healthy legs. In 6MWT, no significant difference was found between the walking distances before and after exercise. Conclusion: Regular home-based exercise could improve the strength of ankle dorsiflexion and foot eversion of the donor leg, and get more symmetric ankle motor function between the donor and healthy legs.

  19. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    Science.gov (United States)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  20. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    Science.gov (United States)

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A novel tool for measuring ankle dorsiflexion

    DEFF Research Database (Denmark)

    Larsen, Peter; B Nielsen, Henrik; Lund, Christoffer

    2016-01-01

    correlation coefficients (ICC). RESULTS: The study sample consisted of 24 patients: fifteen females and nine males post-immobilisation following surgery for ankle fractures. The mean age was 51.0 years, ranging from 22–92 years. All patients had sustained an AO classification 44- fracture of the ankle...

  2. Common Types and Countermeasures of Ankle Ligament Injury ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... Objective: To analyze ankle ligament injury of basketball players caused during movement, summarize ... players with ankle ligament injury during basketball movement and admitted to different .... Road Success 2010;8:70. 5.

  3. Delayed latency of peroneal reflex to sudden inversion with ankle taping or bracing.

    Science.gov (United States)

    Shima, N; Maeda, A; Hirohashi, K

    2005-01-01

    The purpose of the present study was to examine the effects of ankle taping and bracing based on the peroneal reflex in the hypermobile and normal ankle joints with and without history of ankle injury. Thirty-six ankle joints of 18 collegiate American football athletes with and without previous history of injury were studied. The angle of talar tilt (TT) was measured by stress radiograph for classifying normal (TT5 degrees ) ankles. They were tested with taping, bracing, and without any supports as a control. The latency of peroneus longus muscle was measured by a sudden inversion of 25 degrees using surface EMG signals. The results of the present study show no significant three-way Group (hypermobile or normal ankles) by History (previously injured or uninjured ankles) by Condition (control, taping, or bracing) interaction, while Condition main effect was significant (p0.05). In conclusion, ankle taping and bracing delayed the peroneal reflex latency not only for hypermobile ankles and/or injured ankle joints but also for intact ankle joints.

  4. Remote calibration of torque wrenches in a hostile environment

    Science.gov (United States)

    Griffin, D. M.

    1982-03-01

    A relatively simple device is described which provides the capability for remote comparison of torque wrenches over a limited range. The device, properly used, provides calibration capability for most inch pound and foot pound range torque wrenches. For purposes of this discussion, the device itself was developed specifically for adapting an existing torque measuring system with torque wrenches in hostile environment. A gloved access port is utilized to manipulate the fixture while a viewing window and mirror are used to make visual comparisons. Click type wrenches do not require use of the mirror.

  5. Advanced single tooth torquing plier with high precision: A clinical innovation

    Directory of Open Access Journals (Sweden)

    Jitendra Raghuwanshi

    2017-01-01

    Full Text Available Torque is the force which gives the operator control over the movements of roots of teeth in bilateral direction. There are various pliers available to apply torque in individual tooth, but none of the pliers are capable of measuring accurately the degrees of torque incorporated, so we have attempted to make a modified torquing plier to incorporate and measure the degrees of incorporated torque precisely.

  6. The correlation of the morphological changes of ankle point and ankle joint function after surgery on the Ruedi-Allgouer type III Pilon fracture: A case series study.

    Science.gov (United States)

    Zhou, Yifei; Cai, Leyi; Lu, Xiaolang; Yu, Yang; Hong, Jianjun

    2017-08-01

    To analyze the relationship between imaging findings and postoperative curative effect by measuring the morphology of the ankle mortise in patients with the Ruedi-Allgouer type III Pilon fractures. Forty-seven patients with Ruedi-Allgouer type III Pilon fractures who underwent surgical treatment from January 2011 to January 2015 were retrospectively analyzed. At the last follow-up, x-rays of the affected ankle and the healthy side were measured. According to the Kitaoka score of ankle joint function at the last follow-up. All patients were followed up for 18-24 months (mean 21 months). This study demonstrated that compared with the healthy side, the index of the width, depth, and coronal/sagittal angles of the ankle mortise were significantly different (P  0.05). According to the Kitaoka score, the difference between the affected and the healthy sides of each index of the ankle mortise was compared between the 3 groups. That is, the intraoperative treatment of the width and depth of the ankle mortise as well as the coronal and sagittal angles of the ankle mortise were significantly correlated with the postoperative curative effect. The intraoperative treatment of ankle mortise width, depth, and ankle coronal/sagittal angle in patients with severe Pilon fractures has a significant impact on postoperative efficacy. In order to prevent the occurrence of traumatic arthritis, the anatomical morphology of the ankle should be restored as much as possible in the course of surgery. Copyright © 2017. Published by Elsevier Ltd.

  7. The course of the superficial peroneal nerve in relation to the ankle position: anatomical study with ankle arthroscopic implications

    NARCIS (Netherlands)

    de Leeuw, Peter A. J.; Golanó, Pau; Sierevelt, Inger N.; van Dijk, C. Niek

    2010-01-01

    Despite the fact that the superficial peroneal nerve is the only nerve in the human body that can be made visible; iatrogenic damage to this nerve is the most frequently reported complication in anterior ankle arthroscopy. One of the methods to visualize the nerve is combined ankle plantar flexion

  8. Torque-onset determination: Unintended consequences of the threshold method.

    Science.gov (United States)

    Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket

    2016-12-01

    Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; ptorque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player

    Directory of Open Access Journals (Sweden)

    Ichiro Tonogai

    2017-01-01

    Full Text Available Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy.

  10. Direct Torque Control of Matrix Converter Fed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    JAGADEESAN Karpagam

    2011-10-01

    Full Text Available This paper presents the Direct TorqueControl (DTC of induction motor drive using matrixconverters. DTC is a high performance motor controlscheme with fast torque and flux responses. However,the main disadvantage of conventional DTC iselectromagnetic torque ripple. In this paper, directtorque control for Induction Motors using MatrixConverters is analysed and points out the problem ofthe electromagnetic torque ripple which is one of themost important drawbacks of the Direct TorqueControl. Besides, the matrix converter is a single-stageac-ac power conversion device without dc-link energystorage elements. Matrix converter (MC may becomea good alternative to voltage-source inverter (VSI.This work combines the advantages of the matrixconverter with those of the DTC technique, generatingthe required voltage vectors under unity input powerfactor operation. Simulation results demonstrates theeffectiveness of the torque control.

  11. Proprioceptive exercises for ankle ligament injury: a CAT

    Directory of Open Access Journals (Sweden)

    Raúl Aguilera Eguía

    2013-06-01

    Full Text Available This CAT (Critically Appraised Topic answered the question: In recreational athletes suffering from chronic ankle sprain, can proprioceptive exercises reduce its recurrence?The clinical question was analyzed in three parts: patient, intervention and outcome. The purpose was to test the validity, results and effectiveness of proprioceptive exercises in recreational athletes suffering from chronic ankle sprain to reduce its recurrence from the article "Effectiveness of proprioceptive exercises for ankle ligament injury in adults: A systematic literature and meta-analisys "Postle”1 (2012.

  12. Diffusion of torqued active particles

    Science.gov (United States)

    Sandoval, Mario; Lauga, Eric

    2012-11-01

    Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).

  13. Application of Space Vector Modulation in Direct Torque Control of PMSM

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2008-01-01

    Full Text Available The paper deals with an improvement of direct torque control method for permanent magnet synchronous motor drives. Electrical torque distortion of the machine under original direct torque control is relatively high and if proper measures are taken it can be substantially decreased. The proposed solution here is to combine direct torque control with the space vector modulation technique. Such approach can eliminate torque distortion while preserving the simplicity of the original method.

  14. Ankle injuries in the Netherlands : Trends over 10-25 years

    NARCIS (Netherlands)

    Kemler, Ellen; van de Port, I.; Valkenberg, H.; Hoes, A. W.; Backx, F. J G

    2015-01-01

    Ankle injuries are a common health problem; data on ankle injury rates and time trends in the population at large are scarce. Our aim was to investigate the incidence of and time trends in population-based and emergency department-treated ankle injuries related to sports activities and other

  15. Synovial Fluid Filtration by Articular Cartilage with a Worn-out Surface Zone in the Human Ankle Joint during Walking- II. Numerical Results for Steady Pure Sliding

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2000-01-01

    Roč. 45, č. 4 (2000), s. 375-396 ISSN 0001-7043 R&D Projects: GA ČR GA103/00/0008 Keywords : biphasic articular cartilage * biphasic synovial fluid * boundary lubrication * human ankle joint Subject RIV: BK - Fluid Dynamics

  16. A Biomechanical Comparison of 3 Different Arthroscopic Lateral Ankle Stabilization Techniques in 36 Cadaveric Ankles.

    Science.gov (United States)

    Cottom, James M; Baker, Joseph S; Richardson, Phillip E; Maker, Jared M

    Arthroscopic lateral ankle stabilization has become an increasingly popular option among foot and ankle surgeons to address lateral ankle instability, because it combines a modified Broström-Gould procedure with the ability to address any intra-articular pathologic findings at the same session. The present study evaluated 3 different constructs in a cadaveric model. Thirty-six fresh frozen cadaver limbs were used, and the anterior talofibular ligament was identified and sectioned. The specimens were then placed into 1 of 3 groups. Group 1 received a repair with a single-row, 2-suture anchor construct; group 2 received repair with a novel, double-row, 4-anchor knotless construct; and group 3 received repair with a double-row, 3-anchor construct. Specimens were then tested for stiffness and load to ultimate failure using a customized jig. Stiffness was measured in each of the groups and was 12.10 ± 5.43 (range 5.50 to 22.24) N/mm for group 1, 13.40 ± 7.98 (range 6.71 to 36.28) N/mm for group 2, and 12.55 ± 4.00 (range 6.48 to 22.14) N/mm for group 3. No significant differences were found among the 3 groups in terms of stiffness (p = .939, 1-way analysis of variance, ɑ = 0.05). The groups were tested to failure, with observed force measurements of 156.43 ± 30.39 (range 83.69 to 192.00) N for group 1, 206.62 ± 55.62 (range 141.37 to 300.29) N for group 2, and 246.82 ± 82.37 (range 164.26 to 384.93) N for group 3. Statistically significant differences were noted between groups 1 and 3 (p = .006, 1-way analysis of variance, ɑ = 0.05). The results of the present study have shown that a previously reported arthroscopic lateral ankle stabilization procedure, when modified with an additional proximal suture anchor into the fibula, results in a statistically significant increase in strength in terms of the maximum load to failure. Additionally, we have described a previously unreported, knotless technique for arthroscopic lateral ankle

  17. A unified perspective on ankle push-off in human walking.

    Science.gov (United States)

    Zelik, Karl E; Adamczyk, Peter G

    2016-12-01

    Muscle-tendon units about the ankle joint generate a burst of positive power during the step-to-step transition in human walking, termed ankle push-off, but there is no scientific consensus on its functional role. A central question embodied in the biomechanics literature is: does ankle push-off primarily contribute to leg swing, or to center of mass (COM) acceleration? This question has been debated in various forms for decades. However, it actually presents a false dichotomy, as these two possibilities are not mutually exclusive. If we ask either question independently, the answer is the same: yes! (1) Does ankle push-off primarily contribute to leg swing acceleration? Yes. (2) Does ankle push-off primarily contribute to COM acceleration? Yes. Here, we summarize the historical debate, then synthesize the seemingly polarized perspectives and demonstrate that both descriptions are valid. The principal means by which ankle push-off affects COM mechanics is by a localized action that increases the speed and kinetic energy of the trailing push-off limb. Because the limb is included in body COM computations, this localized segmental acceleration also accelerates the COM, and most of the segmental energy change also appears as COM energy change. Interpretation of ankle mechanics should abandon an either/or contrast of leg swing versus COM acceleration. Instead, ankle push-off should be interpreted in light of both mutually consistent effects. This unified perspective informs our fundamental understanding of the role of ankle push-off, and has important implications for the design of clinical interventions (e.g. prostheses, orthoses) intended to restore locomotor function to individuals with disabilities. © 2016. Published by The Company of Biologists Ltd.

  18. Intrinsic magnetic torque at low magnetic induction

    International Nuclear Information System (INIS)

    Doria, M.M.; Oliveira, I.G. de.

    1993-01-01

    Using anisotropic London theory the intrinsic magnetic torque for extreme type II uniaxial superconductors for any value of the magnetic induction is obtained. It is considered the vortex lines straight and take into account the contribution of the supercurrents flowing inside the vortex core within the London theory. It is shown that the interline and intra line free energies give opposite torque contributions, the first drives the magnetic induction parallel to the superconductor's axis of symmetry and the second orthogonal to it. At high magnetic induction torque expression obtained generalizes V. Kogan's formula since it has no free parameters other than the anisotropy γ = m 1 /m 3 and the Ginzburg-Landau parameter κ. At low magnetic induction it is proposed a way to observe vortex chains effects in the total torque based on the fact that London theory is linear and the energy to make a single vortex line in space is independent of the magnetic induction. (author)

  19. Excitable particles in an optical torque wrench

    Science.gov (United States)

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Barland, Stephane; Dekker, Nynke H.

    2011-03-01

    The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and chemical reactions, all of which display an excitable binary (`all-or-none') response to input perturbations. On the basis of this dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation events with high signal-to-noise ratio and continuously adjustable sensitivity.

  20. Sprained ankle (image)

    Science.gov (United States)

    A sprain is caused by the twisting or bending of a joint into a position it was not designed to move. The ankle is the most commonly sprained joint. Some common symptoms of a sprain are pain around the joint, ...

  1. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available   Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  2. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  3. Modified Direct Torque Control of Three-Phase Induction Motor Drives with Low Ripple in Flux and Torque

    Directory of Open Access Journals (Sweden)

    Vinay KUMAR

    2011-06-01

    Full Text Available This paper proposes an algorithm for direct flux and torque controlled three phase induction motor drive systems. This method is based on control of slip speed and decoupled between amplitude and angle of reference stator flux for determining required stator voltage vector. In this proposes model, integrator unit is not required to generate the reference stator flux angle for calculating required stator voltage vector, hence it eliminates the initial values problems in real time. Within the given sampling time, flux as well as torque errors are controlled by stator voltage vector which is evaluated from reference stator flux. The direct torque control is achieved by reference stator flux angle which is generates from instantaneous slip speed angular frequency and stator flux angular frequency. The amplitude of the reference stator flux is kept constant at rated value. This technique gives better performance in three-phase induction motor than conventional technique. Simulation results for 3hp induction motor drive, for both proposed and conventional techniques, are presented and compared. From the results it is found that the stator current, flux linkage and torque ripples are decreased with proposed technique.

  4. Is Hardware Removal Recommended after Ankle Fracture Repair?

    Directory of Open Access Journals (Sweden)

    Hong-Geun Jung

    2016-01-01

    Full Text Available The indications and clinical necessity for routine hardware removal after treating ankle or distal tibia fracture with open reduction and internal fixation are disputed even when hardware-related pain is insignificant. Thus, we determined the clinical effects of routine hardware removal irrespective of the degree of hardware-related pain, especially in the perspective of patients’ daily activities. This study was conducted on 80 consecutive cases (78 patients treated by surgery and hardware removal after bony union. There were 56 ankle and 24 distal tibia fractures. The hardware-related pain, ankle joint stiffness, discomfort on ambulation, and patient satisfaction were evaluated before and at least 6 months after hardware removal. Pain score before hardware removal was 3.4 (range 0 to 6 and decreased to 1.3 (range 0 to 6 after removal. 58 (72.5% patients experienced improved ankle stiffness and 65 (81.3% less discomfort while walking on uneven ground and 63 (80.8% patients were satisfied with hardware removal. These results suggest that routine hardware removal after ankle or distal tibia fracture could ameliorate hardware-related pain and improves daily activities and patient satisfaction even when the hardware-related pain is minimal.

  5. Chronic ankle instability: Arthroscopic anatomical repair.

    Science.gov (United States)

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Magnetic resonance imaging findings in anterolateral impingement of the ankle

    International Nuclear Information System (INIS)

    Jordan, L.K. III.; Cooperman, A.E.; Helms, C.A.; Speer, K.P.

    2000-01-01

    Objective. To demonstrate the MR imaging findings of anterolateral impingement (ALI) of the ankle.Design and patients. Nine patients with a history of ankle inversion injury and chronic lateral ankle pain were imaged with MR imaging, and the findings correlated with the results of arthroscopy. Three additional patients with clinically suspected ALI of the ankle were also included. Ankle MR imaging studies from 20 control patients in whom ALI was not suspected clinically were examined for similar findings to the patient group.Results. MR imaging findings in the patients with ALI included a soft tissue signal mass in the anterolateral gutter of the ankle in 12 of 12 (100%) cases, corresponding to the synovial hypertrophy and soft tissue mass found at arthroscopy in the nine patients who underwent arthroscopy. Disruption, attenuation, or marked thickening of the anterior talofibular ligament was seen in all cases. Additional findings included signs of synovial hypertrophy elsewhere in the tibiotalar joint in seven of 12 patients (58%) and bony and cartilaginous injuries to the tibiotalar joint in five of 12 (42%). None of the control patients demonstrated MR imaging evidence of a soft tissue mass in the anterolateral gutter.Conclusions. ALI of the ankle is a common cause for chronic lateral ankle pain. It has been well described in the orthopedic literature but its imaging findings have not been clearly elucidated. The MR imaging findings, along with the appropriate clinical history, can be used to direct arthroscopic examination and subsequent debridement. (orig.)

  7. Surgical procedures in patients with haemophilic arthropathy of the ankle.

    Science.gov (United States)

    Barg, A; Morris, S C; Schneider, S W; Phisitkul, P; Saltzman, C L

    2016-05-01

    In haemophilia, the ankle joint is one of the most common and earliest joints affected by recurrent bleeding, commonly resulting in end-stage ankle osteoarthritis during early adulthood. The surgical treatment of haemophilic ankle arthropathy is challenging. This review aims to highlight the literature addressing clinical outcomes following the most common approaches for different stages of haemophilia-induced ankle osteoarthritis: arthroscopic debridement, joint distraction arthroplasty, supramalleolar osteotomies, total ankle replacement, and ankle arthrodesis. A systematic literature review was performed using established medical literature databases. The following information was retrieved from the literature: patients' demographics, surgical technique, duration of follow-up, clinical outcome including pain relief and complication rate. A total of 42 clinical studies published between 1978 and 2015 were included in the systematic literature review. Eight and 34 studies had prospective and retrospective design, respectively. The most common studies were level IV studies (64.3%). The orthopaedic treatment of patients with haemophilic ankle osteoarthritis is often challenging and requires complete and careful preoperative assessment. In general, both joint-preserving and joint non-preserving procedure types can be performed. All specific relative and absolute contraindications should be considered to achieve appropriate postoperative outcomes. The current literature demonstrated that orthopaedic surgeries, with appropriate indication, in patients with haemophilic ankle arthropathy result in good postoperative results comparable to those observed in non-haemophiliacs. The surgical treatment should be performed in a setting with the ability to have multidisciplinary management, including expertise in haematology. © 2016 John Wiley & Sons Ltd.

  8. Review on design and control aspects of ankle rehabilitation robots.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  9. ARTHROSCOPIC TREATMENT OF ANTERIOR IMPINGEMENT IN THE ANKLE

    Directory of Open Access Journals (Sweden)

    Martin Mikek

    2004-12-01

    Full Text Available Background. Anterior soft tissue impingement is a common cause of chronic pain in the ankle. The preferred method of operative treatment is an arthroscopic excision of hypertrophic fibrous and synovial tissue in the anterior part of the ankle joint.Methods. We present the results of arthroscopic treatment of anterior ankle impingement in group of 14 patients.Results. Subjective improvement after the procedure was observed in all patients and 13 of them (93% were without any symptoms after the operation. One patient reported of intermittent pain, especially when walking on uneven grounds.Conclusions. We conclude that arthroscopic excision of hypertrophic synovial tissue in the anterior part of the ankle which causes the symptoms of impingement is a minimally invasive procedure that is both safe and reliable. When used for appropriate indications, an improvement can be expected in over 90% of patients.

  10. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  11. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  12. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  13. Cogging Torque Reduction Techniques for Spoke-type IPMSM

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    A spoke-type interior permanent magnet synchronous motor (IPMSM) is extending its tentacles in industrial arena due to good flux-weakening capability and high power density. In many of the application, high strength of permanent magnet causes the undesirable effects of high cogging torque that can aggravate performance of the motor. High cogging torque is significantly produced by IPMSM due to the similar length and the effectiveness of the magnetic air-gap. The address of this study is to analyze and compare the cogging torque effect and performance of four common techniques for cogging torque reduction such as skewing, notching, pole pairing and rotor pole pairing. With the aid of 3-D finite element analysis (FEA) by JMAG software, a 6S-4P Spoke-type IPMSM with various rotor-PM configurations has been designed. As a result, the cogging torque effect reduced up to 69.5% for skewing technique, followed by 31.96%, 29.6%, and 17.53% by pole pairing, axial pole pairing and notching techniques respectively.

  14. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  15. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  16. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  17. Arthroscopy and Endoscopy of the Ankle and Hindfoot

    NARCIS (Netherlands)

    de Leeuw, Peter A. J.; van Sterkenburg, Maayke N.; van Dijk, C. Niek

    2009-01-01

    Ankle arthroscopy provides the surgeon with a minimally invasive treatment option for a wide variety of indications such as impingement, osteochondral defects, loose bodies, ossicles, synovitis, adhesions, and instability. Posterior ankle pathology can be treated using endoscopic hindfoot portals.

  18. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  19. The Epidemiology of High Ankle Sprains in National Collegiate Athletic Association Sports.

    Science.gov (United States)

    Mauntel, Timothy C; Wikstrom, Erik A; Roos, Karen G; Djoko, Aristarque; Dompier, Thomas P; Kerr, Zachary Y

    2017-07-01

    Ankle sprains are among the most common injuries experienced by collegiate athletes. The type of ankle sprain is rarely differentiated in epidemiological studies. This differentiation is necessary, as each ankle sprain type has a unique injury mechanism and recovery period. High ankle sprains commonly result in long recovery periods. Thus, a further examination of the epidemiology of high ankle sprains is warranted. To describe the epidemiology of high ankle sprains in National Collegiate Athletic Association (NCAA) sports during the 2009/2010-2014/2015 academic years. Descriptive epidemiology study. NCAA Injury Surveillance Program high ankle sprain data and athlete-exposures (AEs) from 25 sports were evaluated. Certified athletic trainers recorded sport-related injury, event, and AE data during team-sanctioned events. High ankle sprain injury rates per 10,000 AEs were calculated. Percentage distributions were calculated for the amount of time lost from sport and percentage of recurrent injuries. Injury rate ratios (RRs) and 95% CIs compared injury rates by event type, participation restriction time, and sex. 95% CIs not containing 1.00 were considered statistically significant. The overall high ankle sprain injury rate was 1.00 per 10,000 AEs. Overall, 56.7% of high ankle sprain injuries occurred during competitions, and 9.8% of high ankle sprain injuries were recurrent. Men's football (2.42/10,000 AEs), wrestling (2.11/10,000 AEs), and ice hockey (1.19/10,000 AEs) had the highest high ankle sprain injury rates. In sex-comparable sports, men had higher injury rates (RR, 1.77; 95% CI, 1.28-2.44). Player contact was the most common injury mechanism (60.4%), and 69.0% of injuries resulted in ≥1 day of participation restriction, with 47.1% resulting in ≥7 days of participation restriction and 15.8% resulting in >21 days of participation restriction. High ankle sprains resulted in significant participation restriction time from sport participation. The majority of

  20. Six Sessions of Anterior-to-Posterior Ankle Joint Mobilizations Improve Patient-Reported Outcomes in Chronic Ankle Instability Patients: A Critically Appraised Topic.

    Science.gov (United States)

    Wikstrom, Erik A; Bagherian, Sajad; Cordero, Nicole B; Song, Kyeongtak

    2018-01-24

    Clinical Scenario: Chronic ankle instability (CAI) is a complex musculoskeletal condition that results in sensorimotor and mechanical alterations. Manual therapies, such as ankle joint mobilizations are known to improve clinician-oriented outcomes like dorsiflexion range of motion but their impact of patient-reported outcomes remains less clear. Focused Clinical Question: Do anterior-to-posterior ankle joint mobilizations improve patient reported outcomes in patients with CAI? Summary of Key Findings: Three studies (2 RCT, 1 Prospective cohort) quantified the effect of at least 2-weeks of anterior-to-posterior ankle joint mobilizations on improving patient reported outcomes immediately after the intervention and at a follow-up assessment. All three studies demonstrated significant improvements in at least one patient-reported outcome immediately after the intervention and at the follow-up assessment. Clinical Bottom Line: At least 2-weeks of ankle joint mobilization improves patient-reported outcomes in patients with CAI and these benefits are retained for at least a week following the termination of the intervention. Strength of Recommendation: Strength of recommendation is an A due to consistent good-quality patient-oriented evidence.

  1. Case Study: A Bio-Inspired Control Algorithm for a Robotic Foot-Ankle Prosthesis Provides Adaptive Control of Level Walking and Stair Ascent

    Directory of Open Access Journals (Sweden)

    Uzma Tahir

    2018-04-01

    Full Text Available Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a “winding filament” hypothesis (WFH for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4–5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = −8 to −19° and ankle moments (range = 1 to 1.5 Nm/kg similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range −15 to −19° that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at

  2. Value of arthrography after supination trauma of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, C.N. van; Tol, J.L.; Marti, R.K. [Acad. Med. Centre, Amsterdam (Netherlands). Dept. of Orthopaedic Surg.; Molenaar, A.H.M. [Department of Radiology, Canisius Ziekenhuis, Weg door Jonkerbos 100, 6532 SZ Nijmegen (Netherlands); Cohen, R.H. [Department of Radiology, Stichting Ziekenhuis Amstelveen, Laan van de Helende Meesters 8, 1186 AM Amstelveen (Netherlands); Bossuyt, P.M.M. [Department of Epidemiology, Academic Medical Centre, P.O. Box 22700, 1100 DE Amsterdam (Netherlands)

    1998-05-01

    Objective. To investigate the merits of arthrography after supination trauma of the ankle. Design and patients. In a group of 160 consecutive patients operative exploration was performed in cases where arthrography and/or a delayed physical examination showed positive findings. In all patients arthrography was performed within 48 h after trauma. To determine interobserver agreement, all arthrograms were independently evaluated by two radiologists, both ignorant of the first assessment. Results. The prevalence of an ankle ligament lesion was found to be 76%. Of the 122 patients with a rupture of one or more ankle ligaments, 52% had an isolated anterior talofibular ligament lesion, 3% had an isolated calcaneofibular ligament lesion, and 45% had combined lesions. The site of the lesion was predominantly intraligamentous. In the determination of the presence or absence of an ankle ligament lesion, the specificity and sensitivity of the ankle arthrogram were 71% and 96% respectively. Interobserver agreement on the arthrogram was very good ({kappa} 0.9). In 1% of patients a clear diagnosis was not possible by means of arthrography. Conclusion. Arthrography provides information of high diagnostic quality with excellent interobserver agreement and therefore remains the gold standard for early diagnosis (within 48 h) of a lateral ankle ligament rupture. (orig.) With 4 figs., 5 tabs., 24 refs.

  3. Value of arthrography after supination trauma of the ankle

    International Nuclear Information System (INIS)

    Dijk, C.N. van; Tol, J.L.; Marti, R.K.; Cohen, R.H.; Bossuyt, P.M.M.

    1998-01-01

    Objective. To investigate the merits of arthrography after supination trauma of the ankle. Design and patients. In a group of 160 consecutive patients operative exploration was performed in cases where arthrography and/or a delayed physical examination showed positive findings. In all patients arthrography was performed within 48 h after trauma. To determine interobserver agreement, all arthrograms were independently evaluated by two radiologists, both ignorant of the first assessment. Results. The prevalence of an ankle ligament lesion was found to be 76%. Of the 122 patients with a rupture of one or more ankle ligaments, 52% had an isolated anterior talofibular ligament lesion, 3% had an isolated calcaneofibular ligament lesion, and 45% had combined lesions. The site of the lesion was predominantly intraligamentous. In the determination of the presence or absence of an ankle ligament lesion, the specificity and sensitivity of the ankle arthrogram were 71% and 96% respectively. Interobserver agreement on the arthrogram was very good (κ 0.9). In 1% of patients a clear diagnosis was not possible by means of arthrography. Conclusion. Arthrography provides information of high diagnostic quality with excellent interobserver agreement and therefore remains the gold standard for early diagnosis (within 48 h) of a lateral ankle ligament rupture. (orig.)

  4. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  5. A surgical ankle sprain pain model in the rat: Effects of morphine and indomethacin

    OpenAIRE

    Young Kim, Hee; Wang, Jigong; Chung, Kyungsoon; Mo Chung, Jin

    2008-01-01

    Ankle sprain is a frequent injury in humans that results in pain, swelling and difficulty in walking on the affected ankle. Currently a suitable animal model resembling human ankle sprain is lacking. Here, we describe an animal ankle sprain model induced by ankle ligament injury (ALI) in rats. Cutting combinations of the lateral ankle ligament complex produced pain, edema and difficulty of weight bearing, thereby mimicking severe (grade III) ankle sprain in humans. Analgesic compounds, morphi...

  6. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning.

    Science.gov (United States)

    Kuo, Chien-Chung; Lu, Hsuan-Lun; Leardini, Alberto; Lu, Tung-Wu; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2014-05-01

    Morphometry of the bones of the ankle joint is important for the design of joint replacements and their surgical implantations. However, very little three-dimensional (3D) data are available and not a single study has addressed the Chinese population. Fifty-eight fresh frozen Chinese cadaveric ankle specimens, 26 females, and 32 males, were CT-scanned in the neutral position and their 3D computer graphics-based models were reconstructed. The 3D morphology of the distal tibia/fibula segment and the full talus was analyzed by measuring 31 parameters, defining the relevant dimensions, areas, and volumes from the models. The measurements were compared statistically between sexes and with previously reported data from Caucasian subjects. The results showed that, within a general similarity of ankle morphology between the current Chinese and previous Caucasian subjects groups, there were significant differences in 9 out of the 31 parameters analyzed. From a quantitative comparison with available prostheses designed for the Caucasian population, few of these designs have both tibial and talar components suitable in dimension for the Chinese population. The current data will be helpful for the sizing, design, and surgical positioning of ankle replacements and for surgical instruments, especially for the Chinese population. Copyright © 2013 Wiley Periodicals, Inc.

  7. Gait Biomechanics in Participants, Six Months after First-time Lateral Ankle Sprain.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2016-06-01

    No research currently exists predicating a link between the injury-affiliated sensorimotor deficits of acute ankle sprain and those of chronic ankle instability during gait. This analysis evaluates participants with a 6-month history of ankle sprain injury to affirm this link. 69 participants with a 6-month history of acute first-time lateral ankle sprain were divided into subgroups ('chronic ankle instability' and 'coper') based on their self-reported disability and compared to 20 non-injured participants during a gait task. Lower extremity kinematic and kinetic data were collected from 200 ms pre- to 200 ms post-heel strike (period 1) and from 200 ms pre- to 200 ms post-toe off (period 2). The 'chronic ankle instability' subgroup (who reported greater disability) displayed increased knee flexion during period 1. During period 2, this subgroup exhibited greater total displacement at their ankle joint and greater extensor dominance at their knee. That many of these features are present, both in individuals with acute ankle sprain and those with chronic ankle instability may advocate a link between acute deficits and long-term outcome. Clinicians must be aware that the sensorimotor deficits of ankle sprain may persevere beyond the acute stage of injury and be cognizant of the capacity for impairments to pervade proximally. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Assessment of acute foot and ankle sprains.

    Science.gov (United States)

    Lynam, Louise

    2006-07-01

    Acute ankle and foot trauma is a regular emergency presentation and prompt strategic assessment skills are required to enable nurses to categorise and prioritise these injuries appropriately. This article provides background information on the anatomy and physiology of the lower limb to help nurses to identify various grades of ankle sprain as well as injuries that are limb threatening

  9. Is ankle contracture after stroke due to abnormal intermuscular force transmission?

    Science.gov (United States)

    Diong, Joanna; Herbert, Robert D

    2015-02-01

    Contracture after stroke could be due to abnormal mechanical interactions between muscles. This study examined if ankle plantarflexor muscle contracture after stroke is due to abnormal force transmission between the gastrocnemius and soleus muscles. Muscle fascicle lengths were measured from ultrasound images of soleus muscles in five subjects with stroke and ankle contracture and six able-bodied subjects. Changes in soleus fascicle length or pennation during passive knee extension at fixed ankle angle were assumed to indicate intermuscular force transmission. Changes in soleus fascicle length or pennation were adjusted for changes in ankle motion. Subjects with stroke had significant ankle contracture. After adjustment for ankle motion, 9 of 11 subjects demonstrated small changes in soleus fascicle length with knee extension, suggestive of intermuscular force transmission. However, the small changes in fascicle length may have been artifacts caused by movement of the ultrasound transducers. There were no systematic differences in change in fascicle length (median between-group difference adjusting for ankle motion = -0.01, 95% CI -0.26-0.08 mm/degree of knee extension) or pennation (-0.05, 95% CI -0.15-0.07 degree/ degree of knee extension). This suggests ankle contractures after stroke were not due to abnormal (systematically increased or decreased) intermuscular force transmission between the gastrocnemius and soleus.

  10. Ankle Dorsiflexion in Childhood Cancer Patients: A Review of the Literature.

    Science.gov (United States)

    Beulertz, Julia; Wurz, Amanda; Culos-Reed, Nicole; Chamorro Viña, Carolina; Bloch, Wilhelm; Baumann, Freerk T

    2015-01-01

    Improved treatment protocols necessary for survival in pediatric oncology are associated with the development of serious late effects. Of particular importance, especially with regard to physical activity, may be ankle dorsiflexion (DF). This review summarizes the results of observational and exercise intervention studies exploring ankle DF-range of motion (DF-ROM) and/or ankle DF strength in pediatric oncology. PUBMED, Medline, Cochrane library, and SportDiscus were searched by 2 researchers using predefined search terms. The reference lists of included papers and Google scholar were then searched to that ensure all appropriate articles were included. Twelve studies were identified and were observational (n = 8), providing information regarding the status of DF-ROM and/or DF strength, or intervention studies (n = 4) using exercise as a strategy to improve DF function. All observational studies reported some degree of impairment in ankle DF. Two intervention studies found a positive effect of exercise on ankle DF-ROM. The preliminary results suggest that pediatric cancer patients and survivors suffer from limitations in ankle DF with interventions varying in efficacy. It is hoped that this review will enhance the recognition of the limited ankle DF function in pediatric oncology and initiate further research programs focused on targeting and evaluating ankle DF.

  11. Spin-Orbit Torques in Co/Pd Multilayer Nanowires

    KAUST Repository

    Jamali, Mahdi; Narayanapillai, Kulothungasagaran; Qiu, Xuepeng; Loong, Li Ming; Manchon, Aurelien; Yang, Hyunsoo

    2013-01-01

    Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108  A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1  nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.

  12. Spin-Orbit Torques in Co/Pd Multilayer Nanowires

    KAUST Repository

    Jamali, Mahdi

    2013-12-09

    Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108  A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1  nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.

  13. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

    KAUST Repository

    Haney, Paul M.

    2013-05-07

    In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.

  14. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-01-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather

  15. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  16. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens

    International Nuclear Information System (INIS)

    Barr, Cameron; Malfair, David; Henning, Tobias D.; Steinbach, Lynne; Link, Thomas M.; Bauer, Jan S.; Ma, Benjamin

    2007-01-01

    The objective of this study was to optimize ankle joint MR imaging in volunteers at 1.5 Tesla (T) and 3.0 T, and to compare these optimized sequences concerning image quality and performance in assessing cartilage, ligament and tendon pathology in fresh human cadaver specimens. Initially our clinical ankle protocol consisting of T1-weighted (-w), fat-saturated (fs) T2-w, and short τ inversion-recovery fast spinecho (FSE) sequences was optimized at 1.5 T and 3.0 T by two radiologists. For dedicated cartilage imaging, fs-intermediate (IM)-w FSE, fs spoiled gradient echo, and balanced free-precession steady-state sequences were optimized. Using the optimized sequences, thirteen cadaver ankle joints were imaged. Four radiologists independently assessed these images concerning image quality and pathology. All radiologists consistently rated image quality higher at 3.0 T (all sequences p<0.05). For detecting cartilage pathology, diagnostic performance was significantly higher at 3.0 T (ROC-values up to 0.93 vs. 0.77; p<0.05); the fs-IM FSE sequence showed highest values among the different sequences. Average sensitivity for detecting tendon pathology was 63% at 3.0 T vs. 41% at 1.5 T and was significantly higher at 3.0 T for 2 out of 4 radiologists (p<0.05). Compared to 1.5 T, imaging of the ankle joint at 3.0 T significantly improved image quality and diagnostic performance in assessing cartilage pathology. (orig.)

  17. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    Science.gov (United States)

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  18. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  19. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  20. Impulsive ankle push-off powers leg swing in human walking.

    Science.gov (United States)

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.