WorldWideScience

Sample records for ankara vaccine expressing

  1. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  2. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.

    Volz, A; Sutter, G

    2017-01-01

    Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.

  3. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Pijlman, Gorben P.

    2016-01-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious

  4. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines.

    Mullin, Jennifer; Ahmed, Muhammed S; Sharma, Ravi; Upile, Navdeep; Beer, Helen; Achar, Priya; Puksuriwong, Suttida; Ferrara, Francesca; Temperton, Nigel; McNamara, Paul; Lambe, Teresa; Gilbert, Sarah C; Zhang, Qibo

    2016-03-29

    Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular and Cellular Dynamics in the Skin, the Lymph Nodes, and the Blood of the Immune Response to Intradermal Injection of Modified Vaccinia Ankara Vaccine

    Pierre Rosenbaum

    2018-04-01

    Full Text Available New vaccine design approaches would be greatly facilitated by a better understanding of the early systemic changes, and those that occur at the site of injection, responsible for the installation of a durable and oriented protective response. We performed a detailed characterization of very early infection and host response events following the intradermal administration of the modified vaccinia virus Ankara as a live attenuated vaccine model in non-human primates. Integrated analysis of the data obtained from in vivo imaging, histology, flow cytometry, multiplex cytokine, and transcriptomic analysis using tools derived from systems biology, such as co-expression networks, showed a strong early local and systemic inflammatory response that peaked at 24 h, which was then progressively replaced by an adaptive response during the installation of the host response to the vaccine. Granulocytes, macrophages, and monocytoid cells were massively recruited during the local innate response in association with local productions of GM-CSF, IL-1β, MIP1α, MIP1β, and TNFα. We also observed a rapid and transient granulocyte recruitment and the release of IL-6 and IL-1RA, followed by a persistent phase involving inflammatory monocytes. This systemic inflammation was confirmed by molecular signatures, such as upregulations of IL-6 and TNF pathways and acute phase response signaling. Such comprehensive approaches improve our understanding of the spatiotemporal orchestration of vaccine-elicited immune response, in a live-attenuated vaccine model, and thus contribute to rational vaccine development.

  6. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: a systematic review.

    Marnie L Elizaga

    Full Text Available Vaccinia-associated myo/pericarditis was observed during the US smallpox vaccination (DryVax campaign initiated in 2002. A highly-attenuated vaccinia strain, modified vaccinia Ankara (MVA has been evaluated in clinical trials as a safer alternative to DryVax and as a vector for recombinant vaccines. Due to the lack of prospectively collected cardiac safety data, the US Food and Drug Administration required cardiac screening and surveillance in all clinical trials of MVA since 2004. Here, we report cardiac safety surveillance from 6 phase I trials of MVA vaccines.Four clinical research organizations contributed cardiac safety data using common surveillance methods in trials administering MVA or recombinant MVA vaccines to healthy participants. 'Routine cardiac investigations' (ECGs and cardiac enzymes obtained 2 weeks after injections of MVA or MVA-HIV recombinants, or placebo-controls, and 'Symptom-driven cardiac investigations' are reported. The outcome measure is the number of participants who met the CDC-case definition for vaccinia-related myo/pericarditis or who experienced cardiac adverse events from an MVA vaccine.Four hundred twenty-five study participants had post-vaccination safety data analyzed, 382 received at least one MVA-containing vaccine and 43 received placebo; 717 routine ECGs and 930 cardiac troponin assays were performed. Forty-five MVA recipients (12% had additional cardiac testing performed; 22 for cardiac symptoms, 19 for ECG/laboratory changes, and 4 for cardiac symptoms with an ECG/laboratory change. No participant had evidence of symptomatic or asymptomatic myo/pericarditis meeting the CDC-case definition and judged to be related to an MVA vaccine.Prospective surveillance of MVA recipients for myo/pericarditis did not detect cardiac adverse reactions in 382 study participants.ClinicalTrials.gov NCT00082446 NCT003766090 NCT00252148 NCT00083603 NCT00301184 NCT00428337.

  7. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: a systematic review.

    Elizaga, Marnie L; Vasan, Sandhya; Marovich, Mary A; Sato, Alicia H; Lawrence, Dale N; Chaitman, Bernard R; Frey, Sharon E; Keefer, Michael C

    2013-01-01

    Vaccinia-associated myo/pericarditis was observed during the US smallpox vaccination (DryVax) campaign initiated in 2002. A highly-attenuated vaccinia strain, modified vaccinia Ankara (MVA) has been evaluated in clinical trials as a safer alternative to DryVax and as a vector for recombinant vaccines. Due to the lack of prospectively collected cardiac safety data, the US Food and Drug Administration required cardiac screening and surveillance in all clinical trials of MVA since 2004. Here, we report cardiac safety surveillance from 6 phase I trials of MVA vaccines. Four clinical research organizations contributed cardiac safety data using common surveillance methods in trials administering MVA or recombinant MVA vaccines to healthy participants. 'Routine cardiac investigations' (ECGs and cardiac enzymes obtained 2 weeks after injections of MVA or MVA-HIV recombinants, or placebo-controls), and 'Symptom-driven cardiac investigations' are reported. The outcome measure is the number of participants who met the CDC-case definition for vaccinia-related myo/pericarditis or who experienced cardiac adverse events from an MVA vaccine. Four hundred twenty-five study participants had post-vaccination safety data analyzed, 382 received at least one MVA-containing vaccine and 43 received placebo; 717 routine ECGs and 930 cardiac troponin assays were performed. Forty-five MVA recipients (12%) had additional cardiac testing performed; 22 for cardiac symptoms, 19 for ECG/laboratory changes, and 4 for cardiac symptoms with an ECG/laboratory change. No participant had evidence of symptomatic or asymptomatic myo/pericarditis meeting the CDC-case definition and judged to be related to an MVA vaccine. Prospective surveillance of MVA recipients for myo/pericarditis did not detect cardiac adverse reactions in 382 study participants. ClinicalTrials.gov NCT00082446 NCT003766090 NCT00252148 NCT00083603 NCT00301184 NCT00428337.

  8. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines.

    Barbieri, Andrea; Panigada, Maddalena; Soprana, Elisa; Di Mario, Giuseppina; Gubinelli, Francesco; Bernasconi, Valentina; Recagni, Marta; Donatelli, Isabella; Castrucci, Maria R; Siccardi, Antonio G

    2018-01-01

    As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  10. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine.

    Sandhya Vasan

    Full Text Available BACKGROUND: We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B'/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1x10(7 (low, 5x10(7 (mid, or 2.5x10(8 pfu (high] volunteers were randomized in a 3:1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA. ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNgamma ELISpot response rate to any HIV antigen was 0/12 (0% in the placebo group, 3/12 (25% in the low dosage group, 6/12 (50% in the mid dosage group, and 8/13 (62% in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%, 8/13 (62%, 6/12 (50% and 10/13 (77% in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement

  11. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  12. Phase II trial of Modified Vaccinia Ankara (MVA virus expressing 5T4 and high dose Interleukin-2 (IL-2 in patients with metastatic renal cell carcinoma

    Mitcham Josephine

    2009-01-01

    Full Text Available Abstract Background Interleukin-2 (IL-2 induces durable objective responses in a small cohort of patients with metastatic renal cell carcinoma (RCC but the antigen(s responsible for tumor rejection are not known. 5T4 is a non-secreted membrane glycoprotein expressed on clear cell and papillary RCCs. A modified vaccinia virus Ankara (MVA encoding 5T4 was tested in combination with high-dose IL-2 to determine the safety, objective response rate and effect on humoral and cell-mediated immunity. Methods 25 patients with metastatic RCC who qualified for IL-2 were eligible and received three immunizations every three weeks followed by IL-2 (600,000 IU/kg after the second and third vaccinations. Blood was collected for analysis of humoral, effector and regulatory T cell responses. Results There were no serious vaccine-related adverse events. While no objective responses were observed, three patients (12% were rendered disease-free after nephrectomy or resection of residual metastatic disease. Twelve patients (48% had stable disease which was associated with improved median overall survival compared to patients with progressive disease (not reached vs. 28 months, p = 0.0261. All patients developed 5T4-specific antibody responses and 13 patients had an increase in 5T4-specific T cell responses. Although the baseline frequency of Tregs was elevated in all patients, those with stable disease showed a trend toward increased effector CD8+ T cells and a decrease in Tregs. Conclusion Vaccination with MVA-5T4 did not improve objective response rates of IL-2 therapy but did result in stable disease associated with an increase in the ratio of 5T4-specific effector to regulatory T cells in selected patients. Trial registration number ISRCTN83977250

  13. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  14. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  15. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  16. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  17. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A.; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-01-01

    Background. First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods. An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results. Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions. Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations. PMID:26380340

  18. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.

    Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M

    2014-10-01

    Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.

  20. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine.

    Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R

    2014-06-30

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects.

    Greenberg, Richard N; Hay, Christine M; Stapleton, Jack T; Marbury, Thomas C; Wagner, Eva; Kreitmeir, Eva; Röesch, Siegfried; von Krempelhuber, Alfred; Young, Philip; Nichols, Richard; Meyer, Thomas P; Schmidt, Darja; Weigl, Josef; Virgin, Garth; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2016-01-01

    Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56-80 years old population. MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56-80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after the final vaccination for Group

  2. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Emma-Jo Hayton

    Full Text Available HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported.Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination.Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern.These data demonstrate safety and good tolerability of the pSG2

  3. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial.

    Kreijtz, Joost H C M; Goeijenbier, Marco; Moesker, Fleur M; van den Dries, Lennert; Goeijenbier, Simone; De Gruyter, Heidi L M; Lehmann, Michael H; Mutsert, Gerrie de; van de Vijver, David A M C; Volz, Asisa; Fouchier, Ron A M; van Gorp, Eric C M; Rimmelzwaan, Guus F; Sutter, Gerd; Osterhaus, Albert D M E

    2014-12-01

    Modified vaccinia virus Ankara (MVA) is a promising viral vector platform for the development of an H5N1 influenza vaccine. Preclinical assessment of MVA-based H5N1 vaccines showed their immunogenicity and safety in different animal models. We aimed to assess the safety and immunogenicity of the MVA-haemagglutinin-based H5N1 vaccine MVA-H5-sfMR in healthy individuals. In a single-centre, double-blind phase 1/2a study, young volunteers (aged 18-28 years) were randomly assigned with a computer-generated list in equal numbers to one of eight groups and were given one injection or two injections intramuscularly at an interval of 4 weeks of a standard dose (10(8) plaque forming units [pfu]) or a ten times lower dose (10(7) pfu) of the MVA-H5-sfMR (vector encoding the haemagglutinin gene of influenza A/Vietnam/1194/2004 virus [H5N1 subtype]) or MVA-F6-sfMR (empty vector) vaccine. Volunteers and physicians who examined and administered the vaccine were masked to vaccine assignment. Individuals who received the MVA-H5-sfMR vaccine were eligible for a booster immunisation 1 year after the first immunisation. Primary endpoint was safety. Secondary outcome was immunogenicity. The trial is registered with the Dutch Trial Register, number NTR3401. 79 of 80 individuals who were enrolled completed the study. No serious adverse events were identified. 11 individuals reported severe headache and lightheadedness, erythema nodosum, respiratory illness (accompanied by influenza-like symptoms), sore throat, or injection-site reaction. Most of the volunteers had one or more local (itch, pain, redness, and swelling) and systemic reactions (rise in body temperature, headache, myalgia, arthralgia, chills, malaise, and fatigue) after the first, second, and booster immunisations. Individuals who received the 10(7) dose had fewer systemic reactions. The MVA-H5-sfMR vaccine at 10(8) pfu induced significantly higher antibody responses after one and two immunisations than did 10(7) pfu when

  4. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

    Melamed, Sharon; Wyatt, Linda S; Kastenmayer, Robin J; Moss, Bernard

    2013-09-23

    Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production. Published by Elsevier Ltd.

  5. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  6. Traditional Sof Weavings of Ankara

    Feriha Akpınarlı

    2016-12-01

    Full Text Available The Angora goat is an important goat breed which is specifically raised in Ankara and its surroundings. Mohair, a kind of fiber obtained from the Angora goat, has an important place in the textile industry, due to its length, strength, and brightness. Consumption patterns change every year according to current fashions. Mohair, which is the primary raw material for weaving and knitting, is also a source of income for people living in rural areas of Anatolia. Ankara sof is a type of fabric woven from mohair. Sof is made by spinning the mohair fiber into yarn, weaving the fabric from this yarn and then dyeing it. Sof fabric was preferred by the elite segments of society as a unique handcraft specific to Ankara and the Central Anatolia Region. Unfortunately, this is no longer woven and can now only be seen in museums. In this respect, Ankara sof has become part of the cultural heritage of the region.The literature review indicates that there are two samples of sof fabric in the Ankara Ethnographic Museum while in the Sadberk Hanım Museum there is one. However, a study conducted in the Ankara Ethnographic Museum revealed three more samples of sof fabric in addition to the two in the literature. Considering the above, sof is culturally important and should be protected even though it is no longer woven today. This study intends to analyze the characteristics of Ankara sof by examining the five sof fabric examples in the Ankara Ethnographic Museum in terms of width, height, weft-warp density, and weaving thickness. These characteristics are analyzed, documented and information about the weaving looms is also provided.

  7. Recombinant expression systems: the obstacle to helminth vaccines?

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  8. MOSQUES AND MASJIDS IN ANKARAANKARA STYLE”

    Ayşe Ersay YÜKSEL

    2016-04-01

    Full Text Available The city of Ankara for the first time in the second half of the 11. century the Turkish land, a later period passing into the hands of the Byzantines again, century of 12 remained under the rule of the Anatolian Seljuks, after centruy of 14 remained under the rule of the Ottoman Empire and ıt attained status as the capital of the Republic of Turkey, the highest administrative history. In this process, from the 12th century, the city experienced many important events that occurred in the architectural style of a local tradition can say “Ankara style”.Ankara After the collapse of Seljuks the city under the rule of ahi-order and different principalities in the transition from the Ottoman domination. during this period, has started to create the core of the local architectural Ankara style. 13, 14 and even 15. until the beginning of the century, which was built in the mosques and masjids seen stylistic integrity continued in a subsequent period. Structural elements of mosques and masjids as a form, could not have the monumental apparently and architectural values of the classical Ottoman mosques. Usually elongated rectangular planned, with narthex, inside a flat wooden ceiling, covered with exterior tile roofs, a simple facade, based rubble, adobe or brick walls, the wooden door and window systems, plaster niches, wooden minbar, gathering place for woman, and wooden ceiling has become a tradition in almost every century. As a result, “Ankara style” that can be called has emerged an architectural style.

  9. An Investigation on Satisfaction of Domestic Tourist from Ankara Shopping Fest under the Tourism of Festival

    Ahmet TAYFUN

    2013-06-01

    Full Text Available Concentration of Tourism mostly in coastal of Turkey, in certain centers and in summer season stands out as a major problem. A tourism mobility that, spread over 12 months, and including inner zones is emphasized also in 2023 Tourism Strategy of Turkey. Therefore, increasing the diversity of tourism such as festivals, which started to increase number of events. Hence, investigated in this study, satisfaction levels from Ankara Shopping Fest of domestic tourists, who came to Ankara during "Ankara Shopping Fest" which, organized in Ankara on 8 June to 1 July 2012 period. Descriptive research method used in the study. The aims in this study, determination of the views of local tourists about Ankara Shopping Fest and to investigate the satisfaction from the festival. 336 domestic tourists as visitors during the festival in Ankara were the sample of research. Questionnaire technique was used as a data collection technique. The questionnaire consisted of three parts, the first section was demographic variables. The second section was located expressions for Ankara Shopping Fest. Some statical analysis made to data in the result of research. These analyses were frequecy analysis, t tests and ANOVA tests. As a result of the t-tests and ANOVA tests significant differences were found between gender, age, level of income and civil staus of domestic tourists who came to Ankara during the festival.

  10. Improved survival in rhesus macaques immunized with modified vaccinia virus Ankara recombinants expressing simian immunodeficiency virus envelope correlates with reduction in memory CD4+ T-cell loss and higher titers of neutralizing antibody.

    Ourmanov, Ilnour; Kuwata, Takeo; Goeken, Robert; Goldstein, Simoy; Iyengar, Ranjani; Buckler-White, Alicia; Lafont, Bernard; Hirsch, Vanessa M

    2009-06-01

    Previous studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high viremia and AIDS following challenge with a pathogenic strain of SIV. Although all animals became infected, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines compared with animals that received nonrecombinant MVA. Most importantly, the reduction in viremia resulted in a significant increase in median and cumulative survival. Continued analysis of these animals over the subsequent 9 years has shown that they maintain a survival advantage, although all but two of the macaques have progressed to AIDS. Importantly, improved survival correlated with preservation of memory CD4(+) T cells in the peripheral blood. The greatest survival advantage was observed in macaques immunized with regimens containing SIV Env, and the titer of neutralizing antibodies to the challenge virus prior to or shortly following challenge correlated with preservation of CD4(+) T cells. These data are consistent with a role for neutralizing antibodies in nonsterilizing protection from high viremia and associated memory CD4(+) T-cell loss.

  11. Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model

    Billeskov, Rolf; Christensen, Jan Pravsgaard; Aagaard, Claus

    2013-01-01

    a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more......-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model....

  12. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus.

    K.J. Stittelaar (Koert); G. van Amerongen (Geert); I. Kondova (Ivanela); R.F. van Lavieren (Rob); F.H. Pistoor (Frank); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard); B.A.M. van der Zeijst (Ben); L. Mateo (Luis); P.J. Chaplin (Paul); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2005-01-01

    textabstractThe use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and

  13. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  14. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  15. MVA and NYVAC as vaccines against emergent infectious diseases and cancer.

    Gómez, Carmen E; Nájera, José L; Krupa, Magdalena; Perdiguero, Beatriz; Esteban, Mariano

    2011-06-01

    Recombinants based on poxviruses have been used extensively as gene delivery systems to study many biological functions of foreign genes and as vaccines against many pathogens, particularly in the veterinary field. Based on safety record, efficient expression and ability to trigger specific immune responses, two of the most promising poxvirus vectors for human use are the attenuated modified vaccinia virus Ankara (MVA) and the Copenhagen derived NYVAC strains. Because of the scientific and clinical interest in these two vectors, here we review their biological characteristics, with emphasis on virus-host cell interactions, viral immunomodulators, gene expression profiling, virus distribution in animals, and application as vaccines against different pathogens and tumors.

  16. HER-2 Pulsed Dendritic Cell Vaccine Can Eliminate HER-2 Expression and Impact DCIS

    Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Roses, Robert; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Koski, Gary; Czerniecki, Brian J

    2011-01-01

    Background HER-2/neu over-expression plays a critical role in breast cancer development and its expression in ductal carcinoma in situ (DCIS) is associated with development of invasive breast cancer. A vaccine targeting HER-2/neu expression in DCIS may initiate immunity against invasive cancer. Methods A HER-2/neu dendritic cell (DC) vaccine was administered to 27 patients with HER-2/neu over-expressing DCIS. The HER-2/neu vaccine was administered prior to surgical resection and pre- and post-vaccination analysis was conducted to assess clinical results. Results At surgery, 5 of 27 (18.5%) vaccinated subjects had no evidence of remaining disease, while among 22 subjects with residual DCIS, HER-2/neu expression was eradicated in 11 (50%). When comparing ERneg with ERpos DCIS lesions, vaccination was more effective in hormone-independent DCIS. Following vaccination, no residual DCIS was found in 40% of ERneg subjects compared to 5.9% in ERpos subject. Sustained HER-2/neu expression was found in 10% of ERneg subjects compared to 47.1% in ERpos subjects (p=0.04). Post-vaccination phenotypes were significantly different between ERpos and ERneg subjects (p=0.01), with 7 of 16 (43.8%) initially presenting with ERpos HER-2/neupos Luminal B phenotype finishing with the ERpos HER-2/neuneg Luminal A phenotype, and 3 of 6 (50%) with the ERneg HER-2/neupos phenotype changing to the ERneg HER-2/neuneg phenotype. Conclusions Results suggest vaccination against HER-2/neu is safe, well-tolerated and induces decline and or eradication of HER-2/neu expression. These findings warrant further exploration of HER-2/neu vaccination in estrogen-independent breast cancer and highlight the need to target additional tumor associated antigens and pathways. PMID:22252842

  17. Turkey: the smog buster is a big hit in Ankara

    Bakalor, A.

    1991-01-01

    The completion of Ankara's natural gas distribution system, and the closure of the city's lignite-burning town gas plants are discussed. The significant reduction in air pollution levels and reduced energy costs are noted, and the planned supply of gas to 450,000 dwelling in Ankara and the conversion of Ankara's buses to natural gas are considered. (UK)

  18. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  19. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  20. A New Method for the Evaluation of Vaccine Safety Based on Comprehensive Gene Expression Analysis

    Haruka Momose

    2010-01-01

    Full Text Available For the past 50 years, quality control and safety tests have been used to evaluate vaccine safety. However, conventional animal safety tests need to be improved in several aspects. For example, the number of test animals used needs to be reduced and the test period shortened. It is, therefore, necessary to develop a new vaccine evaluation system. In this review, we show that gene expression patterns are well correlated to biological responses in vaccinated rats. Our findings and methods using experimental biology and genome science provide an important means of assessment for vaccine toxicity.

  1. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J.; Wu, Hulin; Zand, Martin S.; Mosmann, Tim R.

    2012-01-01

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4–6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vacc...

  2. A Painted House In Ankara: Dedebayrak House

    Muzaffer Karaaslan

    2016-06-01

    Full Text Available The conservative family lifestyle in the Ottoman State affected the ways that houses were planned and decorated. Different decorative programs emerged with major differences in each period. New techniques and styles began to be seen in the 18th century thanks to the influence of the West. This article will focus on the decoration of Dedebayrak House in Ankara. Decoration in the architecture found within the boundaries of Ankara consist mostly of geometrical or floral decorations and various inscriptions. The Dedebayrak House not only has these kind of decorations, but also it has these decorations in its architectural descriptions, so it makes this house the only one to have survived in Ankara. Moreover, this building is especially important as the décor included work belonging to Nakkaş Mustafa. However, these decorative features do not remain today. The situation in Turkey is such that architecture is not conserved, which leads to many historically important buildings vanishing. Neither local authorities, nor the owner of these buildings look after these buildings properly, leading their specific historical features to be lost. This situation both damages the urban fabric and harms the historical heritage of the city. Therefore, decorative features in the building will be analysed both on their own and compared to other buildings in Ankara in order to create an overall picture.

  3. 19th Century Ankara Through Historical Poems

    Özge Öztekin

    2015-12-01

    Full Text Available A city is a place whose meaning is found in the poetry created there. In Kevin Lynch’s words, a city presents the imagination with an unlimited potential for “readability”. If we consider this unlimited readability through poetry, it can be said that attempts to find the zeitgeist of a city at a certain time through literary texts must evaluate the poetry, the city and the time. This is because poetry (or literature in general, just like a city, has an important memory which oscillates through ideas of its past and future. In this sense, divan poetry and one particular example of it—historical “manzume” poems—are memories which richly illustrate the ‘continuity’ and ‘change’ within a period. This work, on 19th century Ankara, aims to evaluate the traces reflected in historical manzume poems of the time they were written. Five historical manzume poems in three texts out of seventy 19th century divan collections scanned for this work were found to be about Ankara. Two of these manzumes are by Cazib, one by Ziver Pasha, and one by Mahmud Celaleddin Pasha. The first of these is on Ankara’s dervish lodge; the second on a barracks being built in Ankara; the third on Vecihi Pasha’s governorship of Ankara; the fourth on the the Mayoral Residence. In addition to these, a manzume on the construction of Hamidiye Caddesi by Mahmud Celaleddin Pasha is discovered with in scope of the work. The aim of this work is to provide a contribution to city history through a commentary on elements of 19th century poetry concerning Ankara.

  4. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  5. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination.

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J; Wu, Hulin; Zand, Martin S; Mosmann, Tim R

    2012-06-29

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4-6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vaccine or peptide. Ki-67(+) cell numbers then decline rapidly, and 10 days after vaccination, both Ki-67(+) and overall influenza-specific cell numbers are similar to pre-vaccination levels. These results provide a tool for assessing the quality and quantity of CD4 T cell responses to different influenza vaccines, and raise the possibility that the anti-influenza T cell memory response may be qualitatively altered by vaccination, even if the overall memory cell numbers do not change significantly. Copyright © 2012. Published by Elsevier Ltd.

  6. A Photographer From Ankara: Osman Darcan

    Gülseren Mungan Yavuztürk

    2015-12-01

    Full Text Available This work introduces Osman Darcan, an important name in the history of Ankara photography studios. Darcan followed in the footsteps of famous Austrian photographer Othmar Pferschy, whom he met in Istanbul, to go on to create his own valuable work. On leaving the Public Press Authority Photo Film Center, where he worked as a newsreel photographer and film operator, in 1943 he began taking photographs at the Tatbikat Theater at the Ankara State Conservatoire, where he continued as the photographer for the State Theater until the end of his life. At the same time, this master photographer took the pictures of a select coterie of Ankara’s leading individuals and well-known performers at a studio he opened on Anafartalar Caddesi. In both these roles, his photographs evoke admiration thanks to Darcan’s professional abilities and level of artistry.

  7. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  8. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  10. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial.

    Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric

    2017-11-27

    We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.

  11. Ankara’da ebeveynlerin rotavirüs hakkında bilgi düzeyleri ve çocukların rotavirüs aşılanma oranları

    KÖKSAL, Ali Osman; KÖKSAL, Tülin

    2014-01-01

    The aim of the study was to determine the information level of parents about rotavirus gastroenteritis, rotavirus vaccine, and the incidence of rotavirus vaccination in Ankara. 500 patients with the age of more than 4 months who admitted to our outpatient clinic in 2010 and 2011 were included in this study. We asked parents whether they have any information about rotavirus gastroenteritis and rotavirus vaccine, and their children had the first dose of rotavirus vaccination or not. When the pa...

  12. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  13. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  14. Application of a scalable plant transient gene expression platform for malaria vaccine development

    Holger eSpiegel

    2015-12-01

    Full Text Available Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route towards the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility and stability using fluorescent fusion

  15. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  16. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  17. Human bioclimatology analysis of Ankara urban area

    Onur Çalışkan; Necla Türkoğlu

    2011-01-01

    In this study, the Physiological Equivalent Temperatures (PET) of different land patterns in the Ankara urban area has been analyzed. The spatial distribution and temporal variation of the thermal perceptions and the grades of thermal stress caused by the thermal conditions have been determined for 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00 and 21:00 hours during the December and July of 2010. The effects of physiographic features such as elevation, aspect, slope, and especially land use...

  18. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA

  19. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  20. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  1. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  2. Green revolution vaccines, edible vaccines

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  3. Arbovirus vaccines: opportunities for the baculovirus-insect cell expression system

    Metz, S.W.H.; Pijlman, G.P.

    2011-01-01

    The baculovirus-insect cell expression system is a well-established technology for the production of heterologous viral (glyco)proteins in cultured cells, applicable for basic scientific research as well as for the development and production of vaccines and diagnostics. Arboviruses form an emerging

  4. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  5. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  6. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  7. Social Sustainability of Shopping Streets in Ankara

    Özge YALÇINER ERCOŞKUN

    2013-02-01

    Full Text Available Shopping streets are integral parts of public spaces in traditional shopping areas of Central Business Districts (CBD. Furthermore, as modern shopping venues, shopping centers offer advantages for modern lifestyles with spacious shopping areas, variety of commercial and social activities, and economic value of their investments. These advantages act in favor of shopping centers and improve the level of shopping street social sustainability and its relevant concepts. The aim of this study is to analyze the main shopping streets of Ankara, using the concepts of social sustainability. In this study, these concepts, such as locality, identity, vitality, viability, sense of place, conviviality, meaning and local characteristics of the shopping streets are investigated. For the first time, the retail unit locations in Ankara, their brands and their business types, are illustrated on thematic land use maps using Geographical Information Systems (GIS software. Next, population activities and consumer spatial behavior are observed and marked on maps that are also referred to as social sustainability maps. The results of the study can be useful in formulating strategies within the framework of social sustainability, which is a relatively new concept.

  8. [VACCINES].

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  9. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines.

    Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2012-09-26

    Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus

  10. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  11. Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties.

    Kim, Mi Young; Copland, Alastair; Nayak, Kaustuv; Chandele, Anmol; Ahmed, Muhammad S; Zhang, Qibo; Diogo, Gil R; Paul, Matthew J; Hofmann, Sven; Yang, Moon-Sik; Jang, Yong-Suk; Ma, Julian K-C; Reljic, Rajko

    2017-12-09

    Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4 + and CD8 + T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. DNA/MVA Vaccines for HIV/AIDS

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  13. Evaluation of cytokine mRNA expression in vaccinated guinea pigs with foot-and-mouth disease type O inactivated vaccine

    Pasandideh, R.

    2016-03-01

    Full Text Available Foot-and-mouth disease (FMD is a severely contagious viral disease that mainly affects cloven-hoofed livestock and wildlife. This study quantifies the cytokines mRNA expression of vaccinated guinea pigs with FMD type O inactivated vaccine. Blood samples were collected from eight guinea pigs at 7 and 28 days after the first vaccination. Extracted mRNAs were reverse-transcribed into cDNA and analyzed for quantification of IFN-γ, TNF-α and IL-10 expression using relative real-time PCR assay. Our results showed that all of the genes were upregulated. The expression of TNF-α and IL-10 genes significantly increased (P<0.05 in day 28th in comparison to the day 7th post the first vaccination. It can be concluded that the vaccine induced immune responses by increasing expression of the cytokines. Therefore, effects of DNA vaccines on immune system also may be evaluated using these genes.

  14. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  15. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    Wang, Z.; Zhou, W.; Srivastava, T.; La Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J.

    2008-01-01

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4 + and CD8 + T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4 + and CD8 + T cell subsets

  16. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  17. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  18. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  19. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  20. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli.

    Clayton, M A; Clayton, J M; Brown, D R; Middlebrook, J L

    1995-01-01

    A completely synthetic gene encoding fragment C, a approximately 50-kDa fragment, of botulinum neurotoxin serotype A was constructed from oligonucleotides. The gene was expressed in Escherichia coli, and full-sized product was produced as judged by Western blot (immunoblot) analysis. Crude extracts of E. coli expressing the gene were used to vaccinate mice and evaluate their survival against challenge with active toxin. Mice given three subcutaneous vaccinations were protected against an intr...

  1. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    Barkhouse, Darryll A.; Faber, Milosz; Hooper, D. Craig

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression

  2. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    Barkhouse, Darryll A. [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Faber, Milosz [Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Microbiology and Immunology 1020 Locust St., Jefferson Alumni Hall, Room 465, Philadelphia, PA 19107 (United States); Hooper, D. Craig, E-mail: douglas.hooper@jefferson.edu [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Neurological Surgery, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States)

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.

  3. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  4. The Literary Legacy Inherited by Ankara of the Republican Era: Literary Life and Milieux in Ankara until the Republic Era

    Necati Tonga

    2014-12-01

    Full Text Available Ankara became one of the most important circles of literary activities after the establishment of the Republic of Turkey in 1923. In this era, the most prevalent factor for this nourishment was that Ankara was chosen as the capital city and Turkey would be governed from Ankara from then on. Besides this fact, before being the capital, Ankara had a rich background in terms of literature. The city had a strong tradition of Divan and Sufi literature in the ruling periods of Seljuks and Ottomans. Many Divan poets and minstrels lived in Ankara throughout history. In those times, in addition to madrasahs, dervish lodges and mosques, there were taverns, inns, mansions, coffeehouses, vineyards and gardens that were used for gatherings where poems were recited and talks about literature took place. Before the establishment of the Republic, in the years between 1919 and 1922, Mustafa Kemal Atatürk proclaimed Ankara as the headquarters of the national movements. This choice brought out a liveliness to Ankara in terms of literature. In this period until the Republic, many places serving as dervish lodges, coffeehouses, restaurants, gardens, taverns, and shops, and newspaper editorials such as Tâceddin Dergâhı (Taceddin’s Lodge, Kuyulu Kahve (Coffee-shop, Merkez Kıraathanesi (Central coffee-shop, Hakimiyet-i Milliye and Yenigün Newspaper Editorial Offices, Anadolu Lokantası (Anadolu Restaurant, Teceddüt Lokantası (Teceddüt Restaurant, Abdullah Efendi Lokantası (Abdullah Efendi Restaurant, Muallimler Birliği (Teachers Union, Şehir Bahçesi (City Garden, Dayko’nun Tütüncü Dükkânı (Dayko’s Tobacco Shop and Efe Haydar’ın Meyhanesi (Efe Haydar’s Tavern were prominent gathering places that flourished in the literary activities of Ankara.

  5. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine.

    Zhiyong Li

    Full Text Available BACKGROUND: Foot-and-mouth disease (FMD is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines. METHODOLOGY AND PRINCIPAL FINDINGS: A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD(50 (50% bovine protective dose test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD(50 per dose. CONCLUSION: The results suggest that this strategy might be used to develop the new subunit FMDV vaccine.

  6. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.

    Arlen, Philip A; Singleton, Michael; Adamovicz, Jeffrey J; Ding, Yi; Davoodi-Semiromi, Abdolreza; Daniell, Henry

    2008-08-01

    The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.

  7. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  8. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  9. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  10. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination.

    Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.

  11. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  12. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  13. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  14. Detection of urban heat island in Ankara, Turkey

    Cicek, I.; Dogan, U.

    2006-01-01

    Ankara is the second largest city in Turkey after Istanbul, and the rate of population increase and urbanization are quite high. In this study, the effects of urbanization on temperature variation due to urbanization in Ankara were investigated. The intensities of urban heat island (UHI) for long and short term were analyzed. Analysis of both long- and short-term data revealed that there is a significant increase in the intensity of UHI (AT(u-r)) in winter during the period analyzed. Analysis of data collected for period of October 2001-September 2002 shows that intensity of maximum UHI is in February. In this month, positive UHI was observed in 26 nights and on all these days wind speed was less than 0.5ms.1. UHI is positive in all seasons and frequency and intensity of UHI in winter are higher than in the other seasons. This characteristic makes Ankara different from other temperate latitude cities

  15. Evaluation of smallpox vaccines using variola neutralization.

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  16. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  17. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  18. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  20. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    Narum David L

    2009-06-01

    Full Text Available Abstract Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36% were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  1. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  2. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  3. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Akos Gellért

    Full Text Available Potential porcine circovirus type 2 (PCV2 capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  4. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Gellért, Akos; Salánki, Katalin; Tombácz, Kata; Tuboly, Tamás; Balázs, Ervin

    2012-01-01

    Potential porcine circovirus type 2 (PCV2) capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV) particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  5. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    Chebolu, S.; Daniell, H.

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820

  6. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis.

    Henke, Andreas; Jarasch, Nadine; Wutzler, Peter

    2008-12-01

    Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying virus pathology, structure and molecular biology, as well as the diagnosis of this disease, there is still no virus-specific drug or vaccine in clinical use. During the last 20 years many investigations have been performed to develop classic and modern immunization techniques against CVB3-induced heart disease. One promising approach among others includes the insertion of coding sequences of cytokines into the viral genome. The application of an IFN-gamma-expressing recombinant coxsackievirus vector is especially efficient against CVB3-induced myocarditis. Beside direct IFN-gamma-mediated antiviral effects, the local and simultaneous expression of IFN-gamma by the virus itself activates the immune system in a strong and long-lasting manner, which protects animals completely against subsequent lethal infections independently of the age of the immunized individual and the route of vaccine administration.

  7. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?

    Malachy I. Okeke

    2017-10-01

    Full Text Available Modified vaccinia virus Ankara (MVA is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.

  8. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines

    Koop Ben F

    2010-05-01

    Full Text Available Abstract Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR. qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001, IL-17A (p = 0.007 and its receptor (IL-17AR (p = 0.009 representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4 or TH2 (GATA-3

  10. [Immunogenicity of attenuated Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae in mice].

    Ma, Fengying; Zou, Haoyong; He, Qigai

    2011-09-01

    The study was carried out to construct and characterize Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae and to test its immunogenicity in mice. We made p36, p46, p65 and p97R1-Nrdf, the main immunogenic genes of Mycoplasma hyopneumoniae, to insert into the prokaryotic expression plasmid pYA3493. Then these recombinant plasmids and pYA3493 were electroporated into C500 asd-mutant, resulting in the recombinant Salmonella choleraesuis vaccine strains C36 (pYA-36), C46 (pYA-46), C65 (pYA-65), C97R1-Nrdf(pYA-97R1-Nrdf) and CpYA(pYA3493). We characterized these recombinant Salmonella choleraesuis vaccine strains and tested the immunogenicity in mice by intramuscular injection or orally immunized. The results of the immunogenicity in mice indicated that the group orally immunized with C36, C46, C65, C97R1-Nrdf showed significantly higher Mycoplasma pneumoniae antibody than both the group orally immunized with C36, C46, C65 and the group intramuscular injected with the Mycoplasma hyopneumoniae bacterin (M + PAC) (P Mycoplasma hyopneumoniae bacterin (M + PAC) (P 0.05). The highest level of IL-4 was found in the group orally immunized with C36, C46, C65; higher levels of IL-4 was observed in the group orally immunized with C36, C46, C65, C97R1-Nrdf than the group injected with the Mycoplasma hyopneumoniae bacterin (M + PAC); and the lowest IL-4 level was found in the group injected with C36, C46, C65. There were no significant differences among them (P > 0.05). The Mycoplasma pneumoniae antibody, IFN-gamma or IL-4 production of the each group was obviously higher than the control group (P Mycoplasma hyopneumoniae which has immunogenicity in mice especially by intramuscular injection could probably serve as a vaccine against mycoplasmal pneumonia of swine.

  11. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial.

    Henao-Restrepo, Ana Maria; Longini, Ira M; Egger, Matthias; Dean, Natalie E; Edmunds, W John; Camacho, Anton; Carroll, Miles W; Doumbia, Moussa; Draguez, Bertrand; Duraffour, Sophie; Enwere, Godwin; Grais, Rebecca; Gunther, Stephan; Hossmann, Stefanie; Kondé, Mandy Kader; Kone, Souleymane; Kuisma, Eeva; Levine, Myron M; Mandal, Sema; Norheim, Gunnstein; Riveros, Ximena; Soumah, Aboubacar; Trelle, Sven; Vicari, Andrea S; Watson, Conall H; Kéïta, Sakoba; Kieny, Marie Paule; Røttingen, John-Arne

    2015-08-29

    A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of

  12. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  13. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Jeff Alexander

    Full Text Available Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4 vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn. Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  14. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach.

    Christoph Jindra

    Full Text Available Persistent infection with high-risk human papillomavirus (HPV types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c. prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.

  15. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Benoit Callendret

    Full Text Available The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP from Ebola virus (EBOV, Sudan virus (SUDV, Taï Forest virus (TAFV and Marburg virus (MARV. Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35 and modified Vaccinia virus Ankara (MVA vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection and EBOV (range 50% to 100% challenge, and partial protection (75% against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004 were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320. These results demonstrate that it is feasible to

  16. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a

  17. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines.

    Beck, Bo Ram; Lee, Soon Ho; Kim, Daniel; Park, Ji Hye; Lee, Hyun Kyung; Kwon, San-Sung; Lee, Kwan Hee; Lee, Jae Il; Song, Seong Kyu

    2017-09-01

    Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of a Salmonella vectored vaccine expressing Mycobacterium avium subsp. paratuberculosis antigens against challenge in a goat model.

    Syed M Faisal

    Full Text Available Johnes disease (JD, caused by Mycobacterium avium subsp paratuberculosis (MAP, occurs worldwide as chronic granulomatous enteritis of domestic and wild ruminants. To develop a cost effective vaccine, in a previous study we constructed an attenuated Salmonella strain that expressed a fusion product made up of partial fragments of MAP antigens (Ag85A, Ag85B and SOD that imparted protection against challenge in a mouse model. In the current study we evaluated the differential immune response and protective efficacy of the Sal-Ag vaccine against challenge in a goat model as compared to the live attenuated vaccine MAP316F. PBMCs from goats vaccinated with Sal-Ag and challenged with MAP generated significantly lower levels of IFN-γ, following in vitro stimulation with either Antigen-mix or PPD jhonin, than PBMC from MAP316F vaccinated animals. Flow cytometric analysis showed the increase in IFN-γ correlated with a significantly higher level of proliferation of CD4, CD8 and γδT cells and an increased expression of CD25 and CD45R0 in MAP316F vaccinated animals as compared to control animals. Evaluation of a range of cytokines involved in Th1, Th2, Treg, and Th17 immune responses by quantitative PCR showed low levels of expression of Th1 (IFN-γ, IL-2, IL-12 and proinflammatory cytokines (IL-6, IL-8, IL-18, TNF-α in the Sal-Ag immunized group. Significant levels of Th2 and anti-inflammatory cytokines transcripts (IL-4, IL-10, IL-13, TGF-β were expressed but their level was low and with a pattern similar to the control group. Over all, Sal-Ag vaccine imparted partial protection that limited colonization in tissues of some animals upon challenge with wild type MAP but not to the level achieved with MAP316F. In conclusion, the data indicates that Sal-Ag vaccine induced only a low level of protective immunity that failed to limit the colonization of MAP in infected animals. Hence the Sal-Ag vaccine needs further refinement to increase its efficacy.

  19. Expression of HIV-1 antigens in plants as potential subunit vaccines

    Meyers, A

    2008-06-23

    Full Text Available Open AcceResearch article Expression of HIV-1 antigens in plants as potential subunit vaccines Ann Meyers1,2, Ereck Chakauya1,2,3, Enid Shephard1,4, Fiona L Tanzer1,2, James Maclean1,2, Alisson Lynch1,2, Anna-Lise Williamson1,5 and Edward P Rybicki...Figure 1 The HIV-1 Gag-derived proteins used in this study. Scale diagram showing (A) native Pr55Gag ORF organisation in the Page 2 of 15 (page number not for citation purposes) gag gene, (B) the p17/p24 fusion protein ORF, (C) p24 ORF. ORFs labelled p7...

  20. Long-Term Protective Immune Response Elicited by Vaccination with an Expression Genomic Library of Toxoplasma gondii

    Fachado, Alberto; Rodriguez, Alexandro; Molina, Judith; Silvério, Jaline C.; Marino, Ana P. M. P.; Pinto, Luzia M. O.; Angel, Sergio O.; Infante, Juan F.; Traub-Cseko, Yara; Amendoeira, Regina R.; Lannes-Vieira, Joseli

    2003-01-01

    Immunization of BALB/c mice with an expression genomic library of Toxoplasma gondii induces a Th1-type immune response, with recognition of several T. gondii proteins (21 to 117 kDa) and long-term protective immunity against a lethal challenge. These results support further investigations to achieve a multicomponent anti-T. gondii DNA vaccine.

  1. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Protective Immunity against Tularemia Provided by an Adenovirus-Vectored Vaccine Expressing Tul4 of Francisella tularensis

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T.; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-01-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane prote...

  3. MVA recombinants expressing the fusion and hemagglutinin genes of PPRV protects goats against virulent challenge.

    Chandran, Dev; Reddy, Kolli Bhaktavatsala; Vijayan, Shahana Pallichera; Sugumar, Parthasarthy; Rani, Gudavalli Sudha; Kumar, Ponsekaran Santha; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2010-09-01

    Peste des Petits Ruminants (PPR) is a highly contagious animal disease caused by the Peste des Petits Ruminants virus (PPRV) belonging to the genus morbillivirus and family Paramyxoviridae. The disease results in high morbidity and mortality in goats, sheep and in some small wild ruminants. The presence of large number of small ruminants reared in endemic areas makes PPR a notorious disease threatening the livelihood of poor farmers. Conventional vaccination using a live, attenuated vaccine gives adequate protection but cannot be used in case of eradication of the disease due to difficulty in differentiation of infected animals from the vaccinated ones.In the present study, we constructed two recombinant viruses using attenuated Modified Vaccinia virus Ankara virus (MVA) namely MVA-F and MVA-H expressing the full length PPRV fusion (F) and hemagglutinin (H) glycoproteins, respectively. Goats were vaccinated intramuscularly with 105 plaque forming units (PFU) each of the recombinant viruses and a live attenuated vaccine (RAKSHA PPR) and challenged 4 months later with PPRV challenge virus (10(3) goat LD(50)). All goats were completely protected from the clinical disease. This study gave an indication that mass vaccination of small ruminants with either of the above or both recombinant inexpensive virus vaccines could help in possible eradication of PPRV from endemic countries like India and subsequent seromonitoring of the disease for differentiation of infected animals from vaccinated ones.

  4. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  5. The Problems Detected in Mushroom Cultivation in Ankara

    Mürüvvet Ulusoy Deniz

    2016-03-01

    Full Text Available Development of the cultivated mushroom farming which began to be produced in the 1960s in Turkey, has been more faster in the Mediterranean region than other regions. The development of mushroom cultivation has began to seen Marmara and İç Anadolu regions in recent years. The mushroom production which is very important for human health and nutrition, has been changing year to year (sometimes increase, sometimes decrease in the province of Ankara. The first private mushrrom cultivation company had been established in1963. Up to date, the number of private enterprises has changed over the years in Ankara. This study was carried out by doing a survey with an active 12 enterprises which the annual production capacity of 10-600 ton. The enterprises were visited and problems were determined during the cultivation. As a result of the study, It was observed that there are problems in production and marketing phases and with surface soil material

  6. Associations Between Exposure to and Expression of Negative Opinions About Human Papillomavirus Vaccines on Social Media: An Observational Study.

    Dunn, Adam G; Leask, Julie; Zhou, Xujuan; Mandl, Kenneth D; Coiera, Enrico

    2015-06-10

    Groups and individuals that seek to negatively influence public opinion about the safety and value of vaccination are active in online and social media and may influence decision making within some communities. We sought to measure whether exposure to negative opinions about human papillomavirus (HPV) vaccines in Twitter communities is associated with the subsequent expression of negative opinions by explicitly measuring potential information exposure over the social structure of Twitter communities. We hypothesized that prior exposure to opinions rejecting the safety or value of HPV vaccines would be associated with an increased risk of posting similar opinions and tested this hypothesis by analyzing temporal sequences of messages posted on Twitter (tweets). The study design was a retrospective analysis of tweets related to HPV vaccines and the social connections between users. Between October 2013 and April 2014, we collected 83,551 English-language tweets that included terms related to HPV vaccines and the 957,865 social connections among 30,621 users posting or reposting the tweets. Tweets were classified as expressing negative or neutral/positive opinions using a machine learning classifier previously trained on a manually labeled sample. During the 6-month period, 25.13% (20,994/83,551) of tweets were classified as negative; among the 30,621 users that tweeted about HPV vaccines, 9046 (29.54%) were exposed to a majority of negative tweets. The likelihood of a user posting a negative tweet after exposure to a majority of negative opinions was 37.78% (2780/7361) compared to 10.92% (1234/11,296) for users who were exposed to a majority of positive and neutral tweets corresponding to a relative risk of 3.46 (95% CI 3.25-3.67, Prelation to HPV vaccines. We found that among users that tweeted about HPV vaccines, those who were more often exposed to negative opinions were more likely to subsequently post negative opinions. Although this research may be useful for

  7. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    balancing mechanism of the immune system. An experimental VHSV challenge was performed 7 weeks pv. Similar protection levels of approximately 10% mortality were found for the vaccinated fish, regardless of temperature during immunisation and challenge, whereas the course and level of mortality among...... an early unspecific antiviral response as well as a long-lasting specific protection. However, temperature appears to influence immune response with respect to the nature and duration of the protective mechanisms. In this study, groups of fish were temperature acclimated, vaccinated and challenged at three...... different temperatures (5, 10 and 15ºC). Tissue and organ samples were collected at numerous time points post vaccination (pv) and post viral challenge (pch). Then, gene expression levels of a two immune genes (Vig-1 and Mx3) involved in unspecific antiviral response mechanisms were determined by Q...

  8. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  9. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  10. Ankara National Textiles [Turkish] Incorporated Company (1916-1930

    M. Bülent Varlık

    2014-06-01

    Full Text Available This study aims to provide brief information on the foundation, activities and closing down of Ankara National Textiles Incorporated Company, which was founded by a group of local tradesmen in Ankara within the scope of the “National Economy Policy” implemented by the Union and Progress Association. The aforementioned local tradesmen undertook the first steps to establish a factory in mid-1913, and as a result of these efforts, the aforementioned incorporated Company was founded in 1916. This Company, probably due to a low quality production, was closed down, possibly around the years 1921-1922. In 1925, a reconstruction process was initiated with the intervention of the politics and bureaucracy of Ankara, and the capital of the Company was increased. However, these attempts failed and finally, the Company was closed down in 1928. The factory was acquired by Türkiye İş Bankası in 1930, and after the endeavors, it continued its activities as a new company under the name Yün-İş.

  11. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  12. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  13. Development of stable Vibrio cholerae O1 Hikojima type vaccine strains co-expressing the Inaba and Ogawa lipopolysaccharide antigens.

    Stefan L Karlsson

    Full Text Available We describe here the development of stable classical and El Tor V. cholerae O1 strains of the Hikojima serotype that co-express the Inaba and Ogawa antigens of O1 lipopolysaccharide (LPS. Mutation of the wbeT gene reduced LPS perosamine methylation and thereby gave only partial transformation into Ogawa LPS on the cell surface. The strains express approximately equal amounts of Inaba- and Ogawa-LPS antigens which are preserved after formalin-inactivation of the bacteria. Oral immunizations of both inbred and outbred mice with formalin-inactivated whole-cell vaccine preparations of these strains elicited strong intestinal IgA anti-LPS as well as serum vibriocidal antibody responses against both Inaba and Ogawa that were fully comparable to the responses induced by the licensed Dukoral vaccine. Passive protection studies in infant mice showed that immune sera raised against either of the novel Hikojima vaccine strains protected baby mice against infection with virulent strains of both serotypes. This study illustrates the power of using genetic manipulation to improve the properties of bacteria strains for use in killed whole-cell vaccines.

  14. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  15. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice.

    John B Carey

    Full Text Available Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC, must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+ T cell responses to a malaria antigen induced by a live vaccine.Recombinant modified vaccinia virus Ankara (MVA expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes.This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids

  16. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  17. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

    Asisa Volz

    2018-01-01

    Full Text Available The highly attenuated Modified Vaccinia virus Ankara (MVA lacks most of the known vaccinia virus (VACV virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  18. Design of a Type-1 Diabetes Vaccine Candidate Using Edible Plants Expressing a Major Autoantigen

    Edoardo Bertini

    2018-05-01

    Full Text Available Type-1 diabetes (T1D is a metabolic disease involving the autoimmune destruction of insulin-producing pancreatic beta cells. It is often diagnosed by the detection of autoantibodies, typically those recognizing insulin itself or the 65-kDa isoform of glutamic acid decarboxylase (GAD65. Oral insulin can be used to induce systemic immunological tolerance and thus prevent or delay the onset of T1D, suggesting that combination treatments with other autoantigens such as GAD65 could be even more successful. GAD65 has induced oral tolerance and prevented T1D in preclinical studies but it is difficult to produce in sufficient quantities for clinical testing. Here we combined edible plant systems, namely spinach (Spinacia oleracea cv Industra and red beet (Beta vulgaris cv Moulin Rouge, with the magnICON® expression system to develop a safe, cost-effective and environmentally sustainable platform for the large-scale production of GAD65. The superior red beet platform was extensively characterized in terms of recombinant protein yields and bioequivalence to wild-type plants, and the product was tested for its ability to resist simulated gastric digestion. Our results indicate that red beet plants are suitable for the production of a candidate oral vaccine based on GAD65 for the future preclinical and clinical testing of T1D immunotherapy approaches.

  19. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  20. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  1. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  2. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  3. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 μg pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-α, IL-1β, IL-6, IFN-γ) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-γ and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1

  4. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  5. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  6. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    Leung-Theung-Long, Stéphane; Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  7. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    Stéphane Leung-Theung-Long

    Full Text Available Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG vaccine, infection by Mycobacterium tuberculosis (Mtb remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  8. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm Δ actA (LmI), rLm Δ actA Δ inlB (LmII), and rLm Δ actA Δ inlB prfA * (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA * regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) ( P vaccines were generally more potent booster vaccines than r30 in adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized Mtb ( P <0.01). Copyright © 2017 American Society for Microbiology.

  9. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites.

    Tang, Xinming; Liu, Xianyong; Yin, Guangwen; Suo, Jingxia; Tao, Geru; Zhang, Sixin; Suo, Xun

    2017-01-01

    Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima . In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria . After immunization with the transgenic parasite, we detected EmIMP1's and E. maxima oocyst antigens' specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain.

  10. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites

    Tang, Xinming; Liu, Xianyong; Yin, Guangwen; Suo, Jingxia; Tao, Geru; Zhang, Sixin; Suo, Xun

    2018-01-01

    Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima. In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria. After immunization with the transgenic parasite, we detected EmIMP1’s and E. maxima oocyst antigens’ specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain. PMID:29375584

  11. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.

    Zhang, Xiaowei; Hu, Shumin; Du, Xue; Li, Tiejun; Han, Lanlan; Kong, Jian

    2016-12-01

    Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases. Copyright © 2014. Published by Elsevier B.V.

  12. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  13. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  14. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system.

    Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S

    2014-03-26

    Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.

  15. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  16. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  17. Modified Vaccinia Virus Ankara Vector Induces Specific Cellular and Humoral Responses in the Female Reproductive Tract, the Main HIV Portal of Entry.

    Marlin, Romain; Nugeyre, Marie-Thérèse; Tchitchek, Nicolas; Parenti, Matteo; Hocini, Hakim; Benjelloun, Fahd; Cannou, Claude; Dereuddre-Bosquet, Nathalie; Levy, Yves; Barré-Sinoussi, Françoise; Scarlatti, Gabriella; Le Grand, Roger; Menu, Elisabeth

    2017-09-01

    The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized specific immune responses in all compartments of the FRT of nonhuman primates after systemic vaccination. Memory T cells were preferentially found in the lower tract (vagina and cervix), whereas APCs and innate lymphoid cells were mainly located in the upper tract (uterus and fallopian tubes). This compartmentalization of immune cells in the FRT was supported by transcriptomic analyses and a correlation network. Polyfunctional MVA-specific CD8 + T cells were detected in the blood, lymph nodes, vagina, cervix, uterus, and fallopian tubes. Anti-MVA IgG and IgA were detected in cervicovaginal fluid after a second vaccine dose. Thus, systemic vaccination with an MVA vector elicits cellular and Ab responses in the FRT. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system.

    Kraus, Benjamin; Fischer, Katrin; Büchner, Sarah M; Wels, Winfried S; Löwer, Roswitha; Sliva, Katja; Schnierle, Barbara S

    2013-01-01

    Human endogenous retrovirus (HERV) genomes are chromosomally integrated in all cells of an individual. They are normally transcriptionally silenced and transmitted only vertically. Enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed in tumor patients and HIV-infected individuals. As HERV-K is usually not expressed and immunological tolerance development is unlikely, it is an appropriate target for the development of immunotherapies. We generated a recombinant vaccinia virus (MVA-HKenv) expressing the HERV-K envelope glycoprotein (ENV), based on the modified vaccinia virus Ankara (MVA), and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) or the HERV-K ENV gene (RLZ-HKenv cells). Intravenous injection of RLZ-HKenv cells into syngenic BALB/c mice led to the formation of pulmonary metastases, which were detectable by X-gal staining. A single vaccination of tumor-bearing mice with MVA-HKenv drastically reduced the number of pulmonary RLZ-HKenv tumor nodules compared to vaccination with wild-type MVA. Prophylactic vaccination of mice with MVA-HKenv precluded the formation of RLZ-HKenv tumor nodules, whereas wild-type MVA-vaccinated animals succumbed to metastasis. Protection from tumor formation correlated with enhanced HERV-K ENV-specific killing activity of splenocytes. These data demonstrate for the first time that HERV-K ENV is a useful target for vaccine development and might offer new treatment opportunities for diverse types of cancer.

  20. Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein

    Buschow, Sonja I; Ramazzotti, Matteo; Reinieren-Beeren, Inge M J

    2017-01-01

    -based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large....... Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses...... but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease....

  1. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  2. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  3. Coprodiagnosis of Echinococcus granulosus infection in dogs from Ankara, Turkey.

    Öge, Hatice; Öge, Semih; Gönenç, Bahadır; Sarımehmetoğlu, Oğuz; Özbakış, Gökben

    2017-08-15

    The present study were undertaken to compare two isolation techniques (centrifugal flotation and sedimentation) for recovering taeniid eggs from faecal samples, to identify E. granulosus DNA from taeniid eggs by PCR, and to determine the prevalence of E. granulosus in dogs in villages. Faecal samples were collected from 100 dogs in Ankara province. Taenia spp. eggs were found in 27% of dogs faeces. Echinococcus granulosus-specific PCR was obtained in 14 (51.85%) of the taeniid eggs-positive samples. As well as finding Taenia eggs in dogs' faeces, we also found eggs of some helminthic parasites; such as Dipylidium caninum, Toxocara canis, Toxascaris leonina, Trichuris sp., Capillaria sp., Filaroides sp., Dioctophyme renale, Linguatula serrata, hookworm, Dicrocoelium sp., Fasciola sp. and Ascaridia galli. Significantly, more dogs excreting taeniid eggs were diagnosed with the sedimentation method (n=27) as compared to the flotation method (n=10). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of visitor profiles and motivations at Ankara museums

    Eda Gürel

    2013-12-01

    Full Text Available Museums all over the world appear to be targeting their visitors for resources, thanks to diminishing state support. The purpose of this study is to recognize the profiles and motivations of visitors to museums in Ankara, in order to provide for the development of strategies that will help translate these visits to regular active participation. The results of the study conducted at Ankara’s five principal museums show that these museums play a significant part in education for the visitors. Certain internal and external factors – such as advertising and promotion – are essential to boost museum visits. Study results call attention to external factors in particular, as driving forces for recurrent museum visitors.

  5. The Usage Analysis of Databases at Ankara University Digital Library

    Sacit Arslantekin

    2006-12-01

    Full Text Available The development in information and communication technologies has changed and improved resources and services diversity in libraries. These changes continue to develop rapidly throughout the world. As for our country, remarkable developments, especially in university and special libraries, in this field are worth consideration. In order to take benefit of the existing and forthcoming developments in the field of electronic libraries the databases used by clients should be well-demonstrated and followed closely. The providing wide use of electronic databases leads to increasing the productivity of scientific and social information that that is the ultimate goal. The article points out electronic resources management and the effect of consortia developments in the field first, and then evaluates the results of the survey on the use of electronic libraries assessment questionnaires by faculty members at Ankara University.

  6. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice.

    Yang, Chen; Skiena, Steven; Futcher, Bruce; Mueller, Steffen; Wimmer, Eckard

    2013-06-04

    A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.

  7. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  8. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults.

    Pathan, Ansar A; Minassian, Angela M; Sander, Clare R; Rowland, Rosalind; Porter, David W; Poulton, Ian D; Hill, Adrian V S; Fletcher, Helen A; McShane, Helen

    2012-08-17

    A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine.

    Li, Yijian; Xue, Miaoge; Yu, Linqi; Luo, Guoxing; Yang, Han; Jia, Lianzhi; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2018-04-12

    The outer capsid protein VP4 is an important target for the development of a recombinant rotavirus vaccine because it mediates the attachment and penetration of rotavirus. Due to the poor solubility of full-length VP4, VP8 was explored as candidate rotavirus vaccines in the past years. In previous studies, it has been found that the N-terminal truncated VP8 protein, VP8-1 (aa26-231), could be expressed in soluble form with improved immunogenicity compared to the core of VP8 (aa65-223). However, this protein stimulated only a weak immune response when aluminum hydroxide was used as an adjuvant. In addition, it should be noted that the protective efficacy of VP4 was higher than that of VP8 and VP5. In this study, it was found that when the N-terminal 25 amino acids were deleted, the truncated VP4 ∗ (aa26-476) containing VP8 and the stalk domain of VP5 could be expressed in soluble form in E. coli and purified to homogeneous trimers. Furthermore, the truncated VP4 could induce high titers of neutralizing antibodies when aluminum adjuvant was used and conferred high protective efficacy in reducing the severity of diarrhea and rotavirus shedding in stools in animal models. The immunogenicity of the truncated VP4 was significantly higher than that of VP8 ∗ and VP5 ∗ alone. Taken together, the truncated VP4 ∗ (aa26-476), with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development and has the potential to become a parenterally administered rotavirus vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  12. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  13. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Priya Saikumar Lakshmi

    Full Text Available Tuberculosis (TB caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39 fused with cholera toxin B-subunit (CTB and LipY (a cell wall protein were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential

  14. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Lakshmi, Priya Saikumar; Verma, Dheeraj; Yang, Xiangdong; Lloyd, Bethany; Daniell, Henry

    2013-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long

  15. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  16. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  17. Ankara Historic City Centre Restoration Site Conservation Plan, its Characteristics, and Rationales for its Revocation

    Mehmet Tuncer

    2013-12-01

    Full Text Available This is a comprehensive evaluation of the 1: 5000 Ankara Historic City Centre Restoration Site Conservation Master Development Plan and the 1: 1000 Conservation Implementation Plans, which have become a matter of litigation against the Ankara Metropolitan Municipality, filed by various non-governmental organizations, universities, the Union of Chambers of Turkish Architects and Engineers (TMMOB and public institutions; in terms of the environment, transportation and traffic as regards the entirety of the planned location, and the integrity of the plan, based on conservation-reclamation planning essentials and public interest. Thus the Ulus Ankara Historic City Centre Restoration Site Conservation Master Development and Implementation Plan and Plan Notes as ratified by the Ankara Metropolitan Municipality and Conservation Board, are examined in this context in terms of restoration site, protected site, conservation site, interaction and transition sites and historic and cultural properties.

  18. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  20. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  1. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza

    Rosas, Cristina; Van de Walle, Gerlinde R.; Metzger, Stephan M.; Hoelzer, Karin; Dubovi, Edward J.; Kim, Sung G.; Parrish, Colin R.; Osterrieder, Nikolaus

    2008-01-01

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcut...

  2. Emergency Medical Service (EMS) Utilization by Syrian Refugees Residing in Ankara, Turkey.

    Altıner, Ali Osman; Yeşil, Sıdıka Tekeli

    2018-04-01

    Introduction Many Syrians have left their country and migrated to other countries since March 2011, due to the civil war. As of March 2016, a total of 2,747,946 Syrian refugees had immigrated to Turkey. Some Syrian refugees have been living in camps, while 2,475,134 have been living in metropolitan areas, such as Ankara. Study Objective This study investigated Emergency Medical Service (EMS) utilization among Syrian refugees residing in Ankara. This study was a descriptive, cross-sectional database analysis using data obtained from the Department of EMS of the Ankara Provincial Health Directorate. Five stations in the Altındağ region of Ankara responded to 42% of all calls from Syrian refugees. Prehospital EMS in Ankara have been used mostly by Syrian refugees younger than 18-years-old. Study findings also suggest that medical staff in regions where Syrian refugees are likely to be treated should be supported and provided with the ability to overcome language barriers and cultural differences. Altıner AO , Tekeli Yeşil S . Emergency Medical Service (EMS) utilization by Syrian refugees residing in Ankara, Turkey. Prehosp Disaster Med. 2018;33(2):160-164.

  3. An Italian Architect’s First Visit to Ankara: Giulio Mongeri – 1897

    Sedat Bornovalı

    2016-12-01

    Full Text Available Giulio Mongeri is an Italian architect credited as behind some of the most important structures all across Turkey, but foremost in Istanbul and Ankara. He served the Ottoman state in the first quarter of the 20th century, and provided a noteworthy contribution to Ankara in the Early Republican era. Mongeri carried out his first visit to Ankara in 1897. His observations of the era are extremely interesting. Mongeri’s notes on this visit were published over a few weeks in the 25th volume of Illustrazione Italiana journal, which rarely sees daylight nowadays and is barely spoken of in the Ankara research literature. As a contribution to Turkish publications about Ankara, this study aims to evaluate this visit and compare it from various perspectives to other publications and the Ankara of today.First of all, new digital imaging was carried out in place of the low-resolution digitalized copies published by the Italian Ministry of Culture and Tourism, then a field examination of Mongeri’s route was carried out, and following study comparing this to historical sources, it was made ready for detailed investigations to be carried out by later researchers. On certain issues, Mongeri was not well informed, but on many others his deep interest in history emerges thanks to the education he had received in Milan. These travel notes may catch the eye as showing from an earlier age the basics of the historicist approach he would take in his professional life as a historian..

  4. Diseño y construcción de vectores de transferencia para la obtención de virus vaccinia Ankara modificado (MVA recombinantes Design and construction of transfer vectors in order to obtain recombinant modified vaccinia virus Ankara (MVA

    M. F. Ferrer

    2007-09-01

    Full Text Available El virus vaccinia Ankara modificado (MVA constituye un buen candidato para el desarrollo de vectores virales de expresión no replicativos porque no replica en la mayoría de las células de mamíferos. Para la producción de MVA recombinantes es fundamental disponer de vectores de transferencia que, por recombinación homóloga con el genoma viral, permitan introducir los genes de interés en regiones no esenciales para la replicación in vitro. En este trabajo se diseñaron y obtuvieron los vectores de transferencia denominados VT-MHA y VT-MTK que portan las regiones correspondientes a las posiciones 1-303 y 608-948 del gen MVA165R y 1-244 y 325-534 del gen MVA086R, respectivamente, las que flanquean un sitio de clonado múltiple para la inserción de los genes foráneos. En dichos vectores se clonaron los casetes para la expresión de los genes lac Z o uid A, y la actividad de las enzimas marcadoras b-galactosidasa y b-glucuronidasa se confirmó in situ. Además, utilizando el vector denominado VT-MTK-GUS, se obtuvieron y aislaron MVA recombinantes puros que portan y expresan el gen uid A. Los resultados obtenidos constituyen las herramientas básicas para establecer la metodología de obtención de MVA recombinantes, con el propósito de desarrollar localmente vectores virales no replicativos candidatos a vacunas.Modified Vaccinia virus Ankara (MVA constitutes a good candidate for the development of non-replicative expression viral vectors because it does not replicate in most of mammalian cells. It is essential, for the production of recombinant MVA, the availability of transfer vectors which allow the introduction of desired genes into non-essential regions for in vitro viral replication, by homologous recombination with the viral genome. In the present work, the transfer vectors named VT-MHA and VT-MTK were designed and obtained. They carried genomic regions corresponding to 1- 303 and 608-948 positions of the MVA165R gene and 1-244 and

  5. Expression of LIGHT/TNFSF14 Combined with Vaccination against Human Papillomavirus Type 16 E7 Induces Significant Tumor Regression

    Kanodia, Shreya; Da Silva, Diane M.; Karamanukyan, Tigran; Bogaert, Lies; Fu, Yang-Xin; Kast, W. Martin

    2010-01-01

    LIGHT, a ligand for the lymphotoxin-beta receptor, establishes lymphoid-like tissues inside tumor sites and recruits naïve T-cells into the tumor. However, whether these infiltrating T-cells are specific for tumor antigens is not known. We hypothesized that therapy with LIGHT can expand functional tumor-specific CD8+ T-cells that can be boosted using HPV16E6E7-Venezuelan Equine Encephalitis Virus Replicon Particles (HPV16-VRP) and that this combined therapy can eradicate HPV16-induced tumors. Our data show that forced expression of LIGHT in tumors results in an increase in expression of interferon gamma (IFNg) and chemottractant cytokines such as IL-1a, MIG and MIP-2 within the tumor and that this tumor microenvironment correlates with an increase in frequency of tumor-infiltrating CD8+ T-cells. Forced expression of LIGHT also results in the expansion of functional T-cells that recognize multiple tumor-antigens, including HPV16 E7, and these T-cells prevent the outgrowth of tumors upon secondary challenge. Subsequent boosting of E7-specific T-cells by vaccination with HPV16-VRP significantly increases their frequency in both the periphery and the tumor, and leads to the eradication of large well-established tumors, for which either treatment alone is not successful. These data establish the safety of Ad-LIGHT as a therapeutic intervention in pre-clinical studies and suggest that patients with HPV16+ tumors may benefit from combined immunotherapy with LIGHT and antigen-specific vaccination. PMID:20460520

  6. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA.

    Veloso, Tiago Rafael; Mancini, Stefano; Giddey, Marlyse; Vouillamoz, Jacques; Que, Yok-Ai; Moreillon, Philippe; Entenza, José Manuel

    2015-07-09

    Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (Plactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

    Haralambieva, Iana H; Kennedy, Richard B; Simon, Whitney L; Goergen, Krista M; Grill, Diane E; Ovsyannikova, Inna G; Poland, Gregory A

    2018-01-01

    MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.

  8. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  9. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  10. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza.

    Rosas, Cristina; Van de Walle, Gerlinde R; Metzger, Stephan M; Hoelzer, Karin; Dubovi, Edward J; Kim, Sung G; Parrish, Colin R; Osterrieder, Nikolaus

    2008-05-02

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.

  11. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  12. Development and immunogenicity of recombinant GapA(+) Mycoplasma gallisepticum vaccine strain ts-11 expressing infectious bronchitis virus-S1 glycoprotein and chicken interleukin-6.

    Shil, Pollob K; Kanci, Anna; Browning, Glenn F; Markham, Philip F

    2011-04-12

    Mycoplasma gallisepticum (MG) is a major pathogen of poultry that causes chronic respiratory disease in chickens and infectious sinusitis in turkeys. A live attenuated vaccine, ts-11, has been used for the control of MG in several countries. The efficacy of this vaccine is highly dose dependent and the flock antibody response is weak. To improve the functionality of the vaccine and investigate its potential as a delivery vector for foreign antigens and immunomodulatory proteins, we developed a derivative of ts-11 expressing infectious bronchitis virus-S1 glycoprotein (IBV-S1) and releasing chicken interleukin-6 into the extracellular milieu (MG ts-11 C3 (+CS)) using a transposon-based delivery vector. Following administration of MG ts-11 C3 (+CS) to chickens by eye-drop, an antibody response to MG and IBV-S1, as determined by the rapid serum agglutination test (RSA) and Western blotting, respectively, could be detected. Birds inoculated with the recombinant vaccine had significantly enhanced weight gain and were partially protected against damage by pathogenic IBV. These results indicate that the ChIL-6 released by MG ts-11 C3 (+CS) may have had a non-specific effect on growth rate. They also suggest that ts-11 is a promising vaccine vector, capable of delivering heterologous protective antigens, and may also provide non-specific benefits when engineered to express immunomodulatory proteins. With some improvements in the expression system, it could be used to induce a targeted immune response against specific mucosal pathogens, and co-expression of several antigens would allow development of a novel multivalent vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys.

    Hu, Haixia; Roth, Jason P; Estevez, Carlos N; Zsak, Laszlo; Liu, Bo; Yu, Qingzhong

    2011-11-03

    Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling both NDV and aMPV diseases in the field. In the present study, an NDV based, LaSota strain recombinant vaccine virus expressing the glycoprotein (G) of aMPV subgroup C (aMPV-C) was generated as a bivalent vaccine using a reverse genetics approach. The recombinant virus, rLS/aMPV-C G was slightly attenuated in vivo, yet maintained similar growth dynamics, cytopathic effects, and virus titers in vitro when compared to the parental LaSota virus. Expression of the aMPV G protein in rLS/aMPV-C G-infected cells was detected by immunofluorescence assay. Vaccination of turkeys with one dose of rLS/aMPV-C G induced moderate aMPV-C-specific immune responses and comparable NDV-specific serum antibody responses to a LaSota vaccination control. Partial protection against pathogenic aMPV-C challenge and complete protection against velogenic NDV challenge was conferred. These results suggest that the LaSota recombinant virus is a safe and effective vaccine vector and that expression of the aMPV-C G protein alone is not sufficient to provide full protection against an aMPV-C infection. Expression of other immunogenic protein(s) of the aMPV-C virus alone or in conjunction with the G protein may be needed to induce a stronger protective immunity against the aMPV-C disease. Published by Elsevier Ltd.

  14. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine.

    Seid, Christopher A; Curti, Elena; Jones, R Mark; Hudspeth, Elissa; Rezende, Wanderson; Pollet, Jeroen; Center, Lori; Versteeg, Leroy; Pritchard, Sonya; Musiychuk, Konstantin; Yusibov, Vidadi; Hotez, Peter J; Bottazzi, Maria Elena

    2015-01-01

    Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.

  15. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-01-01

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d 3 ) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d 3 . In addition, both sCD4-gp120 and sCD4-gp120-mC3d 3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d 3 or sCD4-gp120-mC3d 3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d 3 -DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d 3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d

  16. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  17. Archaeometric exploration at Akköprü in Ankara

    Ali Akın Akyol

    2013-01-01

    Full Text Available The archaeometric exploration was conducted by surveying and sampling studies on the stone, and mortar samples from Akköprü in Ankara. Spot salt test and conductometric analysis were applied to get water soluble salt content of stone samples. The aggregate and binder part of the mortars were determined by the analyses of acidic aggregate & binder, aggregate granulometry, thin section optic microscopy and X-ray diffraction. In addition, the physical conditions of the stones were determined by some physical tests. The results of archaeometrical data showed that the constructive stone material was mainly andesite besides ignimbrite and dacite, and the original binder material was lime mortar. The cement content of the binder of mortars reveals the recent interventions on Akköprü. In the light of petrographic studies it was understood that the source of the original constructive raw material reflects the local formation. The high soluble salt content and the bad physical conditions of some stones also showed that they are undergoing a decomposition process of different degrees.

  18. HEALTH BEHAVIOURS OF THE PERSONNEL OF PRIMARY SCHOOLS IN ANKARA

    Serife AK

    2006-04-01

    Full Text Available The main purpose of study is to define the health behaviour profile of the personnel of primary schools as well as to define the topics to be given priority in health education activities. The research population consisted of all personnel of 564 primary schools in Ankara province. The study group (30 schools was estimated by cluster sampling method. The Health Behaviours Questionnaire, which consists of 47 items on health behaviours and demographic characteristics, was used for data collection. In the study, 849 school workers (67,5% female were interviewed. Teachers constituted the largest group (82,3% while the cleaning staff (7.0%, school administrators (6.3%, and other personnel (4.4% were sharing the rest in small proportions. Of the study group 41,7 % are cigarette smokers and of them 67.3% smoke every time and 11,9% sometime in school. Very few school personnel (14,8% do physical exercise regularly. Majority of school personnel (71,3% stated that they brush their teeth at least twice a day regularly. However, only 23,7% of school personnel go to have regular dental control. All results were discussed in details considering the effects of health behaviours of school personnel on students, and some recommendations were developed for health education activities in schools. [TAF Prev Med Bull 2006; 5(2.000: 83-93

  19. Globalisation Reflected onto Architecture: Tall Buildings of Ankara-Turkey

    Tanju Gültekin, Ahmet

    2017-10-01

    Policy switching, radical socioeconomic changes, integration and globalisation were started in 1980s. New urban space developments have been accelerated in 1990s and provided urban space identity policies in 2000s. Luxurious shopping malls, hotels, and ultra-posh residences within the city and gated communities on city peripheries have been formed. Thus, the urban geography, urban silhouette and urban identity are being converted through tall buildings that signify the created prestige, status, and power in competition with the global capital. By the globalisation foresight the cities which have gotten ahead of the nation-state was seen. The buildings that converted into a symbolic (iconic) global product leads to an advantage in the race for attracting global investments and tourism, on behalf of the cities/urban districts. This process, which was initiated haphazardly in Turkey in the 1980s, has been on-going throughout the 1990s and especially in 2000s by means of the re-structuring of the government on a neo-liberal basis. The process is concurrently observable through the tall buildings and/or building blocks which match with urban regeneration projects, urban zoning plan revisions and fragmented zoning plans. In this study, the new global world order is evaluated by their status and architectural properties of selected tall and iconic/ultra-modern buildings in Ankara.

  20. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  1. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored Meleagrid herpesvirus type 1 vaccines

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspe...

  2. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  3. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  4. Haematopoietic depletion in vaccine-induced neonatal pancytopenia depends on both the titre and specificity of alloantibody and levels of MHC I expression.

    Bell, Charlotte R; MacHugh, Niall D; Connelley, Timothy K; Degnan, Kathryn; Morrison, W Ivan

    2015-07-09

    Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels. A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells. The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells

  5. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  6. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules

    Němečková, Š.; Šmahel, M.; Hainz, P.; Macková, J.; Zurková, K.; Gabriel, P.; Indrová, Marie; Kutinová, L.

    2007-01-01

    Roč. 54, č. 4 (2007), s. 326-333 ISSN 0028-2685 R&D Projects: GA MZd NR8004 Institutional research plan: CEZ:AV0Z50520514 Keywords : vaccinia virus MVA expressing GM- CSF * DNA vaccine * HPV16 induced tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.208, year: 2007

  8. Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation.

    Singh, N Dolendro; Ding, Yi; Daniell, Henry

    2009-01-01

    Many vaccine antigens and biopharmaceutical proteins have been expressed at high levels via the chloroplast genome and their functionality has been evaluated using in vitro assays in cell cultures (i.e., macrophage lysis assay, inhibition of vesicular stomatitis virus-induced cytopathicity in baby hamster kidney cells, or inhibition of human HIV infection in TZM-BL cells) as well as protection after challenge with bacterial or viral pathogens or antitumor assays or delay the onset of insulitis in suitable animal models. Production of therapeutic proteins in chloroplasts eliminates the expensive fermentation technology. Moreover, oral delivery of chloroplast-derived therapeutic proteins eliminates expensive purification steps, cold storage, cold transportation, and delivery via sterile needles, thereby further decreasing their cost. In this chapter, we describe detailed protocols for chloroplast transformation including the construction of chloroplast transformation vectors, delivery of DNA into plant cells using particle bombardment, selection and regeneration of transformants by tissue culture, confirmation of transgene integration into the chloroplast genome and homoplasmy, evaluation of foreign gene expression, purification of foreign protein, or oral delivery via bioencapsulation, functional evaluation using in vitro and in vivo assays, and evaluation of immunity after challenge with pathogens in suitable animal models.

  9. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  10. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.

    Zichel, R; Mimran, A; Keren, A; Barnea, A; Steinberger-Levy, I; Marcus, D; Turgeman, A; Reuveny, S

    2010-05-01

    Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.

  11. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  12. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  13. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  14. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  15. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum

    Vahid NASIRI

    2016-10-01

    Full Text Available Background: The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice.Methods: KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge.Results: KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected.Conclusion: The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development. 

  16. A Promising Recombinant Herpesvirus of Turkeys Vaccine Expressing PmpD-N of Chlamydia psittaci Based on Elongation Factor-1 Alpha Promoter

    Shanshan Liu

    2017-12-01

    Full Text Available The obligate intracellular Gram-negative bacterium Chlamydia psittaci often causes avian chlamydiosis and influenza-like symptoms in humans. However, the commercial subunit C. psittaci vaccine could only provide a partial protection against avian chlamydiosis due to poor cellular immune response. In our previous study, a recombinant herpesvirus of turkeys (HVT-delivered vaccine against C. psittaci and Marek’s disease based on human cytomegalovirus (CMV promoter (rHVT-CMV-pmpD was developed and provided an effective protection against C. psittaci disease with less lesions and reduced chlamydial loads. In this study, we developed another recombinant HVT vaccine expressing the N-terminal fragment of PmpD (PmpD-N based on human elongation factor-1 alpha (EF-1α promoter (rHVT-EF-pmpD by modifying the HVT genome within a bacterial artificial chromosome. The related characterization of rHVT-EF-pmpD was evaluated in vitro in comparison with that of rHVT-CMV-pmpD. The expression of PmpD-N was determined by western blot. Under immunofluorescence microscopy, PmpD-N protein of both two recombinant viruses was located in the cytoplasm and on the cell surface. Growth kinetics of rHVT-EF-pmpD was comparable to that of rHVT-CMV-pmpD, and the growth rate of rHVT-EF-pmpD was apparently higher than that of rHVT-CMV-pmpD on 48, 72, and 120 h postinfection. Macrophages activated by rHVT-EF-pmpD could produce more nitric oxide and IL-6 than that activated by rHVT-CMV-pmpD. In this study, a recombinant HVT vaccine expressing PmpD-N based on EF-1α promoter was constructed successfully, and a further research in vivo was needed to analyze the vaccine efficacy.

  17. The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge.

    Thom, R E; Elmore, M J; Williams, A; Andrews, S C; Drobniewski, F; Marsh, P D; Tree, J A

    2012-05-02

    Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P≤0.05). In addition, lactoferrin (P≤0.002), transferrin receptor (P≤0.05) and solute carrier family 11A1 (P≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  19. Evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B as a bivalent vaccine in turkeys

    To develop a bivalent vaccine candidate, a LaSota strain-based recombinant Newcastle disease virus (NDV) clone expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B was generated using reverse genetics. Vaccination of turkeys with the NDV/aMPV-A G or NDV/aMPV-B G recombinan...

  20. Generation and evaluation of recombinant Newcastle disease viruses (NDV) expressing the F and G proteins of avian metapneumovirus subtype C (aMPV-C) as bivalent vaccine against NDV and aMPV challenges in turkeys

    Previously we generated a Newcastle disease virus (NDV) LaSota strain-based recombinant virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine, which provided a partial protection against aMPV-C challenge in turkeys. To improve the vaccine efficacy,...

  1. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  2. Murine CMV Expressing the High Affinity NKG2D Ligand MULT-1: A Model for the Development of Cytomegalovirus-Based Vaccines

    Lea Hiršl

    2018-05-01

    Full Text Available The development of a vaccine against human cytomegalovirus (CMV has been a subject of long-term medical interest. The research during recent years identified CMV as an attractive vaccine vector against infectious diseases and tumors. The immune response to CMV persists over a lifetime and its unique feature is the inflationary T cell response to certain viral epitopes. CMV encodes numerous genes involved in immunoevasion, which are non-essential for virus growth in vitro. The deletion of those genes results in virus attenuation in vivo, which enables us to dramatically manipulate its virulence and the immune response. We have previously shown that the murine CMV (MCMV expressing RAE-1γ, one of the cellular ligands for the NKG2D receptor, is highly attenuated in vivo but retains the ability to induce a strong CD8+ T cell response. Here, we demonstrate that recombinant MCMV expressing high affinity NKG2D ligand murine UL16 binding protein-like transcript (MULT-1 (MULT-1MCMV inserted in the place of its viral inhibitor is dramatically attenuated in vivo in a NK cell-dependent manner, both in immunocompetent adult mice and in immunologically immature newborns. MULT-1MCMV was more attenuated than the recombinant virus expressing RAE-1γ. Despite the drastic sensitivity to innate immune control, MULT-1MCMV induced an efficient CD8+ T cell response to viral and vectored antigens. By using in vitro assay, we showed that similar to RAE-1γMCMV, MULT-1 expressing virus provided strong priming of CD8+ T cells. Moreover, MULT-1MCMV was able to induce anti-viral antibodies, which after passing the transplacental barrier protect offspring of immunized mothers from challenge infection. Altogether, this study further supports the concept that CMV expressing NKG2D ligand possesses excellent characteristics to serve as a vaccine or vaccine vector.

  3. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  4. MicroRNA expression in rainbow trout (Oncorhynchus mykiss) vaccinated with a DNA vaccine encoding the glycoprotein gene of Viral hemorrhagic septicemia virus

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    particularly to sea-farmed rainbow trout and thus necessitates strategies to mitigate potential disease outbreaks. A DNA vaccine encoding the glycoprotein gene of VHSV has been developed and shown to elicit protective immune responses in laboratory trials. It is important to identify key factors as biomarkers...

  5. Mucosal immunization with PLGA-microencapsulated DNA primes a SIV-specific CTL response revealed by boosting with cognate recombinant modified vaccinia virus Ankara

    Sharpe, Sally; Hanke, Tomas; Tinsley-Bown, Anne; Dennis, Mike; Dowall, Stuart; McMichael, Andrew; Cranage, Martin

    2003-01-01

    Systemically administered DNA encoding a recombinant human immunodeficiency virus (HIV) derived immunogen effectively primes a cytotoxic T lymphocyte (CTL) response in macaques. In this further pilot study we have evaluated mucosal delivery of DNA as an alternative priming strategy. Plasmid DNA, pTH.HW, encoding a multi-CTL epitope gene, was incorporated into poly(D,L-lactic-co-glycolic acid) microparticles of less than 10 μm in diameter. Five intrarectal immunizations failed to stimulate a circulating vaccine-specific CTL response in 2 Mamu-A*01 + rhesus macaques. However, 1 week after intradermal immunization with a cognate modified vaccinia virus Ankara vaccine MVA.HW, CTL responses were detected in both animals that persisted until analysis postmortem, 12 weeks after the final boost. In contrast, a weaker and less durable response was seen in an animal vaccinated with the MVA construct alone. Analysis of lymphoid tissues revealed a disseminated CTL response in peripheral and regional lymph nodes but not the spleen of both mucosally primed animals

  6. Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects

    Tian, Hongwei; Zhang, Xiaomei; Dai, Lei; Chen, Xiaolei; Zhang, Shuang; Yang, Yang; Yu, Dechao; Wei, Yuquan; Deng, Hongxin; Shi, Gang; Yang, Guoyou; Zhang, Junfeng; Li, Yiming; Du, Tao; Wang, Jianzhou; Xu, Fen; Cheng, Lin

    2014-01-01

    Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. Tumor cells genetically modified to secrete immune activating cytokines have been proved to be more immunogenic. IL-18 could augment proliferation of T cells and cytotoxicity of NK cells. GM-CSF could stimulate dendritic cells, macrophages and enhance presentation of tumor antigens. In our study, we used mouse GM-CSF combined with IL-18 to modify Lewis lung cancer LL/2, then investigated whether vaccination could suppress tumor growth and promote survival. The Lewis lung cancer LL/2 was transfected with co-expressing mouse GM-CSF and IL-18 plasmid by cationic liposome, then irradiated with a sublethal dose X ray (100 Gy) to prepare vaccines. Mice were subcutaneously immunized with this inactivated vaccine and then inoculated with autologous LL/2 to estimate the antitumor efficacy. The studies reported here showed that LL/2 tumor cell vaccine modified by a co-expressing mouse GM-CSF and IL-18 plasmid could significantly inhibit tumor growth and increased survival of the mice bearing LL/2 tumor whether prophylactic or adoptive immunotherapy in vivo. A significant reduction of proliferation and increase of apoptosis were also observed in the tumor treated with vaccine of co-expressing GM-CSF and IL-18. The potent antitumor effect correlated with higher secretion levels of pro-inflammatory cytokines such as IL-18, GM-CSF, interferon-γ in serum, the proliferation of CD4 + IFN-γ + , CD8 + IFN-γ + T lymphocytes in spleen and the infiltration of CD4 + , CD8 + T in tumor. Furthermore, the mechanism of tumor-specific immune response was further proved by 51 Cr cytotoxicity assay in vitro and depletion of CD4, CD8, NK immune cell subsets in vivo. The results suggested that the antitumor mechanism was mainly depended on CD4 + , CD8 + T lymphocytes. These results provide a new insight into therapeutic mechanisms

  7. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour

    Herd, Karen A.; Harvey, Tracey; Khromykh, Alexander A.; Tindle, Robert W.

    2004-01-01

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses

  8. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity.

    Gunnstein Norheim

    Full Text Available Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%. The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.

  10. Expression and Purification of the Recombinant Cytochrome P450 CYP141 Protein of Mycobacterium Tuberculosis as a Diagnostic Tool and Vaccine Production.

    Heidari, Reza; Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Alvandi, Amirhooshang; Abdian, Narges; Aryan, Ehsan; Soleimani, Neda; Gholipour, Abolfazl

    2015-06-01

    Tuberculosis (TB) is regarded as a health problem worldwide, particularly in developing countries. Mycobacterium tuberculosis (M. tuberculosis) is the cause of this disease. Approximately two billion people worldwide are infected by M. tuberculosis and annually about two million individuals die in consequence. Forty million people are estimated to die because of M. tuberculosis over the next 25 years if the measures for controlling this infection are not extensively developed. In the vaccination field, Bacillus Calmette-Guérin (BCG) is still the most effective vaccine but it shows no efficacy in adult pulmonary patients. One of the other problems regarding TB is its appropriate diagnosis. In this experimental study, the recombinant cytochrome P450 CYP141 protein of M. tuberculosis was expressed and purified to be used as a vaccine candidate and diagnostic purpose in subsequent investigations. The optimization of the cytochrome P450 CYP141 protein expression was evaluated in different conditions. Then, this protein was purified with a resin column of nickel-nitrilotriacetic acid and investigated via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. The highest expression of the cytochrome P450 CYP141 protein was obtained by the addition of 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bacterial culture grown to an optical density at 600 nm (OD600) of 0.6, 16 hours after induction. This protein was subsequently purified with a purification of higher than 80%. The results of Western Blotting indicated that the purified protein was specifically detected. In this experimental study, for the first time in Iran the expression and purification of this recombinant protein was done successfully. This recombinant protein could be used as a vaccine candidate and diagnostic purpose in subsequent investigations.

  11. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  12. MicroRNA expression profiling of PPD-B stimulated PBMC from M. bovis-challenged unvaccinated and BCG vaccinated cattle.

    Golby, P; Villarreal-Ramos, B; Dean, G; Jones, G J; Vordermeier, M

    2014-10-07

    There is an urgent need to identify additional diagnostic biomarkers for bovine TB to complement existing read-out systems such as interferon-gamma and for predictive markers of vaccine efficacy to accelerate vaccine development. To evaluate the potential of miRNAs as such biomarkers, we have analysed their expression in bovine PPD stimulated PBMC isolated from unvaccinated and BCG vaccinated cattle before and following Mycobacterium bovis (M. bovis) infection. Using a bovine microRNA microarray, miR-155 was found to show a significant up-regulation in expression in early (week 2) and late (week 11) M. bovis post-infection samples from unvaccinated cattle, while in BCG vaccinated cattle up-regulation was observed only in late post-infection samples. No differential expression of miR-155 was observed in pre-infection samples from unvaccinated and vaccinated cattle. These observations suggest that miR-155 could be exploited as a marker distinguishing vaccinated from infected animals (DIVA). Analysis by TaqMan RT-PCR, verified the up-regulation of miR-155 in unvaccinated cattle post-infection. Significant correlation was found between the degree of pathology and miR-155 induction in the experimentally infected cattle, suggesting miR-155 is a biomarker of disease development and/or severity. Induction of miR155 expression in cattle sourced from farms with confirmed bTB that tested positive in the tuberculin skin or interferon-gamma blood test was found to be significantly higher in cattle presenting with more advanced pathology (defined by the presence of visible TB lesions) compared to infected cattle without visible pathology and thus likely to be of lower infectivity than those with more advanced disease. In conclusion, our data indicate that miR-155 has potential both as a diagnostic and prognostic biomarker that could be used to identify animals with advanced pathology and as a DIVA test read-out. Its role in the immune biology of bovine TB will also be discussed

  13. Construction and expression of immunogenic hybrid enterotoxigenic Escherichia coli CFA/I and CS2 colonization fimbriae for use in vaccines.

    Tobias, Joshua; Svennerholm, Ann-Mari; Holmgren, Jan; Lebens, Michael

    2010-07-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal-mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.

  14. Service Quality of State Universities in Turkey: The Case of Ankara

    Eres, Figen

    2011-01-01

    The aim of this study is determine the service quality perceptions of students being educated at state universities in Ankara. The sample of the study is composed of final grade students of faculties of Economics and Administrative Sciences. The sample of the study is composed of a total of randomly selected students. There were 416 returned…

  15. Internet Use Habits of Students of the Department of Information Management, Hacettepe University, Ankara

    Ucak, Nazan Ozenc

    2007-01-01

    The frequency and other characteristics of Internet use of students studying at the Department of Information Management at Hacettep University in Ankara, Turkey, are examined. According to the findings, students prefer electronic media to printed media, they find the easy accessibility of the information more important than the other qualities,…

  16. Life cycle assessment of municipal solid waste management methods: Ankara case study.

    Ozeler, D; Yetiş, U; Demirer, G N

    2006-04-01

    Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.

  17. A New Understanding of Ankara Music within the Context of Global Cultural Flow

    Ömer Can Satır

    2015-12-01

    Full Text Available The aim of this study is to consider a new understanding of the complex and multilayered structure of Ankara music, which is situated between tradition and modernity and has become an important form of popular culture in the region, in the context of local and global relationships.. The theoretical framework of the study is based on Appadurai’s “global cultural flow” model. The ethnoscape, finanscape, mediascape, technoscape and ideoscape of Ankara music is examined in accordance with this approach to reveal the dynamics that make this music different. In the light of these findings, it is concluded that the ethnoscape of Ankara music is based on a broad demographic coalition that has created an independent music industry with a finanscape depending on production, distribution and consumption. While this type of music is represented through a network-based social structure, it gains legitimacy outside its bounds within the media environment. The “Ankara” genre and its quest for authenticity described in this work reveal the ideoscape of the new Ankara music.

  18. Middle School Students' Perceptions of the Quality of School Life in Ankara

    Eres, Figen; Bilasa, Pinar

    2016-01-01

    The aim of this research is to measure the perception of middle school students in Ankara regarding the quality of school life. According to the findings obtained, the students have moderate level perceptions about the quality of school life. Their perceptions about sub-dimensions vary. While the students have the highest perceptions about…

  19. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  20. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  1. Comparison of gene expression of Toll-like receptors and cytokines between Piau and Commercial line (Landrace×Large White crossbred) pigs vaccinated against Pasteurella multocida type D.

    Sousa, Katiene Régia Silva; Ribeiro, André Mauric Frossard; Dantas, Waleska de Melo Ferreira; Oliveira, Leandro Licursi de; Gasparino, Eliane; Guimarães, Simone Eliza Facioni

    2017-10-01

    We aimed to compare Toll-like receptors (TLR) and cytokines expression in local Piau breed and a Commercial line (Landrace×Large White crossbred) pigs in response to vaccination against Pasteurella multocida type D. Seronegative gilts for Pasteurella multocida type D and Mycoplasma hyopneumoniae were used, from which peripheral blood mononuclear cells (PBMC) were collected in four time points (T0, T1, T2 and T3; before and after each vaccination dose). For bronchoalveolar lavage fluid cells (BALF), we set groups of vaccinated and unvaccinated animals for both genetic groups. Gene expression was evaluated on PBMC and BALF. In PBMC, when we analyzed time points within breeds, significant differences in expression for TLRs and cytokines, except TGFβ, were observed for Commercial animals. For the Piau pigs, only TGFβ showed differential expression. Comparing the expression among genetic groups, the Commercial pigs showed higher expression for TLRs after first vaccination dose, while for IL2, IL6, IL12 and IL13, higher expression was also observed in T3 and IL8 and IL10, in T1 and T3. Still comparing the breeds, the crossbred animals showed higher expression for TNFα in T1 and T2, while for TGFβ only in T2. For gene expression in BALF, vaccinated Commercial pigs showed higher expression of TLR6, TLR10, IL6, IL8, IL10, TNFα and TGFβ genes than vaccinated Piau pigs. The Commercial line pigs showed higher sensitivity to vaccination, while in local Piau breed lower responsiveness, which may partly explain genetic variability in immune response and will let us better understand the tolerance/susceptibility for pasteurellosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modeling of gas demand using degree-day concept: case study for Ankara

    Gumrah, F.; Katircioglu, D.; Aykan, Y.; Okumus, S.; Kilincer, N.

    2001-01-01

    The demand for natural gas is rapidly increasing in Turkey, as it is in the rest of the world. However, natural gas reserves and production are rather limited in Turkey.The bulk of the Turkish gas demand is met by imports. Russia currently accounts for 69% of Turkey's gas supplies. Physical shortages might occur; supplies for industrial production and household consumption could temporarily run short. Also, fluctuations in consumption might occur due to climatic reasons or peak daily industrial energy demand. Underground gas storage is a necessity in order to regulate these seasonal, daily, and hourly fluctuations. In order to effectively design and utilize underground gas storage, it is necessary to identify the market requirements. In this study, Ankara was chosen as a pilot region due to its strategical importance of being the capital city of Turkey, and a wide range of marketing surveys for the last seven years was performed. All of the factors influencing the gas consumption and the relationships between these factors were analyzed. How does gas demand behave in extremely cold weather? How does the industrial part of the city act in the consumption behavior? What are the plans of the Municipality of Ankara, responsible for the execution of the natural gas distribution project in Ankara? A model was developed based on degree-day (DD) concept, including the annual number of customers, average DDs, and the usage per customer. A history matching study was performed to verify the results of the model with the measured consumption data for the last seven years. Comparisons showed that the calculated consumption by DD model and measured daily consumption were in good agreement. Finally, by using the developed approach, the gas demand was forecasted for Ankara up to 2005. The results of this study can be used to design underground gas storage facility near Ankara. (author)

  3. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients.

    Brendan Fong

    Full Text Available PURPOSE: Dendritic cell (DC vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL subsets in glioblastoma patients treated with DC vaccination at UCLA. EXPERIMENTAL DESIGN: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. RESULTS: The change in regulatory T cell (CD3(+CD4(+CD25(+CD127(low frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623 after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3(+CD4(+ T cells (p = 0.0191; hazard ratio = 2.840 and CD3(+CD8(+ T cells (p = 0.0273; hazard ratio = 2.690, while that of activation markers (CD25, CD69 was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. CONCLUSIONS: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future

  4. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  5. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    Abdallah, Abdallah

    2015-10-21

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  6. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  7. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.

    Polycarpou, Anastasia; Holland, Martin J; Karageorgiou, Ioannis; Eddaoudi, Ayad; Walker, Stephen L; Willcocks, Sam; Lockwood, Diana N J

    2016-01-01

    Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.

  8. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  9. Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development.

    Zhang, Rongguang; Duan, Guangcai; Shi, Qingfeng; Chen, Shuaiyin; Fan, Qingtang; Sun, Nan; Xi, Yuanlin

    2016-11-01

    To develop orally administrated anti-Helicobacter pylori vaccination, a Lactococcus lactis strain was genetically constructed for fusion expression of H. pylori protective antigens HpaA and Omp22. The fusion gene of omp22 and hpaA with an adapter encoding three glycines was cloned from a plasmid pMAL-c2x-omp22-hpaA into Escherichia coli MC1061 and L. lactis NZ3900 successively using a shutter vector pNZ8110. Expression of the fusion gene in L. lactis was induced with nisin resulting in production of proteins with molecular weights of 50 and 28 kDa. Both of them were immunoreactive with mouse anti-H. pylori sera as determined via western blotting. Oral vaccination of BALB/c mice using the L. lactis strain carrying pNZ8110-omp22-hpaA elicited significant systematic humoral immune response (P lactis with immunogenicity. This is a considerable step towards H. pylori vaccines.

  10. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    Abdallah, Abdallah; Hill-Cawthorne, Grant A.; Otto, Thomas D.; Coll, Francesc; Guerra-Assunç ã o, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur Rahman; Malas, Tareq Majed Yasin; Adroub, Sabir; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G.; Behr, Marcel A.; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  11. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults

    L. Coughlan

    2018-03-01

    Full Text Available Background: T-cell responses against highly conserved influenza antigens have been previously associated with protection. However, these immune responses are poorly maintained following recovery from influenza infection and are not boosted by inactivated influenza vaccines. We have previously demonstrated the safety and immunogenicity of two viral vectored vaccines, modified vaccinia virus Ankara (MVA and the chimpanzee adenovirus ChAdOx1 expressing conserved influenza virus antigens, nucleoprotein (NP and matrix protein-1 (M1. We now report on the safety and long-term immunogenicity of multiple combination regimes of these vaccines in young and older adults. Methods: We conducted a Phase I open-label, randomized, multi-center study in 49 subjects aged 18–46 years and 24 subjects aged 50 years or over. Following vaccination, adverse events were recorded and the kinetics of the T cell response determined at multiple time points for up to 18 months. Findings: Both vaccines were well tolerated. A two dose heterologous vaccination regimen significantly increased the magnitude of pre-existing T-cell responses to NP and M1 after both doses in young and older adults. The fold-increase and peak immune responses after a single MVA-NP + M1 vaccination was significantly higher compared to ChAdOx1 NP + M1. In a mixed regression model, T-cell responses over 18 months were significantly higher following the two dose vaccination regimen of MVA/ChAdOx1 NP + M1. Interpretation: A two dose heterologous vaccination regimen of MVA/ChAdOx1 NP + M1 was safe and immunogenic in young and older adults, offering a promising vaccination strategy for inducing long-term broadly cross-reactive protection against influenza A. Funding Source: Medical Research Council UK, NIHR BMRC Oxford. Keywords: Influenza, T-cell responses, Influenza vaccines, Viral vectors, Adults, Older adults

  12. Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class 1 expression

    Benedictus, L.; Luteijn, Rutger D.; Otten, H.; Lebbink, Robert Jan; Kooten, van P.J.S.; Wiertz, E.J.H.J.; Rutten, Victor P.M.G.; Koets, A.P.

    2015-01-01

    Bovine Neonatal Pancytopenia (BNP), a fatal bleeding syndrome of neonatal calves, is caused by maternal alloantibodies absorbed from colostrum and is characterized by lymphocytopenia, thrombocytopenia and bone marrow hypoplasia. An inactivated viral vaccine is the likely source of alloantigens

  13. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors

    Hatano, Manabu; Kuwashima, Naruo; Tatsumi, Tomohide; Dusak, Jill E; Nishimura, Fumihiko; Reilly, Karlyne M; Storkus, Walter J; Okada, Hideho

    2004-01-01

    Background A novel tyrosine kinase receptor EphA2 is expressed at high levels in advanced and metastatic cancers. We examined whether vaccinations with synthetic mouse EphA2 (mEphA2)-derived peptides that serve as T cell epitopes could induce protective and therapeutic anti-tumor immunity. Methods C57BL/6 mice received subcutaneous (s.c.) vaccinations with bone marrow-derived dendritic cells (DCs) pulsed with synthetic peptides recognized by CD8+ (mEphA2671–679, mEphA2682–689) and CD4+ (mEphA230–44) T cells. Splenocytes (SPCs) were harvested from primed mice to assess the induction of cytotoxic T lymphocyte (CTL) responses against syngeneic glioma, sarcoma and melanoma cell lines. The ability of these vaccines to prevent or treat tumor (s.c. injected MCA205 sarcoma or B16 melanoma; i.v. injected B16-BL6) establishment/progression was then assessed. Results Immunization of C57BL/6 mice with mEphA2-derived peptides induced specific CTL responses in SPCs. Vaccination with mEPhA2 peptides, but not control ovalbumin (OVA) peptides, prevented the establishment or prevented the growth of EphA2+ or EphA2-negative syngeneic tumors in both s.c. and lung metastasis models. Conclusions These data indicate that mEphA2 can serve as an attractive target against which to direct anti-tumor immunity. The ability of mEphA2 vaccines to impact EphA2-negative tumors such as the B16 melanoma may suggest that such beneficial immunity may be directed against alternative EphA2+ target cells, such as the tumor-associated vascular endothelial cells. PMID:15563374

  14. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors

    Hatano Manabu

    2004-11-01

    Full Text Available Abstract Background A novel tyrosine kinase receptor EphA2 is expressed at high levels in advanced and metastatic cancers. We examined whether vaccinations with synthetic mouse EphA2 (mEphA2-derived peptides that serve as T cell epitopes could induce protective and therapeutic anti-tumor immunity. Methods C57BL/6 mice received subcutaneous (s.c. vaccinations with bone marrow-derived dendritic cells (DCs pulsed with synthetic peptides recognized by CD8+ (mEphA2671–679, mEphA2682–689 and CD4+ (mEphA230–44 T cells. Splenocytes (SPCs were harvested from primed mice to assess the induction of cytotoxic T lymphocyte (CTL responses against syngeneic glioma, sarcoma and melanoma cell lines. The ability of these vaccines to prevent or treat tumor (s.c. injected MCA205 sarcoma or B16 melanoma; i.v. injected B16-BL6 establishment/progression was then assessed. Results Immunization of C57BL/6 mice with mEphA2-derived peptides induced specific CTL responses in SPCs. Vaccination with mEPhA2 peptides, but not control ovalbumin (OVA peptides, prevented the establishment or prevented the growth of EphA2+ or EphA2-negative syngeneic tumors in both s.c. and lung metastasis models. Conclusions These data indicate that mEphA2 can serve as an attractive target against which to direct anti-tumor immunity. The ability of mEphA2 vaccines to impact EphA2-negative tumors such as the B16 melanoma may suggest that such beneficial immunity may be directed against alternative EphA2+ target cells, such as the tumor-associated vascular endothelial cells.

  15. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  16. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  17. Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo

    Rahul Shukla

    2018-01-01

    Full Text Available Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4. Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE. A recently launched live attenuated vaccine (LAV for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII. Recently, we found that Pichia pastoris-expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris. The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs designated as mE1E2bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus

  18. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  19. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  20. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria

    2010-01-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151

  1. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  2. Update on the current status of cytomegalovirus vaccines.

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  3. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  4. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  5. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  6. Two Engaged Utopias of Young Turkish Republic and Their Transformations; Ankara and Atatürk Experimental Farm

    Zeki Kamil Ülkenli

    2017-06-01

    Full Text Available Ankara is not only a spatial engineering project but also one of the comprehensive social engineering utopian projects of the early Turkish Republic. The experimental Atatürk Forest Farm (AOÇ on the other hand, is an important urban spatial utopian project in Ankara that cannot be reduced to being a simple urban recreation area. It has been physically shaped together with Ankara from the beginning, then later became an important urban entity in the metropolitan macro-form. This article aims to deal with Ankara and AOÇ as interacting and active urban utopias. And to deal with the causes of spatial changes and changing conceptions of the public interest within Ankara metropolitan area by the help of readings of a private photo archive with oral history records about three main components in AOÇ site; Ateliers, Etimesgut (Ahi Mesud Japanese Rose Oil Plants and “Steering Wheel Pub”. The conclusion aims to start a discussion of the projects’ public identity; whether the concept of AOÇ has transformed into a “urban area for the public—despite of the public?” and about the negative effects blocking and affecting the process of applying the Ankara Plan, which began just after 1938. The main resources are an unpublished private photo achieve, private oral history documentation and institutional publications from the AOÇ dated 1933, 1935 and 1953.

  7. Vaccines (immunizations) - overview

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  8. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. A DNA vaccine co-expressing Trichinella spiralis MIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice.

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2013-03-01

    Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).

  10. Virus-Like-Vaccines against HIV.

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  11. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  12. Evaluation of the Current States of Older Employees: The Case in Ankara

    Dr.Sc. Ertan Yesari Hastürk; Dr.Sc. Murat Uzel

    2016-01-01

    This study was performed on the older employees who work in small and medium sized enterprises in Ankara in Turkey. This study involved a survey consisting of 16 questions that applied to the employees. 61 females and 103 males within a total 164 employees who were aged over 55 participated in the survey. Current situations which were about the demographic structures, working conditions, problems of workplace and health problems of the employees, were determined by the survey. 63% of the empl...

  13. Location preferences of groups in public leisure spaces: the case of Likya Cafe in Ankara

    Altay, Can

    1999-01-01

    Ankara : Department of Interior Architecture and Environmental Design and Institute of Economics and Social Sciences, Bilkent Univ., 1999. Thesis (Master's) -- Bilkent University, 1999. Includes bibliographical references. In this study, public leisure spaces are examined considering the social and spatial behavior of occupant groups. After an introduction to the concepts of leisure, its types, its relations with public life and cultural concepts, the study discusses leisure ...

  14. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus).

    Kim, Daniel; Beck, Bo Ram; Lee, Sun Min; Jeon, Jongsu; Lee, Dong Wook; Lee, Jae Il; Song, Seong Kyu

    2016-08-01

    The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Migrations to Ankara by Railway and Settlement Policy (1890-1910

    İhsan Seddar Kaynar

    2016-06-01

    Full Text Available The Anatolian Railway began running between Ankara and Haydarpaşa in Istanbul via İzmit and Eskişehir in early 1893, making transportation from Istanbul to the interior of Anatolia very easy. In late 1892, before the railroad was opened, policymakers prepared official reports on the resettlement of migrants along the rail route from Eskişehir to Ankara; and made regulations accordingly. This studyexamines the route of this migration, which first run to the port of İzmit by sea and then reached Ankara by rail. This article discusses the politics of resettlement and the conditions of migrants settled on the railway route during the twenty-year period between 1890 and 1910, when the Balkan Wars provoked mass migration to Anatolia from the Balkans. It analyzes the locations of the new settlements, the conditions in newly founded villages, and the habitability of the wasteland along the railway route. Daily rations, state aid for housing, types of production, agricultural styles, and the position of artisans will also be considered.

  16. Giulio Mongeri, an Architect Efficient in the Building of Capital City Ankara and his Biography

    Damla Çinici

    2015-06-01

    Full Text Available The study is about Giulio Mongeri (1873 – 1951 who was the architect of Ottoman Bank (1926, Ziraat Bank (1926 – 1929, Monopolies Chief Directorate (1928 and Türkiye İş Bank (1929 buildings in Ankara in the first years of the Republic. Giulio Mongeri was one of the architects prominent in architectural activities both in the last years of Ottoman Empire and first years of the Republic and undertook an effective role in the architectural understanding of the next generation by raising the architects of the future as an instructor of the Academy of Fine Arts. In the study, it is aimed to gain especially the sketches and photos obtained from his diary and not published anywhere else to the scientific world as a new contribution to the knowledge in the available publications. Giulio Mongeri himself, his family and environs in which he was raised, his personality and attitude as a trainer have been appraised in the light of new information. The buildings of Mongeri in Ankara have been studied comparatively with the other buildings in Ankara in this period and an attempt is made to assess the differences in his approach.

  17. Prevalence of restless legs syndrome in Ankara, Turkey: an analysis of diagnostic criteria and awareness.

    Yilmaz, Nesrin Helvaci; Akbostanci, Muhittin Cenk; Oto, Aycan; Aykac, Ozlem

    2013-09-01

    The aim of this study was threefold: (1) to investigate the prevalence of restless legs syndrome (RLS), in Ankara, Turkey; (2) to determine the predictive values of diagnostic criteria; and (3) to determine the frequency of physician referrals and the frequency of getting the correct diagnosis. A total of 815 individuals, from randomly selected addresses, above the age of 15, were reached using the questionnaire composed of the four diagnostic criteria. Individuals who responded by answering 'yes' for at least one question were interviewed by neurologists for the diagnosis of RLS. Frequency of physician referrals and frequency of getting the correct diagnosis of RLS were also determined for patients getting the final diagnoses of RLS. Prevalence of RLS in Ankara was 5.52 %; 41.0 % of the individuals diagnosed with RLS had replied 'yes' to either one, two or three questions asked by interviewers. However, only 21.3 % of individuals who replied 'yes' to all four questions received the diagnosis of RLS. Among the patients who had the final diagnosis of RLS, 25.7 % had referred to a physician for the symptoms and 22.2 % got the correct diagnosis. The RLS prevalence in Ankara was somewhere between Western and Far East countries compatible with the geographical location. Diagnostic criteria may not be fully predictive when applied by non-physician pollsters. Physician's probability of correctly diagnosing RLS is still low.

  18. A novel structural risk index for primary spontaneous pneumothorax: Ankara Numune Risk Index.

    Akkas, Yucel; Peri, Neslihan Gulay; Kocer, Bulent; Kaplan, Tevfik; Alhan, Aslihan

    2017-07-01

    In this study, we aimed to reveal a novel risk index as a structural risk marker for primary spontanoeus pneumothorax using body mass index and chest height, structural risk factors for pneumothorax development. Records of 86 cases admitted between February 2014 and January 2015 with or without primary spontaneous pneumothorax were analysed retrospectively. The patients were allocated to two groups as Group I and Group II. The patients were evaluated with regard to age, gender, pneumothorax side, duration of hospital stay, treatment type, recurrence, chest height and transverse diameter on posteroanterior chest graphy and body mass index. Body mass index ratio per cm of chest height was calculated by dividing body mass index with chest height. We named this risk index ratio which is defined first as 'Ankara Numune Risk Index'. Diagnostic value of Ankara Numune Risk Index value for prediction of primary spontaneous pneumothorax development was analysed with Receiver Operating Characteristics curver. Of 86 patients, 69 (80.2%) were male and 17 (19.8%) were female. Each group was composed of 43 (50%) patients. When Receiver Operating Characteristics curve analysis was done for optimal limit value 0.74 of Ankara Numune Risk Index determined for prediction of pneumothorax development risk, area under the curve was 0.925 (95% Cl, 0.872-0.977, p pneumothorax development however it is insufficient for determining recurrence. Copyright © 2015. Published by Elsevier Taiwan.

  19. Probability to produce animal vaccines in insect baculovirus ...

    The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this system. The first vaccine produced in insect cells for animal use is now in the market. In this study, we reviewed recent progress of animal's vaccine production for different expression ...

  20. Development of an influenza virus vaccine using the baculovirus-insect cell expression system : implications for pandemic preparedness

    Cox, M.M.J.

    2009-01-01

    Key word

    Influenza, rHA, vaccine, baculovirus, insect cells, production, pandemic preparedness

    Influenza (or flu) is a highly contagious, acute viral respiratory disease that occurs seasonally in most parts of the world and is caused by influenza viruses. Influenza

  1. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults

    Ledgerwood, J. E.; Costner, P.; Desai, N.; Holman, L.; Enama, M. E.; Yamshchikov, G.; Mulangu, S.; Hu, Z.; Andrews, C. A.; Sheets, R. A.; Koup, R. A.; Roederer, M.; Bailer, R.; Mascola, J. R.; Pau, M. G.; Sullivan, N. J.; Goudsmit, J.; Nabel, G. J.; Graham, B. S.

    2010-01-01

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of

  2. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  3. Cloning, Expression, and Immunogenicity of Fimbrial-F17A Subunit Vaccine against Escherichia coli Isolated from Bovine Mastitis

    Wei Chen

    2017-01-01

    Full Text Available There is a need to identify and select new promising immunodominant antigens that have the ability to provide protective immunity against E. coli causing bovine mastitis. Recently we showed that f17a was found to be the most prevalent and crucial virulent factor among the pathogenic E. coli isolated from bovine mastitis. Here, in this report, the recombinant F17A based subunit vaccine adjuvant with MF59 was tested for immunogenicity against E. coli in a murine model. The vaccinated mice did not show any abnormal behavioral changes and histopathological lesions after vaccination. The specific antibody level against F17A was significantly higher in MF59-adjuvant-group, and also lasted for longer duration with a significant (P<0.01 production level of IgG1 and IgG2a. Moreover, we noted higher survival rate in mice injected with F17A-MF59-adjuvant group after challenging with the clinical E. coli strain. Our findings of bacterial clearance test revealed that elimination rate from liver, spleen, and kidney in MF59-adjuvant-group was significantly higher than the control group. Finally, the proportion of CD4+T cells was increased, while CD8+ was decreased in MF59-adjuvant group. In conclusion, the current study reveals the capability of F17A-MF59 as a potential vaccine candidate against pathogenic E. coli causing mastitis in dairy animals.

  4. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  5. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings.

    Wang, Jianzhong; Cong, Yanlong; Yin, Renfu; Feng, Na; Yang, Songtao; Xia, Xianzhu; Xiao, Yueqiang; Wang, Wenxiu; Liu, Xiufan; Hu, Shunlin; Ding, Chan; Yu, Shengqing; Wang, Chunfeng; Ding, Zhuang

    2015-05-04

    Newcastle disease virus (NDV) and Goose parvovirus (GPV) are considered to be two of the most important and widespread viruses infecting geese. In this study, we generated a recombinant rmNA-VP3, expressing GPV VP3 using a modified goose-origin NDV NA-1 by changing the multi-basic cleavage site motif RRQKR↓F of the F protein to the dibasic motif GRQGR↓L as that of the avirulent strain LaSota as a vaccine vector. Expression of the VP3 protein in rmNA-VP3 infected cells was detected by immunofluorescence and Western blot assay. The genetic stability was examined by serially passaging 10 times in 10-day-old embryonated SPF chicken eggs. Goslings were inoculated with rmNA-VP3 showed no apparent signs of disease and developed a strong GPV and NDV neutralizing antibodies response. This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Vaccine Safety

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  7. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  8. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody

    Sørensen, K.J.; de Stricker, K.; Dyrting, K.C.

    2005-01-01

    A blocking ELISA that differentiated foot-and-mouth disease virus (FMDV) infected animals from vaccinated animals was developed which uses baculovirus expressed FMDV 3ABC non-structural protein as antigen and monoclonal antibody against FMDV 3ABC non-structural protein as capture and detector...... infected with all seven serotypes of FMDV. The test detected antibodies from days 7 or 9 following experimental infection of non-vaccinated cattle and sheep, and in cattle strong positive reactions persisted for up to 395 days after infection. In vaccinated cattle that became carriers after challenge...... with homologous FMDV, positive reactions were obtained in all but one case. In some of these cattle the antibody response was detected late in comparison to the non-vaccinated infected cattle. The test gave results that compared favourably with two commercial ELISA's when used to test sera from cattle, pigs...

  9. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  12. Vaccines.gov

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  13. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer.

    Chen, Zehong; Hu, Kang; Feng, Lieting; Su, Ruxiong; Lai, Nan; Yang, Zike; Kang, Shijun

    2018-06-01

    Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1 + T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  15. Evaluation of the immune response induced by DNA vaccines expressing MIF and MCD-1 genes of Trichinella spiralis in BALB/c mice.

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2012-12-01

    Plasmids expressing macrophage migration inhibitory factor (MIF) of Trichinella spiralis (TsMIF), multi-cystatin-like domain protein (MCD-1) of T. spiralis (TsMCD-1), or co-expressing TsMIF and TsMCD-1 were constructed with a pVAX1 vector. Their ability to generate a protective immune response against T. spiralis infection was evaluated in BALB/c mice. Groups of mice were immunized twice at 2-week intervals with 100 μg of recombinant plasmids pVAX1-Tsmif, pVAX1-Tsmcd-1 or pVAX1-Tsmif-Tsmcd-1. Control animals were immunized with phosphate-buffered saline (PBS) or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17) and CD4+/CD8+ T cells were monitored. Challenge infection was performed 2 weeks following the second immunization and worm burden was assayed at 35 days post-challenge. Vaccination with pVAX1-Tsmif induced moderate serum IFN-γ and increases of CD4+ and CD8+ T cells, but no specific immunoglobulin antibody response. Vaccination with pVAX1-Tsmcd-1 induced a predominant Th1 antibody (IgG2a and IgG2b) response and strong levels of serum IFN-γ, and increases of CD4+ T cells. Importantly, co-expression of TsMIF and TsMCD-1 in DNA immunization produced more serum IFN-γ and markedly enhanced CD4+ and CD8+ T cells than the single DNA vaccine of the two genes. Challenge infection demonstrated that immunization with pVAX1-Tsmif-Tsmcd-1 reduced worm burdens (by 23.17%; P < 0.05).

  16. Vectores recombinantes basados en el virus Vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis

    Pérez Jiménez, Eva; Larraga, Vicente; Esteban, Mariano

    2005-01-01

    Vectores recombinantes basados en el virus vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis. Los vectores de la invención contienen secuencias codificantes de la proteína LACK, preferentemente insertadas en el locus de hemaglutinina del virus y bajo el control de un promotor que permite su expresión a lo largo del ciclo de infección del virus. Son vectores seguros, estables, que dan lugar a una potente respuesta inmune que confiere protección frente a la leishmaniasis,...

  17. Prevalence and Antibiotic Resistance of Listeria Spp. Isolated from Ready-to-Eat Foods in Ankara

    ŞİRELİ, Ufuk Tansel; GÜCÜKOĞLU, Ali

    2014-01-01

    In this study the presence of Listeria spp. is tested in 100 ready-to-eat food samples purchased from different stores and traditional food shops in the province of Ankara. The tested materials were 20 each of the following: mayonnaise based salad, kadınbudu köfte (fried meatball), fried liver, rice stuffed mussel, and green salad. Microbiological analyzes showed that 13 of 100 salad samples (13%) were contaminated with Listeria spp. while 10 of 100 salad samples (10%) were contaminated with ...

  18. An Assessment for Soft Drink Consumption of Individuals in Centre Town of Ankara Province

    Bilge Gözener; Murat Sayılı

    2015-01-01

    In this study, the Central district of Ankara (Çankaya, Etimesgut, Gölbaşı, Keçiören, Mamak, Polatlı, Sincan and Yenimahalle districts) carbonated drink consumption situation of consumers were examined. The data obtained from questionnaires conducted with 272 families were used in this study. Data were collected in April-May 2012.Between carbonated drink consumption and some demographic characteristics of consumers were tested by chi-square analysis of whether a statistical association. Accor...

  19. A model from the First National Architecture Period in Ankara: Hotel Erzurum

    Hasan Fevzi Çügen

    2013-01-01

    Full Text Available As Ankara became the capital, the emerging problem of accommodation required a change in the function of some dwellings in the city. In the 1930s, the Hotel Erzurum was one of the buildings involved in this change. Hotel Erzurum was located in the Ulus district, right next to the Hotel Europe which was next door to the city’s wholesale produce market. In this study information is given about the construction and architectural features of Hotel Erzurum, which was built in the neo-classical style and was one of the examples with the salient features of the First National Architecture Period structures.

  20. Discrimination against teenagers in the mall environment: a case from Ankara, Turkey.

    Mugan, Guliz; Erkip, Feyzan

    2009-01-01

    Teenagers spend much of their leisure time at shopping malls which is a result of factors such as parental constraints due to the incivility of the streets, financial dependence, and limited financial resources. Migros, a shopping mall in Ankara was chosen as the site for this research with the main purpose of studying discrimination patterns against teenagers in the mall environment. The research was carried out through observation and in-depth interviews with 104 teenagers. Results indicate that, although they have some complaints, most of the teenagers do not perceive discrimination in the mall, unlike their foreign counterparts.

  1. Development of Th1 Imprints to rBCG Expressing a Foreign Protein: Implications for Vaccination against HIV-1 and Diverse Influenza Strains

    Carl Power

    2010-01-01

    Full Text Available We demonstrate here that immunizing naïve mice with low numbers of recombinant Bacille Calmette-Guérin (rBCG expressing β-galactosidase (β-gal generates predominant Th1 responses to both BCG and β-gal whereas infection with high numbers generates a mixed Th1/Th2 response to both BCG and β-gal. Furthermore, the Th1 response to both BCG and β-gal is stable when mice, pre-exposed to low numbers of rBCG, are challenged four months later with high numbers of rBCG. Thus the Th1/Th2 phenotypes of the immune responses to β-gal and to BCG are “coherently” regulated. Such rBCG vectors, encoding antigens of pathogens preferentially susceptible to cell-mediated attack, may be useful in vaccinating against such pathogens. We discuss vaccination strategies employing rBCG vectors that are designed to provide protection against diverse influenza strains or numerous variants of HIV-1 and consider what further experiments are essential to explore the possibility of realizing such strategies.

  2. Rotavirus vaccines

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  3. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA.

    Keiser, Paul B; Gibbs, Barnett T; Coster, Trinka S; Moran, E Ellen; Stoddard, Mark B; Labrie, Joseph E; Schmiel, Deborah H; Pinto, Valerian; Chen, Ping; Zollinger, Wendell D

    2010-10-08

    This phase 1 clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from a lpxL2(-) synX(-) mutant of strain 44/76 with opcA expression stabilized. Thirty-four volunteers were assigned to one of the three dose groups (25 mcg, 25 mcg with aluminum hydroxide adjuvant, and 50 mcg) to receive three intramuscular injections at 0, 6 and 24 weeks. Specific local and systemic adverse events (AEs) were solicited by diary and at visits on days 1, 2, 7 and 14 after each vaccination and at the end of the study at 30 weeks. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again two days later. Blood for antibody measurements and bactericidal assays were drawn 0, 14, and 42 days after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in serum bactericidal activity (SBA) to the wild-type parent of the vaccine strain with high opcA expression at 6 weeks after the third dose was 12/26 (0.46, 95% confidence interval 0.27-0.65). Antibody levels to OpcA were significantly higher in vaccine responders than in non-responders (p=0.008), and there was a trend for higher antibody levels to the lipooligosaccharide (LOS) (p=0.059). Bactericidal depletion assays on sera from volunteers with high-titer responses also indicate a major contribution of anti-OpcA and anti-LOS antibodies to the bactericidal response.These results suggest that genetically modified NOMV vaccines can induce protection against group B meningococcus. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    Peihong Dai

    2014-04-01

    Full Text Available Modified vaccinia virus Ankara (MVA is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs, which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs, but not in plasmacytoid dendritic cells (pDCs. Transcription factors IRF3 (IFN regulatory factor 3 and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1, are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase. MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1 and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  5. Hepatitis Vaccines

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  6. Hd86 mRNA expression profile in Hyalomma scupense life stages, could it contribute to explain anti-tick vaccine effect discrepancy between adult and immature instars?

    Ben Said, Mourad; Galaï, Yousr; Ben Ahmed, Melika; Gharbi, Mohamed; de la Fuente, José; Jedidi, Mohamed; Darghouth, Mohamed Aziz

    2013-11-15

    Bm86 midgut protein has been used in order to control ticks of the Hyalomma genus. Previous studies demonstrated the inefficacity of this antigen in the control of Hyalomma scupense, whereas recombinant Hd86 antigen, the Bm86 ortholog in H. scupense produced in Pichia pastoris, was protective against larval H. scupense tick stage infestations but ineffective in the control of the adult stage. One possible explanation for this result is the variation in Hd86 expression levels between these two developmental stages. To test this hypothesis, Hd86 mRNA levels were characterized in H. scupense developmental stages. The expression profile of Hd86 demonstrated a significant variation between tick life stages and showed a significant reduction in the number of transcripts during feeding and, particularly after molting to adults. The most interesting result was noted after molting of engorged nymphs in unfed adults where the expression levels decreased significantly by 12.78 (10.77-17.39) (pstages might explain, in part, the discrepancy of the Hd86 vaccine efficacy against these two life stages of H. scupense. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  8. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-01-01

    Background The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most e...

  9. Nitrogen utilization of vegetables grown under plastic greenhouse conditions in Ankara using 15N technique

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and eventually to identify the best N fertilizer rate greenhouse experiments were conducted for two years. Yazgi F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be the suitable varieties to grow in the plastic greenhouse conditions in Ankara. Five N treatments [N 0 =0, N 1 =150, N 2 =300, and N 3 =450 kg/ha; also, soil N application treatment (N soil ) equivalent to the fertigation treatment of 300 kg/ha was included for tomato and pepper, however N rates for cucumber was 131, 266 and 339 kg N/ha; N soil being 266 kg N/ha] were investigated using 15 N labeled urea fertilizer. Significantly higher marketable fresh fruit and total dry matter yields and N uptakes values were obtained from N 3 treatments for tomato and cucumber, but from N 2 treatment for pepper. Also, significantly higher yields, N uptakes and % NUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. (author)

  10. Re-use Adaptation Proposal for Hatipoğlu Mansion in Ankara Citadel

    Aydanur Yenel

    2015-06-01

    Full Text Available Ulus Citadel region is the most significant urban focus which consitutes the historical core of the capital Ankara and which locates the historical buildings of the old settlement. Although the current position of Kaleiçi has undergone tremendous changes in its configuration; histocial continuity, the marks of the past and physical values continue while, at the same time, they serve to the traditional part of the city. The purpose of this article is to present how Hatipoglu mansion’s could transfer to the future while its traditional speciality is preserved, it is sustainability suited to present conditions by providing comfort conditions with user’s needs to be repaired in accordance with restoration principle in order to continue cultural heritage Hatipoglu mansion’s existence which has been built in the historical city center of Angora (Ankara. Within the scope of Hatipoglu mansion’s preservation and its historic fabric which is preserved its traditional specialties; the street- parcel- structure relationships and building’s architectural specifications have been examined after investigating castle physical texture. Phases that Hatipoglu mansion’s has been experienced was given while evaluating obtained sources and using 1929 cadastral map, all these works have been directed to restitution and restoration decisions of the structure.

  11. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    Durukan I.

    2013-04-01

    Full Text Available The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF spectroscopic technique in Germany. Spatial and temporal variations of air particulate matter (APM levels in the city were examined. In some stations, APM sampled in according to their size distribution such as PM10 and PM2.5. Elemental characterization of size distributed PM were achieved and evaluated. It was detected that the elements mainly originated from soil in Beytepe station, from soil and solid fuel usage in Kayas station and from traffic and a variety of human activities in Sıhhiye station in air samplings. While the elements of natural origin observed in PM10 fraction, the elements from traffic and human activities were in PM2.5. Eventually, enrichment calculations were performed in order to identify the pollution sources.

  12. Prevalence and Demographics of Exclusive Breastfeeding in Turkish Women in Ankara

    Neslihan Erkuran

    2015-06-01

    Full Text Available Objective: Exclusive breastfeeding (EBF is strongly recommended by the World Health Organization during the first six months of life. Breastfeeding should continue up to two years or more for optimal growth, development and health while it is suggested to start supplementary foods beginning from seventh month. The study aimed to determine frequency and examine the affecting factors of EBF in infants who were admitted to a pediatric outpatient clinic in Ankara, Turkey.Method: A cross-sectional study was conducted in six months period among 603 breastfeeding mothers, with infants aged 6–24 months, who attended to the well-baby clinic. Mothers’ perceptions about breastfeeding, complementary feeding practices and demographic characteristics were collected by interviewing with mothers.Results: Six months EBF rate was 38%. Median week of EBF was 16 weeks (1-40 weeks. Mothers giving birth at younger (≤19 or older (≥35 ages, and mothers having chronic diseases had shorter median week of EBF (p<0.05. Median duration of breastfeeding was 9 months (0-24 months. When mothers who interrupted EBF were asked why they had introduced supplementary foods early, the most frequent reason was mother’s perceptions of having inadequate breast milk (42.5%.Conclusions: The study indicates that frequency of 6 month EBF (38% and median duration of breastfeeding (16 weeks are low in our region, in Ankara. We must develop a local strategy to overcome mothers’ negative perceptions about EBF.

  13. Plastic Surgery Management of Victims of Terrorist Violence in Ankara, Turkey.

    İğde, Murat; Kaplan, Ahmet

    2017-12-01

    Terror attacks have been progressively increasing worldwide through the present era. The management of the consequences of terrorism events is under debate in almost every scientific area. The organization and advancement of health services constitute important components of the crisis management. Similar to other specialty areas in medicine, the medical management of terrorist attacks is becoming important in terms of plastic and reconstructive surgery.Ankara, the capital of Turkey, has been subject to 2 terrorist events in public places within a year. The total number of patients involved in both cases was 434. Ankara Numune Training and Research Hospital is a tertiary health care institution and one of the most important trauma centers in the region. A total of 178 Patients exposed to these events referred to our hospital. Of the total, 34 patients were completely or partially treated in the plastic and reconstructive surgery clinic. In this study, we tried to discuss the difficulties encountered in the classification of patients and plastic surgery during the treatment period of patients who experienced these attacks.Data were obtained from The National News Agency, hospital, and our own clinic registries. Patient classification was based on the injured parts of the body. Statistical analysis was performed for all data. In conclusion, the role and the importance of plastic surgery department especially in trauma management have been emphasized in the light of our findings.

  14. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey

    Tokmak, Burcu; Capar, Goksen; Dilek, F.B.; Yetis, Ulku

    2004-01-01

    The occurrence of trihalomethanes (THMs) in the water supply in the Ankara, Turkey was investigated. Total THMs and total organic carbon measurements were carried seasonally in the samples collected form 22 different districts along with the samples taken from the Ivedik Water Treatment Plant serving 90% of the city. The average summer nonpurgeable organic carbon (NPOC) concentration in the raw water was 4.2 mg/L, and the NPOC removal achieved in the treatment plant was 31%. The concentration of total THMs ranged from 25 to 74 μg/L, from 28 to 73 μg/L, and from 25 to 110 μg/L in winter, spring, and summer, respectively. In all of the samples chloroform existed at the highest concentrations, while bromoform was almost absent. The total THM concentrations were highest in summer for all districts. However, none of the concentrations detected exceeded the USEPA's Stage I limit of 80 μg/L and the EU's limit of 100 μg/L. However, the total THM level in 64% of the districts exceeded the USEPA's Stage II limit of 40 μg/L. The risk estimations carried out indicated that each year 1 of the 5 million Ankara residents could get cancer from the daily intake of water, mainly because of exposure to chloroform through oral ingestion

  15. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  16. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers.

    Bissa, Massimiliano; Illiano, Elena; Pacchioni, Sole; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Massa, Silvia; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2015-03-05

    Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to

  17. Probability to produce animal vaccines in insect baculovirus ...

    Administrator

    2011-09-07

    Sep 7, 2011 ... The insect baculovirus expression system is a valuable tool for the production of vaccine. .... vaccine expression/delivery vehicle (Yu-Chen et al., ... baculoviruses are applied in cell-based assays for drug ... Intramuscular.

  18. Rotavirus vaccines

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  19. Vaccine Hesitancy.

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review

    Kashangura, Rufaro; Sena, Emily S; Young, Taryn; Garner, Paul

    2015-01-01

    Background: The existing Bacillus Calmette–Guérin (BCG) vaccination provides partial protection against tuberculosis (TB). The modified vaccinia ankara virus-expressing antigen 85A (MVA85A) aims to boost BCG immunity. We evaluated the animal evidence supporting the testing of MVA85A in humans. Methods: Our protocol included in vivo preclinical studies of the MVA85A booster with BCG compared with BCG alone, followed by a TB challenge. We used standard methods for systematic review of animal studies, and summarized mortality, measures of pathology and lung bacterial load. The comprehensive literature search was to September 2014. Two independent investigators assessed eligibility and performed data extraction. We assessed study quality and pooled bacteria load using random effect meta-analysis. Findings: We included eight studies in 192 animals. Three experiments were in mice, two in guinea pigs, two in macaques and one in calves. Overall, study quality was low with no randomization, baseline comparability not described and blinding not reported. For animal death (including euthanasia due to severe morbidity), studies were underpowered, and overall no benefit demonstrated. No difference was shown for lung pathology measured on an ordinal scale or bacterial load. The largest mortality trial carried out in macaques had more deaths in the MVA85A vaccine group, and was published after a trial in South Africa had started recruiting children. Conclusions: This independent assessment of the animal data does not provide evidence to support efficacy of MVA85A as a BCG booster. More rigorous conduct and reporting of preclinical research are warranted, and we believe the results of studies should be publicly available before embarking on trials in humans, irrespective of the findings. PMID:26351306

  1. Noninvasive vaccination against infectious diseases.

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  2. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  3. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  4. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  5. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    Casimiro, Danilo R.; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Caulfield, Michael J.; Davies, Mary-Ellen; Tang, Aimin; Chen, Minchun; Huang, Lingyi; Harris, Virginia; Freed, Daniel C.; Wilson, Keith A.; Dubey, Sheri; Zhu, De-Min; Nawrocki, Denise

    2003-01-01

    Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defecti...

  6. Use of adenoviral vectors as veterinary vaccines.

    Ferreira, T B; Alves, P M; Aunins, J G; Carrondo, M J T

    2005-10-01

    Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.

  7. Neonatal outcomes of Syrian refugees delivered in a tertiary hospital in Ankara, Turkey.

    Büyüktiryaki, Mehmet; Canpolat, Fuat Emre; Alyamaç Dizdar, Evrim; Okur, Nilüfer; Kadıoğlu Şimşek, Gülsüm

    2015-01-01

    We retrospectively reviewed the medical records of all Syrian immigrants from the TurkishSyrian border who delivered the Zekai Tahir Burak Maternity and Teaching Hospital Neonatal Intensive Care Unit (NICU) in Ankara, Turkey. Between January 2013 and December 2014 a total of 36,346 women gave birth at this center. Of these, 457 women were Syrian immigrants, comprising 1.2 % (457/36,346) of all deliveries. The number of births among Syrian refugees in Turkey appears to be increasing. Further research is needed to understand the relative morbidity of babies born to Syrian refugees compared to the local population, as well as the economic impact on facilities treating these cases.

  8. [Medical manuscripts in the library of the Deontology Department of the Ankara University Medical School].

    Arda, B

    1998-01-01

    At every academical platform on medical history and its instruction, lack of Turkish medical historiography is mainly emphasized. There are two main factors determining the situation: 1-There isn't any comprehensive Turkish medical history textbook. 2-There are difficulties in reaching the primary sources in this field. Everybody agrees with the importance of reaching medical manuscripts easily and reading and evaluating them in medical history. For this reason, it is important to know where we can find them. In this article, medical manuscripts which are available in the library of the Deontology Department of Ankara University Medical School are introduced. The manuscripts have been listed in alphabetical order of the authors' name. The bibliographic items, such as the size, writing style, and type of paper used, are mentioned.

  9. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  10. Cell wall biochemical alterations during Agrobacterium-mediated expression of haemagglutinin-based influenza virus-like vaccine particles in tobacco.

    Le Mauff, François; Loutelier-Bourhis, Corinne; Bardor, Muriel; Berard, Caroline; Doucet, Alain; D'Aoust, Marc-André; Vezina, Louis-Philippe; Driouich, Azeddine; Couture, Manon M-J; Lerouge, Patrice

    2017-03-01

    Influenza virus-like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant-based biotechnology allows for the large-scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium-mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post-Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG-I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin-based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. DHEC: Vaccinations

    Data, Maps - SC Public Health Diseases and Conditions Flu Tuberculosis STD/HIV and Viral Hepatitis Zika Illnesses E. coli Listeriosis Salmonella Hepatitis A Shellfish Monitoring and Regulation Certified Shippers Vaccines Teen and Preteen Vaccines Vaccines Needed for School Admission Related Topics Perinatal Hepatitis

  12. A study in three districts of Ankara of behaviors associated with irrational use of drugs

    Mustafa Necmi İlhan

    2014-12-01

    Full Text Available Objective:To avoid the irrational use of medicines studies have to be conducted to evaluate the habits related to drug use. This study investigated the characteristics of individuals aged above 18 in using of medicines among in Family Health Care Centers in the city center of Ankara. Methods: This is a descriptive study. A questionnaire was applied to 1990 individuals aged above 18 in several Family Health Care Centers in the city center of Ankara. Results: Less than half of the applicants stated that they attended a health care institution for a health problem; 78.6% stated that they keep medicine at home that 40.3% of those medicines were painkillers. 60.9% of the applicants claimed they read the instructions provided with the medicine; 57.0% of the applicants claimed to use the prescribed medicine exactly as instructed. 68.9% of those aged 55 and above of the applicants, 63.0% of the women, 63.3% of the married women, 71.2% of illiterates, 70.6% of housewives, 68.9% of those having monthly income between 1001-1500 TL, and 68.8% of those who had someone with chronic disease at home claimed that they would ask the doctor to prescribe the medicines they wanted (p<0.05. Conclusion: Almost half of the participants did not apply to a health care institution and a substantial portion of them used home remedies in case of a health problem. In order to reduce irrational drug use, public education for rational use of medicines needs to be implemented.Keywords: Rational use of medicine, prescription, descriptive

  13. Ankara Temple (Monumentum Ancyranum/Temple of Augustus and Rome restoration

    Ahmet Gökdemir

    2015-06-01

    Full Text Available Temple of Augustus and Rome, also referred as Monumentum Ancyranum (Ankara Temple, is located near Haci Bayram Mosque in Ulus, Ankara. The temple which was built on behalf of Phrygian God ‘Men’ in 2nd century BC has been destroyed. The temple whose remains are present, on the other hand, was built for Roman Emperor ‘Augustus’ (Gaius Octavius in 25 BC in the name of a commitment sign by King Pilamenes, the son of King Amintos, of Galatia. The positions of the 4 columns in the doorways and 2 columns in the rear sides are recognizable. Currently, only the sidewalls and ornamented door part are remaining. The original testament of Augustus in Temple of Rome, which is written in Latin and Greek and is telling the achievements of Augustus, is imitated in the mosque that is neighboring the wall of Monumentum Ancyranum. Some parts of the patina are spilled because of the climatic parameters (wind, heat, precipitation, and frost. As a result of the petrographic analysis made on the spilled parts of patina, it is concluded that the temple, which has a great importance in the world history, has to be restorated. As a result of the analyses (scanning electron microscope (SEM analysis, EDS, and X-ray diffraction (XRD analysis, inner and outer sides of Naos are being constructed without mortar. In the parts, which are broken from the main body, calcium carbonate (CaCO3 and magnesium carbonate (MgCO3 are detected. Besides, it is observed that the main body of the temple is mainly consisting of calcium mineral. If this temple will be restored in the future, it is important to watch out for the calcium mineral property of the building.

  14. Association of Some Environmental Factors with Breath Carbon Monoxide Levels of Some Taxi Drivers in Ankara

    Oguz Baran

    2010-12-01

    Full Text Available AIM: Taxi drivers are among the occupational groups with the highest smoking prevalence and exposure to carbon monoxide (CO. This study aimed to measure breath CO levels of some taxi drivers working in Ankara and to find out some associated factors (if any. METHOD: The descriptive study was carried out with 173 taxi drivers from 14 different taxi stations in the center of Ankara. Data was collected by face to face interviews with a standart questionnaire, while breath CO was measured by a Pi-CO Smokerlyser. Descriptive statistics were used to summarize data, whereas chi-square, independant samples t-test and One-Way ANOVA were used to compare groups by SPSS 15.0 statistical package programme. RESULTS: In the study, all of the taxi drivers (n=173 were male with a mean age of 39.2±9.6 years. Of the drivers, 58.4% were current smokers, whereas 75.1% were exposed to enviromental tobacco smoke. The frequency of indoor smoking in the taxi stations, taxis and drivers’ homes were 48.0%, 45.1%, and 59.0%, respectively. The mean breath CO level of the drivers was 16.9±12.8 ppm. CO level was positively associated with the current smoking status, total years of smoking, number of cigarettes smoked per day and passive exposure to tobacco smoke, whereas the association was negative with the elapsed time from the last cigarette smoked (p0.05. CONCLUSION: Results of the study provide evidence in support of the previous literature that smoking is one of the most important sources of carbonmonoxide. Interventions such as awareness raising trainings, referral of smokers willing to quit smoking to smoking cessation centers and screening programmes for smoking related diseases are needed to be implemented in collaboration with the relevant drivers’ associations. [TAF Prev Med Bull 2010; 9(6.000: 591-596

  15. Sociodemografic and Clinical Characteristics of Suicidal Cases who Attempted to Emergency Services in Ankara

    Selma ERCAN

    2016-04-01

    Full Text Available Objective: The aim of the study is to determine the sociodemografic and clinical characteristics of suicide attempted cases who were admitted to the emergency departments of the hospitals in the first six months of 2010 in Ankara. Methods: Data were obtained by examining the suicide attempted registration forms that were filled out in the emergency services of hospitals working for the Ministry of Health retrospectively. Results: The incidence of suicide attempts in women (76.5% is higher than men (23.5%. Suicide attempts are high in 15-24 group of age (59.3 %. The rate of suicide attempts is high in patients who were single (57.9 % and students who were in education level of secondary (44.6 % and high school (40.2 %. The most common hospitals that were applied are Ankara Training and Researsch Hospital (29.8% and Kecioren Training and Research Hospital (12.4%. Also Mamak (19.7% and Kecioren (17.2% are towns that cases were seen mostly. The most applied method of suicide attempted is the usage of drugs and toxic substances with the 96.2%. The increment ratio of the suicide attempts is seen paticularly from January to June. Family (16.0% and psychiatric disorder (15.2% are mainly stressors leading to suicide attempted. Discussion: All attempted suicide patients who applied to Emergency Department should be directed to Crisis Intervention Unit immediately and following-up the cases with psychiatric consultation must become obligatory as well as medical treatments. The findings have been discussed with the literature. [JCBPR 2016; 5(1.000: 5-12

  16. The first Koç Han: Pioneering modern architecture in Ankara

    Oya Atalay Franck

    2013-01-01

    Full Text Available Koç Holding is the most established conglomerate in Turkey. Th e company’s beginnings date from the mid 1920s, when Ahmet Vehbi Koç, founder of Koç Holding, had his first own company registered with the Ankara Chamber of Commerce. In 1932, Koç moved his business from his father’s store on Anafartalar Street to a new building, the first Koç Han, erected the same year on Çankırı Street Nr.13 in Ulus. Th e building’s designer was Swiss-Austrian architect Ernst Arnold Egli, who had come to Turkey only five years earlier upon invitation by the government to work as chief architect of the Ministry of National Education. During his stay, which lasted from 1927 until 1940, Egli realized about 40 projects and worked on many more. Koç Han is the rare example of a commercial building by Egli. At a time when the urban aspect of the old town center of Ankara consisted mostly of one-or two-storeyed stone-and-wood houses, the first Koç Han represented an altogether new building type for the town, in being a multipurpose edifice with space for shops at street level, with large storage facilities below ground, and providing off ices and housing on the upper fl oors. Th e functional rigor of the plan and the sober modernism of the building’s facades contrasted strongly with the architecture of the time. In this respect, the first Koç Han was a strong statement regarding Ahmet Vehbi Koç’s belief in a modern Turkey and to the contribution of the building’s architect, Ernst Arnold Egli, to this project.

  17. Awareness and Knowledge Levels of Turkish College Students about Human Papilloma Virus Infection and Vaccine Acceptance.

    Oz, Murat; Cetinkaya, Nilufer; Apaydin, Aysen; Korkmaz, Elmas; Bas, Sevda; Ozgu, Emre; Gungor, Tayfun

    2018-04-01

    Awareness of HPV by the target population is an important determinant of vaccine acceptance. The aim of this study is to evaluate the awareness of HPV infection and acceptability of the HPV vaccines among Turkish college students. College students aged 18-30 who were attending a large public university in Ankara participated in this study. The participants were asked to complete a questionnaire to elicit demographic characteristics, awareness level of HPV and HPV vaccine, and willingness to be vaccinated. One thousand one hundred sixty students responded to the invitation email and completed the questionnaire. The mean scores of female students about HPV and HPV vaccine were 7.1/15 and 3.6/9, respectively, while these scores were 7.9/15 and 3.4/9 among male students, respectively. While 51 % percent of female and 33.5 % of male students had heard of HPV and 32.8 % and 18 % of them had heard of HPV vaccine, respectively, only 1.5 % of female and 0.4 % of male students had been vaccinated against HPV. A total of 507 students (43.7 %) had previously heard of HPV. Only 309 (26.6 %) of the participants had previously heard of the HPV vaccine, and 45.1 % of the students were willing to receive HPV vaccination. The main predictors for willingness to be vaccinated were the following: sexual experience, sexual behavior, past history of sexually transmitted infection (STI), and knowledge about HPV and HPV vaccine. Higher awareness levels of HPV and HPV vaccine are significantly related to greater willingness to be vaccinated, and the main reasons for rejecting the vaccine were insufficient information about the vaccine and possible unknown side effects.

  18. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma.

    Qian, Yue; Zhang, Na; Jiang, Ping; Chen, Siyuan; Chu, Shujuan; Hamze, Firas; Wu, Yan; Luo, Qin; Feng, Aiping

    2012-08-01

    Listeria monocytogenes (LM), a Gram-positive facultative intracellular bacterium, can be used as an effective exogenous antigen expression vector in tumor-target therapy. But for successful clinical application, it is necessary to construct attenuated LM stain that is safe yet retains the potency of LM based on the full virulent pathogen. In this study, attenuated LM and recombinants of LM expressing melanoma inhibitory activity (MIA) were constructed successfully. The median lethal dose (LD(50)) and invasion efficiency of attenuated LM strains were detected. The recombinants were utilized for immunotherapy of animal model of B16F10 melanoma. The level of MIA mRNA expression in tumor tissue was detected by using real-time polymerase chain reaction (PCR) with specific sequence, meanwhile the anti-tumor immune response was assayed by flow cytometric analysis and enzyme-linked immunosorbent spot (ELISPOT) assay. The results showed the toxicity and invasiveness of attenuated LM were decreased as compared with LM, and attenuated LM expressing MIA, especially the double-genes attenuated LM recombinant, could significantly induce anti-tumor immune response and inhibit tumor growth. This study implicates attenuated LM may be a safer and more effective vector for immunotherapy of melanoma.

  19. Over-expression of gene encoding heat shock protein 70 from Mycobacterium tuberculosis and its evaluation as vaccine adjuvant

    J Dhakal

    2013-01-01

    Full Text Available Background: Heat shock proteins (Hsps are evolutionary ancient and highly conserved molecular chaperons found in prokaryotes as well as eukaryotes. Hsp70 is a predominant member of Hsp family. Microbial Hsp70s (mHsp70s have acquired special significance in immunity since they have been shown to be potent activators of the innate immune system and generate specific immune responses against tumours and infectious agents. Objectives: The present study was aimed to clone express and purify recombinant Hsp70 from the Mycobacterium tuberculosis and characterise it immunologically. The study also aimed at determining the potential of recombinant M. tuberculosis heat shock protein (rMTB-Hsp70 as adjuvant or antigen carrier. Materials and Methods: Cloning of M. tuberculosis heat shock protein (MTB-Hsp70 amplicon was carried out using the pGEMT-Easy vector although for expression, pProExHTb prokaryotic expression vector was used. Purification of recombinant Hsp70 was carried out by nickel-nitrilotriacetic acid (Ni-NTA affinity chromatography. For immunological characterization and determining the adjuvant effect of MTB-Hsp70, BALB/c mice were used. The data obtained was statistically analysed. Results: Hsp70 gene was cloned, sequenced and the sequence data were submitted to National Center for Biotechnology Information (NCBI. Recombinant MTB-Hsp70 was successfully over-expressed using the prokaryotic expression system and purified to homogeneity. The protein was found to be immunodominant. Significant adjuvant effect was produced by the rMTB-Hsp70 when inoculated with recombinant outer membrane protein 31; however, effect was less than the conventionally used the Freund′s adjuvant. Conclusion: Protocol standardised can be followed for bulk production of rHsp70 in a cost-effective manner. Significant adjuvant effect was produced by rMTB-Hsp70; however, the effect was than Freund′s adjuvant. Further, studies need to be carried out to explore its

  20. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  1. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  2. DNA vaccines for aquacultured fish

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production......Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...

  3. Virus-Vectored Influenza Virus Vaccines

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  4. FLU VACCINATION

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  5. Expression, purification and characterization of the recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO), an active immunotherapeutic vaccine component.

    Xu, Bingze; Lundgren, Mats; Magnusson, Ann-Christine; Fuentes, Alexis

    2010-11-01

    The active vaccine component recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO) has been expressed in CHO-K1 cells. It contains two identical polypeptide chains with 338 amino acid residues in each chain connected by two disulfide bridges. The cell lines were adapted to suspension culture in a serum-free medium. An expression level of 60 mg/L was obtained after 8 days in a shaking flask at a temperature of 31.5 degrees C. The OSO protein has been purified to homogeneity by a combination of three chromatographic steps. Virus inactivation and reduction by solvent detergent treatment and nano-filtration were included in the process. The residual host cell protein content was less than 50 ng/mg OSO as analyzed by ELISA. Purity was analyzed by SDS-PAGE under reducing and non-reducing conditions and was estimated by densitometry to be above 99.0%. The dimer content was less than 0.1% as estimated by analytical size exclusion chromatography. The molecular mass, as estimated by SDS-PAGE, is 90 kDa. A value of around 74 kDa was calculated from its amino acid composition. This indicates that the protein is heavily glycosylated containing around 18% carbohydrate. Isoelectric focusing in polyacrylamide gel disclosed a ladder type band pattern with pI values in the pH-range 7.0-8.3, indicating a variation in the sialic acid content. The OSO protein is not stable at temperatures above 40 degrees C and at pH values below 4 indicating that virus inactivation by incubating the protein solution at higher temperature or at lower pH is not possible. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry

    Lorenzen, Ellen; Lorenzen, Niels; Einer-Jensen, Katja

    2005-01-01

    The present study was performed as a time course study of fish vaccinated with 20 mu g plasmid DNA vaccine encoding either the VHSV G-protein or the VHSV N-protein. Samples of the injection site were collected sequentially over a 7-week period. The study revealed an intense positive staining by i...

  7. Vaccine hesitancy among parents of adolescents and its association with vaccine uptake.

    Roberts, James R; Thompson, David; Rogacki, Brianna; Hale, Jessica J; Jacobson, Robert M; Opel, Douglas J; Darden, Paul M

    2015-03-30

    Addressing parental vaccine hesitancy may increase adolescent vaccination acceptance. However, no validated measure exists to identify parents hesitant toward adolescent vaccines. To determine if a modified version of the Parent Attitudes about Childhood Vaccines (PACV) survey, a previously validated tool to identify parental hesitancy toward vaccines in infants, predicts adolescent vaccine uptake at office visits. We modified the PACV for use in the adolescent setting and distributed it to a convenience sample of parents of adolescents aged 11 to 17 presenting for care at a diverse group of six pediatric practices in Oklahoma and South Carolina. We determined the vaccination status of the parents' adolescents for 3 vaccines (Tetanus-diphtheria-acellular pertussis [Tdap], meningococcal conjugate [MCV4], and human papillomavirus [HPV] vaccines). We used Fisher's exact tests to compare vaccination status with each survey item and with an overall general hesitancy scale that we constructed. We analyzed 363 surveys. At the time of the visit, vaccination coverage was 84% for Tdap, 73% for MCV, and 45% for any dose of HPV. Thirty-nine percent of parents expressed concern about vaccine efficacy and 41% expressed concern about side effects. Forty-five percent of parents disagreed with the statement that "teens can get all of the vaccines that are due at a single visit." Two individual items were associated with not receiving a dose of HPV vaccine that was due. The overall modified PACV score failed to predict adolescent vaccine uptake at an office visit. Several individual items were associated with vaccine uptake. The cumulative modified PACV, a general measure of vaccine hesitancy, was not associated with vaccination status despite illuminating parental hesitancy. We need to better understand vaccine-specific concerns for the adolescent population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reasons for non-vaccination: Parental vaccine hesitancy and the childhood influenza vaccination school pilot programme in England.

    Paterson, Pauline; Chantler, Tracey; Larson, Heidi J

    2017-08-14

    In 2013, the annual influenza immunisation programme in England was extended to children to reduce the burden of influenza, but uptake was sub-optimal at 53.2%. To explore the reasons some parents decided not to vaccinate their child against influenza as part of the pilot programme offered in schools. Cross-sectional qualitative study conducted between February and July 2015. 913 parents whose children were not vaccinated against influenza in the school pilots in West Yorkshire and Greater Manchester, England, were asked to comment on their reasons for non-vaccination and invited to take part in a semi-structured interview. 138 parents returned response forms, of which 38 were eligible and interested in participating and 25 were interviewed. Interview transcripts were coded by theme in NVivo. A third of parents who returned response forms had either vaccinated their child elsewhere, intended to have them vaccinated, or had not vaccinated them due to medical reasons (valid or perceived). Most interviewees were not convinced of the need to vaccinate their child against influenza. Parents expressed concerns about influenza vaccine effectiveness and vaccine side effects. Several parents interviewed declined the vaccine for faith reasons due to the presence of porcine gelatine in the vaccine. To significantly decrease the burden of influenza in England, influenza vaccination coverage in children needs to be >60%. Hence, it is important to understand the reasons why parents are not vaccinating their children, and to tailor the communication and immunisation programme accordingly. Our finding that a third of parents, who did not consent to their child being vaccinated as part of the school programme, had actually vaccinated their child elsewhere, intended to have their child vaccinated, or had not vaccinated them due to medical reasons, illustrates the importance of including additional questions or data sources when investigating under-vaccination. Copyright © 2017 The

  9. Hepatitis Vaccines

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  10. Hepatitis Vaccines

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  11. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X.

    Illiano, Elena; Bissa, Massimiliano; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2016-10-02

    The therapeutic antitumor potency of a prime-boost vaccination strategy was explored, based on the mutated, nontransforming forms of the E6 (E6 F47R ) and E7 (E7 GGG ) oncogenes of Human Papilloma Virus type 16 (HPV16), fused to the Potato virus X (PVX) coat protein (CP) sequence. Previous data showed that CP fusion improves the immunogenicity of tumor-associated antigens and may thus increase their efficacy. After verifying the correct expression of E6 F47R CP and E7 GGG CP inserted into DNA and Fowlpox virus recombinants by Western blotting and immunofluorescence, their combined use was evaluated for therapy in a pre-clinical mouse model of HPV16-related tumorigenicity. Immunization protocols were applied using homologous (DNA/DNA) or heterologous (DNA/Fowlpox) prime-boost vaccine regimens. The humoral immune responses were determined by ELISA, and the therapeutic efficacy evaluated by the delay in tumor appearance and reduced tumor volume after inoculation of syngeneic TC-1* tumor cells. Homologous DNA/DNA genetic vaccines were able to better delay tumor appearance and inhibit tumor growth when DNAE6 F47R CP and DNAE7 GGG CP were administered in combination. However, the heterologous DNA/Fowlpox vaccination strategy was able to delay tumor appearance in a higher number of animals when E6 F47R CP and in particular E7 GGG CP were administered alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  13. The Impacts of Gender Discrimination, Socio-Economic Capital & University Enrollment Plans: A Case Study in Ankara Distinct

    Ulusoy, M. Demet

    2017-01-01

    Drawing on a sample of 726 non-clinical adolescents (aged 17-18 years) from high schools in Ankara/ Turkey, this study investigated the interacting relationships between Turkish adolescents’ university plans and personal capital variables such as gender, school achievement, self-esteem, anxiety/depression, goal setting, course attendance and family atmosphere such as parental supporting, parental monitoring, parental separation and socio-economic c...

  14. Flu Vaccination

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Flu vaccination

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  16. FLU VACCINATION

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu Vaccination

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  18. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  19. Soil erosion assessment using geographical information system (GIS) and remote sensing (RS) study from Ankara-Guvenc Basin, Turkey.

    Dengiz, Orhan; Yakupoglu, Tugrul; Baskan, Oguz

    2009-05-01

    The objective of this research was to assess vulnerable soil erosion risk with qualitative approach using GIS in Ankara-Guvenc Basin. The study area is located about 44 km north of Ankara and covers 17.5 km2. The selected theme layers of this model include topographic factor, soil factors (depth, texture, impermeable horizon) and land use. Slope layer and land use-land cover data were prepared by using DEM and Landsat-TM satellite image. According to land use classification, the most common land use type and land cover are rangeland (50.5%) then, rainfed (36.4%), week forest land (3.2%), irrigated land (0.7%) and other various lands (rock out crop and lake) (9.2%). Each land characteristic is also considered as a thematic layer in geographical information systems (GIS) process. After combination of the layers, soil erosion risk map was produced. The results showed that 44.4% of the study area is at high soil erosion risk, whereas 42% of the study area is insignificantly and slightly susceptible to erosion risk. In addition, it was found that only 12.6% of the total area is moderately susceptible to erosion risk. Furthermore, conservation land management measures were also suggested for moderate, high and very high erosion risk areas in Ankara-Guvenc Basin.

  20. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  1. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertilization system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm soil depth

  2. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertiligation system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm

  3. A proton irradiation test facility for space research in Ankara, Turkey

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  4. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  5. Expression

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  6. Instruments for oral disease-intervention strategies : recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

    Maassen, C.B.M.; Laman, J.D.; Heijne den Bak-Glashouwer, M.J.; Tielen, F.J.; Holten-Neelen, J.C.P.A. van; Hoogteijling, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; Shaw, D.M.

    1999-01-01

    Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in

  7. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    Angov, Evelina

    2000-01-01

    .... Since antibody is likely the effector mechanism induced by MSP-(42), it is important to insure that recombinant vaccines based upon this antigen be folded correctly and contain T-helper epitopes that will enhance induction of humoral responses...

  8. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  9. Sex and the capital city: the political framing of syphilis and prostitution in early republican Ankara.

    Evered, Emine Ö; Evered, Kyle T

    2013-04-01

    In its initial years, the nascent Turkish republic established the Ministry of Health and Social Assistance in order to promote public health. Beyond simply facilitating its modernizing agenda for the emergent nation-state as it sought to define itself against an Ottoman past, this institution was also geared toward remedying a self-defined population crisis by prioritizing and confronting particular diseases and health conditions. One of the maladies of utmost concern was syphilis. Based upon an analysis of official primary sources, this article engages with how the developing republic distinguished and consequently politically constructed-or framed-the syphilis problem from the vantage of its new forward capital, Ankara. Integral to this project of confronting this sexually transmitted disease, public health officials projected upon both this ailment and their understanding of the suitable means for its treatment their own views of what constituted appropriate sexual practices and relations. In doing so, certain subgroups of the population, especially prostitutes, were particularized as targets for surveillance and policing through regimes of licensing and compulsory medical examinations. Stemming from the state's framing of the disease-and its definition of appropriate sexual practices-this article also examines the subsequent legislative and public health education projects that followed.

  10. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  11. The main activities and scientific collaboration possibilities at Ankara Nuclear research and training center

    Yucel, H.; Turhan, S.; Zararsiz, A.; Oksuz, B.S.

    2004-01-01

    Full text: Founded in 1964, Ankara Nuclear Research and Training Center (ANRTC) conducts and facilitates the scientific activities including training (summer practice, MSc and Ph D studies in physics and chemistry, IAEA fellowship programs etc.), research and other studies in nuclear and related fields. As it's a part of main duties, ANRTC has analysis on the variety of samples, and radiation protection services commercially, for radiation workers in state, public and private sectors. Research, development and application projects implemented in this Center have mostly been supported by State Planning Organization (SPO) and Turkish Atomic Energy Authority (TAEA). In addition to the projects there are on going collaborative studies with some national Universities and International Atomic Energy Agency. The main activities carried out in ANRTC can be summarized as: studies on experimental nuclear physics, application of nuclear techniques such as XRF, XRD, Gamma, Alpha, etc. for environmental pollutants, archaeological and geological dating, elemental and crystal structural analyses, studies on the detection of irradiated foodstuff by ESR, development of accident dosimeters to be used in the case of a nuclear or radiological accident, and radiation matter interaction studies. In near future, for young scientists, there will be new collaboration possibilities related to accelerator-based applications, especially the new production methods of radioisotopes and their radiopharmaceuticals by using a cyclotron when our 30 MeV p / 15MeV d cyclotron facility project is underway

  12. Urinary cotinine and breath carbon monoxide levels among bar and restaurant employees in ankara.

    Caman, Ozge Karadag; Erguder, Berrin I; Ozcebe, Hilal; Bilir, Nazmi

    2013-08-01

    Hospitality sector employees constitute one of the key groups with respect to their secondhand tobacco smoke exposure at work. This study aimed to detect urinary cotinine and breath carbon monoxide (CO) levels among bar and restaurant employees in Ankara, as well as the employees' opinions on the new antitobacco law, changes in smoking behavior, and subjective health status before and after the law entered into force. This before-after study was conducted in 19 premises, with the participation of 65 employees before implementation and 81 employees 3 months after implementation of the new antitobacco law in the hospitality sector. Data in both phases were collected through face-to-face surveys, breath CO measurements, and urinary cotinine analysis. Descriptive statistics were used to summarize data, whereas chi-square test, paired and unpaired t tests, and analysis of variance were used to compare groups. Most of the restaurant and bar employees were male and below 35 years old. Before-after comparison showed that health complaints of the hospitality sector employees such as watering and itching in the eyes, difficulty in breathing, and cough (p law. Among the smoking employees, mean number of cigarettes smoked was also found to decrease (p = .012). Majority of the employees (83.8%) were found to support the smoking ban in enclosed public places. Results of this study provide solid evidence on the positive health effects of smoke-free laws and employees' support for smoke-free workplaces.

  13. Polycentric Development for Sustainable Cities: An Evaluation for the Ankara Metropolitan Area

    N Aydan Sat

    2017-06-01

    Full Text Available Urban population growth and the accompanying urban growth and expansion are seen as the main problems of metropolitan cities; this keeps the issues of how to consider the social, economic, spatial and environmental dimensions of cities within the framework of a concept of sustainability, and how to shape cities within this context, on the agenda. In today’s world, cities are accepted as the main hubs of energy consumption and environmental pollution, as centers of capital, culture and innovation, and as the places of residence of millions of people. Expanding and sprawling urban forms are seen as unsustainable in terms of land use, energy and the consumption of environmental resources. Thus, the question ‘How should the urban development model be applied to create sustainable cities?’ is on the agenda of theorists, politicians and practitioners alike. Taking these discussions into consideration, this study searches for an answer to the question of whether the polycentric urban development model can be used as a tool for sustainable cities by taking into account the current literature and practices, and evaluating the case of the Ankara metropolitan area.

  14. Requests for emergency hyperbaric oxygen treatment for carbon monoxide poisoning in Ankara, Turkey.

    Özgök-Kangal, Münïre Kübra; Karatop-Cesur, Iclal; Akcali, Gökhan; Yildiz, Senol; Uzun, Günalp

    2016-09-01

    Carbon monoxide (CO) poisoning is common in Turkey. Our department is the main provider of emergency hyperbaric oxygen therapy (HBOT) in Ankara and neighboring cities. In this study, we analyzed the characteristics of CO-poisoned patients who were referred by phone to our department for emergency HBOT. We retrospectively reviewed the records of phone consultations with emergency departments regarding the need for treatment of CO-poisoned patients with HBOT between 14 January 2014 and 14 January 2015. The following information was extracted from medical records: age, gender, CO source, exposure duration, carboxyhemoglobin (COHb) level, symptoms, electrocardiography (ECG) findings, cardiac enzymes, pregnancy, the distance of referring hospital to our centre, time between admission and consultation and HBOT decision. Over the one-year period, 562 patients with CO poisoning were referred for HBOT. We recommended HBOT for 289 (51%) patients. HBOT was recommended for 58% (n = 194) of the patients with COHb ≥ 25%, 72% (n = 163) of the patients with a history of syncope, 67% (n = 35) of the patients with ECG abnormality, and 67% (n = 14) of pregnant patients. Patients for whom HBOT was not recommended despite having positive signs of severe poisoning were referred significantly later compared to patients for whom HBOT was recommended. We found that the duration from admission to an emergency department to HBOT consultation affected our decision-making.

  15. The Use of Isotope Techniques to Separate of Hydrography Components. Case Study: Ankara-Guvenc Basin

    Tekeli, Y.I.; Sorman, A.U.; Sayin, M.

    2002-01-01

    In this research, a stable environmental isotope study was carried out from analysis of water samples collected from rainfall, runoff (total discharge), springs (subsurface flows), and wells (ground waters)in Ankara-Guevenc basin having a drainage area of about 16.125 km 2 between 1996-2000. The aim of the study was to investigate the rainfall-runoff relationship for the basin. Recorded total ten discharge hydrographs are separated to their components using stable isotopes (Oxygen-18, Deuterium) contents. Among these samples, unit hydrographs from two one-peak storm hydrographs were derived using both isotope and graphical methods, and the derived unit hydrographs values including peaks were compared. Peak values of 10 and 20 minutes unit hydrographs of the basin derived by using isotope method (Q p = 1322 1/s and Q p = 1327 l/s) are compared with those of graphical method (Q p = 1656 1/s, and Q p = 1250 1/s) using Barnes semi-log approach. It was found out that, the contribution of subsurface flow which is component of total discharge hydrograph and originating from various sub layers are important in the total flow of basin using isotope method of approach

  16. Consumer Decision - Making Process in E - Commerce: Case of Salzburg - Ankara

    Ahmet Gürbüz

    2015-09-01

    Full Text Available In a globalized world, companies need to track the changes occur in their internal and external stakeholders in order to develop consistent strategies, structures and systems for success in e-commerce. Tracking and researching the existing and potential customers and companies as external stakeholders has become very important. This study aims to reveal a scientific approach about the purchasing decisions of e-commerce companies’ customers, to carry the e-commerce applications in Austria to Turkey, to transfer the e-commerce applications in Turkey to Austria and to contribute for the development of e-commerce. To achieve this, in-depth interviews were conducted with 16 female e-commerce users in Ankara/Turkey and in Salzburg/Austria to reveal the similarities and differences between the purchasing decision processes of different countries’ citizens. Similarities and differences in the purchasing decision process of customers were determined for the dimensions of price compatibility, practicality, accessibility, speed, comfort, convenience and cost and suggestions are offered for the development of e-commerce in Turkey.

  17. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  18. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. Genital herpes is a highly prevalent chronic disease caused by

  19. DNA Vaccines

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  20. Vaccination Policies

    Verweij, M.F.

    2013-01-01

    Vaccination involves priming the immune system with an antigenic agent that mimics a virus or bacterium, which results in immunity against the “real” microorganism. Collective vaccination policies have played an important role in the control of infectious disease worldwide. They can serve the

  1. TUMOUR VACCINE

    Wagner, Ernst; Kircheis, Ralf; Crommelin, D.; Van Slooten, Maaike; Storm, Gert

    1999-01-01

    The invention relates to a tumour vaccine with a tumour antigen base. In addition to a source of tumour antigens, the vaccine contains a release system for the delayed release of the active agent IFN- gamma , the active dose of IFN- gamma being 50 ng to 5 mu g. The IFN- gamma is released over a

  2. Rotavirus Vaccine

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  3. Highly efficient expression of interleukin-2 under the control of rabbit β-globin intron II gene enhances protective immune responses of porcine reproductive and respiratory syndrome (PRRS DNA vaccine in pigs.

    Yijun Du

    Full Text Available Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV had caused catastrophic losses in swine industry in China. The current inactivated vaccine provided only limited protection, and the attenuated live vaccine could protect piglets against the HP-PRRSV but there was a possibility that the attenuated virus returned to high virulence. In this study, the eukaryotic expression vector pVAX1© was modified under the control of rabbit β-globin intron II gene and the modified vector pMVAX1© was constructed. Porcine interleukin-2 (IL-2 and GP3-GP5 fusion protein of HP-PRRSV strain SD-JN were highly expressed by pMVAX1©. Mice inoculated with pMVAX1©-GP35 developed significantly higher PRRSV-specific antibody responses and T cell proliferation than those vaccinated with pVAX1©-GP35. pMVAX1©-GP35 was selected as PRRS DNA vaccine candidate and co-administrated with pVAX1©-IL-2 or pMVAX1©-IL-2 in pigs. pMVAX1©-IL-2+pMVAX1©-GP35 could provide enhanced PRRSV-specific antibody responses, T cell proliferation, Th1-type and Th2-type cytokine responses and CTL responses than pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35. Following homologous challenge with HP-PRRSV strain SD-JN, similar with attenuated PRRS vaccine group, pigs inoculated with pMVAX1©-IL-2+pMVAX1©-GP35 showed no clinical signs, almost no lung lesions and no viremia, as compared to those in pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35 groups. It indicated that pMVAX1©-IL-2 effectively increases humoral and cell mediated immune responses of pMVAX1©-GP35. Co-administration of pMVAX1©-IL-2 and pMVAX1©-GP35 might be attractive candidate vaccines for preventing HP-PRRSV infections.

  4. HIV-1 vaccines

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  5. Cervical cancer vaccination for my daughter, no thanks: A research synthesis on parental explained barriers to delayed or non-acceptance of HPV vaccination in high-income (OECD) nations. Parental expressed reasons on why they delay or rejected HPV vaccination for their daughters aged 9-17 within OECD nations between 2008 and 2016

    Ayino, Kenneth A.

    2016-01-01

    Background: The World Health Organization including high income nations recommends that Human Papillomavirus (HPV) vaccination should be given to young girls as they believe it’s the best available method to reduce cervical cancer morbidity and mortality. HPV vaccination remains lower than anticipated within OECD nations. Through responses, we may understand the main reasons to why parents delayed or declined to accept their daughters to be vaccinated. Objective: To determine and identify...

  6. Vaccine platform recombinant measles virus.

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  7. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    Wada, Hisashi; Isobe, Midori; Kakimi, Kazuhiro; Mizote, Yu; Eikawa, Shingo; Sato, Eiichi; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Yamasaki, Makoto; Miyata, Hiroshi; Matsushita, Hirokazu; Udono, Heiichiro; Seto, Yasuyuki; Yamada, Kazuhiro; Nishikawa, Hiroyoshi; Pan, Linda; Venhaus, Ralph; Oka, Mikio; Doki, Yuichiro; Nakayama, Eiichi

    2014-01-01

    We conducted a clinical trial of an NY-ESO-1 cancer vaccine using 4 synthetic overlapping long peptides (OLP; peptides #1, 79-108; #2, 100-129; #3, 121-150; and #4, 142-173) that include a highly immunogenic region of the NY-ESO-1 molecule. Nine patients were immunized with 0.25 mg each of three 30-mer and a 32-mer long NY-ESO-1 OLP mixed with 0.2 KE Picibanil OK-432 and 1.25 mL Montanide ISA-51. The primary endpoints of this study were safety and NY-ESO-1 immune responses. Five to 18 injections of the NY-ESO-1 OLP vaccine were well tolerated. Vaccine-related adverse events observed were fever and injection site reaction (grade 1 and 2). Two patients showed stable disease after vaccination. An NY-ESO-1-specific humoral immune response was observed in all patients and an antibody against peptide #3 (121-150) was detected firstly and strongly after vaccination. NY-ESO-1 CD4 and CD8 T-cell responses were elicited in these patients and their epitopes were identified. Using a multifunctional cytokine assay, the number of single or double cytokine-producing cells was increased in NY-ESO-1-specific CD4 and CD8 T cells after vaccination. Multiple cytokine-producing cells were observed in PD-1 (-) and PD-1 (+) CD4 T cells. In conclusion, our study indicated that the NY-ESO-1 OLP vaccine mixed with Picibanil OK-432 and Montanide ISA-51 was well tolerated and elicited NY-ESO-1-specific humoral and CD4 and CD8 T-cell responses in immunized patients.

  8. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  9. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    Birgit Schäfer

    Full Text Available BACKGROUND: Currently existing yellow fever (YF vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D. Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5 TCID(50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  10. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine.

    Bao, Huihui; Ramanathan, Aarti A; Kawalakar, Omkar; Sundaram, Senthil G; Tingey, Colleen; Bian, Charoran B; Muruganandam, Nagarajan; Vijayachari, Paluru; Sardesai, Niranjan Y; Weiner, David B; Ugen, Kenneth E; Muthumani, Karuppiah

    2013-02-01

    Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.

  11. Misconception: human papillomavirus vaccine and infertility.

    Schuler, Christine L; Hanley, Chassidy J; Coyne-Beasley, Tamera

    2014-02-01

    This study sought to determine if parents of males express concerns about vaccine-associated infertility (VAI) with the human papillomavirus (HPV) vaccine and to understand the impact of those concerns. Parents of sons were surveyed to determine VAI concerns. Logistic regression was used to find if parents worried about VAI had lower knowledge of HPV disease, more concern for side effects, lacked information about vaccination, or had lower intention to vaccinate. In all, 39% of parents were worried about VAI. Parents worried about VAI had similar knowledge of HPV compared with other parents. Parents worried about VAI had twice the odds of agreeing the vaccine may cause side effects and agreeing they did not have enough information compared to their counterparts. Parents worried about VAI less often intended to vaccinate sons than other parents. These findings suggest many parents worry about VAI in sons with HPV vaccine.

  12. Whither vaccines?

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. The Prevalence of Obesity and Associated Factors in a Kindergarten in Ankara

    Nurcan Yabanci

    2009-10-01

    Full Text Available AIM: The objective of this study was to assess the prevalence of obesity among preschool-age children and identify its associated factors. METHOD: This research has two steps, involving 375 preschool-age children ranging from 5 to 6 years-old, registered to a public kindergarten in Kecioren, Ankara. In the first step, measurements of weight, height, waist and hip circumferences were taken, body mass index (BMI and waist-hip ratio were calculated, BMI according to age and gender was classified considering the reference data of WHO-2007, the results were evaluated ≥85-<95. percentile as overweight, and ≥95.percentile as obese. In the second stage, forms prepared by the researchers were given to parents and the data obtained were assessed by statistical methods. RESULTS: The overall prevalence of overweight was 8.3%; the overall prevalence of obesity was 10.1%. The prevalence of overweight was higher in boys than in girls. The circumference of waist and hip of overweight/obese children were higher than other children (p<0.001. Negative and significant correlation was obtained (p<0.05 between the body weight and daily sportive activities of children and also between the period of exclusive breastfeeding. Moreover, positive correlation (p<0.01 was found between the body weight of children and the body weight of their parents. CONCLUSION: Obesity among preschool children is an important health problem. To evaluate obesity of children and encouraging them for having healthy eating behaviors and for doing sportive activities could contribute to prevent them to develop obesity in later ages. [TAF Prev Med Bull 2009; 8(5.000: 397-404

  14. Recognition of cigarette brand names and logos by primary schoolchildren in Ankara, Turkey.

    Emri, S; Bağci, T; Karakoca, Y; Bariş, E

    1998-01-01

    To assess the smoking behaviour of primary schoolchildren and their ability to recognise brand names and logos of widely advertised cigarettes, compared with other commercial products intended for children. Cross-sectional survey in classroom settings using a questionnaire designed to measure attitudes towards smoking and the recognition of brand names and logos for 16 food, beverage, cigarette, and toothpaste products. Ankara, Turkey. 1093 children (54.6% boys, 44.4% girls) aged 7-13 years (mean = 10, SD = 1), from grades 2-5. The student sample was taken from three primary schools--one school in each of three residential districts representing high, middle, and low income populations. Prevalence of ever-smoking, recognition of brand names and logos. Prevalence of ever-smoking was 11.7% overall (13.9% among boys and 9.1% among girls; p Brand recognition rates ranged from 58.1% for Chee-tos (a food product) to 95.2% for Samsun (a Turkish cigarette brand). Recognition rates for cigarette brand names and logos were 95.2% and 80.8%, respectively, for Samsun; 84.0% and 90.5%, respectively, for Camel; and 92.1% and 69.5%, respectively, for Marlboro. The Camel logo and the Samsun and Marlboro brand names were the most highly recognised of all product logos and brand names tested. The high recognition of cigarette brand names and logos is most likely the result of tobacco advertising and promotion. Our results indicate the need to implement comprehensive tobacco control measures in Turkey.

  15. An Example of a Gentrification: Unintended Consequences of an in Situ Rehabilitation Project in Ankara

    Reyhan Varlı Görk

    2016-06-01

    Full Text Available This article is about an early example of gentrification processes in Ankara, the capital of Turkey. A unique form of the gentrification process is examined using a case study of a small inner-city neighborhood on Koza Street through the monitoring of the area between 1998 and 2016, and giving voice to both the gentrifiers and gentrified. Almost ninety percent of the population in the area was displaced despite the inclusionary principles of an in situ Rehabilitation Project which has led to a large scale transformation of the physical space of the street. The study includes four field studies conducted at different time intervals (1998, 2001, 2004, 2009 and a follow-up visit (2016 to the neighborhood, to critically assess the progression of gentrification in Turkey through its phases. Even though gentrification usually refers to the middle class invasion of urban land originally inhabited by the less privileged, our case reveals the effects of successive modes of a gentrification process which starts as an in situ rehabilitation project of a squatter prevention area initiated by a social democratic municipality with the “participation of local groups”, and turns into “gentrification by choice” in the successive years in the shadow of “Third Way” values. What is currently happening could be regarded as “gentrification by force” following urban renewal. In our case, however, the line between the two major components of gentrification, i.e., the “gentrifier” and the “gentrified”, seems to have become ambiguous, which calls for a further analysis of Turkey’s unique political and spatial dynamics.

  16. A survey of violence against staff working in the emergency department in ankara, Turkey.

    Talas, Melek Serpil; Kocaöz, Semra; Akgüç, Selma

    2011-12-01

    Workplace violence in the emergency department is a significant problem world wide. The aims of this study were to identify the proportion of staff subjected to the types of violence, its sources, factors affecting violence experiences, reporting the incidence and the emotions of the victims after violence. This descriptive study was conducted between March and August 2009 in the the emergency department of six hospitals in Ankara, Turkey. Data were collected from 270 staff working in various emergency settings. The instrument was a 36-item questionnaire on types of violence, its sources, feelings, and ways to cope with violent behaviors. Descriptive statistics and chi-square tests were used for data analysis. The results showed 85.2% of participants had been subjected to at least one kind of violence: 41.1% to physical assault, 79.6% to verbal abuse, 55.5% to verbal threats and 15.9% to sexual harassment. Patients' companions (90.9%) were identified as the primary perpetrators of violence. The rates of violence types were highest towards security officers and housekeepers. The most common reactions to violence were sadness and anger. "Did nothing and keeping silent" was the coping method used most commonly by the staff. Participants exposed to physical assaults and verbal threat did not report the incidence of violence to managers were at 43.3% and 65.3% respectively. Based on results of the study, it is suggested that every hospital institute reliable reporting procedures that staff members feel comfortable using, and also provide a comprehensive program of support services for staff that has been assaulted. Copyright © 2011. Published by Elsevier B.V.

  17. The impact of anti-smoking laws on high school students in Ankara, Turkey

    Demir, Melike; Karadeniz, Gulistan; Demir, Fikri; Karadeniz, Cem; Kaya, Halide; Yenibertiz, Derya; Taylan, Mahsuk; Yilmaz, Sureyya; Sen, Velat

    2015-01-01

    ABSTRACT OBJECTIVE: To determine the factors affecting the smoking habits of high school students, their thoughts about changes resulting from anti-smoking laws, and how they are affected by those laws. METHODS: In this cross-sectional study, 11th-grade students at eight high schools in Ankara, Turkey, were invited to complete a questionnaire. RESULTS: A total of 1,199 students completed the questionnaire satisfactorily. The mean age of the respondents was 17.0 ± 0.6 years; 56.1% were female, of whom 15.3% were smokers; and 43.9% were male, of whom 43.7% were smokers (p academic performance. Of the respondents, 74.7% were aware of the content of anti-smoking laws; 81.8% approved of the restrictions and fines; and 8.1% had quit smoking because of those laws. According to the respondents, the interventions that were most effective were the (television) broadcast of films about the hazards of smoking and the ban on cigarette sales to minors. The prevalence of smoking was highest (31.5%) among students attending vocational high schools but lowest (7.5%) among those attending medical vocational high schools. Although 57.1% of the smokers were aware of the existence of a smoking cessation helpline, only 3.7% had called, none of whom had made any attempt to quit smoking. CONCLUSIONS: Although most of the students evaluated were aware of the harmful effects of smoking and approved of the anti-smoking laws, only a minority of those who smoked sought professional help to quit. PMID:26785961

  18. The impact of anti-smoking laws on high school students in Ankara, Turkey

    Melike Demir

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To determine the factors affecting the smoking habits of high school students, their thoughts about changes resulting from anti-smoking laws, and how they are affected by those laws. METHODS: In this cross-sectional study, 11th-grade students at eight high schools in Ankara, Turkey, were invited to complete a questionnaire. RESULTS: A total of 1,199 students completed the questionnaire satisfactorily. The mean age of the respondents was 17.0 0.6 years; 56.1% were female, of whom 15.3% were smokers; and 43.9% were male, of whom 43.7% were smokers (p < 0.001. The independent risk factors for smoking were male gender, attending a vocational school, having a sibling who smokes, having a friend who smokes, and poor academic performance. Of the respondents, 74.7% were aware of the content of anti-smoking laws; 81.8% approved of the restrictions and fines; and 8.1% had quit smoking because of those laws. According to the respondents, the interventions that were most effective were the (television broadcast of films about the hazards of smoking and the ban on cigarette sales to minors. The prevalence of smoking was highest (31.5% among students attending vocational high schools but lowest (7.5% among those attending medical vocational high schools. Although 57.1% of the smokers were aware of the existence of a smoking cessation helpline, only 3.7% had called, none of whom had made any attempt to quit smoking. CONCLUSIONS: Although most of the students evaluated were aware of the harmful effects of smoking and approved of the anti-smoking laws, only a minority of those who smoked sought professional help to quit.

  19. A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice

    Ye Yu

    2011-06-01

    Full Text Available Abstract Background Avian influenza viruses of H9N2 subtype have become highly prevalent in avian species. Although these viruses generally cause only mild to moderate disease, they can infect a wide variety of species, including chickens, quail, turkeys, ducks, geese, pheasant, partridge, and pigeon, even transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. Results The results showed that stronger immune responses were induced in a mouse model immunized with BV-Dual-HA than in those vaccinated with a DNA vaccine encoding the same antigen. Moreover, complete protection against lethal challenge with H9N2 virus was observed in mice. Conclusion BV-Dual-HA could be utilized as a vaccine candidate against H9N2 virus infection.

  20. [A study on the construction, expression and immunosterility of Lagurus laguru zona pellucida 3 DNA vaccine pVAX1-sig-LTB-lZP3-C3d3].

    Li, Chen-Chen; Yu, Ji-Yun; Jiang, Min; Tu, Yi-Xian; Ma, Xiao-Lin; Zhang, Fu-Chun

    2011-09-01

    To enhance the immunocontraceptive effect of Lagurus lagurus zona pellucida 3 DNA vaccine, and to achieve the prospect of application through the pVAX1-sig-LTB-lZP3-C3d3 different immunity pathway. Two adjuvant molecules were constructed into the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 as DNA vaccine which contains Escherichia coli heat-labile enterotoxin B subunit and the molecular adjuvant 3 copies of C3d. The results of RT-PCR and western blot showed that the DNA vaccine was expressed in mRNA and protein level. The female C57BL/6 mice were immunized by three ways: intramuscular injection, intranasal or oral route.Antibody levels and types were detected by ELISA. ELISA results showed that recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 immunization induced specific IgG, IgA levels were significantly different comparing with control (Psig-LTB-lZP3-C3d3 can induce the specific immune response efficiently and enhance the immunocontraceptive effects.

  1. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges.

    Nagarajan Vinod

    Full Text Available Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG was generated based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH. Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7 exposed to PBS buffer (98.1%, the macrophages exposed to formalin-killed inactivated cells (FKC, live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β and factor (iNOS, anti-inflammatory cytokine (IL-10 and dual activities (IL-6 in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.

  2. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression.

    Keiser, P B; Biggs-Cicatelli, S; Moran, E E; Schmiel, D H; Pinto, V B; Burden, R E; Miller, L B; Moon, J E; Bowden, R A; Cummings, J F; Zollinger, W D

    2011-02-04

    This phase I clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from an lpxL1(-) synX(-) mutant of strain 8570(B:4:P1.19,15:L8-5) of Neisseria meningitidis. Additional mutations enhance the expression of factor H binding protein variant 1 (fHbp v.1), stabilize expression of OpcA and introduce a second PorA (P1.22,14). Thirty-six volunteers were assigned to one of four dose groups (10, 25, 50 and 75 mcg, based on protein content) to receive three intramuscular injections at six week intervals with aluminum hydroxide adjuvant. Specific local and systemic adverse events were solicited by diary and at visits on days 2, 7, and 14 after each vaccination. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again 2 and 14 days later. Blood for ELISA and serum bactericidal assays was drawn two and six weeks after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in bactericidal activity to the wild type parent of the vaccine strain at two weeks after the third dose was 27 out of 34 (0.79, 95% C.I. 0.65-0.93). Against four other group B strains the response rate ranged from 41% to 82% indicating a good cross reactive antibody response. Depletion assays show contributions to bactericidal activity from antibodies to lipooligosaccharide (LOS), fHbp v.1 and OpcA. Published by Elsevier Ltd.

  3. Molecular Vaccines for Malaria

    2010-01-01

    Removing inhibitory plasm ids from the cock- with the radiation-attenuated sporozoite (RAS) vaccine36•37 (see tail restored the immunogenicity of the...relative increased in vitro growth inhibitory activity against homologous to the P. folciparum antigen expressing plasm ids alone, and none parasites...25nm and have a molecular weight of 14.8 kDa. (C) Transmission electron microscopy image of P4c-Mal nanoparticles at 242 OOOx. The sample was

  4. Influenza vaccination

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  5. Indoor radon concentrations and radon doses at three districts of Ankara, Turkey and raising public awareness on the issue

    Mehmet Kildir; Inci Goekmen; Ali Goekmen

    2016-01-01

    Indoor radon concentrations at METU, CIGDEM and DOSTLAR in Ankara were measured using electrets. The statistical analysis of the data indicated a lognormal distribution of radon concentrations, with no significant difference between CIGDEM and DOSTLAR with geometric means of GM = 87.5 and 54.5 Bq m -3 , respectively. Radon concentrations did not change seasonally at CIGDEM which contain modern buildings, but at the slum district DOSTLAR, with poor insulation of houses a seasonal variation was observed. Annual effective radon doses were estimated (0.4-8.4 mSv). Public awareness about indoor radon was raised. (author)

  6. The 2005 - 2007 Bala (Ankara, central Turkey) earthquakes: a case study for strike-slip fault terminations

    Esat, K.; Çivgin, B.; Kaypak, B.; Isik, V.; Ecevitoglu, B.; Seyitoglu, G.

    2014-01-01

    An intense seismic activity has been observed after the Bala (Ankara, NW central Turkey) earthquakes (30 July 2005: Mw=5.3, 20 December 2007: Mw=5.4, and 26 December 2007: Mw=5.3), continuing up to the present. The epicenters and the focal mechanism solutions of the earthquakes indicate that the right lateral strike-slip Afşar fault, trending N55-60°W, is responsible for the main shocks. The Afşar fault is thought to be the NW continuation of the Tuzgölü fault zone, which is one of the main n...

  7. Flu Vaccine Safety Information

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  8. Thimerosal in Flu Vaccine

    ... Seasonal Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... and/or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose ...

  9. Ear Infection and Vaccines

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  10. Antipneumococcal vaccination

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  11. EXPRESS

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  12. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    Angov, Evelina

    2000-01-01

    .... However, it appears to lack T-helper epitopes. Since antibody is likely the effector mechanism induced by MSP1-19, it is important to insure that recombinant vaccines based on this antigen be folded correctly and contain T-helper epitopes...

  13. Preclinical evaluation of NF-kappa B-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination

    Gerer, Kerstin F.; Erdmann, Michael; Hadrup, Sine Reker

    2017-01-01

    Background: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host's genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor ...

  14. Construction of recombinant Newcastle disease virus expressing the S1 protein of Turkey enteric coronavirus for use as a bivalent vaccine

    Turkey enteric coronavirus (TCoV) causes a contagious form of enteritis in turkeys, generally recognized in the field by outward signs including diarrhea and decreased weight gain, resulting in severe economic losses for the poultry industry in the US. To date there is no commercial vaccine availab...

  15. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. EVALUATION OF THE ENVIRONMENTAL CONSCIOUSNESS OF THE STUDENTS IN A MEDICAL FACULTY IN ANKARA

    Songul VAIZOÐLU

    2005-08-01

    Full Text Available Objectives: The reseach is conducted to evaluate the environmental consciousness of the students in a medical faculty in Ankara. Materials and Methods: Of the 412 students, 342 (83.0% participated this cross-sectional study. Data were collected in August 2000 with ?Environmental Consciousness Research Form?, the questionnaire prepared by the researchers and analysed using EPI INFO 6.0, a statistical package programme. Results: Mean age of the study group was 23.71 and 54.7% were male. Most of the students (74.4% reported that they would go to school/work by bycle, bus or on foot, and 87.1 percent of them told they would prefer train. Of the participants, 72.3% think environmental problems are not the issues only governments would care about. While most of them (81.8% reported that they would give up buying the products harmful to the environment, only 18.8% told they would want to deliver brochures about environment to each house. Nearly half of the students reported that they wouldn?t spend their money for the solution of environmental problems. Most of the students reported that they didn?t admit to any official institution to get information on environmental pollution (90.3%, never attended a meeting on environment (85.6% and never subscribed to a publication about the environment (91.4%. The students knew the products containing mercury, the substances which do not dissepear in the ocean and about the ozone layer depletion. Environmental consciousness scores are calculated by grading the questions about environmental consciousness. Mean score was 27.47. Nearly half of the students (53.2% had a score over 28. Students reported that deforestation (10.1%, air pollution (8.0%, population explosion (7.8%, nuclear weapons (7.3% and industrial wastes (7.1% would be the most important problems in 21. century. Conclusion: Complementing the lack of knowledge determined in the study by planning educational programmes, considering the environmental

  17. EVALUATION OF THE ENVIRONMENTAL CONSCİOUSNESS OF THE STUDENTS IN A MEDICAL FACULTY IN ANKARA

    Çağatay GÜLER

    2005-07-01

    Full Text Available Objectives: The reseach is conducted to evaluate the environmental consciousness of the students in a medical faculty in Ankara. Materials and Methods: Of the 412 students, 342 (83.0% participated this cross-sectional study. Data were collected in August 2000 with ?Environmental Consciousness Research Form?, the questionnaire prepared by the researchers and analysed using EPI INFO 6.0, a statistical package programme. Results: Mean age of the study group was 23.71 and 54.7% were male. Most of the students (74.4% reported that they would go to school/work by bycle, bus or on foot, and 87.1 percent of them told they would prefer train. Of the participants, 72.3% think environmental problems are not the issues only governments would care about. While most of them (81.8% reported that they would give up buying the products harmful to the environment, only 18.8% told they would want to deliver brochures about environment to each house. Nearly half of the students reported that they wouldn?t spend their money for the solution of environmental problems. Most of the students reported that they didn?t admit to any official institution to get information on environmental pollution (90.3%, never attended a meeting on environment (85.6% and never subscribed to a publication about the environment (91.4%. The students knew the products containing mercury, the substances which do not dissepear in the ocean and about the ozone layer depletion. Environmental consciousness scores are calculated by grading the questions about environmental consciousness. Mean score was 27.47. Nearly half of the students (53.2% had a score over 28. Students reported that deforestation (10.1%, air pollution (8.0%, population explosion (7.8%, nuclear weapons (7.3% and industrial wastes (7.1% would be the most important problems in 21. century. Conclusion: Complementing the lack of knowledge determined in the study by planning educational programmes, considering the environmental

  18. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.

  19. Determining residential energy consumption-based CO2 emissions and examining the factors affecting the variation in Ankara, Turkey

    Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen

    2017-11-01

    Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.

  20. Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus

    Sørensen, K.J.; Madsen, K.G.; Madsen, E.S.

    1998-01-01

    The baculovirus expression system was found to be efficient at expressing the 3D, the 3AB and the 3ABC non-structural proteins (NSP) of foot-and-mouth disease virus (FMDV) as antigens recognised by immune sera in ELISA. ELISA's using 3D, 3AB and 3ABC detected antibodies from day 8 and 10 after...... experimental infection of susceptible cattle and sheep and cattle remained seropositive for more than 395 days. The ELISA's detected antibodies against any of the seven serotypes of FMDV. The 3D ELISA was specific and precise and as sensitive as established ELISA's which measure antibody to structural proteins....... The assay may be used as a resource saving alternative to established ELISA's for the detection of antibodies against any of the seven serotypes. The 3AB and the 3ABC ELISA were also specific and precise. FMDV infected cattle could be differentiated from those that had been merely vaccinated as they gave...

  1. Stakeholder attitudes toward influenza vaccination policy in the United States.

    Berman, Pamela Protzel; Orenstein, Walter A; Hinman, Alan R; Gazmararian, Julie

    2010-11-01

    There is growing interest in simplifying recommendations to vaccinate Americans against influenza. The article discusses interviews with 35 stakeholders from the medical, public health, educational, insurance, and vaccine industry sectors to assess the potential for policy change, and discusses questions posed to the interviewees on current and future influenza vaccination policy and barriers to policy change. About 97% of respondents support the expansion of vaccination for all school-age children, and about 95% support universal vaccination, but there are reservations expressed by the respondents, despite the support for this policy change. Barriers to influenza vaccination recommendations include access, supply, confusing recommendations, and public perceptions. Barriers to universal vaccination include lack of infrastructure, cost, need for education, and vaccine supply. Issues concerning resources and education are challenges that impede policy change. The study findings can be useful to policy makers and practitioners for reviewing U.S. vaccination policy and changes to the policy.

  2. Semantic network analysis of vaccine sentiment in online social media.

    Kang, Gloria J; Ewing-Nelson, Sinclair R; Mackey, Lauren; Schlitt, James T; Marathe, Achla; Abbas, Kaja M; Swarup, Samarth

    2017-06-22

    To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage

  3. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection.

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    1999-01-28

    Canine distemper virus (CDV) infection of ferrets causes a disease characterized by fever, erythema, conjunctivitis and leukocytopenia, similar clinically to measles except for the fatal neurologic sequelae of CDV. We vaccinated juvenile ferrets twice at 4-week intervals by the intranasal or intraduodenal route with attenuated vaccinia (NYVAC) or canarypox virus (ALVAC) constructs containing the CDV hemagglutinin and fusion genes. Controls were vaccinated with the same vectors expressing rabies glycoprotein. Animals were challenged intranasally 4 weeks after the second vaccination with virulent CDV. Body weights, white blood cell (WBC) counts and temperatures were monitored and ferrets were observed daily for clinical signs of infection. WBCs were assayed for the presence of viral RNA by RT-PCR. Intranasally vaccinated animals survived challenge with no virologic or clinical evidence of infection. Vaccination by the intraduodenal route did not provide complete protection. All control animals developed typical distemper. Ferrets can be effectively protected against distemper by mucosal vaccination with poxvirus vaccines.

  4. Future prospects for the development of cost-effective Adenovirus vaccines

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    -vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  5. Recombinant adenovirus expressing the haemagglutinin of peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR

    Herbert , Rebecca; Baron , Jana; Batten , Carrie; Baron , Michael; Taylor , Geraldine

    2014-01-01

    International audience; Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vacci...

  6. Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo

    Rahul Shukla; Ravi K. Rajpoot; Upasana Arora; Ankur Poddar; Sathyamangalam Swaminathan; Navin Khanna; Navin Khanna; Navin Khanna

    2018-01-01

    Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4). Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE). A recently launched live attenuated vaccine (LAV) for dengue, which ...

  7. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.

  9. Kinetics of Mx expression in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) parr in response to VHS-DNA vaccination

    Acosta, F.; Petrie, A.; Lockhart, K.

    2005-01-01

    vaccine or the synthetic double-stranded RNA, poly LC. In both species there was a rapid response to poly LC detectable from day 1, reaching maximum from days 3 to 9 and decreasing to background level by day 12. The peak level and return to background was reached slightly later in salmon. In both species...... the response to the VHS/DNA vaccine was slower to begin, not being detectable on days 1 and 3, but elevated levels were found on day 6. However, in the salmon part, the peak level was on day 6 and the signal disappeared by day 12, while in the rainbow trout, the response peaked at day 12 and lasted until day......The duration of the Mx mRNA response to an intramuscular injection of the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) gene DNA vaccine as well as to the control plasmid was determined in rainbow trout at 14 degreesC over a period of 11 weeks. The Mx response was detectable on day 7...

  10. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  11. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine.

    Morten A Nielsen

    Full Text Available The disease caused by Plasmodium falciparum (Pf involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM is one such manifestation in which Pf infected erythrocytes (IE bind to chondroitin sulphate A (CSA through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2 expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens

  12. Green revolution vaccines, edible vaccines | Tripurani | African ...

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  13. Co-administration of plasmid expressing IL-12 with 14-kDa Schistosoma mansoni fatty acid-binding protein cDNA alters immune response profiles and fails to enhance protection induced by Sm14 DNA vaccine alone.

    Fonseca, Cristina T; Pacífico, Lucila G G; Barsante, Michele M; Rassi, Tatiana; Cassali, Geovanni D; Oliveira, Sérgio C

    2006-08-01

    Schistosomiasis is an endemic disease that affects 200 million people worldwide. DNA-based vaccine is a promising strategy to induce protective immunity against schistosomiasis, since both humoral and cellular immune responses are involved in parasite elimination. In this study, we evaluated the ability of Sm14 cDNA alone or in association with a plasmid expressing murine interleukin (IL)-12 to induce protection against challenge infection. Mice were immunized with four doses of the DNA vaccine and the levels of protection were determined by worm burden recovery after challenge infection. Specific antibody production to rSm14 was determined by ELISA, and cytokine production was measured in splenocyte culture supernatants stimulated with rSm14 and in bronchoalveolar lavage of vaccinated mice after challenge infection. DNA immunization with pCI/Sm14 alone induced 40.5% of worm reduction. However, the use of pCI/IL-12 as adjuvant to pCI/Sm14 immunization failed to enhance protection against challenge infection. Protection induced by pCI/Sm14 immunization correlates with specific IgG antibody production against Sm14, Th1 type of immune response with high levels of interferon (IFN)-gamma and low levels of IL-4 in splenocyte culture supernatants and in bronchoalveolar lavage after challenge infection. IL-12 co-administration with pCI/Sm14 induced a significant production of nitric oxide in splenocyte culture supernatants and also lymphocyte suppression, with reduced percentage of T cells producing IFN-gamma and tumor necrosis factor-alpha.

  14. Valuing vaccination.

    Bärnighausen, Till; Bloom, David E; Cafiero-Fonseca, Elizabeth T; O'Brien, Jennifer Carroll

    2014-08-26

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery.

  15. Primary Care Physicians' Perspectives About HPV Vaccine.

    Allison, Mandy A; Hurley, Laura P; Markowitz, Lauri; Crane, Lori A; Brtnikova, Michaela; Beaty, Brenda L; Snow, Megan; Cory, Janine; Stokley, Shannon; Roark, Jill; Kempe, Allison

    2016-02-01

    Because physicians' practices could be modified to reduce missed opportunities for human papillomavirus (HPV) vaccination, our goal was to: (1) describe self-reported practices regarding recommending the HPV vaccine; (2) estimate the frequency of parental deferral of HPV vaccination; and (3)identify characteristics associated with not discussing it. A national survey among pediatricians and family physicians (FP) was conducted between October 2013 and January 2014. Using multivariable analysis, characteristics associated with not discussing HPV vaccination were examined. Response rates were 82% for pediatricians (364 of 442) and 56% for FP (218 of 387). For 11-12 year-old girls, 60% of pediatricians and 59% of FP strongly recommend HPV vaccine; for boys,52% and 41% ostrongly recommen. More than one-half reported ≥25% of parents deferred HPV vaccination. At the 11-12 year well visit, 84% of pediatricians and 75% of FP frequently/always discuss HPV vaccination. Compared with physicians who frequently/always discuss , those who occasionally/rarely discuss(18%) were more likely to be FP (adjusted odds ratio [aOR]: 2.0 [95% confidence interval (CI): 1.1-3.5), be male (aOR: 1.8 [95% CI: 1.1-3.1]), disagree that parents will accept HPV vaccine if discussed with other vaccines (aOR: 2.3 [95% CI: 1.3-4.2]), report that 25% to 49% (aOR: 2.8 [95% CI: 1.1-6.8]) or ≥50% (aOR: 7.8 [95% CI: 3.4-17.6]) of parents defer, and express concern about waning immunity (aOR: 3.4 [95% CI: 1.8-6.4]). Addressing physicians' perceptions about parental acceptance of HPV vaccine, the possible advantages of discussing HPV vaccination with other recommended vaccines, and concerns about waning immunity could lead to increased vaccination rates. Copyright © 2016 by the American Academy of Pediatrics.

  16. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2014-02-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern

  17. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  18. Recent advances in the development of vaccines for Ebola virus disease.

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Is an HIV vaccine possible?

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  20. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  1. The Effects of Using Geography Information Systems in Social Studies on Students Attitudes about Information Technology: Case of Ankara

    Nihat ŞİMŞEK

    2011-12-01

    Full Text Available The motivation and attention of students in the classroom are on the increase of using different methods. Like other lectures, in social studies using computers and information technologies is one of the methods that keeps the interest of students alive and increases participation of them. This study, aiming at measuring attitudes of 6th grade students to information technologies is conducted by using qualitative and quasi-experimental methods. The sample of this study is comprised by students of Cizmeci Elementary School, located in Ankara Kecioren. 33 students were chosen for experimental group and 35 students were chosen for control group, comprising a total of 68 students. As a result of the study, a significant difference between total computer attitude scale points of the pre and post-tests in both experimental and control groups was determined

  2. Examining Diverse World Examples in Transit Fare Collection Systems for Bus and a Model System for Ankara

    Seda Hatipoğlu

    2017-12-01

    Full Text Available The migration from the rural to urban areas since Industrial Revolution up to present has resulted in a global and significant urbanization phenomenon. Transportation, due to the increasing population in the cities, stands out as one of the major problems. Convenient transportation in the cities depends primarily on an efficient and productive public transportation system. Enable to use public transportation system in efficient, pricing varieties and fare payment options/ medias are applied in the transportation are very important. In order public transportation system to be efficient pricing variations and fare payment collection methods should be considered. Pricing varieties increase demands for public transportation and the ease of fare payment increases speed and capacity of public transportation. In this study, bus pricing policies and fare payment options in the cities of Geneva, London, Tokyo and Curitiba which are prominent with successful public transportation policies are examined and practice proposals are presented for the city of Ankara City.

  3. Environmental and psychosocial factors affecting seat belt use among Turkish front-seat occupants in Ankara: two observation studies.

    Simşekoğlu, Ozlem; Lajunen, Timo

    2008-01-01

    Low seat belt use rate among car occupants is one of the main problems contributing to low driver and passenger safety in Turkey, where injury and fatality rates of car occupants are very high in traffic crashes. The present article consists of two observation studies, which were conducted in Ankara. The first study aimed at investigating environmental factors and occupant characteristics affecting seat belt use among front-seat occupants, and the objective of the second study was to investigate the relationship between driver and front-seat passenger seat belt use. In the first study, 4, 227 front-seat occupants (drivers or front seat passengers) were observed on four different road sides and, in the second study 1, 398 front seat occupants were observed in car parks of five different shopping centers in Ankara. In both observations, front-seat occupants' seat bet use (yes, no), sex (male, female), and age ( 50 years) were recorded. The data were analyzed using chi-square statistics and binary logistic regression techniques. Results of the first study showed that seat belt use proportion among observed front seat occupants was very low (25%). Being female and traveling on intercity roads were two main factors positively related to use a seat belt among front-seat occupants. High correlations between seat belt use of the drivers and front-seat passengers were found in the second study. Overall, low seat belt use rate (25%) among the front-seat occupants should be increased urgently for an improved driver and passenger safety in Turkey. Seat belt campaigns especially tailored for male front-seat occupants and for the front-seat occupants traveling on city roads are needed to increase seat belt use rates among them. Also, both drivers and passengers may have an important role in enforcing seat belt use among themselves.

  4. Vaccines in Development against West Nile Virus

    Frederic Tangy

    2013-09-01

    Full Text Available West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  5. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  6. Vaccines and Thimerosal

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  7. Vaccine Adverse Events

    ... for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More sharing ... in the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA ( ...

  8. Vaccination in Fish

    Chettri, Jiwan Kumar

    vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...... respond to vaccination by increasing the specific antibody titer and by activating the cellular responses. My talk will cover vaccination methods in fish, immune responses and some adverse effect of oil-adjuvanted vaccines in fish with reference to our work in rainbow trout, Oncorhynchus mykiss....

  9. Human Papillomavirus (HPV) Vaccine

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  10. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  11. The impact of new technologies on vaccines.

    Talwar, G P; Diwan, M; Razvi, F; Malhotra, R

    1999-01-01

    Vast changes are taking place in vaccinology consequent to the introduction of new technologies. Amongst the vaccines included in the Expanded Programme of Immunization (EPI), the pertussis vaccine has been replaced by acellular purified fractions devoid of side-effects. Non-pathogenic but immunogenic mutants of tetanus and diptheria toxins are likely to replace the toxoids. An effective vaccine against hepatitis B prepared by recombinant technology is in large-scale use. Conjugated vaccines against Haemophilus influenzae b, S. pneumococcus and meningococcus are now available, as also vaccines against mumps, rubella and measles. Combination vaccines have been devised to limit the number of injections. Vaccine delivery systems have been developed to deliver multiple doses of the vaccine at a single contact point. A genetically-engineered oral vaccine for typhoid imparts better and longer duration of immunity. Oral vaccines for cholera and other enteric infections are under clinical trials. The nose as a route for immunization is showing promise for mucosal immunity and for anti-inflammatory experimental vaccines against multiple sclerosis and insulin-dependent diabetes mellitus. The range of vaccines has expanded to include pathogens resident in the body such as Helicobacter pylori (duodenal ulcer), S. mutans (dental caries), and human papilloma virus (carcinoma of the cervix). An important progress is the recognition that DNA alone can constitute the vaccines, inducing both humoral and cell-mediated immune responses. A large number of DNA vaccines have been made and shown interesting results in experimental animals. Live recombinant vaccines against rabies and rinderpest have proven to be highly effective for controlling these infections in the field, and those for AIDS are under clinical trial. Potent adjuvants have added to the efficacy of the vaccines. New technologies have emerged to 'humanize' mouse monoclonals by genetic engineering and express these

  12. [Poliovirus vaccine].

    Shimizu, Hiroyuki

    2012-06-01

    To avoid the risk of vaccine-associated paralytic poliomyelitis (VAPP) and polio outbreaks due to circulating vaccine-derived polioviruses, an inactivated poliovirus vaccine (IPV) was introduced for routine immunization in a number of countries with a low risk of polio outbreaks. Currently, production and marketing of a standalone conventional IPV and two diphtheria-pertussis-tetanus-IPV (Sabin-derived IPV; sIPV) products have been submitted, and it is expected that the IPV products will be introduced in Japan in the autumn of 2012. At the same time, a decline in the OPV immunization rate became apparent in Japan due to serious public concerns about a remaining risk of VAPP and introduction of IPV in the near future. Therefore, the recent development of polio immunity gaps should be carefully monitored, and surveillance of suspected polio cases and laboratory diagnosis of polioviruses have to be intensified for the transition period from OPV to IPV in Japan. The development of sIPV is one of the most realistic options to introduce affordable IPV to developing countries. In this regard, further clinical studies on its efficacy, safety, and interchangeability of sIPV will be needed after the introduction of the sIPV products, which will be licensed in Japan for the first time in the world.

  13. Hepatitis B Vaccine

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  14. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice

    Rong Wang

    2014-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1-specific dendritic cell (DC vaccines have been applied to clinical trials that show only induction of some degree of immune responses, warranting the search of other more efficient vaccine strategies. Since HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs have been found to recognize some HIV-1 structural protein Gag conserved and cross-strain epitopes, Gag has become one of the most attractive target candidates for HIV-1 vaccine development. In this study, we generated HIV-1 Gag-specific Gag-Texo vaccine by using ConA-stimulated polyclonal CD8+ T-cells with uptake of Gag-expressing adenoviral vector AdVGag-transfected DC (DCGag-released exosomes (EXOs, and assessed its stimulation of Gag-specific CD8+ CTL responses and antitumor immunity. We demonstrate that Gag-Texo and DCGag vaccines comparably stimulate Gag-specific effector CD8+ CTL responses. Gag-Texo-stimulated CTL responses result in protective immunity against Gag-expressing BL6-10Gag melanoma in 8/8 wild-type C57BL/6 mice. In addition, we show that Gag-Texo vaccine also induces CTL responses leading to protective and long-term immunity against Gag/HLA-A2-expressing BL6-10Gag/A2 melanoma in 8/8 and 2/8 transgenic HLA-A2 mice, respectively. The average number of lung tumor colonies in mice with 30-days post-immunization is only 23, which is significantly less than that (>300 in control ConA-T-immunized HLA-A2 mice. Furthermore, Gag-Texo vaccine also induces some degree of therapeutic immunity. The average number (50 and size (0.23 mm in diameter of lung tumor colonies in Gag-Texo-immunized HLA-A2 mice bearing 6-day-established lung BL6-10Gag/A2 melanoma metastasis are significantly less than the average number (>300 and size (1.02 mm in diameter in control ConA-T-immunized HLA-A2 mice. Taken together, HIV-1 Gag-Texo vaccine capable of stimulating Gag-specific CTL responses and therapeutic immunity may be useful as a new immunotherapeutic

  15. Stable Human Hepatoma Cell Lines for Efficient Regulated Expression of Nucleoside/Nucleotide Analog Resistant and Vaccine Escape Hepatitis B Virus Variants and Woolly Monkey Hepatitis B Virus.

    Xin Cheng

    Full Text Available Hepatitis B virus (HBV causes acute and chronic hepatitis B (CHB. Due to its error-prone replication via reverse transcription, HBV can rapidly evolve variants that escape vaccination and/or become resistant to CHB treatment with nucleoside/nucleotide analogs (NAs. This is particularly problematic for the first generation NAs lamivudine and adefovir. Though now superseded by more potent NAs, both are still widely used. Furthermore, resistance against the older NAs can contribute to cross-resistance against more advanced NAs. For lack of feasible HBV infection systems, the biology of such variants is not well understood. From the recent discovery of Na+-taurocholate cotransporting polypeptide (NTCP as an HBV receptor new in vitro infection systems are emerging, yet access to the required large amounts of virions, in particular variants, remains a limiting factor. Stably HBV producing cell lines address both issues by allowing to study intracellular viral replication and as a permanent source of defined virions. Accordingly, we generated a panel of new tetracycline regulated TetOFF HepG2 hepatoma cell lines which produce six lamivudine and adefovir resistance-associated and two vaccine escape variants of HBV as well as the model virus woolly monkey HBV (WMHBV. The cell line-borne viruses reproduced the expected NA resistance profiles and all were equally sensitive against a non-NA drug. The new cell lines should be valuable to investigate under standardized conditions HBV resistance and cross-resistance. With titers of secreted virions reaching >3 x 10(7 viral genome equivalents per ml they should also facilitate exploitation of the new in vitro infection systems.

  16. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  17. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  18. Individualism, acceptance and differentiation as attitude traits in the public's response to vaccination.

    Velan, Baruch; Boyko, Valentina; Lerner-Geva, Liat; Ziv, Arnona; Yagar, Yaakov; Kaplan, Giora

    2012-09-01

    The attitude of the general public to vaccination was evaluated through a survey conducted on a representative sample of the Israeli population (n = 2,018), in which interviewees were requested to express their standpoints regarding five different vaccination programs. These included: pandemic influenza vaccination, seasonal influenza vaccination, travel vaccines, Human Papilloma Virus vaccine and childhood vaccinations. Analysis of the responses reveal three major attitude traits: a) acceptance, characterized by the opinion that targets should be vaccinated; b) individualism, characterized by the opinion that vaccination should be left to personal choice; and c) differentiation, characterized by the tendency to express different attitudes when addressing different vaccination programs. Interestingly, direct opposition to vaccination was found to be a minor attitude trait in this survey. Groups within the population could be defined according to their tendency to assume these different attitudes as Acceptors, Judicious-acceptors, Differentiators, Soft-individualists, and Hard-individualists. These groups expressed different standpoints on all five vaccination programs as well as on other health recommendations, such as screening for early detection of cancer. Attitude traits could be also correlated, to a certain extent, with actual compliance with vaccination programs. Interestingly, attitudes to vaccination were not correlated with social profiles related to income or education, although younger individuals exhibited higher degrees of individualism and differentiation. Taken together, all this is in accordance with the current social settings, underlining the individual's tendency for critical evaluation and self-stirring. This should be taken into consideration by health authorities involved in vaccination programs.

  19. Dried influenza vaccines : Over the counter vaccines

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  20. The Usage Analysis of Databases at Ankara University Digital Library Ankara Üniversitesi Elektronik Kütüphanesi Veri Tabanlarının Kullanım Analizi

    Sacit Arslantekin

    2006-12-01

    Full Text Available The development in information and communication technologies has changed and improved resources and services diversity in libraries. These changes continue to develop rapidly throughout the world. As for our country,remarkable developments, especially in university and special libraries, in this field are worth consideration. In order to take benefit of the existing and forthcoming developments in the field of electronic libraries the databases used by clients should be well-demonstrated and followed closely. The providing wide use of electronic databases leads to increasing the productivity of scientific and social information that that is the ultimate goal. The article points out electronic resources management and the effect of consortia developments in the field first, and then evaluates the results of the survey on the use of electronic libraries assessment questionnaires by faculty members at Ankara University. Bilgi ve iletişim teknolojilerindeki gelişmeler bilgi kaynakları ile birlikte bilgi merkezlerinin hizmetlerini de çok yönlü olarak değiştirmiş ve geliştirmiştir. Bu gelişmeler dünyada hızlı bir gelişim izlemektedir. Ülkemizde ise başta üniversite ve araştırma kütüphaneleri olmak üzere elektronik kütüphaneler konusunda dikkate değer gelişmeler izlenmektedir. Bu gelişim süreci içinde yerini almaya çalışan elektronik kütüphanelerden istenilen düzeyde yarar sağlayabilmek için kullanılan elektronik bilgi içeren veri tabanlarının iyi tanıtılması ve kullanımının izlenmesi gerekmektedir. İstenilen düzeyde yararlanılan elektronik veri tabanları sonucu üretilen bilimsel bilginin artması da ulaşılmak istenen hedeftir. Bu makalede elektronik kaynak yönetimi ve konsorsiyumların etkisine kısaca değindikten sonra Ankara Üniversitesi öğretim elemanlarına elektronik kütüphane kullanımı konusunda yapılan anket değerlendirilecektir.

  1. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: a phase I/II study.

    Albarran Y Carvajal, Antonio; de la Garza, Alfonso; Cruz Quiroz, Benitez Jose Cecilio; Vazquez Zea, Eduardo; Díaz Estrada, Ismael; Mendez Fuentez, Ernesto; López Contreras, Mario; Andrade-Manzano, Alejandro; Padilla, Santiago; Varela, Axel Ramírez; Rosales, Ricardo

    2007-01-01

    Human papillomavirus (HPV) is the etiologic agent for warts and cervical cancer. In Mexico, the death rate from cervical cancer is extremely high, and statistical data show that since 1990 the number of deaths is increasing. Condylomas and cancer of the penis are the most common lesions presented in men; bladder and prostate cancer in men are also associated with the presence of HPV. Since HPV is transmitted by sexual intercourse, treating both partners is necessary in order to eliminate the virus in the population. Approaches to this include preventative vaccines such as Gardasil, and therapeutic vaccines to treat established infections in both men and women. This will be the only way to decrease the numbers of deaths due to this malignancy. We conducted a phase I/II clinical trial to evaluate the potential use of the recombinant vaccinia viral vaccine MVA E2 (composed of modified vaccinia virus Ankara [MVA] expressing the E2 gene of bovine papillomavirus) to treat flat condyloma lesions associated with oncogenic HPV in men. Fifty male patients with flat condyloma lesions were treated with either MVA E2 therapeutic vaccine or fluorouracil (5-fluorouracil). Thirty men received the therapeutic vaccine, at a total of 10(6) virus particles per dose, administered directly into the urethra once every week over a 4-week period. Twenty control patients were treated with 5% fluorouracil 1mL twice weekly over a 4-week period directly into the urethra. Reduction of lesions or absence of papillomavirus infection was monitored by colposcopy and histologic analysis. The immune response after MVA E2 treatment was determined by measuring the antibodies against the MVA E2 virus and by analyzing the lymphocyte cytotoxic activity against cancer cells bearing oncogenic papillomavirus. Presence of papillomavirus was determined by the Hybrid Capture method. Twenty-eight of 30 patients showed no lesion or presence of papillomavirus as diagnosed by colposcopy and brush histologic

  2. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  3. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  4. Self-amplifying mRNA vaccines.

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Vaccines and Pregnancy

    ... high or when infection would pose a high risk to the mother or baby, vaccination with a live vaccine is discussed. If there ... and benefits. For some diseases the benefit of vaccination outweighs any risks that may be associated with the vaccine. What ...